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Strange Structures from Computable Model Theory

Howard Becker

Abstract Let L be a countable language, let I be an isomorphism-type of
countable L-structures, and let a 2 2! . We say that I is a-strange if it contains a
computable-from-a structure and its Scott rank is exactly !a

1 . For all a, a-strange
structures exist. Theorem (AD): If C is a collection of @1 isomorphism-types of
countable structures, then for a Turing cone of a’s, no member of C is a-strange.

1 Introduction

Let L be a countable language, and let A be a countable L-structure. There is a
countable ordinal associated with A, called the Scott rank of A, and denoted SR.A/.
There are, in fact, several different definitions of Scott rank in the literature, and they
are not equivalent. But they are practically equivalent in that anything interesting is
either true under all definitions or false under all definitions. This paper’s official
definition of Scott rank is that of Calvert, Goncharov, and Knight [2].

The Scott rank is invariant under isomorphism. So given an isomorphism-type,
I, there is a Scott rank of I, denoted SR.I/.

Let us now consider only computable languages and computable structures.
A well-known theorem of Nadel states that the Scott rank of a computable structure
can be at most !CK

1 C1. There are many concrete examples of computable structures
with Scott rank less than !CK

1 . For example, any countable ordinal, ˛, can be viewed
as an isomorphism-type, namely, linear orderings of order-type ˛; if ˛ < !CK

1 , then
˛ � SR.!˛/ < !CK

1 . Next, consider linear orderings of order-type !CK
1 .1 C �/,

where � is the order-type of the rationals. This is called the Harrison linear ordering,
and, as Harrison proved, there is a computable linear ordering of this order-type.
The isomorphism-type of the Harrison linear ordering has Scott rank !CK

1 C 1. That
leaves one remaining case.
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Question 1.1 Does there exist a computable structure whose Scott rank is exactly
!CK

1 ?

Given any oracle a 2 2! , we can do computability theory relativized to a. As usual,
!a

1 denotes the least ordinal not computable-from-a, that is, the relativized version
of !CK

1 .

Definition 1.2 Let a 2 2! , let L be a computable-from-a language, and let I be
an isomorphism-type of countable L-structures. We call I a-strange if it contains a
computable-from-a structure and SR.I/ D !a

1 .

In this terminology, Question 1.1 becomes: Do 0-strange structures exist?
For a long time, the existence of a-strange structures was an open question. The

first result on the subject is due to Makkai [12], who proved that there is an arith-
metic a 2 2! for which there exists an a-strange structure. Later, Knight and Millar
[11] proved that 0-strange structures exist. Their proof, like every other proof in com-
putability theory, relativizes to an arbitrary oracle. So for all a 2 2! , a-strange struc-
tures exist. It is now known that there exist a-strange trees (see Calvert, Knight, and
Millar [3]), a-strange graphs, fields, and linear orderings (see Calvert, Goncharov,
and Knight [2]), a-strange Boolean algebras (see Fokina et al. [4]), and a-strange
groups (see Morozov [14]).

We refer the reader to the references in the previous paragraph, as well as to
Knight [10], for more information on this topic.

In this paper, “strange” is a technical mathematical term (see Definition 1.2). To
avoid confusion, the word will only be used in that technical sense. When the author
is engaging in vague, intuitive discussions, he will use the word “unnatural.”

The purpose of this paper is to show that strange structures are unnatural. For
the specific examples of strange structures that are produced in the previously cited
references, the fact that they are unnatural is self-evident. The thesis of this paper is
stronger: all strange structures are unnatural.

But what does that mean? Section 2 contains three different reasons for asserting
that these structures are unnatural. (The reader who dislikes the word “unnatural”
can view this as three reasons why the Scott rank !a

1 case differs from the Scott
rank !a

1 C 1 case.) For two of the three, the author is able to turn that reason into a
precise mathematical statement. One of these two reasons is stronger than the other.
The author is able to prove the weaker of the two statements, but not the stronger
conjecture. The proof is given in Section 3.

2 Unnatural Structures from Computable Model Theory

Before giving the first reason that strange structures are unnatural, we briefly discuss
a topic that is much better known than strange structures: Turing degrees. There is
an analogous form of unnaturalness there.

All Turing degrees strictly between 0 and 00 are unnatural. (There are natural
classes of degrees, e.g., the c.e. degrees, but no natural degrees.) One reason for
asserting that these degrees are unnatural is that none of them has a name. Some
Turing degrees have names: 0; 00; 000, the Turing degree of true arithmetic, the Turing
degree of a universal …1

1 set, and so on. But no Turing degree strictly between 0 and
00 has a name. And the fact that none of these degrees has a name is not a historical
or sociological accident, but an intrinsic property of the mathematical object.
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For the same reason, strange structures are unnatural: no strange structure has a
name. (In Section 1, we stated that strange structures existed, but did not name any.)
In this sense, the Scott rank !CK

1 case is different than the Scott rank !CK
1 C 1 case.

The “Harrison linear ordering” is a name, and “order-type !CK
1 .1 C �/” is another

name; there is no such name for a 0-strange structure.
This is the first reason that strange structures are unnatural. The author does not

have the slightest idea how to turn that reason into a precise mathematical statement.
So that will be left as an open (and possibly unsolvable) problem.

The second reason that strange structures are unnatural is related to the first, and
it, too, is analogous to something involving Turing degrees.

Let D denote the set of Turing degrees. For every d in D, there is a Turing
degree strictly between d and d0. Therefore, using the axiom of choice (AC), there
exists a function f W D ! D such that for all d 2 D, d <T f .d/ <T d0. But
there does not appear to be a “definable” function f with the above property. That
is, any such f is unnatural. This is related to the issue of names. Those Turing
degrees which have names correspond to definable functions from D to D. For
example, 0 corresponds to the identity function, 00 corresponds to the Turing jump,
the Turing degree of a universal …1

1 set corresponds to the hyperjump, and so on. But
the degrees strictly between 0 and 00 do not seem to correspond to such a definable
function. We can turn this vague intuition about “definable” functions into a precise
mathematical conjecture.

Conjecture 2.1 (ZF+DC+AD) There does not exist a function f W D ! D with
the property that for all d 2 D, d <T f .d/ <T d0.

Conjecture 2.1 is due to Martin, is approximately 40 years old, and is still open.
(A much weaker version of this conjecture appeared earlier in Sacks [16].)

The axiom of determinacy (AD) is an axiom which contradicts AC. The axiom of
dependent choice (DC) is a weak form of AC. (For information on these axioms, see
Jech [8] or Moschovakis [15].) In Conjecture 2.1, we are using AD in a manner that
is common in set theory: AD is frequently used to prove that pathologies produced
by AC do not exist. An example of this is the famous theorem of Mycielski and
Swierczkowski that AD implies every set of real numbers is Lebesgue measurable.

Assuming large cardinal axioms, it is true (in V, i.e., in the world of AC) that L(R)
� (ZF+DC+AD), where L(R) is the smallest model of ZF containing all ordinals and
all subsets of !. Thus the way to interpret Conjecture 2.1 in the world of AC is as
follows: any function f W D ! D which is in L(R) fails (in V) to have the property
that for all d 2 D, d <T f .d/ <T d0. This includes any function explicitly or
inductively definable using quantification over reals and over ordinals. That is, it
includes any function that would ever be defined in practice (as opposed to asserted
by AC to exist).

There is a stronger form of Conjecture 2.1, also due to Martin and also still open,
which became one of the Victoria Delfino problems (see Kechris and Moschovakis
[9, p. 281]). A recent expository paper by Marks, Slaman, and Steel [13] contains
(among other things) a progress report on the problem, along with references.

Again, we have an analogy between natural isomorphism-types and natural Tur-
ing degrees. Whether a given isomorphism-type is a-strange depends only on the
Turing degree of a; thus given a Turing degree d, we have a concept of a d-strange
isomorphism-type. Just as natural Turing degrees correspond to definable functions
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from D to D, natural isomorphism-types correspond to definable functions with
domain D which assign to each d 2 D an isomorphism-type. For example, there is
a definable function, d 7! !d

1.1 C �/, which assigns to each d 2 D an isomorphism-
type with a computable-from-d member and with Scott rank !d

1 C 1.
Conjecture 2.2, below, states that !d

1 is different from !d
1 C 1 in this respect. This

conjecture, the analogue of Conjecture 2.1 for structures rather than Turing degrees,
is (if true) the second reason that strange structures are unnatural.
Conjecture 2.2 (ZF+DC+AD) There does not exist a function f with domain D

with the property that for all d 2 D, f .d/ is the isomorphism-type of a d-strange
structure.
There is a uniform procedure, for example, the procedure in [11], which assigns
to each a 2 2! an a-strange structure. But if that procedure is applied to two
different oracles in the same Turing degree, it does not produce isomorphic struc-
tures. Conjecture 2.2 says that no definable procedure avoids this defect: to produce
an isomorphism-type which is d-strange, we must choose a representative from the
degree d.

The third reason that strange structures are unnatural is not analogous to any fact
about Turing degrees.

Let d 2 D, and let ˛ D !d
1 . The isomorphism-type ˛.1 C �/ is not merely

definable from the Turing degree d, but is definable from the ordinal ˛; that is, to
define ˛.1 C �/ we do not need to choose a d 2 D such that !d

1 D ˛ (let alone
choose a representative from d). Being definable from the ordinal is thus a stronger
form of regularity than being definable from the Turing degree; therefore, the failure
to be definable from the ordinal is a weaker form of unnaturalness.

When the relevant isomorphism-types are all definable from countable ordinals,
there is a definable set of @1 isomorphism-types which contains all the relevant
isomorphism-types. For example, consider the following set of isomorphism-types:

S D
®
˛.1 C �/ W ˛ a countable admissible ordinal

¯
: (2.3)

(By Friedman [5], under any reasonable coding of countable structures by ele-
ments of 2! , S � 2! is a †1

1 set.) The set S obviously contains exactly @1

isomorphism-types, and for every a 2 2! , there is an I 2 S such that I contains a
computable-from-a structure and SR.I/ D !a

1 C 1. The following theorem tells us
that !a

1 is different from !a
1 C 1 in this respect. It is the third reason for asserting

that strange structures are unnatural.
Theorem 2.4 (ZF+DC+AD) Let L be a countable language, and let C be a col-
lection of @1 isomorphism-types of countable L-structures. There exists an a0 2 2!

such that for all a �T a0, no member of C is a-strange.
This theorem will be proved in Section 3.

Harrington [7] proved from AD that any well-orderable collection of Borel sets
has cardinality at most @1. Since the set of codes for any isomorphism-type is Borel,
Theorem 2.4 actually holds for any well-orderable set of isomorphism-types. For
example, if C is all ordinal-definable isomorphism-types, then for a Turing cone of
a’s, no member of C is a-strange.

We conclude Section 2 by considering versions of Theorem 2.4 in the context of
ZFC. Trivially, ZFC+CH implies that this theorem is false. The following question
is open.
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Question 2.5 Is Theorem 2.4 consistent with ZFC?

Theorem 2.4 holds “locally”; that is, weak versions of AD (which are consistent
with AC) imply weak versions of Theorem 2.4. For example, projective determinacy
implies that Theorem 2.4 holds for all projective C . Probably the most interesting
case is when C is †1

1 (as is the set S of (2.3)). It is not known how much determinacy,
if any, is needed to prove Theorem 2.4 for †1

1 sets C . To prove it by using the methods
of Section 3 requires a determinacy assumption a little stronger than …1

1-determinacy
and a lot weaker than …1

2-determinacy.

3 The Proof

In this section, we prove Theorem 2.4. We work in ZF+DC until further notice. Fix a
countable language, L. For simplicity of notation, we assume that L is computable.
(If not, relativize the proof.)

We encode L-structures with universe ! by elements of 2! , using the cod-
ing of Gao [6, Sections 3.6, 11.3]. For x 2 2! , Ax denotes the L-structure
encoded by x. If I is an isomorphism-type of countably infinite L-structures, then
I� D ¹x 2 2! W Ax 2 Iº. Note that—in contrast to the custom in computable
model theory—I� is not the set of computable structures (or computable-from-a
structures) but the set of all structures with universe !; it is an uncountable subset
of 2! .

As mentioned in Section 1, our definition of Scott rank is that of [2].

Lemma 3.1 Let a 2 2! , and let I be the isomorphism-type of a countable
L-structure. Suppose that I is a-strange.

(a) For all y 2 I�, !
y
1 � !a

1 .
(b) There exists an x 2 I� such that x �T a.
(c) I� is …0

.!a
1

C1/.

Proof (a) If !
y
1 < !a

1 , then by a theorem of Nadel (see [2, Proposition 2.1]),
SR.Ay/ � !

y
1 C1 < !a

1 ; hence by the definition of strange (Definition 1.2), Ay … I.
(b) This is due to the definition of strange.
(c) This can be proved directly from the Scott analysis. But we will avoid that here,

and, instead, deduce this from some published theorems. Let x �T a, x 2 I�. Let F

be the fragment of L!1! consisting of all computable-from-a formulas. Let tF be the
topology on the space of codes for L-structures corresponding to F (see [6, Defini-
tion 11.3.1]). By the relativized version of [2, Proposition 2.2], since SR.Ax/ D !a

1 ,
for all n 2 !, for all i D .i0; : : : ; in�1/ 2 !n, the orbit of i (with respect to the auto-
morphism group of Ax) is defined by a formula in F . Therefore, Ax is an F -atomic
model. So by a theorem of Miller and Suzuki (see [6, Theorem 11.5.7]), I� is a
tF � Gı . Since the tF -basis consists of sets which are �1

1.a/, any set which is Gı

with respect to tF is …0
.!a

1
C1/ with respect to the original topology.

Remark 3.2 The isomorphism-type of !a
1 is also …0

.!a
1

C1/. Hence it satisfies (a)
and (c) of Lemma 3.1, but not (b). The isomorphism-type of !a

1 .1 C �/ is …0
.!a

1
C2/

and not †0
.!a

1
C2/. Hence it satisfies (a) and (b) of Lemma 3.1, but not (c).

The rest of Section 3 is descriptive set theory, and has nothing to do with languages
or structures.
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The proof of Theorem 2.4 uses Steel forcing (tagged tree forcing). It is used here
only to give a Baire-category argument; sufficiently generic objects exist without
enlarging the universe. So there is no need for a ground model to force over; of
course, the reader who wants to have a ground model can have one. We give the
information about Steel forcing which is needed to read the rest of the paper, but not
much more. For the conventional (set-theoretic) forcing approach to Steel forcing,
see Harrington [7] or Steel [17]; for a strictly topological approach, see Becker and
Dougherty [1].

For ˛ a countable ordinal, let P˛ denote the poset for Steel forcing with respect to
˛, and let ˛ denote the corresponding forcing relation. We introduce a symbol, 1,
which is declared to be greater than any ordinal and greater than itself. A condition
p of P˛ is a finite tree, Tp , on !, with each node of Tp tagged by an element of
˛ [ ¹1º, such that for �; � 2 Tp , if � � � , then the tag on � is greater than the
tag on � . For p; q 2 P˛ , q has more information than p if Tp � Tq (Tq need not
be an end extension of Tp) and the tags agree on Tp . (Note that if ˛ < ˇ, then
P˛ � Pˇ .) The generic object, G, is an infinite tagged tree on !; by removing the
tags, we get—modulo some sequence coding—an element of 2! ; that element of 2!

will be denoted G�.

Definition 3.3 Let ˛; ˇ;  be countable ordinals, let p 2 P˛ , and let p0 2 Pˇ . We
say that p is  -equivalent to p0 if Tp D Tp0 and for any � 2 Tp , for any ı <  , p

tags � with ı if and only if p0 tags � with ı.

A proof of the following lemma can be found in [1], [7], and [17].

Lemma 3.4 (Retagging lemma) Let ˛; ˇ;  be countable ordinals, and let p 2 P˛

and p0 2 Pˇ . Suppose that p is .!/-equivalent to p0. Then for any …0
 set P � 2! ,

.p ˛ “G� 2 P ”/ if and only if .p0 ˇ “G� 2 P ”/.

Lemma 3.5 Let ˛; ˇ be countable ordinals such that ˛ D !˛ < ˇ. Let
p 2 P˛ � Pˇ . Let Q � 2! be …0

˛C1. If .p ˛ “G� 2 Q”/, then .p ˇ “G� 2

Q”/.

Proof Let Q D \i [j P
j
i , where each P

j
i is …0

˛
j

i

for some ˛
j
i < ˛. Suppose it

is not true that p ˇ “G� 2 Q”. Then there is a q 2 Pˇ , q extending p, such that
q ˇ “G� … Q”; that is, q ˇ “G� 2 [i \j .2! X P

j
i /”. So there is an r 2 Pˇ ,

r extending q, and there is a fixed i 2 ! such that r ˇ “G� 2 \j .2! X P
j
i /”.

Let r 0 be obtained from r by changing the tags as follows: all ordinals greater than
or equal to ˛ are changed to 1. Then r 0 2 P˛ , and, by the retagging lemma,
r 0 ˛ “G� 2 \j .2! X P

j
i /”. Hence r 0 ˛ “G� … Q”. But r 0 extends p, so

r 0 ˛ “G� 2 Q”.

We need one more fact about Steel forcing, Lemma 3.6, below. This lemma is proved
in Harrington [7, Theorem 2.9] and Steel [17, Theorem 1].

Lemma 3.6 Let s 2 2! , and let ˛ be a countable s-admissible ordinal. For any
G which is sufficiently generic for P˛ , !G�

1 D !
hG�;si

1 D ˛.

Lemmas 3.7 and 3.8, below, are proved in ZF+DC+AD. Lemma 3.7 (see Moscho-
vakis [15, Theorem 7.D.4]) is well known. Lemma 3.8 is similar to a theorem of
Steel [18, Theorem 3.1], and the proof is similar to the proof of Steel’s theorem (a
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proof which is not given in the above reference). Lemma 3.8 is a result which is in
the spirit of Vaught’s conjecture.

Theorem 2.4 follows easily from Lemmas 3.1, 3.7, and 3.8.

Lemma 3.7 Assume AD. There does not exist an injection from 2! into @1.

Lemma 3.8 Assume AD. Let C � 2! , and let E be an equivalence relation on C .
Suppose that for all b 2 2! there exists an a �T b and there exists an E-equivalence
class Q � C satisfying the following three properties.

(a) For all y 2 Q, !
y
1 � !a

1 .
(b) There exists an x 2 Q such that x �T a.
(c) Q is …0

.!a
1

C1/.

Then there exists a function f W 2! ! C with the property that f takes any two
distinct elements of 2! to E-inequivalent elements of C .

Proof Consider the following game, G . On move n, Player I plays bn 2 ¹0; 1º and
Player II plays an; xn 2 ¹0; 1º, the players alternating moves in the usual way. After
! moves, Player I has played b D .b0; b1; b2; : : :/ 2 2! and Player II has played
a D .a0; a1; a2; : : :/ 2 2! and x D .x0; x1; x2; : : :/ 2 2! . Player II wins the round
of G if and only if [b �T a and x �T a and x 2 C and (if Q is the E-equivalence
class of x, then a and Q satisfy properties (a) and (c))].

Claim 1 Player I does not have a winning strategy for G .

Proof Suppose that Player I does have a winning strategy, sI. Modulo some
sequence coding, sI is an element of 2! . By hypothesis, there is an a �T sI and an
x; Q such that a; x and Q satisfy (a)–(c). Consider the round of G in which Player II
plays this a; x and Player I follows sI and plays b. Since hsI; xi �T a, b �T a; hence
Player II wins the round. This proves Claim 1.

AD plus Claim 1 gives us a winning strategy, sII, for Player II for G . Again viewing
sII as an element of 2! , for all z 2 2! , let a.z/ and x.z/ be Player II’s moves in the
round of G in which Player I plays b D hz; sIIi and Player II follows the strategy sII.
Clearly,

(i) the function z 7! x.z/ is continuous;
(3.9)

(ii) for all z 2 2! , a.z/ �T hz; sIIi.

Since sII is a winning strategy, by the definition of the game G , the following five
facts must be true for all z 2 2! :

(i) a.z/ �T hz; sIIi;
(ii) x.z/ 2 C ;
(iii) for all y 2 2! , if yE.x.z//, then !

y
1 � !

a.z/
1 ; (3.10)

(iv) x.z/ �T a.z/;
(v) the E-equivalence class of x.z/ is …0

.!
a.z/
1

C1/
.

Let us now consider only those z 2 2! which have the property that !z
1 D !

hz;sIIi
1 .

For any such z, part (ii) of (3.9) and part (i) of (3.10) imply that !z
1 D !

a.z/
1 . There-

fore, for any such z, parts (iii), (iv), and (v) of (3.10) imply that the following three
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facts must be true:

(i) for all y 2 2! , if yE.x.z//, then !
y
1 � !z

1 ;

(ii) !
x.z/
1 � !z

1 ; (3.11)
(iii) the E-equivalence class of x.z/ is …0

.!z
1

C1/.

Let ˛; ˇ be countable sII-admissible ordinals such that ˛ < ˇ. We now consider
rounds of the game in which Player II follows sII and Player I plays b D hG�; sIIi,
where G is sufficiently generic for P˛ (or Pˇ ).

Claim 2 There do not exist a p 2 P˛ and an E-equivalence class Q such that
p ˛ “x.G�/ 2 Q”.

Assuming Claim 2, (3.10)(ii), together with standard forcing (or Baire-category)
arguments, gives us a perfect set P � 2! such that for any two distinct members, G�

1

and G�
2 , of P , x.G�

1 / and x.G�
2 / are E-inequivalent elements of C . Therefore, the

conclusion of this lemma follows from Claim 2. So all that remains to be proved is
that claim.

Assume toward a contradiction that Claim 2 is false and that such a p and Q

exist. Let G be compatible with p and sufficiently generic for P˛ . Then x.G�/ 2 Q.
Taking z D G�, Lemma 3.6 and (3.11)(ii) imply that !

x.G�/
1 � !G�

1 D ˛ < ˇ.
And (3.11)(iii) tells us that Q is …0

˛C1. So by Lemma 3.5 and (3.9)(i),
p ˇ “x.G�/ 2 Q”. Let H be compatible with p and sufficiently generic for
Pˇ . Then x.H �/ 2 Q. Taking z D H �, Lemma 3.6 and (3.11)(i) imply that for all
y 2 2! , if y 2 Q, then !

y
1 � ˇ. Setting y D x.G�/ gives a contradiction.
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