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Hyperreal-Valued Probability Measures
Approximating a Real-Valued Measure

Thomas Hofweber and Ralf Schindler

Abstract We give a direct and elementary proof of the fact that every real-
valued probability measure can be approximated—up to an infinitesimal—by a
hyperreal-valued one which is regular and defined on the whole powerset of the
sample space.

When we measure the probability of events, we assign numbers to these events
in accordance to how likely they are. Standard probability theory assigns real num-
bers to events, but there are well-known problems with using real numbers as the
measures of probability. One of them is that measure 0 events do not form a homo-
geneous class; that is to say, there seem to be differences in probability among events
which get assigned the same measure of their probability, namely, the lowest possible
measure 0. To illustrate with a standard example, let � be any nonempty set. Let
us randomly pick an element of �. What is the chance that a given element a 2 �

gets chosen? If � is finite, then the answer should be 1
n

, where n is the number of
elements of �. But what if � is infinite? If the measure of probability is a real
number between 0 and 1, then the answer has to be 0, since it should be lower than
1
n

for each n. But 0 is also the measure of the probability of the impossible event of
a being picked as well as not picked. These events seem to differ in their probability,
since one of them might well be the one that happens, while the other one for sure
will not.

To measure probability in a way that respects this difference we thus need to em-
ploy numbers other than the real numbers as measures of probability. The reason for
the failure of real numbers to be able to measure probability fine enough to respect
these differences is, in the end, that real numbers have the Archimedean property:
Any positive real number, no matter how small, is still larger than some 1

n
, n 2 N.
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To have finer probability measures we need to employ non-Archimedean number
systems instead. Hyperreal numbers are non-Archimedean extensions of the real
numbers. Hyperreal numbers in particular contain infinitesimals: positive numbers
smaller than 1

n
, for all n 2 N. A hyperreal-valued probability measure employs hy-

perreal numbers instead of real numbers as measures of probability. But can we be
assured that this will always help? Can we always replace a real-valued probabil-
ity measure with a regular hyperreal-valued one, that is, one that gives measure 0
only to the impossible event? By “replace” we mean that for every event X , the
hyperreal-valued probability of X is to be infinitely close to (i.e., the absolute value
of their difference is an infinitesimal) the real-valued probability of X . The answer
to this question is affirmative: for any given real-valued probability measure there is
a regular hyperreal-valued one that approximates it up to an infinitesimal.

This result is not new. It is established, for example, in work on nonstandard
measure theory (see Henson [3], Cutland [2]). And it follows from work on the con-
nection of conditional probability functions and nonstandard probability theory (see
Krauss [4], McGee [5]). In this paper we propose a new and completely elementary
proof of this fact. While the known proofs mentioned above rely on general results in
measure theory or model theory and are sometimes indirect, we give a direct proof
using only elementary methods, relying not even on the ultraproduct construction,
but only on the compactness theorem. This does not prove the result from weaker
assumptions, but it gives a simpler and more direct proof.

Let � be any infinite set (the sample space), and let F be a � -algebra on �

(the event space), that is, F � P .�/ with F closed under complements, countable
unions, and � 2 F . A real-valued probability measure is a function � from F into
Œ0; 1� \ R such that

(1) �.�/ D 1,
(2) if X1; : : : ; Xi ; : : : are countably many pairwise disjoint subsets of �, then

�
�[

i2N

Xi

�
D

X
i2N

�.Xi /:

The triple .�; F; �/ is a standard probability space. A probability measure is reg-
ular just in case �.X/ > 0 for all X ¤ ;, and uniform just in case, for all a; a0 2 �,
�.¹aº/ D �.¹a0º/. Since the real numbers form an Archimedean field, there can be
no uniform and regular real-valued probability measure on an infinite sample space.
No positive real number is small enough to be the measure of a singleton set. To get
that we need to measure probability with a non-Archimedean field.

A hyperreal field R� is a non-Archimedean extension of the real numbers that
has the same first-order properties as the real numbers. The elements of a hyper-
real field we also call hyperreal numbers. Since hyperreal fields do not satisfy the
least upper bound principle, the notion of an infinite sum cannot be carried over
straightforwardly from real numbers to hyperreal numbers. How a more general
additivity principle should be formulated for hyperreal-valued probability measures
is not completely settled, although there are a variety of possibilities (see Benci,
Horsten, and Wenmackers [1] for one approach). Consequently, we only require a
hyperreal-valued probability measure to be finitely additive. We can define a non-
standard probability space and a hyperreal-valued probability measure as follows.
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Definition We call .�; P .�/; �/ a nonstandard probability space if and only
if � is an infinite set and there are hyperreal numbers R� such that �W P .�/ !

Œ0; 1� \ R� satisfies the following statements.
(1) �.�/ D 1.
(2) If X � � and X ¤ ;, then �.X/ > 0.
(3) If k 2 N and X1; : : : ; Xk � �, where Xi \ Xj D ; for all i ¤ j , then

�.
Sk

iD1 Xi / D
Pk

iD1 �.Xi /.

� in a nonstandard probability space is a hyperreal-valued probability measure. By
our definition, a hyperreal-valued probability measure is regular. Note that the event
space is not merely any � -algebra on �, but the whole powerset of �. Our main goal
now is to give an elementary proof of the central result connecting standard and non-
standard probability spaces, which says that any real-valued probability measure can
be approximated up to an infinitesimal by a hyperreal-valued one. This in particular
implies that we can always have a regular probability measure on the whole powerset
of any sample space.

Theorem Let .�; F; N�/ be a standard probability space. There is then some R�

and �W P .�/ ! R� such that .�; P .�/; �/ is a nonstandard probability space and
for X 2 F , �.X/ is infinitely close to N�.X/.

Proof Let us fix .�; F; N�/. We will use a simple compactness argument. We
enrich the usual first-order language for an ordered field with constants “�. PX/” for
every X � � (for the measure of X we are looking for) as well as by constants Px for
all elements x of R.

In this language, let � be the smallest class of formulas with the following prop-
erties. � contains the theory of�

RI 0; 1; <; C; �; .xW x 2 R/
�
;

and
(i) “�. P�/ D 1” 2 �;
(ii) if X � � and X ¤ ;, then “�. PX/ > 0” 2 �;
(iii) if k 2 N and X1; : : : ; Xk � �, where Xi \ Xj D ; for all i ¤ j , then,

writing X D
Sk

iD1 Xi , “�. PX/ D
Pk

iD1 �. PXi /” 2 �;
(iv) if X � � and X 2 F , say N�.X/ D x 2 R, then for every n 2 N,

“j�. PX/ � Pxj < 1
n

” 2 � .
It suffices to verify that � is consistent. In a model of � , � is a finitely additive

probability measure (by conditions (i) and (iii)), which is regular (by (ii)), defined
on all of P .�/ (by (ii)), and approximates our given real-valued measure N� up to an
infinitesimal (by (iv)). In order to show that � is consistent, we verify that if N� � �

is finite, then there is a model of N� whose universe is R and which interprets all the
symbols except for the “�. PX/” in the standard way. Let us thus fix a finite N� � � .

Let ¹X1; : : : ; Xnº be the set of all X � � such that “�. PX/” occurs in a for-
mula from N� . We may assume without loss of generality that X1 D �. For every
I � ¹1; : : : ; nº, let us write

YI D

\
i2I

Xi

/ [
j …I

Xj :
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Then ¹YI W I � ¹1; : : : ; nºº is a partition of �, and for every i , 1 � i � n,
¹YI W i 2 I � ¹1; : : : ; nºº is a partition of Xi . The YI thus give us a finite base
from which every Xi can be generated as a union of elements in the base. We need
to assign positive real numbers to each “�. PXi /” (for Xi ¤ ;) that satisfy the finitely
many equations of the form of (iii) and (iv) that are in N� . It is tempting to define such
a number based on how many elements of the base are required to build Xi , what the
smallest 1

n
is that occurs in N� in an equation of kind (iv), and how many nonempty

Xi were assigned measure 0 by N�. But N� might not be defined on Xi , since it is only
defined on X � � with X 2 F , whereas � needs to be defined on all of P .�/. We
will write “ N�.X/ #” for X 2 F , that is, the fact that N�.X/ is defined, or equiva-
lently, X is N�-measurable. In order to find values for our “�. PXi /” we need to replace
our YI with N�-measurable Y �

I , which we will define as the smallest N�-measurable
expansion of YI by other elements of our base as follows.

For every I � ¹1; : : : ; nº, let us denote by Y �
I the smallest Y of the form

Y D YI [ YI1
[ � � � [ YIm

;

where m 2 N, Ii � ¹1; : : : ; nº for every i , 1 � i � m, and N�.Y / is defined. (We
allow m D 0, i.e., Y D YI .) Note that Y �

I is well defined, as � D X1, N�.�/ #, and
the intersection of finitely many N�-measurable sets is N�-measurable, so that we may
equivalently write Y �

I as\®
Y D YI [ YI1

[ � � � [ YIm
W m 2 N ^ 8i

�
Ii � ¹1; : : : ; nº

�
^ N�.Y / #

¯
:

Let us write F for the set of all Y �
I , where I � ¹1; : : : ; nº. It is easy to see that

Y �
I D ; if and only if YI D ;.

Let Y �
I , Y �

I 0 2 F , where I , I 0 � ¹1; : : : ; nº. Suppose that Y �
I \ Y �

I 0 ¤ ;.
There is then some J � ¹1; : : : ; nº such that YJ � Y �

I \ Y �
I 0 . As N�.Y �

I / # and
N�.Y �

I 0/ #, we must have Y �
J � Y �

I \ Y �
I 0 . If YI \ Y �

J D ;, then Y �
I n Y �

J is a
N�-measurable set of the right form which is properly contained in Y �

I , which contra-
dicts the choice of Y �

I . Hence Y �
I � Y �

J . Symmetrically, we get Y �
I 0 � Y �

J , and thus
Y �

I [ Y �
I 0 � Y �

J � Y �
I \ Y �

I 0 ; that is, Y �
I D Y �

I 0 .
We have verified that for all I and I 0, I with I 0 � ¹1; : : : ; nº, if Y �

I , Y �
I 0 2 F and

Y �
I \ Y �

I 0 ¤ ;, then Y �
I D Y �

I 0 . In other words, F is a partition of � into (finitely
many) N�-measurable sets.

Let us now pick � 2 R, � > 0, such that � < 1
n

for all occurrences of “ 1
n

” in a
formula of type (iv) from N� and also � < N�.Y �

I / for all I � ¹1; : : : ; nº such that
N�.Y �

I / > 0. Let k be the number of Y 2 F such that N�.Y / D 0 and “�. PY /” occurs
in N� , and let l be the number of Y 2 F such that N�.Y / > 0 and “�. PY /” occurs in N� .
For Y 2 F , let #.Y / be the number of nonempty subsets YI , I � ¹1; : : : ; nº, of Y .
Let us now define, for I � ¹1; : : : ; nº,

�.YI / D

8̂̂<̂
:̂

0 if Y �
I D ;;

1
#.Y �

I
/

�
�
k

if Y �
I ¤ ; and N�.Y �

I / D 0;

1
#.Y �

I
/

� . N�.Y �
I / �

�
l
/ if Y �

I ¤ ; and N�.Y �
I / > 0:

We then also define, for 1 � i � n,

�. PXi / D

X
i2I�¹1;:::;nº

�.YI /:
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It is straightforward to see that this assignment verifies that N� is consistent. Since
this holds for arbitrary finite N� , it follows, by the compactness theorem, that � is
consistent as well, as we hoped to show.

It is worth noting that although we motivated the need for hyperreal-valued prob-
ability measures on an infinite sample space with examples of uniform probability
measures, measures where for all a; a0 2 � �.¹aº/ D �.¹a0º/, no assumption is
made in the theorem or the proof that � is uniform. The result holds in general,
whether or not singleton sets have the same or different probability.

Corollary Let � be any infinite sample space. There is a hyperreal field R� of at
most cardinality 2j�j and a regular probability measure from P .�/ into R�.

Proof Take some real-valued probability measure N� defined on some � -algebra on
�. By the Theorem there is a hyperreal field R� and a regular probability measure
from P .�/ into R�. We can see from the proof that the size of the theory � is
bounded by the cardinality of P .�/, and thus, by the downward Löwenheim–Skolem
theorem, there is such an R� of at most size 2j�j.
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