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Admissible Rules and the Leibniz Hierarchy

James G. Raftery

Abstract This paper provides a semantic analysis of admissible rules and asso-
ciated completeness conditions for arbitrary deductive systems, using the frame-
work of abstract algebraic logic. Algebraizability is not assumed, so the meaning
and significance of the principal notions vary with the level of the Leibniz hier-
archy at which they are presented. As a case study of the resulting theory, the
nonalgebraizable fragments of relevance logic are considered.

1 Introduction

Many researchers have considered the question: to what extent can we interpret a
logic plausibly in its own metalanguage? Disjunction properties are one manifesta-
tion of this concern. A problem in the reverse spirit is the derivability of admissible
rules. Following Lorenzen [29], we say that a rule of inference is admissible in a
formal system if its addition to the system produces no new theorems. A simple
example is the rule of necessitation, x / �x, which is admissible (and not derivable)
in quasinormal modal logics. Less trivially, the process of cut-elimination shows that
underivable cut rules are admissible in suitable sequent calculi.

The algebraizable logics of Blok and Pigozzi [7] constitute the framework for
some prominent treatments of admissibility, such as Rybakov’s monograph [62]. On
the other hand, the quasinormal modal systems and the cut-free subsystems of sub-
structural logics are not algebraizable. The present paper analyzes the semantics of
admissible rules in the context of arbitrary deductive systems, indicating which tools
of abstract algebraic logic (see Czelakowski [15] and Font, Jansana, and Pigozzi
[21]) are really needed at various stages of the theory, while also supplying some
new results. The paper is largely self-contained, but its purpose is not to survey the
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now substantial literature on admissibility in particular systems, such as intermedi-
ate, modal, and fuzzy logics. The reader is referred to [62] for work of this kind done
before 1997. Important subsequent developments are summarized, for instance, in
Cintula and Metcalfe [13], where ample references are given.

It is well known that certain logics possess no algebraic semantics at all. For-
tunately, however, every deductive system ` has a nontrivial semantics, Mod�. `/,
comprising its reduced matrix models (see Wójcicki [67]). For several reasons, this
semantics is considered canonical in abstract algebraic logic, and it will guide our
analysis of syntactic notions throughout. For simplicity, we confine the present dis-
cussion to sentential systems, although it is not necessary to do so (see Section 11).

If hA; F i is a matrix model of `, then F is called a `-filter of the algebra A, and
hA; F i can be collapsed to a reduced matrix model by “factoring out” the Leibniz
congruence �AF . This is the largest congruence of A that turns F into a union of
congruence classes. The Leibniz operator of ` is the collection, taken over all A,
of the maps F 7! �AF (F a `-filter of A). The action of this operator is purely
algebraic—it depends only on the structure of the signature.

Because the Leibniz operator is defined for every possible `, its behavior serves to
classify deductive systems. The outcome is the Leibniz hierarchy, which is depicted
rather cryptically in the accompanying diagram. The numbers refer to less cryp-
tic descriptions of the levels, recounted in the present paper (but established else-
where). Roughly speaking, the hierarchy calibrates the degree to which a deductive
system admits algebraic treatment. The arrows are implications between the indi-
cated �-properties. Our aim here is to analyze admissibility for systems at the “sub-
algebraizable” levels of the hierarchy.

A portion of the Leibniz hierarchy

finitely algebraizable
� is injective and continuous

finitely equivalential
� is continuous (6.2(i))

algebraizable
� is injective, order-preserving, and com-
mutes with homomorphic inverse images
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equivalential
� is order-preserving and commutes

with homomorphic inverse images (5.3)

weakly algebraizable
� is injective and

order-preserving (8.5)

protoalgebraic
� is order-preserving (4.1)

truth-equational
� is completely order-reflecting (8.1)

Theorem 2.12 asserts that, in an arbitrary deductive system `, a rule R is admis-
sible if and only if every reduced matrix model of ` is a homomorphic image of
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an R-validating subdirect product B of reduced matrix models of `. (If an ele-
ment of B is designated, then so is its image; the converse is not imposed.) There
is no guarantee that B itself can be chosen reduced (see Fact 2.11), nor that its
reduced subdirect factors will validate R. Obviously, this characterization becomes
more attractive in systems where the reduced matrix models are closed under sub-
direct products. These are exactly the protoalgebraic logics, that is, the ones where
a rudimentary implication connective is definable. Thus, R is admissible in a pro-
toalgebraic system ` if and only if Mod�. `/ actually includes R-validating homo-
morphic preimages for all of its members. The characterization acquires a purely
algebraic form in weakly algebraizable systems, that is, protoalgebraic ones where
the designation predicate is equationally definable over the reduced models. It takes
an “almost algebraic” form in order algebraizable logics (see Theorems 4.4, 8.7,
and 9.3).

Theorem 4.7 shows that a protoalgebraic finitary system ` will be structurally
complete—in the sense that all of its admissible finite rules are derivable—provided
that all of its finitely generated relatively subdirectly irreducible reduced matrix mod-
els are weakly projective in Mod�. `/. In this case, moreover, ` is hereditarily struc-
turally complete, that is, all of its finitary extensions are structurally complete as well.
It is notable that no Leibniz condition stronger than protoalgebraicity is needed here.
The result applies, for instance, to the Gödel–Dummett logic LC (a.k.a. G) and to
the negation-less fragment of the system RMt (from relevance logic). For these two
systems, hereditary structural completeness was proved directly in Dzik and Wroński
[20, p. 72] and Olson and Raftery [45, Theorems 1.1, 9.4], respectively.

The equivalential deductive systems have a well-behaved generalized bicondi-
tional ($), and in the finitely equivalential ones, this biconditional has a finite defini-
tion. To stipulate that all admissible rules of an equivalential system ` are derivable
(including the infinite ones) is to demand that Mod�. `/ be the closure of a suitable
free reduced matrix model under the combination of isomorphisms, submatrices,
direct products, and a fourth class operator whose meaning depends on the number
of variables (see Theorem 5.7). This result extends an early finding of Prucnal and
Wroński [55]. A finitely equivalential finitary system ` is structurally complete if
and only if Mod�. `/ is generated as a universal Horn class by the same free reduced
model (see Theorem 6.4). In that case, any two nontrivial members of Mod�. `/ are
contained, up to isomorphism, in a third member. And, in the event of hereditary
structural completeness, the finitary extensions of ` form a distributive lattice—this
is implicit in Gorbunov [23].

A further consequence of structural completeness in equivalential systems is that
any two nontrivial 0-generated reduced matrix models are isomorphic (see Theo-
rem 7.7). We do not need the full force of structural completeness to prove this, how-
ever. It follows from a weak variant called overflow completeness, isolated recently
by Wroński [72, Fact 2, p. 68]. The proof utilizes an analysis of the existential posi-
tive first-order theory of Mod�. `/, inspired by the main result of [72]. The analysis
is given in Theorems 7.3 and 7.5, and it rules out overflow completeness for a large
class of fuzzy and/or substructural logics (see Examples 7.8 and 8.10).

None of the above results presuppose algebraizability. Natural admissibility
problems are abundant in nonalgebraizable logics, but, to the best of the present
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author’s knowledge, structural completeness has not yet been established for any
significant nonalgebraizable system. A future exception might be the implication
fragment BCIW of the relevance logic R. The question of structural completeness for
BCIW has been open for some time. A little fresh light is thrown on this problem in
Section 10, where a case study of the nonalgebraizable fragments of R is undertaken.

2 Admissible Rules

We work within a fixed but arbitrary algebraic language. Its signature and its infinite
set of variables—denoted by Var—are assumed to be well ordered (not necessarily
countable). All algebras considered have this type, unless we say otherwise. The
universe of an algebra A is denoted as A, and is assumed nonempty. Recall that
(sentential) formulas are elements of the absolutely free algebra F m generated by
Var, and substitutions are endomorphisms of F m. A rule is a pair h�; ˛i, where
� [ ¹˛º � F m. It is a finite rule if the set � is finite.

Throughout this paper, ` denotes a (sentential) deductive system, that is, a
substitution-invariant consequence relation over formulas (see [15], [21], Wójcicki
[68]). Thus, the theorems of ` are the formulas ˛ such that ; ` ˛ (briefly, ` ˛),
while the derivable rules of ` are just its elements, that is, the pairs h�; ˛i for which
� ` ˛. Among other standard abbreviations, we signify “� ` ˛ for all ˛ 2 …”
by � ` …, and “� ` … and … ` �” by � a` …. The extensions of ` are the
deductive systems in the same language that are supersets of `. They form a set that
is closed under arbitrary intersections.

Notation

(i) x; y; z (with or without indices) stand for distinct variables.
(ii) 1; : : : ; n / ˛ abbreviates a finite rule h¹1; : : : ; nº; ˛i.
(iii) T ` denotes the set of all theorems of `.
(iv) ` C h�; ˛i denotes the smallest extension of ` containing a rule h�; ˛i.

Definition 2.1 ([29]) We call h�; ˛i an admissible rule of ` if every theorem of
` C h�; ˛i is already a theorem of `.

Here, � need not be finite. Also, ` is not assumed finitary; that is, there is no guar-
antee that when … ` ', then …0 ` ' for some finite …0 � …. If ` is finitary
and � is finite, then ` C h�; ˛i is still finitary. For in this case, ` is axiomatized
by some formal system F of axioms and finite inference rules, that is, it is the nat-
ural deducibility relation `F (see Łoś and Suszko [31]). Then, ` C h�; ˛i is just
`F [ ¹h�;˛iº. We often attribute properties of `F to F.

Note that `F remains a deductive system when we allow infinite inference rules
in F. Then, � `F ˛ means that there is a possibly infinite well-ordered proof of ˛

from � in F. The systems `F C h�; ˛i and `F [ ¹h�;˛iº still coincide. In particular,
` C h�; ˛i is just ` ` [ ¹h�;˛iº. Even in this case, we have the following.

Fact 2.2 A rule h�; ˛i is admissible in ` if and only if every substitution that
turns all the formulas in � into theorems of ` also turns ˛ into a theorem of `.

The argument from right to left proceeds by (possibly transfinite) induction on the
length of a proof in ` [ ¹h�; ˛iº. Finite induction suffices when � is finite and ` is
finitary.
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Recall that a (sentential) matrix hA; F i comprises an algebra A and a subset F

of A. The designated elements of this matrix are the elements of F , and hA; F i is
said to validate a rule h�; ˛i if h.˛/ 2 F for every homomorphism hW F m ! A

such that hŒ�� � F . The rules validated by the matrices in a class K constitute
the consequence relation of K. This is always a deductive system, but it is seldom
finitary.

Since matrices are first-order structures, we need not define their submatrices (i.e.,
substructures), direct and subdirect products, or ultraproducts. By Łoś’s theorem,
the validity of a finite rule persists in ultraproducts, while the other three construc-
tions preserve arbitrary rules. There are two possible definitions of a homomorphism
between structures, however, so we need to be explicit about this terminology.

Definition 2.3 A matrix homomorphism from hB; Gi into hA; F i is an (alge-
braic) homomorphism hW A ! B such that hŒG� � F , that is, G � h�1ŒF �.

We call hA; F i a homomorphic image of hB; Gi if there is a matrix homomor-
phism h from hB; Gi into hA; F i such that hŒB� D A.

Clearly, for any ˛ 2 F m, the class of matrices validating h;; ˛i is closed under
homomorphic images. Also, if hA; F i is a subdirect product of matrices, then each
of the subdirect factors is a homomorphic image of hA; F i.

Note that we do not require h�1ŒF � � G in Definition 2.3. Throughout this
paper, homomorphisms between structures preserve the indicated relations (as well
as all operations) but they are not assumed to reflect the relations. Of course, an
isomorphism is a bijective homomorphism whose inverse is also a homomorphism.
In particular, a matrix isomorphism preserves and reflects the set of designated ele-
ments. More generally, we have the following.

Definition 2.4 A matrix homomorphism h from hB; Gi into hA; F i is said to be
strict if G D h�1ŒF �.

In this case, every rule validated by hA; F i is validated by hB; Gi (and conversely,
if hŒB� D A).

If � is a congruence of an algebra A and F is a union of � -classes of A, then we
abbreviate ¹a=� W a 2 F º as F=� . In this case, the natural surjection from hA; F i

to hA=�; F=�i is a strict matrix homomorphism, for if b 2 A and b=� 2 F=� , then
b 2 F .

For any matrix hA; F i, the Leibniz congruence �AF is the largest congruence
of A for which F is a union of congruence classes. By Lemma 2.9 below, �AF

identifies the elements of A having the same definable properties in the first-order
equality-free language of hA; F i (hence the allusion to Leibniz, coined in Blok
and Pigozzi [6]). In particular, �AF always exists. We omit the superscript when
A D F m. We say that hA; F i is (Leibniz-) reduced if no nonidentity congruence
of A makes F a union of congruence classes, that is, if �AF is the identity relation
idA D ¹ha; ai W a 2 Aº. This means that any strict matrix homomorphism from
hA; F i onto another matrix must be an isomorphism, and reduced matrices were
originally called “simple” (see [67]).

Notation We abbreviate hA=�AF; F=�AF i as hA; F i�.

A matrix of the form hA; F i� is always reduced, and by the above remarks, it vali-
dates the same rules as hA; F i. In particular, we have the following.
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Fact 2.5 The rule h�; ˛i is admissible in ` if and only if it is validated by
hF m; T `i�.

This follows from Fact 2.2, which says in effect that h�; ˛i is admissible in ` if and
only if it is validated by hF m; T `i. Consequently, the admissible rules of ` always
form an extension of `. Finitarity is normally lost in the passage to this extension
(see Example 3.6). Moreover, when ` has a recursive set of theorems, it may fail
to have a recursive set of admissible finite rules (see Chagrov [11]; see also Wolter
and Zakharyaschev [69]), even if it is finitary and finitely axiomatized in a finite
signature.

For any cardinal m, a first-order structure (e.g., a matrix) is said to be m-generated
if its pure algebra reduct has a generating set with at most m elements. Finitely
generated means m-generated for some finite m. A structure is finite if its universe
is a finite set.

When hA; F i validates all the derivable rules of `, it is called a matrix model
of `, and F is then called a `-filter of A. The set Fi `A of all ` -filters of A

is closed under arbitrary intersections; hence, it becomes a complete lattice F i `A

when ordered by set inclusion. The elements of Fi `F m are called `-theories.

Definition 2.6 ([68]) A reduced matrix model hA; F i of ` is said to be relatively
subdirectly irreducible (with respect to `), or briefly RSI, provided that, whenever
hA; F i is a subdirect product of reduced matrix models hBi ; Gi i (i 2 I ) of `, then
at least one of the projections �j W

Q
i2I Bi ! Bj restricts to a matrix isomorphism

from hA; F i onto hBj ; Gj i.

This extends the usual notion of an algebra being relatively subdirectly irreducible
in a class of similar algebras (to which it belongs). We need to recall the following.

Lemma 2.7 Let hA; F i be a reduced matrix model of `.
(i) hA; F i is RSI if and only if F is completely meet-irreducible in F i `A.
(ii) If ` is finitary or hA; F i is finite, then hA; F i is isomorphic to a subdirect

product of RSI reduced matrix models of `.
(iii) If a rule h�; ˛i is underivable in `, then it is invalidated by some m-generated

reduced matrix model hC ; H i of `, where m is the number of variables
occurring in formulas from � [ ¹˛º. If, in addition, ` is finitary or hC ; H i

is finite, then hC ; H i can be chosen RSI as well.

Proof The proofs of (i) and (ii) can be found in [68, Section 3.7].
(iii) Let J be the intersection of all `-theories containing � . Then h�; ˛i is

invalidated by an obvious m-generated submatrix hB; Gi of hF m; J i. Although
hB; Gi need not be reduced, it validates the same rules as the m-generated reduced
matrix hB; Gi�. Since hF m; J i is a matrix model of `, so are hB; Gi and hB; Gi�.
Suppose that ` is finitary or that hB; Gi� is finite. Then (ii) guarantees that hB; Gi�

is isomorphic to a subdirect product of RSI reduced matrix models hBi ; Gi i (i 2 I )
of `, each of which is still m-generated, and hB; Gi� validates any rule validated
by all of these subdirect factors. Consequently, hBi ; Gi i invalidates h�; ˛i for some
i 2 I .

The logical significance of reduced matrices comes from the following weak variant
of Lemma 2.7(iii).
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Theorem 2.8 ([67, Section III.1]) The derivable rules of ` are exactly the rules
validated by the reduced matrix models of `.

In particular, the theorems of ` are just the formulas taking only designated
values in every reduced matrix model of `.

Notation Mod�. `/ denotes the class of all reduced matrix models of `.

As a semantics for `, the class of all matrix models is an unexciting variant of the
syntax, but Mod�. `/ is a much more algebraically structured class in general. Theo-
rem 2.8 yields the expected algebraic completeness theorems in all familiar cases; for
example, the reduced matrix models of classical (resp., intuitionistic) propositional
logic are just the pairs hA; ¹>ºi such that A is a Boolean (resp., Heyting) algebra
with greatest element >. More generally, we have the following.

Lemma 2.9 Given a matrix hA; F i and a; b 2 A, we have a �
�AF

b if and only
if the following is true: for every formula ˛.x; y1; : : : ; yn/ and Nc D c1; : : : ; cn 2 A,

˛A.a; Nc/ 2 F iff ˛A.b; Nc/ 2 F .

A restricted form of Lemma 2.9 can be found in Łoś [30]. (In its present form, it
appears in Shoesmith and Smiley [63] and Czelakowski [14].) The following facts
are easily proved and well known (see, e.g., Blok and Pigozzi [8] or Czelakowski
[15]). Only item (iii) relies on Lemma 2.9.

Lemma 2.10 Let hA; F i be a matrix model of `, and let hW B ! A be a homo-
morphism of algebras. Then

(i) hB; h�1ŒF �i is also a matrix model of `,
(ii) h�1Œ�AF � � �Bh�1ŒF �, and
(iii) if h is surjective, then h�1Œ�AF � D �Bh�1ŒF �.

Admissibility and homomorphisms We seek to clarify the relationship between ad-
missible rules and surjective homomorphisms. Consider a matrix model hA; F i

of `, and for simplicity, assume that it is jVarj-generated. If h�; ˛i is admissi-
ble in `, then hA; F i is a homomorphic image of a matrix model of ` C h�; ˛i,
namely, hF m; T `i. In this case, the reduced matrix hF m; T `i� is also a model
of ` C h�; ˛i, but hA; F i need not be a homomorphic image of hF m; T `i�, even
when hA; F i is itself reduced. More strongly, we have the following.

Fact 2.11 There exist a finitary system `, a finite admissible rule h�; ˛i of `, and
a finite reduced matrix model hA; F i of ` such that hA; F i is not a homomorphic
image of any reduced matrix model of ` C h�; ˛i.

Proof In the subsignature �; Þ; > of modal logic, the axiom > and the inference
rule Þx / � Þ x determine a finitary deductive system ` whose set of theorems
is ¹>º. It is easy to see that F m=�¹>º has just two elements, namely, ¹>º and
F m n ¹>º. Let A D h¹?; a; >º; �; Þ; >i, where ?; a; > are distinct and � is the
identity function and Þ? D ? and Þa D Þ> D >. Then hA; ¹>ºi 2 Mod�. `/.
The rule �x / y is validated by hF m; ¹>ºi�, but not by hA; ¹>ºi, so it is admissible
and not derivable in `.

Now suppose that hB; Gi 2 Mod�. `/ validates �x / y. We show that there
is no surjective matrix homomorphism from hB; Gi to hA; ¹>ºi. Suppose, on the
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contrary, that h is such a homomorphism. Then G ¤ B , because G � h�1Œ¹>º� and
jAj > 1. As hB; Gi validates both Þx / � Þ x and �x / y, it validates Þx / y. So,
since B ª G, it follows that �b; Þb … G for all b 2 B . Let b; b0 2 B n h�1Œ¹>º�.
Considering the form of any ˛.x; Ny/ 2 F m, we see that for any Nc 2 B , we have
˛B.b; Nc/ 2 G iff ˛B.b0; Nc/ 2 G. Thus, hb; b0i 2 �BG (by Lemma 2.9); that is,
b D b0 (as hB; Gi is reduced). This shows that at most one element of B is not
mapped to > by h, contradicting surjectivity.

Despite Fact 2.11, admissibility can be characterized in terms of reduced models and
homomorphic images (and without reference to generative size). The appropriate
characterization is item (iii) below.

Theorem 2.12 The following conditions are equivalent.
(i) h�; ˛i is an admissible rule of `.
(ii) Every matrix model of ` is a homomorphic image of a matrix model of

` C h�; ˛i.
(iii) Every reduced matrix model of ` is a homomorphic image of a matrix model

of ` C h�; ˛i that is itself a subdirect product of reduced matrix models
of `.

In (ii) and (iii), “Every” could be replaced by “Every finitely generated” without
loss of strength (even if � is infinite). If ` is finitary, then, in (iii), we can replace
“Every” by “Every RSI” (with or without “finitely generated”).

Proof (i) ) (ii): Given a matrix model hA; F i of `, let U be an absolutely free
algebra with free generating set Y , where jY j D max ¹jVarj; jAjº. Then there is a sur-
jective homomorphism hW U ! A. Let G be the least `-filter of U . Lemma 2.10(i)
shows that h�1ŒF � is a `-filter of U , so G � h�1ŒF �, whence hA; F i is a homomor-
phic image of hU ; Gi. It remains to show that hU ; Gi validates h�; ˛i. (This would
follow from Fact 2.2 if A was given to be jVarj-generated, as hU ; Gi would then be
isomorphic to hF m; T `i, but we must consider the possibility that jY j > jVarj.)
Let kW F m ! U be a homomorphism such that kŒ�� � G. We must prove that
k.˛/ 2 G.

Since F m is a jVarj-generated algebra, so is kŒF m�. In the subuniverse lattice
of any algebra, the finitely generated subuniverses are compact, so each element of
any generating set for kŒF m� belongs to the subalgebra of U generated by a finite
subset of Y . Thus, kŒF m� is contained in the subalgebra of U generated by some
X � Y , where jX j 6 jVarj (as Var is infinite). Choose a bijection gW Z ! Var,
where X � Z � Y . Then g can be extended to a homomorphism egW U ! F m.
Now eg �1ŒT `� is a `-filter of U , by Lemma 2.10(i), so G � eg �1ŒT `�. Therefore,egkŒ�� � T `. Since egk is a substitution and h�; ˛i is admissible in `, we infer thategk.˛/ 2 T `.

It is not immediate that k.˛/ 2 G, as it may happen that eg �1ŒT `� ª G. Never-
theless, k.˛/ D 'U . Nu/ for some ' 2 F m and some Nu D u1; : : : ; un 2 X , where
u1; : : : ; un are distinct (see [10, Theorem II.10.3(c)] if necessary). Since eg and g

agree on X , where g is injective, the variables g.u1/; : : : ; g.un/ are also distinct,
and egk.˛/ is '.g.u1/; : : : ; g.un//. Recall that this formula is a theorem of `, so '

is a theorem as well, because ` is substitution-invariant. Then k.˛/ D 'U . Nu/ 2 G,
as G is a `-filter of U .
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(ii) ) (iii): Let hA; F i be a reduced matrix model of `, so �AF D idA. By
(ii), there is a matrix model hB; Gi of ` C h�; ˛i and a surjective homomorphism
hW B ! A with hŒG� � F . Then G � h�1ŒF � 2 Fi `B. Let

� D

\
G � G0 2 Fi `B

�BG0:

Using Lemma 2.10(iii), we obtain

� � �Bh�1ŒF � D h�1Œ�AF � D h�1ŒidA� D ker h:

There is, therefore, a well-defined homomorphism eh from B=� onto A, given
by ehW b=� 7! h.b/. Observe that � � �BG, that is, G is a union of � -classes,
so hB=�; G=�i is a matrix model of ` C h�; ˛i (because hB; Gi is). Also,ehŒG=�� D hŒG� � F . Now hB=�; G=�i is naturally isomorphic to a subdirect prod-
uct of all hB; G0i� such that G � G0 2 Fi `B, and each of these subdirect factors is
a reduced matrix model of `.

(iii) ) (i): Let ' 2 F m be a nontheorem of `. Since ' involves only finitely
many variables, h;; 'i is invalidated by some finitely generated reduced matrix
model hA; F i of `, which can be chosen RSI if ` is finitary (see Lemma 2.7(iii)).
Even in its restricted form, item (iii) of the present theorem implies that hA; F i is
a homomorphic image of a matrix model hB; Gi of ` C h�; ˛i, so hB; Gi cannot
validate h;; 'i. Therefore, ' is not a theorem of ` C h�; ˛i. This shows that h�; ˛i

is admissible in `.

Fact 2.11 shows that in Theorem 2.12(iii), the preimage of the given reduced model of
` cannot always be chosen reduced. Also, its reduced subdirect factors are not guar-
anteed to validate h�; ˛i. Generally, a matrix model hB; Gi of ` will not decompose
subdirectly into reduced models of `, unless � D idB in the proof of (ii) ) (iii).
(This � is called the Suszko congruence of hB; Gi with respect to ` in Czelakowski
[16] and Raftery [57].) For systems at certain levels of the Leibniz hierarchy, how-
ever, the characterization in Theorem 2.12(iii) can be simplified—see Sections 4
and 8.

3 Derivability of Admissible Rules

The observation below goes back at least to Makinson [32, p. 100].

Theorem 3.1 The following conditions on a [finitary] deductive system ` are
equivalent.

(i) Every admissible [finite] rule of ` is derivable in `.
(ii) For every [finitary] deductive system `1, if ` and `1 have the same lan-

guage and the same theorems, then `1 � `.

An extension `0 of ` is axiomatic if there is a set � of formulas, closed under
substitution, such that for any set � [ ¹˛º of formulas, we have � `0 ˛ iff �; � ` ˛.
Note that ` counts as an axiomatic extension of itself. The axiomatic extensions
of ` F all have the form ` F0 , where F0 is obtained by adding suitable axioms to F,
without adding any new inference rules.

Theorem 3.2 The following conditions on a [finitary] deductive system ` are
equivalent.
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(i) For every [finitary] extension `0 of `, all admissible [finite] rules of `0 are
derivable in `0.

(ii) For every axiomatic extension `0 of `, all admissible [finite] rules of `0 are
derivable in `0.

(iii) Every [finitary] extension of ` is an axiomatic extension of `.
Proof The proof in the finitary case is given in Olson, Raftery, and van Alten
[46, Theorem 2.6], and we can imitate it in the nonfinitary case with the help of
Theorem 3.1.

Definition 3.3 (Pogorzelski [49], Pogorzelski and Wojtylak [50]) A deductive sys-
tem is said to be structurally complete if all of its admissible finite rules are derivable
in it.

A finitary deductive system is said to be hereditarily structurally complete if it
and all of its finitary extensions are structurally complete.
Sufficient conditions for the derivability of admissible rules are given in the next
result. Partial converses will be supplied later, in Theorems 5.7 and 6.4. Item (ii)
below is a variant of [55, Theorem 1], but the general notion of a reduced matrix and
the connection with Lemma 2.7(ii) are not made explicit in [55].
Theorem 3.4 Let ` be a finitary deductive system.

(i) Suppose that, for each finitely generated RSI reduced matrix model hA; F i of
`, there is a strict matrix homomorphism from hA; F i into an ultrapower of
hF m; T `i�. Then ` is structurally complete.

(ii) Suppose that, for each jVarj-generated RSI reduced matrix model hA; F i

of `, there is a strict matrix homomorphism from hA; F i into hF m; T `i�.
Then every admissible (finite or infinite) rule of ` is derivable in `.

Proof (i) Let h�; ˛i be underivable in `, where � is finite. Lemma 2.7(iii) shows
that h�; ˛i is invalidated by some finitely generated RSI reduced matrix model
hA; F i of `. By assumption, hA; F i is mapped into an ultrapower of hF m; T `i�

by some strict matrix homomorphism g. Since g is strict, h�; ˛i is not validated by
the ultrapower. Consequently, it is not validated by hF m; T `i� because � is finite.
Then, by Fact 2.5, h�; ˛i is not admissible in `, and so ` is structurally complete.

Item (ii) can be proved similarly, because every underivable rule of ` is invali-
dated in some jVarj-generated RSI reduced matrix model of `, and no ultrapower is
involved in the statement of (ii).

Recall that ` is said to be tabular if it has a finite matrix model that invalidates
h;; ˛i whenever ˛ is not a theorem of `. We say that ` is strongly finite if it is the
consequence relation of some finite set of finite matrices.
Theorem 3.5 ([67]) Every strongly finite deductive system is finitary.
A strongly finite system must be tabular, because a set of matrices and its direct
product validate the same rules of the form h;; ˛i. As a partial converse, if a fini-
tary tabular system has a deduction-detachment theorem (DDT) in the sense of Blok
and Pigozzi [9] and Czelakowski [15], then it is strongly finite. This follows from
[15, Corollary 2.5.20, Theorem 2.6.2]. For our purposes, a fragment of a deductive
system ` is the set of all derivable rules of ` in some restricted signature; it is
obviously a deductive system in its own right. The following example will be needed
in subsequent arguments.
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Example 3.6 The intermediate implicational logics are the finitary extensions of
the ! fragment of intuitionistic logic. All of these systems are structurally complete
(see Prucnal [51]) (hence hereditarily so), but only the tabular logics among them
can derive all of their own admissible infinite rules (see Prucnal [54]). Thus, every
non-tabular logic in this class is a finitary system whose system of admissible rules is
nonfinitary. There are 2@0 nontabular logics of this kind (see Wroński [70]). In view
of Theorem 3.2(iii), the intermediate implicational logics are axiomatic extensions
of the ! fragment of intuitionistic logic, so they inherit the standard DDT, namely,
�; ˛ ` ˇ iff � ` ˛ ! ˇ. There is therefore no difference between tabularity and
strong finiteness for these systems. Also, all claims made in this example remain true
if we add conjunction to the signature (see Prucnal [53]).

Medvedev’s logic of finite problems is an example of a finitary system that is struc-
turally complete, but not hereditarily so (see Prucnal [52]). It seems to be the only
such sentential logic currently known, although an equational system with similar
features is identified in Bergman [4, Example 2.14.4]. Medvedev’s system is not
finitely axiomatizable (see Maksimova, Skvorcov, and Shehtman [33]).

4 Protoalgebraic Systems

The protoalgebraic deductive systems are the ones where a rudimentary conditional
(!) can be simulated by binary formulas. More exactly, we have the following.

Theorem 4.1 ([6, Theorem 2.4]) The following conditions on ` are equivalent.
(i) There is a set � of binary formulas �.x; y/ of ` such that ` �.x; x/ and

x; �.x; y/ ` y.
(ii) Whenever F and G are ` -filters of an algebra A, with F � G, then

�AF � �AG.
(iii) Mod�. `/ is closed under subdirect products.

In this case, if ` is finitary, then the set � can be chosen finite in (i).

Definition 4.2 We say that ` is protoalgebraic if it satisfies the equivalent con-
ditions in Theorem 4.1.

Note that an extension of a protoalgebraic system is itself protoalgebraic.
For present purposes, a first-order structure is said to be trivial if its universe has

just one element and all of its indicated relations are nonempty. Thus, a trivial matrix
validates all rules in its language. A reduced matrix hA; F i is nontrivial if and only
if F ¤ A (since �AA D A�A D �A

;). In particular, if ` is a consistent deductive
system (i.e., T ` ¤ F m), then hF m; T `i� is nontrivial. For in this case, T ` D ;

or �T ` ¤ F m � F m.

Notation For any first-order language L and any class K of L-structures, we
use H.K/, I.K/, S.K/, P.K/, PS.K/, and PU.K/ to denote the respective closures of
K under homomorphic and isomorphic images, substructures, direct and subdirect
products, and ultraproducts. We interpret the direct product (and any ultraproduct)
of the empty family of L-structures as the trivial L-structure with universe ¹;º.
Therefore, if K is closed under P (or PS or PU), then K contains a trivial structure.

Let L be a first-order language with equality. Recall that the atomic L-formulas
are either formal equations ˛ D ˇ between L-terms, or expressions R.˛1; : : : ; ˛m/,
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where R is a relation symbol of L, having (finite positive) rank m, and ˛1; : : : ; ˛m

are L-terms. Atomic sentences are the universal closures 8 Nx ˆ of atomic formu-
las ˆ. An atomic class is a class of structures axiomatized by a set of atomic sen-
tences. In the absence of relation symbols, these are just varieties of algebras.

The atomic closure of a class K of L-structures is the smallest atomic class con-
taining K. It is equal to HSP.K/ (see Maltsev [35]), which coincides with HPS.K/

(see Gorbunov and Tumanov [25]). Consequently, K is itself an atomic class if and
only if it is closed under H, S, and P, or, equivalently, under H and PS. (Proofs
of these generalized Birkhoff–Kogalevskiı̆ theorems are accessible in Gorbunov [24,
pp. 64, 82–83] as well.) In particular, if K is closed under PS, then H.K/ is the atomic
closure of K. Applying this to Theorem 4.1(iii), we obtain the following.

Theorem 4.3 If ` is protoalgebraic, then H.Mod�. `// is the atomic closure of
Mod�. `/.

It follows that S.Mod�. `// � H.Mod�. `// whenever ` is protoalgebraic, although
the matrices in S.Mod�. `// need not be reduced, and the ones in H.Mod�. `// need
not be models of `.

Theorem 4.4 Suppose that ` is protoalgebraic. Then the following conditions
are equivalent.

(i) h�; ˛i is an admissible rule of `.
(ii) Every reduced matrix model of ` is a homomorphic image of a reduced

matrix model of ` C h�; ˛i.
(iii) Mod�. `/ and Mod�. ` C h�; ˛i/ have the same atomic closure.

The last two assertions of Theorem 2.12 apply equally here in (ii).

Proof Combine Theorems 2.12(iii), 4.1(iii), and 4.3.

Example 4.5 The modal system S4MP has the theorems of S4 as its axioms, and
x; y _ : x / y (modus ponens) as its sole inference rule. It is not algebraizable (see
[15, Example 4.8.3]) (nor even weakly algebraizable in the sense of Section 8 below),
but it is obviously protoalgebraic, with ¹y _ : xº in the role of � in Theorem 4.1(i).

If we add the rule of necessitation, x / �x, to S4MP, we get a familiar system for
S4, whose reduced matrix models are just the pairs hA; ¹>ºi, where A is an interior
algebra with greatest element >. The reduced matrix models of S4MP itself are the
pairs hA; F i, where A is an interior algebra and F is a lattice filter of A containing
no �-closed lattice filter other than ¹>º. Thus, the identity map a 7! a makes
hA; F i a homomorphic image of hA; ¹>ºi, witnessing Theorem 4.4(ii)’s criterion
for admissibility of the necessitation rule in an extremely simple way.

A matrix isomorphism from hB; Gi onto a submatrix of hA; F i is called an embed-
ding of hB; Gi into hA; F i. An injective (i.e., one-to-one) matrix homomorphism is
an embedding if and only if it is strict. Thus, some injective matrix homomorphisms
are not embeddings.

Definition 4.6 A reduced matrix model hA; F i of ` is said to be weakly projec-
tive (with respect to `) provided that, whenever hA; F i is a homomorphic image of
a reduced matrix model hB; Gi of `, then there is an embedding from hA; F i into
hB; Gi.
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This extends a common notion of weak projectivity in classes of algebras (where the
concepts of embedding and injective homomorphism coincide).

Theorem 4.7 Suppose that ` is protoalgebraic and finitary. If every finitely gen-
erated RSI reduced matrix model of ` is weakly projective, then ` is hereditarily
structurally complete.

Proof Consider an axiomatic extension `0 of `. By Theorem 3.2, it is enough to
show that `0 is structurally complete.

Let hA; F i be a reduced matrix model of `0. Then Fi `0A is an interval of the
lattice F i `A because `0 is axiomatic over ` (see [15, Proposition 0.8.3] if nec-
essary). Therefore, F is completely meet-irreducible in F i `0A if and only if it is
completely meet-irreducible in F i `A. So, hA; F i is RSI with respect to `0 if and
only if it is RSI with respect to `, by Lemma 2.7(i). Moreover, if hA; F i is weakly
projective with respect to `, then it is clearly weakly projective with respect to `0.
This means that all the assumptions of the present theorem persist in `0, so it suffices
to show that ` is structurally complete.

By Theorem 4.4, an admissible finite rule h�; ˛i of ` is validated by a homomor-
phic preimage of each finitely generated RSI matrix hA; F i in Mod�. `/, and the
preimage can also be chosen reduced. By the weak projectivity assumption, every
such hA; F i embeds into its preimage, whence hA; F i itself validates h�; ˛i. Thus,
by Lemma 2.7(iii), h�; ˛i is derivable in `, and so ` is structurally complete.

An infinitary analogue of this result could be proved in the same way: if every
jVarj-generated RSI reduced matrix model of a protoalgebraic finitary system ` is
weakly projective, then every admissible (possibly infinite) rule of an extension of `

is derivable in the extension. But the assumptions in this result are very strong, and
the only obvious applications are to systems where every RSI reduced matrix model
is finite. In contrast, Theorem 4.7 has nontrivial applications (see Example 8.9) and
a partial converse (see Theorem 6.14). In the proof of Theorem 4.7, the appeal to
Theorem 4.4 could be replaced by an appeal to the following result.

Theorem 4.8 Let ` be protoalgebraic. Then every jVarj-generated reduced ma-
trix model of ` is a homomorphic image of hF m; T `i�.

Proof Let hA; F i 2 Mod�. `/ be jVarj-generated. Then there is a function from
Var onto a generating set for A, and it extends to a homomorphism h from F m

onto A. Now h�1ŒF � is a ` -theory and T ` � h�1ŒF �. Since ` is protoalge-
braic, h is surjective, and hA; F i is reduced, it follows from Theorem 4.1(ii) and
Lemma 2.10(iii) that

�T `
� �h�1ŒF � D h�1Œ�AF � D h�1ŒidA� D ker h;

so the function ehW ˛=�T ` 7! h.˛/ (˛ 2 F m) is a well-defined homomorphism
from F m=�T ` onto A. Clearly, ehŒT `=�T `� � F .

Fact 2.11 shows that Theorem 4.8 would fail if we dropped the assumption that ` is
protoalgebraic.

5 Equivalential Systems

The equivalential deductive systems are the ones whose Leibniz operators are atom-
ically definable. More precisely, we have the following.
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Definition 5.1 A set � of binary formulas �.x; y/ is called a set of equivalence
formulas for ` if, for every matrix model hA; F i of ` and all a; b 2 A,

a �
�AF

b iff �A.a; b/ � F:

We say that ` is equivalential if it has a set of equivalence formulas.

It follows from Theorem 2.8 that a deductive system has at most one set of equiva-
lence formulas, up to interderivability. Clearly, if ` is equivalential, then so are its
extensions. Equivalential systems originate in [55], where a definition resembling
the next lemma was given.

Lemma 5.2 ([68, pp. 222–23]) A set � of binary formulas is a set of equivalence
formulas for ` if and only if

` �.x; x/;

x; �.x; y/ ` y; and
�.x1; y1/; : : : ; �.xn; yn/ ` �

�
�.x1; : : : ; xn/; �.y1; : : : ; yn/

�
for every connective � in the signature of `, where n is the rank of � .

Thus, equivalence formulas function as a generalized biconditional ($), and the
Lindenbaum–Tarski construction can be carried out in a recognizable fashion in any
equivalential system.

Theorem 5.3 (see [8], [15], Herrmann [27]) The following conditions on ` are
equivalent:

(i) ` is equivalential;
(ii) ` is protoalgebraic, and for every matrix model hA; F i of ` and every alge-

braic homomorphism hW B ! A, we have

h�1Œ�AF � D �Bh�1ŒF �

(even if h is not surjective);
(iii) ` is protoalgebraic, and whenever hB; Gi is a submatrix of a matrix model

hA; F i of `, then �BG D .B � B/ \ �AF ;
(iv) Mod�. `/ is closed under submatrices and direct products.

It is well known that if ` is equivalential, then hF m; T `i� is freely generated
by ¹x=�T ` W x 2 Varº in the concrete category Mod�. `/ (equipped with all
matrix homomorphisms). Indeed, for each hA; F i 2 Mod�. `/, any function
from ¹x=�T ` W x 2 Varº into A can be extended to a matrix homomorphismehW hF m; T `i� ! hA; F i, as in the proof of Theorem 4.8. The difference is that
we rely on Theorem 5.3(ii) instead of Lemma 2.10(iii) when showing that eh is well
defined, because the homomorphism in the role of h is no longer guaranteed to be
surjective. The map x 7! x=�T ` is injective on Var whenever ` is protoalgebraic
and strongly consistent—in the sense that ˛ ° ˇ for some ˛; ˇ 2 F m. For then,
in Theorem 4.1(i), we must have �.x; y/ ª T `, whence � ¤ ; and x 6� �T ` y

(because �.x; x/ � T `).

Lemma 5.4 Let hW hB; Gi ! hA; F i be a matrix homomorphism between matrix
models of `, where hB; Gi is reduced. If ` is equivalential and h is strict, then h is
injective, and therefore an embedding.
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Proof Let � be a set of equivalence formulas for `, and let b; b0 2 B with
h.b/ D h.b0/. Then hŒ�B.b; b0/� D �A.h.b/; h.b0// � F , so �B.b; b0/ � G,
as h is strict. Consequently, b D b0, because hB; Gi is reduced.

Notation For any class K of similar first-order structures, we define
U.K/ D

®
A W every jVarj-generated substructure of A belongs to K

¯
:

Lemma 5.5 We have U.Mod�. `// � Mod�. `/, for every deductive system `.

Proof Clearly, if all jVarj-generated substructures of hA; F i are matrix models of
`, then so is hA; F i itself. Also, if ha; bi 2 �AF and B is the subalgebra of A

generated by ¹a; bº, then ha; bi 2 �B.F \B/. This follows from Lemma 2.9, and it
shows that a matrix will be reduced whenever all of its 2-generated submatrices are
reduced.

A class K of similar structures is called a UISP-class if it is closed under the class
operators U, I, S, and P. The smallest such class containing K is UISP.K/.

Theorem 5.6 If ` is equivalential, then the map `0 7! Mod�. `0/ is a bijection
from the extensions of ` to the UISP-subclasses of Mod�. `/. Its inverse sends a
UISP-class K � Mod�. `/ to the consequence relation of K.

Proof Let � be a set of equivalence formulas for ` (and hence for its extensions).
Regardless of equivalentiality, when `0 and `00 extend `, then

`
0

� `
00 iff Mod�. `

00/ � Mod�. `
0/; (1)

by Theorem 2.8. In particular, the map `0 7! Mod�. `0/ is injective on the exten-
sions of `. Equivalentiality ensures that each Mod�. `0/ is indeed a UISP-class
(see Theorem 5.3(iv) and Lemma 5.5). To prove surjectivity, consider a UISP-
class K � Mod�. `/, and let `0 be the consequence relation of K. Then `0 is a
deductive system extending `, and K � Mod�. `0/. For the reverse inclusion, let
hA; F i 2 Mod�. `0/. We must show that hA; F i 2 K.

Because Mod�. `0/ is closed under submatrices and K is closed under U, we
may assume that A is jVarj-generated. So, there is a surjective homomorphism
hW F m ! A. Note that h�1ŒF � is a `-theory, by Lemma 2.10(i). Consequently, for
each ˛ 2 F mnh�1ŒF �, the rule hh�1ŒF �; ˛i is not derivable in `0; that is, there exist
hB˛; G˛i 2 K and a homomorphism g˛W F m ! B˛ such that g˛Œh�1ŒF �� � G˛ but
g˛.˛/ … G˛ (by the definition of `0). Let gW F m !

Q
˛ B˛ be the homomorphism

induced by all of the g˛’s. Then

h�1ŒF � D g�1
hY

˛
G˛

i
: (2)

Observe that h
Q

˛ B˛;
Q

˛ G˛i is a reduced matrix model of `0, because K is closed
under P and contained in Mod�. `0/. Now

ker h D ker g; (3)
by (2), because the law

x D y ” �.x; y/ consists of designated elements
is valid throughout Mod�. `0/. It follows from (2) and (3) that the map h.˛/ 7! g.˛/

is a well-defined isomorphism from hA; F i onto a submatrix of h
Q

˛ B˛;
Q

˛ G˛i.
Therefore, hA; F i 2 K, because K is closed under I, S, and P.
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Because the connectives and variables of a deductive system are assumed to form
sets, the extensions of the system also constitute a set. So, although Mod�. `/ is
a proper class, Theorem 5.6 allows us to treat its collection of UISP-subclasses as
a set—actually a lattice, ordered by �, provided that ` is equivalential. Then the
bijection `0 7! Mod�. `0/ is a lattice anti-isomorphism, by (1).

In the next result, the equivalence of conditions (i) and (iii) in the finitary case is
essentially due to Prucnal and Wroński [55, Theorem 2].

Theorem 5.7 Let ` be equivalential. Then the following two conditions are equiv-
alent.

(i) Every admissible (finite or infinite) rule of ` is derivable in `.
(ii) We have Mod�. `/ D UISP hF m; T `i�.

Moreover, these conditions imply the next one.

(iii) Every jVarj-generated RSI reduced matrix model of ` can be embedded into
hF m; T `i�.

If ` is finitary, then all three of the above conditions are equivalent.

Proof (i) , (ii): By Fact 2.5 and Theorem 2.8, the admissible rules of ` are
the rules validated by hF m; T `i�, that is, by UISP hF m; T `i�, while the deriv-
able rules are the ones validated by Mod�. `/. Thus, (i) holds if and only if
UISP hF m; T `i� and Mod�. `/ validate the same rules. But both are UISP-classes,
so (i) and (ii) are equivalent, in view of Theorem 5.6.

The implication (ii) ) (iii) is a consequence of the definitions, because
SP.K/ � PSS.K/ for any class K of similar structures, and Mod�. `/ is closed
under submatrices.

If ` is finitary, then (iii) ) (i) instantiates Theorem 3.4(ii), because matrix em-
beddings are strict.

Combining Theorems 4.3, 4.4, and 5.6, we obtain the following.

Theorem 5.8 Suppose that ` is equivalential. Then every admissible rule of
` is derivable in ` if and only if, for any UISP-class K, if K ¤ Mod�. `/, then
H.K/ ¤ H.Mod�. `//, that is, Mod�. `/ ª H.K/.

Given classes K1 � K2, both closed under I, S, and P, we call K1 a relative atomic
subclass of K2 if K1 D K2 \ C for some atomic class C. This amounts to asking
that K1 can be axiomatized, relative to K2, by some set of atomic sentences. Since
K2\H.K1/ is the smallest relative atomic subclass of K2 containing K1, Theorem 5.8
readily implies the corollary below.

Corollary 5.9 Suppose that ` is equivalential. Then the following conditions are
equivalent.

(i) Every extension of ` has the property that each of its admissible rules is
derivable.

(ii) For any UISP-classes K1; K2 � Mod�. `/, if K1 ¤ K2, then H.K1/ ¤ H.K2/.
(iii) Every UISP-subclass K of Mod�. `/ is a relative atomic subclass of

Mod�. `/, that is, Mod�. `/ \ H.K/ D K.



Admissible Rules and the Leibniz Hierarchy 585

6 Finitely Equivalential Systems

Let L be a first-order language with equality. The (strict) universal Horn sentences
of L are the first-order L-sentences of the form

8 Nx
�
.&i<n ˆi / H) ‰

�
;

where n 2 ! and ˆ0; : : : ; ˆn�1; ‰ are atomic L-formulas. (If these atomic formulas
are variable-free, then the quantifier is not required, i.e., Nx may be empty.) Let K be
a class of L-structures. We call K a (strict) universal Horn class if it can be axiom-
atized by a set of universal Horn L-sentences. The smallest such class containing K
is ISPPU.K/. This is a refinement, by Grätzer and Lakser [26], of a result of Maltsev
[35]. Thus, K is itself a universal Horn class if and only if it is closed under I, S, P,
and PU. (Russian and Polish authors often follow Maltsev in referring to universal
Horn classes as “quasivarieties,” even if they do not consist of pure algebras.)

In the context of equivalential deductive systems, Mod�. `/ is a universal Horn
class if and only if it is elementary (i.e., axiomatizable by a set of first-order sen-
tences), if and only if it is closed under ultraproducts. This follows from Łoś’s theo-
rem and Theorem 5.3(iv). In general, if Mod�. `/ is closed under ultraproducts, then
` is finitary (see [15, Corollary 0.4.6]).

Definition 6.1 A deductive system is said to be finitely equivalential if it has a
finite set of equivalence formulas (see Definition 5.1).

Theorem 6.2

(i) ([8], [27]) ` is finitely equivalential if and only if �A
S

i2I Fi DS
i2I �AFi whenever ¹Fi W i 2 I º is a �-directed set of `-filters of

an algebra A such that
S

i2I Fi is still a `-filter (as it will be, if ` is
finitary).

(ii) ([8], [14]) ` is finitary and finitely equivalential if and only if Mod�. `/ is a
universal Horn class.

In (ii), if Dx formalizes “x is designated” and if � is a finite set of equivalence
formulas for `, then Mod�. `/ is axiomatized by

8x 8y
�
x D y ” &�2� D�.x; y/

�
as well as all

8 Nx
�
.&2� D/ H) D˛

�
(4)

such that h�; ˛i is a derivable finite rule of `. If ` is the deducibility relation of a
finitary formal system F, then we may restrict (4) to the inference rules h�; ˛i of F,
including the axioms (considered as pairs h;; ˛i). Now Theorem 5.6 specializes as
follows.

Theorem 6.3 (see [15, p. 190]) If ` is finitely equivalential and finitary, then
`0 7! Mod�. `0/ is a lattice anti-isomorphism from the finitary extensions of ` to
the universal Horn subclasses of Mod�. `/. Its inverse sends a universal Horn class
K � Mod�. `/ to the consequence relation of K.

Theorem 6.4 Let ` be finitary and finitely equivalential. Then the following con-
ditions are equivalent.

(i) ` is structurally complete.
(ii) We have Mod�. `/ D ISPPU hF m; T `i�.
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(iii) Every finitely generated RSI reduced matrix model of ` can be embedded
into an ultrapower of hF m; T `i�.

The proof is similar to that of Theorem 5.7, but we exploit Theorems 6.3 and 3.4(i),
rather than Theorems 5.6 and 3.4(ii).

Corollary 6.5 Let ` be finitely equivalential and finitary.
If ` is structurally complete, then Mod�. `/ has the joint embedding property,

that is, whenever hA; F i and hB; Gi are nontrivial reduced matrix models of `,
then there exists hC ; H i 2 Mod�. `/ such that both hA; F i and hB; Gi can be
embedded into hC ; H i.

Proof A universal Horn class has the joint embedding property if and only if it is
generated by a single structure (see Maltsev [36, p. 288] or [24, Proposition 2.1.19]),
so the result follows from Theorem 6.4(ii).

Recall that an L-structure A is said to be locally embeddable into a class K of
L-structures if every finite subset B of the universe of A can be extended to an
isomorphic copy of a structure from K in such a way that the A-induced relations
and partial operations on elements of B are preserved. In this case, A itself can
be embedded into an ultraproduct of a nonempty subfamily of K (see [24, Theo-
rem 1.2.8]). The converse holds when the signature is finite, because the tables
of relations and partial operations on a finite subset of A are then embodied in
a first-order (existential) sentence, whose negation must persist in ultraproducts of
nonempty families. For a single structure C , we take “locally embeddable into C”
to mean locally embeddable into ¹Cº. In conjunction with Theorem 3.4(i) and the
implication (i) ) (iii) from Theorem 6.4, these remarks yield the following.

Corollary 6.6 If every finitely generated RSI reduced matrix model of a finitary
system ` is locally embeddable into hF m; T `i�, then ` is structurally complete.
The converse holds if ` is also finitely equivalential, with a finite signature.

For finitely equivalential finitary systems, any generating class for the universal Horn
class Mod�. `/ can play the role of the finitely generated RSI reduced matrix models
in the sufficient condition for structural completeness given by Corollary 6.6. (This
follows from the implication (ii) ) (i) in Theorem 6.4.) A purely algebraic special-
ization of this last claim appears in Cintula and Metcalfe [12, Theorem 3.3].

Definition 6.7 We say that ` has the strong finite model property if every finite
rule that is underivable in ` is invalidated by some finite matrix model of `. (The
model can be chosen reduced and RSI, by Lemma 2.7(iii).)

Theorem 6.8 Let ` be a finitely equivalential finitary deductive system with the
strong finite model property, having a finite signature.

Then ` is structurally complete if and only if every finite RSI reduced matrix
model of ` can be embedded into hF m; T `i�.

Proof ()) This follows from Corollary 6.6, because a finite structure is locally
embeddable into a structure C if and only if it is embeddable into C .

(() Let h�; ˛i be an admissible finite rule of `. By Fact 2.5, h�; ˛i is validated
by hF m; T `i�. So, by assumption, h�; ˛i is validated by all finite RSI reduced
matrix models of `, and is therefore derivable in ` by the strong finite model prop-
erty.
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If an equivalential system is tabular (e.g., if it is strongly finite), then it is finitely
equivalential, because there are only finitely many binary operations on a finite set.

Theorem 6.9 If ` is equivalential and strongly finite, then each of its RSI reduced
matrix models is finite.

Proof Let M be a finite set of finite reduced matrices whose consequence relation
` is equivalential. Then ` is finitely equivalential and finitary (see Theorem 3.5),
and since it is the consequence relation of M, it is also the consequence relation of the
universal Horn subclass ISPPU.M/ of Mod�. `/, whence Mod�. `/ D ISPPU.M/,
by Theorem 6.3. The latter is really ISP.M/, because the isomorphic closure of a
finite set of finite matrices is closed under ultraproducts. So, Mod�. `/ D IPSS.M/.
In particular, every RSI matrix in Mod�. `/ embeds into a member of M, and is
therefore finite.

Theorem 6.10 Let ` be strongly finite and equivalential, with a finite signature.
If ` is structurally complete, then each of its admissible infinite rules is derivable
in `.

Proof As above, ` is finitely equivalential and finitary. Since ` is strongly finite,
it has the strong finite model property. If ` is also structurally complete, then, by
Theorems 6.8 and 6.9, every RSI reduced matrix model of ` can be embedded into
hF m; T `i�. In this case, by Theorem 5.7, every admissible (possibly infinite) rule
of ` is derivable in `.

Definition 6.11 If � is a set of equivalence formulas for `, and if �.˛; ˇ/ consists
of theorems of `, then ˛ and ˇ are said to be logically equivalent in `. (This makes
sense, because equivalence formulas are essentially unique.) An equivalential system
is locally tabular if it has only finitely many logically inequivalent formulas in n fixed
variables, for every finite n.

If an equivalential system is tabular, then it is locally tabular, and if it is locally tab-
ular, then it is finitely equivalential. All of the intermediate implicational logics are
locally tabular, by Diego’s theorem (see Diego [18, Section 3]; see also McKay [38,
Corollary 2.1.1]). So, by the results cited in Example 3.6, we cannot weaken strong
finiteness to local tabularity in Theorem 6.10. (On the other hand, Theorem 6.9 can
be generalized as follows: if a locally tabular equivalential system has, up to isomor-
phism, only finitely many finite RSI reduced matrix models, then it has no infinite
RSI reduced matrix model. The proof adapts that of Quackenbush’s theorem in [10,
Theorem V.3.8] and uses Lemma 2.7(ii).)

A universal Horn class K is said to be primitive if every universal Horn subclass
of K is a relative atomic subclass of K. Theorem 5.8 and Corollary 5.9 finitize as
follows, via Theorem 6.3.

Theorem 6.12 Let ` be finitely equivalential and finitary. Then
(i) ` is structurally complete if and only if, for any universal Horn class K, if

K ¤ Mod�. `/, then Mod�. `/ ª H.K/;
(ii) ` is hereditarily structurally complete if and only if Mod�. `/ is primitive.

Gorbunov proved that, for any primitive universal Horn class K, the lattice of uni-
versal Horn subclasses of K is distributive (see [23] or [24, Proposition 5.1.22]).
Combining this with Theorems 6.3 and 6.12(ii), we obtain the following.
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Theorem 6.13 If a finitely equivalential finitary deductive system is hereditarily
structurally complete, then its finitary extensions form a distributive lattice.

(The finitary extensions are axiomatic in this case, by Theorem 3.2.)

A universal Horn class K is said to be locally finite if every finitely generated member
of K is finite. An equivalential deductive system ` is locally tabular if and only if
Mod�. `/ is locally finite. Indeed, an n-element subset of Var, factored by �T `,
generates a submatrix hAn; Fni of hF m; T `i� that is reduced (by Theorem 5.3(iv)),
and the homomorphic images of hAn; Fni include all n-generated reduced matrix
models of ` (by an obvious adaptation of Theorem 4.8). Now ` is locally tabular if
and only if hAn; Fni is finite for all finite n, if and only if Mod�. `/ is locally finite.

A further finding of Gorbunov is that a locally finite universal Horn class K is
primitive if and only if every finite relatively subdirectly irreducible member of K
is weakly projective in K (see [23] or [24, Proposition 5.1.24]). This yields the
following result, which is a partial converse for Theorem 4.7.

Theorem 6.14 Let ` be equivalential, locally tabular, and finitary. Then ` is
hereditarily structurally complete if and only if every finite RSI reduced matrix model
of ` is weakly projective.

7 Overflow Rules

Again, let L be a first-order language with equality. Recall that, up to logical equiva-
lence, an existential positive L-sentence is a sentence of the form 9 Nx ˆ, where ˆ is a
disjunction of one or more L-formulas, each of which is a conjunction of one or more
atomic L-formulas. (If no variable occurs in ˆ, then no quantifiers are required.)

In Bergman [4], a quasivariety K of algebras is said to be structurally complete if
every proper subquasivariety of K generates a proper subvariety of the variety H.K/.
By [4, Theorem 2.7], every existential positive first-order sentence over a structurally
complete variety K is either true throughout K or false in all nontrivial members of K.
This is a one-way implication, but Wroński [72] isolates a weak form of structural
completeness that exactly characterizes Bergman’s condition on existential positive
sentences, while demanding only that K be a quasivariety of algebras. Wroński’s
characterization asks that K should satisfy every (finite) quasiequation�

&
i<n

˛i D ˇi

�
H) x D y (5)

such that (i) x; y are distinct variables absent from the equations on the left of H),
and (ii) for every substitution h, if K satisfies h.˛i / D h.ˇi / for all i < n, then
K satisfies h.x/ D h.y/ (see [72, Fact 2]). A natural phrasing of (ii) is “(5) is
admissible in the equational consequence relation of K.” Theorems 7.3 and 7.5 below
are inspired by these insights. (It is possible to unify the present account with the
framework of [4] and [72] by considering Gentzen systems—see Section 11.)

In [72], the quasiequation (5) is called an “overflow rule” if (i) holds. In our
context, the following definition is appropriate.

Definition 7.1 If � is a set of formulas of `, none of which contains an occur-
rence of the variable y, then h�; yi is called an overflow rule of `.

For the rest of this section, L denotes the first-order language, with equality, of
Mod�. `/, and Var (the set of variables of `) also serves as the set of variables of
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L. Recall that the unary designation predicate D belongs to L. By an existential
positive L-condition, we shall mean a formal expression

9 Nx
W
i2I

&
j 2Ji

ˆij ; (6)

where I and all of the Ji are nonempty possibly infinite sets, every ˆij is an atomic
L-formula, and Nx is a possibly infinite (and possibly empty) sequence of variables,
including all that occur in (6).

Lemma 7.2 Let hA; F i be a nontrivial reduced matrix model of `, let h�; yi be
an overflow rule of `, with � ¤ ;, and let Nx be the sequence of variables occurring
in � (taken in any order).

Then 9 Nx &2� D is true in hA; F i if and only if hA; F i does not validate h�; yi.

The proof is easy, because a nontrivial reduced matrix has at least one nondesignated
element and, for the purpose of assigning values to variables, y is independent of the
variables in � .

Theorem 7.3 If every equality-free existential positive L-condition is true either
in every member of Mod�. `/ or in no nontrivial member of Mod�. `/, then every
admissible overflow rule of ` is derivable in `.

The converse holds if ` is equivalential, in which case it applies to all existential
positive L-conditions, not only the equality-free ones.

Proof We may assume without loss of generality that ` is strongly consistent, so
the matrix hF m; T `i� is nontrivial.

()) Let h�; yi be an underivable overflow rule of `. We need to show that
h�; yi is inadmissible in `, so we may assume that � ¤ ;. By Theorem 2.8, h�; yi

is invalidated by some reduced matrix model hA; F i of `, which must be nontriv-
ial, as the trivial matrices validate all rules. Now 9 Nx &2� D is true in hA; F i,
by Lemma 7.2, and it is an equality-free existential positive L-condition, so it is
true in all reduced matrix models of `, by assumption. In particular, it is true in
hF m; T `i�. By Lemma 7.2 again, hF m; T `i� does not validate h�; yi, so h�; yi

is inadmissible in `, by Fact 2.5.
(() Consider an existential positive L-condition 9 Nx ˆ that is true in some

nontrivial reduced matrix model hA; F i of `, where ˆ is a formal disjunction of
expressions ˆi , i 2 I , each of which is a formal conjunction of atomic L-formulas.
Then 9 Nx ˆi is true in hA; F i for some i 2 I . It suffices to show that 9 Nx ˆi is true in
every reduced matrix model of `.

Let � be a set of equivalence formulas for `. Then � ¤ ;, because ` is strongly
consistent. Every equational subformula ˛ D ˇ of ˆi can be replaced in ˆi by
&�2� D�.˛; ˇ/, without affecting the truth of 9 Nx ˆi in any reduced matrix model
of `. We may therefore assume that ˆi has the form &2� D for some nonempty
� � F m. Since Var is an infinite set, we may also assume that some y 2 Var does
not occur in any member of � . Otherwise, by standard cardinality arguments, the set
of apparent variables of � can be replaced by a jVarj-element proper subset of itself,
without affecting the truth of 9 Nx ˆi in any L-structure. Then, because 9 Nx ˆi is true
in hA; F i, which is nontrivial, Lemma 7.2 shows that hA; F i does not validate the
overflow rule h�; yi. Consequently, h�; yi is not derivable in `. So, by assumption,
h�; yi is not admissible in `. This means that h�; yi is not validated by hF m; T `i�,
by Fact 2.5. It follows from Lemma 7.2 that 9 Nx ˆi is true in hF m; T `i�.
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It is easy to see that the truth of 9 Nx ˆi persists in homomorphic images and in
superstructures. But every jVarj-generated reduced matrix model of ` is a homo-
morphic image of hF m; T `i�, by Theorem 4.8, and every reduced matrix model of
` has jVarj-generated submatrices, all of which still belong to Mod�. `/, by Theo-
rem 5.3(iv). So, 9 Nx ˆi is true in every reduced matrix model of `, as required.

Definition 7.4 We shall say that ` is overflow complete if every admissible finite
overflow rule of ` is derivable in `.

Finitizing Theorem 7.3 and its proof, we obtain the following.

Theorem 7.5 Let ` be finitely equivalential. Then ` is overflow complete if
and only if every existential positive L-sentence holds either in all of the nontrivial
reduced matrix models of `, or in none of them.

Remark 7.6 If ` is merely equivalential and overflow complete, then the equality-
free existential positive (finite) L-sentences still hold either in all or in none of the
nontrivial members of Mod�. `/. This is established by the proof of Theorem 7.3.

Note that a matrix is 0-generated only if its signature includes a constant symbol
(because we exclude empty structures from consideration).

Theorem 7.7 Let ` be equivalential. If ` is overflow complete, then any two
nontrivial 0-generated reduced matrix models of ` are isomorphic.

Proof Let hA; F i 2 Mod�. `/ be 0-generated and nontrivial, so ` has a
constant symbol, say, c. The map x 7! cA .x 2 Var/ extends to a homomor-
phism gW F m ! A, and g must be surjective, because A is 0-generated. Since
T ` � g�1ŒF � and ` is equivalential (hence protoalgebraic), Theorem 4.1(ii) shows
that �T ` � �g�1ŒF �.

Because ` has a constant symbol, its variable-free formulas constitute a subalge-
bra B of F m. Let G D T ` \ B , so hB; Gi� 2 Mod�. `/. By Theorem 5.3(iii) and
Lemma 2.10(iii),

�BG D .B � B/ \ �T `
� �g�1ŒF � D g�1Œ�AF � D ker g;

as hA; F i is reduced. Thus, egW ˛=�BG 7! g.˛/ (˛ 2 B) is a well-defined matrix
homomorphism from hB; Gi� to hA; F i, and eg is surjective, again because hA; F i

is 0-generated.
We show that eg is strict. For each ˛ 2 B , the expression D˛ is an existential pos-

itive L-sentence, because ˛ is a variable-free formula of `. For the same reason, if
˛ 2 B and eg.˛=�BG/ 2 F , then D˛ is true in hA; F i. In this case, since hA; F i is
nontrivial and reduced and since ` is overflow complete, it follows from Remark 7.6
that D˛ is true in all members of Mod�. `/. Then ˛ 2 T `, by Theorem 2.8, whence
˛ 2 G, that is, ˛=�BG 2 G=�BG. This confirms that eg is strict. Consequently, eg
is an embedding, by Lemma 5.4, and so egW hB; Gi� Š hA; F i. But hB; Gi� is fixed,
so the proof is complete.

Example 7.8 Substructural logics that lack the weakening axiom

x ! .y ! x/

are often formulated with an inferential negation, : x D x ! f , where f is a constant
symbol. In these systems, ¹x ! y; y ! xº is a set of equivalence formulas. In a
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reduced matrix model, the cardinality of the submatrix generated by ¹fº may vary
with the choice of model, even if we restrict the signature to !. For example, the
four-element algebra in the proof of Theorem 10.10 is ! generated by ¹fº, and so
is the two-element Boolean algebra (where f is the lower element). So, when f
and ! are both definable, these algebras become 0-generated. Since they are not
isomorphic, Theorem 7.7 rules out overflow completeness (and thereby structural
completeness) for countless substructural logics with !; f and without weakening.
Not all of these systems are algebraizable.

It is easy to see that a deductive system is overflow complete if and only if, for each
of its underivable finite rules, there is a substitution turning all of the rule’s premises
into theorems. Recently, Cintula and Metcalfe [12] have studied this condition under
the name passive structural completeness.

8 Truth-Equational and Weakly Algebraizable Systems

A deductive system is truth-equational if its unary designation predicate is equation-
ally definable over its reduced matrix models. To be precise, the theorem below was
proved in [57] (and more directly in Raftery [59, Theorem 37]).

Theorem 8.1 The following conditions on ` are equivalent.
(i) There is a set � of pairs � D h�`.x/; �r .x/i of unary formulas such that, for

every reduced matrix model hA; F i of ` and every a 2 A,

a 2 F iff
�
�A

` .a/ D �A
r .a/ for all � 2 �

�
.

(ii) Whenever Fi .i 2 I / and G are `-filters of an algebra A such thatT
i2I �AFi � �AG, then

T
i2I Fi � G.

For example, in the reduced matrix models of classical or intuitionistic propositional
logic, the displayed condition in (i) is realized as “a 2 F iff a D >.” In substructural
logics without weakening, this is no longer true, but instead, (i) is witnessed by
“a 2 F iff a D a _ .a ! a/.”

Definition 8.2 We say that ` is truth-equational if it satisfies the equivalent con-
ditions of Theorem 8.1.

Observe that this demand persists in extensions. The reduced matrix models of a
truth-equational system ` are evidently determined by their algebra reducts, that is,
whenever hA; F i; hA; Gi 2 Mod�. `/, then F D G. In fact, this remains true for
subdirect products of reduced matrix models.

Notation We denote by Alg�. `/ the class of all algebra reducts A of reduced
matrix models hA; F i of `. The algebraic counterpart Alg. `/ of ` is defined as
IPS.Alg�. `//, the closure of Alg�. `/ under subdirect products (and isomorphisms).

Remark 8.3 If � and �0 are both as in Theorem 8.1(i), then�
&

�2�
�`.x/ D �r .x/

�
”

�
&

�2�0
�`.x/ D �r .x/

�
is clearly valid in Alg�. `/ and therefore in Alg. `/.
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Note that Alg. `/ D Alg�. `/ if ` is protoalgebraic, by Theorem 4.1(iii). Even if
` is not protoalgebraic, truth-equationality permits a slight relaxation of the admis-
sibility criterion in Theorem 2.12(iii). This follows from the first item in the next
lemma.

Lemma 8.4 Let hA; F i and hB; Gi be matrix models of a truth-equational system
`, where hA; F i is reduced, and let hW B ! A be an algebraic homomorphism.

(i) If hB; Gi is a subdirect product of reduced matrix models of ` (in particular,
if hB; Gi is itself reduced), then h is a matrix homomorphism from hB; Gi

into hA; F i.
(ii) If h is a matrix homomorphism from hB; Gi into hA; F i, and G is a union of

.ker h/-classes, then h is strict.
(iii) Every injective matrix homomorphism from hB; Gi into hA; F i is an embed-

ding.

Proof Let � be as in Theorem 8.1(i).
(i) Let hB; Gi be a subdirect product of reduced matrix models hBi ; Gi i (i 2 I )

of `, and let b 2 G. Then, for each i 2 I , we have b.i/ 2 Gi , because hBi ; Gi i

is a homomorphic image of hB; Gi. Thus, for all � 2 � and i 2 I , we have
�

Bi

`
.b.i// D �

Bi
r .b.i//, because hBi ; Gi i is reduced, and so �B

`
.b/ D �B

r .b/. Then
�A

`
.h.b// D h.�B

`
.b// D h.�B

r .b// D �A
r .h.b// for all � 2 �. Since hA; F i is

reduced, this implies that h.b/ 2 F , as required.
(ii) Let h.b/ 2 F , where b 2 B . We must show that b 2 G. For each

� 2 �, we have h.�B
`

.b// D �A
`

.h.b// D �A
r .h.b// D h.�B

r .b//, as hA; F i

is reduced. Thus, ker h identifies �B
`

.b/ with �B
r .b/. But ker h � �BG, as G

is a union of .ker h/-classes, so �B
`

.b/ �
�B G

�B
r .b/ for all � 2 �. Therefore,

b=�BG 2 G=�BG, as hB; Gi� 2 Mod�. `/, and so b 2 G.
Item (iii) is an instance of (ii), because G is a union of idB -classes.

Theorem 8.5 (Czelakowski and Jansana [17, Theorem 4.8]) The following condi-
tions on ` are equivalent.

(i) ` is both protoalgebraic and truth-equational.
(ii) For every algebra A, the map F 7! �AF is injective and order-preserving

(with respect to �) on the `-filters of A.
(iii) For every algebra A, the map F 7! �AF defines a lattice isomorphism from

the `-filters of A onto the Alg. `/-congruences of A, that is, the congruences
� such that A=� 2 Alg. `/.

Definition 8.6 ([17]) We say that ` is weakly algebraizable if it satisfies the
equivalent conditions of Theorem 8.5.

Admissibility in weakly algebraizable systems can be characterized in terms of pure
algebras, rather than matrices, as follows.

Theorem 8.7 Let ` be weakly algebraizable. Then the following conditions are
equivalent.

(i) h�; ˛i is an admissible rule of `.
(ii) Every algebra in Alg. `/ is a homomorphic image of an algebra belonging to

Alg. ` C h�; ˛i/.
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(iii) Every algebra in Alg. `/ is a homomorphic image of one in which�
&

�2�; 2�
�`./ D �r ./

�
H)

�
&

�2�
�`.˛/ D �r .˛/

�
is valid, where � is as in Theorem 8.1(i).

Proof Since ` and its extensions are protoalgebraic and truth-equational, Theo-
rem 4.4 and Lemma 8.4(i) combine to prove the equivalence of conditions (i) and
(ii) of the present theorem. The meaning of (iii) is independent of the choice of
�, by Remark 8.3, and the equivalence of (ii) and (iii) is just a consequence of the
definitions.

Theorem 8.7 generalizes [46, Theorem 7.11], which dealt only with algebraizable
systems; the present proof is also simpler. Algebraizability was introduced in [7] and
is discussed in detail in [9], [15], [21], and Pigozzi [48]. For present purposes, it
suffices to note that

a deductive system ` is [finitely] algebraizable if and only if it is both
truth-equational and [finitely] equivalential.

The usual definition of algebraizability asks that ` be equivalent—in a suitable
sense—to the equational consequence relation of a class C of pure algebras. (In
this case, we can choose C D Alg. `/ D Alg�. `/.) The pertinent notion of equiva-
lence is discussed in several recent papers, particularly Blok and Jónsson [5], but we
do not need to use it here. Orthologic is an example of a weakly algebraizable system
that is not algebraizable (see [17] and Malinowski [34]). In this example, ¹hx; >iº

can play the role of � in Theorem 8.1(i).
We do not need the full force of algebraizability to prove the next result. It follows

from Theorem 4.7, via Lemma 8.4(i),(iii).

Theorem 8.8 Suppose that ` is finitary and weakly algebraizable. If every finitely
generated relatively subdirectly irreducible algebra in Alg. `/ is weakly projective in
Alg. `/, then ` is hereditarily structurally complete.

As Alg. `/ is closed under subdirect products, it is a variety if and only if it is closed
under homomorphic images of the algebraic kind. In this case, an algebra in Alg. `/

will be relatively subdirectly irreducible in Alg. `/ if and only if it is subdirectly
irreducible in the absolute sense.

Example 8.9 RMt denotes the extension of relevance logic by the mingle axiom
x ! .x ! x/. Here, relevance logic is formulated with the Ackermann truth con-
stant t (see Section 10 for more details). Although RMt is not structurally complete,
its negation-less fragment ` (i.e., its !; �; ^; _; t fragment) is hereditarily struc-
turally complete. For reasons explained in [45] and [46], this cannot be proved by
generalizing the syntactic method known as “Prucnal’s trick” (deriving from [51]).
But ` is algebraizable and the algebraic criterion of Theorem 8.8 can be applied. In-
deed, Alg. `/ is the locally finite variety of positive Sugihara monoids (PSMs), and
it is proved in [45] that every finite subdirectly irreducible PSM is projective (hence
weakly projective) in this variety.

For an algebraizable finitary system `, if the class Alg. `/ is elementary, then it is a
quasivariety. In this case, ` is structurally complete if and only if every proper sub-
quasivariety of Alg. `/ generates a proper subvariety of H.Alg. `// (cf. Bergman’s
definition in Section 7).
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Example 8.10 FLew denotes intuitionistic affine linear logic without exponen-
tials (sometimes called “BCK-logic”). It is algebraizable, and Alg.FLew/ is the
variety of all bounded integral commutative residuated lattices (see, e.g., Galatos,
Jipsen, Kowalski, et al. [22]). Let ` be a consistent axiomatic extension of the
S -fragment of FLew, where S includes at least ! and ?. Then Alg. `/ is a qua-
sivariety, but it need not be a variety (see Wroński [71]). We define x !0 y D y

and x !nC1 y D x ! .x !n y/ for n 2 !. A member of Alg. `/ satisfying
x !n y D x !nC1 y is said to be n-contractive, and every finite algebra in
Alg. `/ is n-contractive for some finite n. If ` is overflow complete, then Alg. `/

contains no simple algebra on more than two elements that is n-contractive for a finite
n—in particular, Alg. `/ contains no finite simple algebra other than the two-element
Boolean algebra. The proof uses Theorem 7.5 and the existential positive sentence

9x .xn
D ? & : x 6 x/;

which can be written in terms of !; ? as

9x
�
x !

n
? D ? ! ? & .x ! ?/ ! x D ? ! ?

�
:

This sentence is false in the unique two-element member of Alg. `/, but it would be
true in any simple n-contractive member having more than two elements. The proof
details can be found in [46, Proposition 10.5], but the present account is a slight
improvement, as we do not assume here that Alg. `/ is a variety. This rules out
overflow completeness for a large class of fuzzy logics—for example, the finite MV-
chains on three or more elements are simple algebras, so they cannot belong to
Alg. `/ if ` is overflow complete.

Since the appearance of [46], a somewhat different explanation of Example 8.10 has
been given in [12, Theorem 5.16].

9 Order Algebraizable Systems

Several prominent nonalgebraizable systems ` are still order algebraizable in the
sense of Raftery [60] (see Section 10 for examples). The definition asks that ` be
equivalent, in the sense of [5], to the inequational consequence relation of a class of
partially ordered algebras. Here, however, it is convenient to work with the follow-
ing characterization, whose correctness follows immediately from [60, Theorem 7.1,
Corollary 6.7].

Characterization 9.1 We say that ` is order algebraizable if and only if its lan-
guage includes a set � of binary formulas �.x; y/ such that, for every reduced matrix
model hA; F i of `, the set A is partially ordered by the relation

a 6F b iff �A.a; b/ � F

and, moreover,

x a`
S ®

�
�
�`.x/; �r .x/

�
W � 2 �

¯
(7)

for a suitable set � of pairs of unary formulas � D h�`.x/; �r .x/i.
In this case, we say that ` is �-order algebraizable and, by its �-ordered alge-

bras, we mean the structures hA; 6F i arising as above from all of its reduced matrix
models hA; F i.
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Under these assumptions, for any hA; F i 2 Mod�. `/ and a 2 A, we have

a 2 F iff
�
�`.a/ 6F �r .a/ for all � 2 �

�
; (8)

by (7) and the definition of 6F . Consequently, the map sending F to 6F is injective
on the `-filters of any A 2 Alg�. `/. There is no difference here between Alg�. `/

and Alg. `/, because every �-order algebraizable system is protoalgebraic—in fact
equivalential, with equivalence formulas �.x; y/ [ �.y; x/ (see [60]).

The order algebraizable systems do not appear to constitute a level of the Leibniz
hierarchy, as they seem to have no simple �-characterization, but they are a math-
ematically natural subclass of the equivalential systems. Clearly, an extension of a
�-order algebraizable system ` is itself �-order algebraizable, and if � and �0 both
satisfy the demands of Characterization 9.1, then�

&
�2�

�`.x/ 6 �r .x/
�

”

�
&

�2�0
�`.x/ 6 �r .x/

�
is valid in the �-ordered algebras of `.

Remark 9.2 Let A and B be algebras, and let 6 and 60 be binary relations on
A and B , respectively. The conventions of Sections 2 and 4 dictate that we call
hA; 6i a homomorphic image of hB; 60i if and only if there is a surjective (algebraic)
homomorphism hW B ! A such that, whenever b1; b2 2 B with b1 60 b2, then
h.b1/ 6 h.b2/.

Theorem 9.3 Let ` be �-order algebraizable. Then the following conditions are
equivalent.

(i) h�; ˛i is an admissible rule of `.
(ii) Every �-ordered algebra of ` is a homomorphic image of a �-ordered alge-

bra of ` C h�; ˛i (in the sense of Remark 9.2).
(iii) Every �-ordered algebra of ` is a homomorphic image of one in which�

&
2�; �2�

�`./ 6 �r ./
�

H)

�
&

�2�
�`.˛/ 6 �r .˛/

�
is valid, where � is as in Characterization 9.1.

Proof (i) , (ii): Since order algebraizable systems are protoalgebraic, it suffices
to observe that the criterion in Theorem 4.4(ii) is equivalent, for `, to the one in
Theorem 9.3(ii). Indeed, given reduced matrix models hA; F i and hB; Gi of ` and
a surjective homomorphism hW B ! A, we have hŒG� � F if and only if h preserves
order when considered as a map from hB; 6Gi to hA; 6F i. This follows from (8)
and the definitions of 6G and 6F , because h preserves the formulas occurring in �

and in �.
The implication (ii) , (iii) follows from the definitions, using (8).

Because a �-order algebraizable system ` is equivalential, its �-ordered alge-
bras constitute a UISP-class of L-structures, where L is the first-order language
with equality having one (binary) relation symbol 6 and the connectives of `

as function symbols. We denote this UISP-class by OAlg�. `/. If it is elemen-
tary (and thus a universal Horn class) for a suitable �, we say that ` is ele-
mentarily order algebraizable. In that case, � can be chosen finite (whence `
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is finitely equivalential), and OAlg�. `/ is axiomatized by the antisymmetry law
8x 8y..x 6 y & y 6 x/ H) x D y/ and suitable sentences all of the form

8 Nx
��

&
i<n

˛i . Nx/ 6 ˇi . Nx/
�

H) ˛. Nx/ 6 ˇ. Nx/
�
;

with n 2 !. This does not force Mod�. `/ to be a universal Horn class, however,
and ` need not be finitary (see Raftery [58]).

A partially ordered algebra hA; 6i comprises an algebra A and a partial order 6
of its universe A. When ` is elementarily �-order algebraizable, then any universal
Horn subclass K of OAlg�. `/ consists of partially ordered algebras, by definition.
Nevertheless, the atomic class H.K/ may include structures hA; 6i where 6 is not a
partial order, because both antisymmetry and transitivity may be lost in the formation
of homomorphic images. It is therefore preferable to work with OAlg�. `/ \ H.K/,
the relative atomic subclass of OAlg�. `/ generated by K. From Theorem 6.12(i),
we obtain the following.

Theorem 9.4 Suppose that ` is elementarily �-order algebraizable and finitary.
Then ` is structurally complete if and only if every proper universal Horn subclass
of OAlg�. `/ generates a proper relative atomic subclass of OAlg�. `/.

Every algebraizable system is order algebraizable, because the identity relation is a
partial order. Structural completeness has been established for few (if any) significant
nonalgebraizable logics, but there is at least one interesting conjecture of this kind
in the literature. That is Problem 10.6 below, and Theorems 6.8, 9.3, and 9.4 are
potentially relevant to it.

10 Fragments of Relevance Logic: A Case Study

The most natural examples of order algebraizable systems (apart from algebraizable
ones) are the intensional fragments of relevance logic, linear logic, and other sub-
structural logics without weakening. In exponential-free linear logic, no fragment
with implication is structurally complete (see [46]), but the contraction axiom turns
relevance logic into a more complex case study, with some open problems.

Relevance logic is traditionally identified with the theorems of a formal system R
(sometimes called Rt), whose signature is ^; _; �; !; :; t. (For recent surveys, see
Dunn and Restall [19], Mares and Meyer [37], and Restall [61].) The postulates of R
in any restricted signature S constitute a formal system RS . In particular, R �; !; t is

(B) .x ! y/ ! ..z ! x/ ! .z ! y// .prefixing/

(C) .x ! .y ! z// ! .y ! .x ! z// .exchange/

(I) x ! x .identity/

(W) .x ! .x ! y// ! .x ! y/ .contraction/

x ! .y ! .y � x//

.x ! .y ! z// ! ..y � x/ ! z/

t
t ! .x ! x/

(MP) x; x ! y / y .modus ponens/:

Whenever ¹!º � S � ¹�; !; tº, then RS axiomatizes the S -fragment of ` R
(see Meyer [40]). Because of this, we do not bother to distinguish notationally
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between RS and ` RS
, and we refer to RS itself as the S -fragment of R. (In [40],

fragments are considered as sets of theorems, rather than as subsets of a deducibil-
ity relation, but the above axiomatization is separative even for rules. This point is
discussed in more detail in Hsieh and Raftery [28] and van Alten and Raftery [66].)

If ¹!º � S � ¹�; !; tº, then RS is not (even weakly) algebraizable (see [7]), but
it is elementarily �-order algebraizable with witness �, where

�.x; y/ D ¹x ! yº and �.x/ D
®
hx ! x; xi

¯
:

We can replace �.x/ by ¹ht; xiº when t belongs to S . The ¹x ! yº-ordered algebras
of R �; !; t are the Church monoids of Meyer [40, pp. 41–42], defined below.

Definition 10.1 A Church monoid hA; 6i comprises an algebra A D hAI �; !; ti
and a partial order 6 of A, where

(i) hAI �; ti is a commutative monoid (i.e., t 2 A and � is a commutative and
associative binary operation on A, with a � t D a for all a 2 A),

(ii) for all a; b; c 2 A, if a 6 b, then a � c 6 b � c,
(iii) for all a; b 2 A, max 6¹c 2 A W a � c 6 bº exists and is equal to a ! b, and
(iv) hAI �; 6i is square increasing, that is; a 6 a � a for all a 2 A.

The joint content of (ii) and (iii) could be put more succinctly as follows:
(ii)0 for all a; b; c 2 A, we have c 6 a ! b iff a � c 6 b.

The binary operation ! is called residuation. In any Church monoid, ! is com-
pletely determined by � and 6, and it follows from (ii)0 that

a 6 b iff t 6 a ! b. (9)
Because R �; !; t is order algebraized by Church monoids, with � D ¹ht; xiº, the
following well-known fact is a manifestation of (8).

Fact 10.2 For any set � [ ¹˛º of formulas of R �; !; t , we have � ` R ˛ if and
only if every Church monoid satisfies 8 Nx ..&2� t 6 / H) t 6 ˛/.

Theorem 10.3 ([46, p. 487]) The rule x ! t; .x ! t/ ! t / x is admissi-
ble in R �; !; t , and therefore in R !; t . Consequently, R �; !; t and R !; t are not
structurally complete.

The proof in [46] relies on a characterization of admissibility that was confined
to algebraizable systems. Thus, it detours through an algebraizable conservative
extension of R �; !; t . The detour can be eliminated, however, because Theorem 9.3
prescribes nothing more than order algebraizability. The argument in [46] shows that
every Church monoid is a homomorphic image of one that satisfies

8x .x ! t D t H) x D t/: (10)
Note that (10) amounts to

8x
��

t 6 x ! t & t 6 .x ! t/ ! t
�

H) t 6 x
�
;

in view of (9). Thus, x ! t; .x ! t/ ! t / x is admissible in R �; !; t, and it
remains admissible in R !; t , because � does not occur in it. It is underivable in these
systems, as it is underivable even in the stronger system of classical logic (where t is
logically equivalent to y ! y).

Theorem 10.3 does not settle the problem of structural completeness for R �; ! ,
but this question is rather easily disposed of by syntactic arguments, as follows.
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Theorem 10.4 The rule x �y / x is admissible in R �; !; t and therefore in R �; ! .
Consequently, R �; ! is not structurally complete.

Proof We use a single-conclusion sequent calculus G such that, for any formula
˛ of R �; !; t , the sequent B ˛ is provable in G if and only if ˛ is a theorem of R.
We require, as usual, that G has the cut-elimination property and the subformula
property. Various calculi of this sort are available (see, e.g., Ono [47] and Urquhart
[65]). In these systems, no axiom has the form B ˛ �ˇ. The inference rule schemata
are such that any cut-free proof of B ˛ � ˇ in G, involving no connective other than
�; !; t, must end with an execution of

� B ˛ † B ˇ

�; † B ˛ � ˇ
.B �/

in which � and † are empty. Thus, by the cut-elimination and subformula properties,
if ˛ � ˇ is a theorem of R �; !; t , then B ˛ is provable in G; that is, ` R ˛. This
establishes that x �y / x is admissible in R �; !; t , and it remains admissible in R �; ! ,
because it does not involve t. It is underivable in R, however, by Fact 10.2, because
the implication t 6 x � y H) t 6 x is not valid in every Church monoid. Indeed,
consider the Church monoid with identity 1 on the chain �2 < �1 < 1 < 2, where
a � b is the element of ¹a; bº with the greater absolute value when jaj ¤ jbj, and
is otherwise the minimum of ¹a; bº. To invalidate the implication, set x D �1 and
y D 2.

Combining Theorems 10.4 and 9.3, we obtain a fact about residuated structures that
is not obvious on algebraic grounds.

Corollary 10.5 Every Church monoid is a homomorphic image of one that satis-
fies 8x 8y .t 6 x � y H) t 6 x/.

The above results say nothing about the pure implication fragment R ! of R. This
fragment is better known as BCIW, because it is axiomatized by (B), (C), (I), (W),
and modus ponens.

Problem 10.6 ([64, p. 564]) Is BCIW structurally complete?

In [64], Slaney and Meyer gave a syntactic proof that the ^; ! fragment of R is
structurally complete. They expressed hopes for a similar theorem in the case of
BCIW, but predicted a need to resort to algebraic methods. In fact, hereditary struc-
tural completeness for R ^; ! can be inferred from the arguments in [64] (see [46]
for a generalization of this result). On the other hand, BCIW is not hereditarily
structurally complete (see Remark 10.11).

The theory in Section 9 was motivated in part by the remark about algebraic meth-
ods in [64] (and the fact that BCIW is order algebraizable but not algebraizable). The
¹x ! yº-ordered algebras of BCIW are the !; 6 subreducts of Church monoids.
They are finitely axiomatized structures, and BCIW has the strong finite model prop-
erty (see Meyer [41], Meyer and Ono [44], and [66]). Nevertheless, Problem 10.6
remains open, and even the following special cases seem difficult.

Problem 10.7 Is the rule .x ! .x ! x// ! x / x admissible in BCIW?

Problem 10.8 If a rule involving only one variable is admissible in BCIW, must
it be derivable in BCIW?
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Because of the interest in Problem 10.6, we include here an observation (Theo-
rem 10.10) that connects these three problems together. We exploit the following
result of Meyer, in which we set

jxj :D x ! x and ˛ :D x ! jxj:

Theorem 10.9 (Meyer [39, p. 385]) Up to logical equivalence, the one-variable
formulas of BCIW are exactly the following six, where the Hasse diagram puts ˇ

below  if and only if ˇ !  is a theorem of BCIW.

r��
r

@
@
r rr @

@
�
�
r

.˛ ! jxj/ ! x

˛

jxj

˛ ! jxj

x

˛ ! x

This is the order reduct of the ¹x ! yº-ordered algebra of BCIW that comes
from hF m1; T1i�, where F m1 is the free ! groupoid on one generator x, and
T1 is its intersection with the theorems of BCIW. In the diagram, each formula
ˇ abbreviates its own equivalence class modulo logical equivalence (i.e., modulo
�T1). The 6 � 6 Cayley table for ! is given in [39]. Of the six displayed formulas,
only jxj and ˛ ! jxj are theorems of BCIW.

Theorem 10.10 If the rule�
x ! .x ! x/

�
! x / x (11)

is admissible in BCIW, then BCIW is not structurally complete.
If (11) is not admissible in BCIW, then every admissible one-variable rule of

BCIW is derivable in BCIW.

Proof For the first assertion, we need only note that (11) is underivable in BCIW.
This follows from Fact 10.2, because the implication

t 6
�
x ! jxj

�
! x H) t 6 x

is not valid in the Church monoid hAI �; !; t; 6i with the following Hasse diagram,
where ? � a D a for all a 2 A, and f � f D > D a � > whenever ? ¤ a 2 A. Indeed,
.x ! jxj/ ! x takes the value > when we set x D f .

s �
�

�

s
@
@
@

s��
�
s

@
@

@

>

t f

?

For the second assertion, suppose that there exists a one-variable rule

˛1; : : : ; ˛n / ˇ (12)
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that is admissible but underivable in BCIW, and choose (12) so that n is as small
as possible. We need to show that (11) is then admissible in BCIW. Since (12) is
underivable, ˇ is not a theorem of BCIW, hence n > 0. Any ˛i that is a theorem
of BCIW could be omitted from (12), contradicting the minimality of n, so no ˛i is
a theorem. Similarly, ˛i ! ˛j cannot be a theorem unless i D j , for otherwise we
could omit ˛j from (12). This means that ¹˛1; : : : ; ˛nº is an antichain in the Hasse
diagram of Theorem 10.9, hence n 6 2. Finally, because (12) is underivable, there
is no i for which ˛i ! ˇ is a theorem, that is, we must have ˛i 66 ˇ in the Hasse
diagram, for all i . So (12) must be (11) or one of the following:

(i) ˛; ˛ ! x / x,
(ii) ˛; x / .˛ ! jxj/ ! x,
(iii) ˛; ˛ ! x / .˛ ! jxj/ ! x,
(iv) ˛ / x,
(v) ˛ / ˛ ! x,
(vi) ˛ / .˛ ! jxj/ ! x,
(vii) x / ˛,
(viii) x / .˛ ! jxj/ ! x,
(ix) ˛ ! x / ˛,
(x) ˛ ! x / .˛ ! jxj/ ! x.

We show, however, that each of (i)–(x) is either derivable or inadmissible in BCIW,
thus completing the proof.

Obviously, (i) is derivable. To see that (ii) is derivable, observe that the theorem
.˛ ! jxj/ ! .˛ ! jxj/ is logically equivalent in BCIW to

˛ !
�
x !

��
˛ ! jxj

�
! x

��
;

thanks to several applications of (C). Modus ponens does the rest. And, because (i)
and (ii) are derivable, so is (iii).

We claim that none of (iv)–(x) is admissible in BCIW.
To see that (iv) is not admissible, substitute x ! jxj for x. The premise of (iv)

becomes .x ! jxj/ ! ..x ! jxj/ ! .x ! jxj//, which is a theorem of BCIW,
because both�

x ! jxj
�

! .x ! x/ and .x ! x/ !
��

x ! jxj
�

!
�
x ! jxj

��
are theorems (use (W) and (B)). But the conclusion of (iv) becomes x ! jxj, which
is not a theorem.

If (v) were admissible, then the same would be true of (iv), by modus ponens. So
(v) is not admissible. Similarly, the inadmissibility of (vi) follows from that of (iv),
because ˛ ! jxj is a theorem.

To see that (vii) is inadmissible, substitute .x ! .x ! y// ! .x ! y/ for x,
so the premise of (vii) becomes the theorem (W). This substitution turns ˛ into a
formula, say, ı, and it suffices to show that ı is not a theorem of BCIW, that is, that
it is not a theorem of R. The set

A D ¹0º [ ¹2n
W n 2 !º [ ¹1º

can be made into a Church monoid hAI �; !; 1; 6i, where 6 is the conventional total
order and � is ordinary multiplication on the finite elements of A, while 0 � 1 D 0

and a � 1 D 1 whenever 0 ¤ a 2 A. In this structure, 0 ! a D 1 D a ! 1

for all a 2 A, and 1 ! a D 0 unless a D 1, while a ! 0 D 0 unless
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a D 0. For finite nonzero a; b 2 A, the value of a ! b is b=a if a divides
b; otherwise it is 0. Substituting 2 for x and 8 for y, we find that the value of
.x ! .x ! y// ! .x ! y/ is .2 ! 4/ ! 4 D 2 ! 4 D 2. So the cor-
responding value of ı is 2 ! .2 ! 2/ D 2 ! 1 D 0. Since t D 1 66 0, it
follows that ı is not a theorem of R, and hence that (vii) is inadmissible in BCIW.
Moreover, this argument can be extended to show that (viii) is inadmissible, because
.0 ! j2j/ ! 2 D 1 ! 2 D 0.

Finally, note that x ! .˛ ! x/ is a theorem of BCIW (apply (C) to (W)).
Therefore, the inadmissibility of (ix) and (x) follows from that of (vii) and (viii),
using modus ponens.

Remark 10.11 A problem of Avron [2] asks whether the rule

x;
�
x ! .y ! y/

�
! .x ! y/ / y

is admissible in BCIW. As Avron observes, it is admissible but not derivable in
the ! fragment of ` RMt (see Example 8.9), which is stronger than BCIW. This
explains why BCIW is not hereditarily structurally complete.

In the literature, the most prominent admissible rule of relevance logic is the under-
ivable disjunctive syllogism x; y _: x / y, known as ./. The admissibility of ./ in
R was proved in Meyer and Dunn [42, Theorem 4]. R is algebraizable, and Alg.R/ is
the variety of De Morgan monoids (see Anderson and Belnap [1], Blok and Pigozzi
[7]). These are distributive lattice-ordered Church monoids with an involution. In
Meyer, Dunn, and LeBlanc [43], there is a construction showing (in effect) that every
subdirectly irreducible De Morgan monoid is a homomorphic image of a De Morgan
monoid satisfying .t 6 x & t 6 y _ : x/ H) t 6 y.

By Theorem 7.5, a fragment of relevance logic with negation cannot be over-
flow complete, because the existential positive sentence 9x .x D : x/ holds in
the 3-element De Morgan monoid and fails in the 2-element De Morgan monoid.
On the other hand, R �; !; t and its fragments with ! are vacuously overflow com-
plete, as they have no admissible overflow rules. Indeed, Church monoids satisfy
jtj D t D t � t and jjxjj D jxj D jxj � jxj, so all formulas in �; !; t (resp., �; !)
become theorems of R under the substitution that sends all variables to t (resp., to
jxj for a fixed variable x).

11 Sequent Systems

Gentzen systems may be regarded as generalized sentential deductive systems:
in the role of sentential formulas, we have suitably shaped sequents of formulas
˛1; : : : ; ˛m B ˇ1; : : : ; ˇn, with the understanding that such a sequent is sent by any
substitution h to

h.˛1/; : : : ; h.˛m/ B h.ˇ1/; : : : ; h.ˇn/:

Sentential systems may then be identified with the Gentzen systems in which all
permissible sequents have the shape B '. The [in]equational consequence relations
of classes of [ordered] algebras are special Gentzen systems.

The Leibniz classification of sentential logics can be extended to Gentzen
systems `, provided that we generalize the matrix theory appropriately. The
designated elements of a matrix hA; F i (i.e., the elements of F ) are formal
sequents of elements of A, whose shapes are among those permitted by `. The
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Leibniz congruence �AF is the largest congruence � of A such that, when-
ever a1; : : : ; am B amC1 ; : : : ; an 2 F and ai � � bi for i D 1; : : : ; n,
then b1; : : : ; bm B bmC1 ; : : : ; bn 2 F . Again, a matrix hA; F i is reduced if
�AF is the identity relation. Theorem 2.12 remains true in this setting. The
�-characterizations of protoalgebraicity, truth-equationality, and [finite] equiv-
alentiality can be retained as definitions (for order algebraizability, see [60]). The
available model-theoretic characterizations remain valid, and the syntactic character-
izations are modified in natural ways (see Raftery [56] and its references). Modulo
these changes, the main results of Sections 4–9 remain true as well, because they
make no essential use of special syntax, and rely mostly on �-properties instead.
Since equational consequence relations are Gentzen systems, results about struc-
turally complete classes of algebras (such as those in [4]) are encompassed in this
unified setting.

Substructural Gentzen systems that enjoy cut-elimination are typically at least
order algebraizable, but their cut-free subsystems cannot even be assumed protoal-
gebraic. So the results of Sections 4–9 cannot be used to explain cut-elimination,
although Theorem 2.12 is still applicable. The reduced matrix models of cut-free
systems are not easily isolated, however, and it seems difficult to extract the criteria
of Theorem 2.12(iii) directly from algebraic proofs of cut-elimination (such as the
one in Belardinelli, Jipsen, and Ono [3]).
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