Hyperreal-Valued Probability Measures Approximating a Real-Valued Measure

Thomas Hofweber and Ralf Schindler

Abstract

We give a direct and elementary proof of the fact that every realvalued probability measure can be approximated-up to an infinitesimal-by a hyperreal-valued one which is regular and defined on the whole powerset of the sample space.

When we measure the probability of events, we assign numbers to these events in accordance to how likely they are. Standard probability theory assigns real numbers to events, but there are well-known problems with using real numbers as the measures of probability. One of them is that measure 0 events do not form a homogeneous class; that is to say, there seem to be differences in probability among events which get assigned the same measure of their probability, namely, the lowest possible measure 0 . To illustrate with a standard example, let Ω be any nonempty set. Let us randomly pick an element of Ω. What is the chance that a given element $a \in \Omega$ gets chosen? If Ω is finite, then the answer should be $\frac{1}{n}$, where n is the number of elements of Ω. But what if Ω is infinite? If the measure of probability is a real number between 0 and 1 , then the answer has to be 0 , since it should be lower than $\frac{1}{n}$ for each n. But 0 is also the measure of the probability of the impossible event of a being picked as well as not picked. These events seem to differ in their probability, since one of them might well be the one that happens, while the other one for sure will not.

To measure probability in a way that respects this difference we thus need to employ numbers other than the real numbers as measures of probability. The reason for the failure of real numbers to be able to measure probability fine enough to respect these differences is, in the end, that real numbers have the Archimedean property: Any positive real number, no matter how small, is still larger than some $\frac{1}{n}, n \in \mathbb{N}$.

Definition We call $(\Omega, \mathcal{P}(\Omega), \mu)$ a nonstandard probability space if and only if Ω is an infinite set and there are hyperreal numbers \mathbb{R}^{*} such that $\mu: \mathcal{P}(\Omega) \rightarrow$ $[0,1] \cap \mathbb{R}^{*}$ satisfies the following statements.
(1) $\mu(\Omega)=1$.
(2) If $X \subset \Omega$ and $X \neq \emptyset$, then $\mu(X)>0$.
(3) If $k \in \mathbb{N}$ and $X_{1}, \ldots, X_{k} \subset \Omega$, where $X_{i} \cap X_{j}=\emptyset$ for all $i \neq j$, then $\mu\left(\bigcup_{i=1}^{k} X_{i}\right)=\sum_{i=1}^{k} \mu\left(X_{i}\right)$.
μ in a nonstandard probability space is a hyperreal-valued probability measure. By our definition, a hyperreal-valued probability measure is regular. Note that the event space is not merely any σ-algebra on Ω, but the whole powerset of Ω. Our main goal now is to give an elementary proof of the central result connecting standard and nonstandard probability spaces, which says that any real-valued probability measure can be approximated up to an infinitesimal by a hyperreal-valued one. This in particular implies that we can always have a regular probability measure on the whole powerset of any sample space.

Theorem Let $(\Omega, F, \bar{\mu})$ be a standard probability space. There is then some \mathbb{R}^{*} and $\mu: \mathcal{P}(\Omega) \rightarrow \mathbb{R}^{*}$ such that $(\Omega, \mathcal{P}(\Omega), \mu)$ is a nonstandard probability space and for $X \in F, \mu(X)$ is infinitely close to $\bar{\mu}(X)$.

Proof Let us fix $(\Omega, F, \bar{\mu})$. We will use a simple compactness argument. We enrich the usual first-order language for an ordered field with constants " $\mu(\dot{X})$ " for every $X \subset \Omega$ (for the measure of X we are looking for) as well as by constants \dot{x} for all elements x of \mathbb{R}.

In this language, let Γ be the smallest class of formulas with the following properties. Γ contains the theory of

$$
(\mathbb{R} ; 0,1,<,+, \cdot,(x: x \in \mathbb{R}))
$$

and
(i) " $\mu(\dot{\Omega})=1 " \in \Gamma$;
(ii) if $X \subset \Omega$ and $X \neq \emptyset$, then " $\mu(\dot{X})>0$ " $\in \Gamma$;
(iii) if $k \in \mathbb{N}$ and $X_{1}, \ldots, X_{k} \subset \Omega$, where $X_{i} \cap X_{j}=\emptyset$ for all $i \neq j$, then, writing $X=\bigcup_{i=1}^{k} X_{i}, " \mu(\dot{X})=\sum_{i=1}^{k} \mu\left(\dot{X}_{i}\right) " \in \Gamma$;
(iv) if $X \subset \Omega$ and $X \in F$, say $\bar{\mu}(X)=x \in \mathbb{R}$, then for every $n \in \mathbb{N}$, $"|\mu(\dot{X})-\dot{x}|<\frac{1}{n} " \in \Gamma$.
It suffices to verify that Γ is consistent. In a model of Γ, μ is a finitely additive probability measure (by conditions (i) and (iii)), which is regular (by (ii)), defined on all of $\mathscr{P}(\Omega)$ (by (ii)), and approximates our given real-valued measure $\bar{\mu}$ up to an infinitesimal (by (iv)). In order to show that Γ is consistent, we verify that if $\bar{\Gamma} \subset \Gamma$ is finite, then there is a model of $\bar{\Gamma}$ whose universe is \mathbb{R} and which interprets all the symbols except for the " $\mu(\dot{X})$ " in the standard way. Let us thus fix a finite $\bar{\Gamma} \subset \Gamma$.

Let $\left\{X_{1}, \ldots, X_{n}\right\}$ be the set of all $X \subset \Omega$ such that " $\mu(\dot{X})$ " occurs in a formula from $\bar{\Gamma}$. We may assume without loss of generality that $X_{1}=\Omega$. For every $I \subset\{1, \ldots, n\}$, let us write

$$
Y_{I}=\bigcap_{i \in I} X_{i} \backslash \bigcup_{j \notin I} X_{j} .
$$

Then $\left\{Y_{I}: I \subset\{1, \ldots, n\}\right\}$ is a partition of Ω, and for every $i, 1 \leq i \leq n$, $\left\{Y_{I}: i \in I \subset\{1, \ldots, n\}\right\}$ is a partition of X_{i}. The Y_{I} thus give us a finite base from which every X_{i} can be generated as a union of elements in the base. We need to assign positive real numbers to each " $\mu\left(\dot{X}_{i}\right)$ " (for $\left.X_{i} \neq \emptyset\right)$ that satisfy the finitely many equations of the form of (iii) and (iv) that are in $\bar{\Gamma}$. It is tempting to define such a number based on how many elements of the base are required to build X_{i}, what the smallest $\frac{1}{n}$ is that occurs in $\bar{\Gamma}$ in an equation of kind (iv), and how many nonempty X_{i} were assigned measure 0 by $\bar{\mu}$. But $\bar{\mu}$ might not be defined on X_{i}, since it is only defined on $X \subset \Omega$ with $X \in F$, whereas μ needs to be defined on all of $\mathcal{P}(\Omega)$. We will write " $\bar{\mu}(X) \downarrow$ " for $X \in F$, that is, the fact that $\bar{\mu}(X)$ is defined, or equivalently, X is $\bar{\mu}$-measurable. In order to find values for our " $\mu\left(\dot{X}_{i}\right)$ " we need to replace our Y_{I} with $\bar{\mu}$-measurable Y_{I}^{*}, which we will define as the smallest $\bar{\mu}$-measurable expansion of Y_{I} by other elements of our base as follows.

For every $I \subset\{1, \ldots, n\}$, let us denote by Y_{I}^{*} the smallest Y of the form

$$
Y=Y_{I} \cup Y_{I_{1}} \cup \cdots \cup Y_{I_{m}},
$$

where $m \in \mathbb{N}, I_{i} \subset\{1, \ldots, n\}$ for every $i, 1 \leq i \leq m$, and $\bar{\mu}(Y)$ is defined. (We allow $m=0$, i.e., $Y=Y_{I}$.) Note that Y_{I}^{*} is well defined, as $\Omega=X_{1}, \bar{\mu}(\Omega) \downarrow$, and the intersection of finitely many $\bar{\mu}$-measurable sets is $\bar{\mu}$-measurable, so that we may equivalently write Y_{I}^{*} as

$$
\bigcap\left\{Y=Y_{I} \cup Y_{I_{1}} \cup \cdots \cup Y_{I_{m}}: m \in \mathbb{N} \wedge \forall i\left(I_{i} \subset\{1, \ldots, n\}\right) \wedge \bar{\mu}(Y) \downarrow\right\}
$$

Let us write \mathcal{F} for the set of all Y_{I}^{*}, where $I \subset\{1, \ldots, n\}$. It is easy to see that $Y_{I}^{*}=\emptyset$ if and only if $Y_{I}=\emptyset$.

Let $Y_{I}^{*}, Y_{I^{\prime}}^{*} \in \mathcal{F}$, where $I, I^{\prime} \subset\{1, \ldots, n\}$. Suppose that $Y_{I}^{*} \cap Y_{I^{\prime}}^{*} \neq \emptyset$. There is then some $J \subset\{1, \ldots, n\}$ such that $Y_{J} \subset Y_{I}^{*} \cap Y_{I^{\prime}}^{*}$. As $\bar{\mu}\left(Y_{I}^{*}\right) \downarrow$ and $\bar{\mu}\left(Y_{I^{\prime}}^{*}\right) \downarrow$, we must have $Y_{J}^{*} \subset Y_{I}^{*} \cap Y_{I^{\prime}}^{*}$. If $Y_{I} \cap Y_{J}^{*}=\emptyset$, then $Y_{I}^{*} \backslash Y_{J}^{*}$ is a $\bar{\mu}$-measurable set of the right form which is properly contained in Y_{I}^{*}, which contradicts the choice of Y_{I}^{*}. Hence $Y_{I}^{*} \subset Y_{J}^{*}$. Symmetrically, we get $Y_{I^{\prime}}^{*} \subset Y_{J}^{*}$, and thus $Y_{I}^{*} \cup Y_{I^{\prime}}^{*} \subset Y_{J}^{*} \subset Y_{I}^{*} \cap Y_{I^{\prime}}^{*}$; that is, $Y_{I}^{*}=Y_{I^{\prime}}^{*}$.

We have verified that for all I and I^{\prime}, I with $I^{\prime} \subset\{1, \ldots, n\}$, if $Y_{I}^{*}, Y_{I^{\prime}}^{*} \in \mathcal{F}$ and $Y_{I}^{*} \cap Y_{I^{\prime}}^{*} \neq \emptyset$, then $Y_{I}^{*}=Y_{I^{\prime}}^{*}$. In other words, \mathcal{F} is a partition of Ω into (finitely many) $\bar{\mu}$-measurable sets.

Let us now pick $\epsilon \in \mathbb{R}, \epsilon>0$, such that $\epsilon<\frac{1}{n}$ for all occurrences of " $\frac{1}{n}$ " in a formula of type (iv) from $\bar{\Gamma}$ and also $\epsilon<\bar{\mu}\left(Y_{I}^{*}\right)$ for all $I \subset\{1, \ldots, n\}$ such that $\bar{\mu}\left(Y_{I}^{*}\right)>0$. Let k be the number of $Y \in \mathscr{F}$ such that $\bar{\mu}(Y)=0$ and " $\mu(\dot{Y})$ " occurs in $\bar{\Gamma}$, and let l be the number of $Y \in \mathscr{F}$ such that $\bar{\mu}(Y)>0$ and " $\mu(\dot{Y})$ " occurs in $\bar{\Gamma}$. For $Y \in \mathscr{F}$, let $\#(Y)$ be the number of nonempty subsets $Y_{I}, I \subset\{1, \ldots, n\}$, of Y. Let us now define, for $I \subset\{1, \ldots, n\}$,

$$
\mu\left(Y_{I}\right)= \begin{cases}0 & \text { if } Y_{I}^{*}=\emptyset, \\ \frac{1}{\#\left(Y_{I}^{*}\right)} \cdot \frac{\epsilon}{k} & \text { if } Y_{I}^{*} \neq \emptyset \text { and } \bar{\mu}\left(Y_{I}^{*}\right)=0, \\ \frac{1}{\#\left(Y_{I}^{*}\right)} \cdot\left(\bar{\mu}\left(Y_{I}^{*}\right)-\frac{\epsilon}{l}\right) & \text { if } Y_{I}^{*} \neq \emptyset \text { and } \bar{\mu}\left(Y_{I}^{*}\right)>0 .\end{cases}
$$

We then also define, for $1 \leq i \leq n$,

$$
\mu\left(\dot{X}_{i}\right)=\sum_{i \in I \subset\{1, \ldots, n\}} \mu\left(Y_{I}\right)
$$

It is straightforward to see that this assignment verifies that $\bar{\Gamma}$ is consistent. Since this holds for arbitrary finite $\bar{\Gamma}$, it follows, by the compactness theorem, that Γ is consistent as well, as we hoped to show.

It is worth noting that although we motivated the need for hyperreal-valued probability measures on an infinite sample space with examples of uniform probability measures, measures where for all $a, a^{\prime} \in \Omega \mu(\{a\})=\mu\left(\left\{a^{\prime}\right\}\right)$, no assumption is made in the theorem or the proof that μ is uniform. The result holds in general, whether or not singleton sets have the same or different probability.

Corollary Let Ω be any infinite sample space. There is a hyperreal field \mathbb{R}^{*} of at most cardinality $2^{|\Omega|}$ and a regular probability measure from $\mathcal{P}(\Omega)$ into \mathbb{R}^{*}.

Proof Take some real-valued probability measure $\bar{\mu}$ defined on some σ-algebra on Ω. By the Theorem there is a hyperreal field \mathbb{R}^{*} and a regular probability measure from $\mathcal{P}(\Omega)$ into \mathbb{R}^{*}. We can see from the proof that the size of the theory Γ is bounded by the cardinality of $\mathcal{P}(\Omega)$, and thus, by the downward Löwenheim-Skolem theorem, there is such an \mathbb{R}^{*} of at most size $2^{|\Omega|}$.

References

[1] Benci, V., L. Horsten, and S. Wenmackers, "Non-Archimedean probability," Milan Journal of Mathematics, vol. 81 (2013), pp. 121-51. MR 3046984. DOI 10.1007/ s00032-012-0191-x. 370
[2] Cutland, N. J., "Nonstandard measure theory and its applications," Bulletin of the London Mathematical Society, vol. 15 (1983), pp. 529-89. Zbl 0529.28009. MR 0720746. DOI 10.1112/blms/15.6.529. 370
[3] Henson, C. W., "On the nonstandard representation of measures," Transactions of the American Mathematical Society, vol. 172 (1972), pp. 437-46. MR 0315082. 370
[4] Krauss, P., "Representation of conditional probability measures on Boolean algebras," Acta Mathematica Academiae Scientiarum Hungaricae, vol. 19 (1968), pp. 229-41. Zbl 0174.49001. MR 0236080. 370
[5] McGee, V., "Learning the impossible," pp. 179-99 in Probability and Conditionals: Belief Revision and Rational Decision, edited by E. Eells and B. Skyrms, Cambridge University Press, Cambridge, 1994. MR 1373432. 370

Acknowledgments

The authors would like to thank the Studienstiftung des deutschen Volkes for inviting us to conduct a seminar on the infinitely small and the infinitely large at the Sommerakademie Neubeuern, where the core of this paper was written. We would also like to thank the participants of this seminar for the very inspiring and enjoyable atmosphere.

[^0]Schindler
Institut für Mathematische Logik und Grundlagenforschung
Universität Münster
48149 Münster
Germany
rds@uni-muenster.de
http://http://wwwmath.uni-muenster.de/u/rds

[^0]: Hofweber
 Department of Philosophy
 University of North Carolina at Chapel Hill
 Chapel Hill, NC 27599
 USA
 hofweber@unc.edu
 http://www.thomashofweber.com

