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Degrees That Are Not Degrees of Categoricity

Bernard Anderson and Barbara Csima

Abstract A computable structure A is x-computably categorical for some Tur-
ing degree x if for every computable structure B Š A there is an isomorphism
f W B ! A with f �T x. A degree x is a degree of categoricity if there is a
computable structure A such that A is x-computably categorical, and for all y, if
A is y-computably categorical, then x �T y.

We construct a †0
2 set whose degree is not a degree of categoricity. We

also demonstrate a large class of degrees that are not degrees of categoricity by
showing that every degree of a set which is 2-generic relative to some perfect
tree is not a degree of categoricity. Finally, we prove that every noncomputable
hyperimmune-free degree is not a degree of categoricity.

1 Introduction

Classically, isomorphic structures are considered to be equivalent. In computable
structure theory, one has to be more careful. Different copies of the same structure
may have different complexity, and for some structures, it can happen that there are
two computable copies of the structure between which there is no computable iso-
morphism. In fact, for situations where this does not happen, we have the following
definition.

Definition 1 A computable structure A is computably categorical if for all com-
putable B Š A there exists a computable isomorphism between A and B.

For example, any two computable dense linear orders without endpoints are com-
putably isomorphic. Thus, any computable dense linear order without endpoints is
computably categorical.

On the other hand, it is well known that the structure .N; </, the natural numbers
with the usual < order, is not computably categorical. Indeed, let ¹Ksºs2! be a
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computable enumeration of ;0 where there is exactly one element enumerated at
each stage, and consider the order A where the even numbers have their usual order
and 2n <A 2s C 1 <A 2n C 2 if and only if n 2 KsC1 � Ks . Note that any
isomorphism f W A ! N computes ;0. Conversely, between any two computable
copies of .N; </ there is a ;0-computable isomorphism. That is, it seems that 00 is the
degree of difficulty associated to the problem of computing isomorphisms between
arbitrary copies of .N; </. This motivates the following definitions.

Definition 2 A computable structure A is d-computably categorical if for all
computable B Š A there exists a d-computable isomorphism between A and B.

So with this definition, .N; </ is 00-computably categorical.

Definition 3 We say a structure A has degree of categoricity d if A is d-comput-
ably categorical, and for all c such that A is c-computably categorical, d � c. We
say a degree d is a degree of categoricity if there is some structure with degree of
categoricity d.

So in our examples, we have seen that 0 and 00 are degrees of categoricity.
The notion of a degree of categoricity was first introduced by Fokina, Kalimullin,

and Miller in [3]. In that paper, they showed that if d is a degree of a difference
of computably enumerable (d.c.e.) sets in and above 0.n/, then d is a degree of
categoricity. They also showed that 0.!/ is a degree of categoricity. In fact, all the
examples they constructed had the following, stronger property.

Definition 4 A degree of categoricity d is a strong degree of categoricity if there
is a structure A with computable copies A0 and A1 such that d is the degree of
categoricity for A, and every isomorphism f W A0 ! A1 satisfies deg.f / � d.

Fokina, Kalimullin, and Miller [3] showed that all strong degrees of categoricity are
hyperarithmetical. Later, Csima, Franklin, and Shore [2] showed that in fact all de-
grees of categoricity are hyperarithmetical. This may or may not be an improvement,
as it is unknown whether all degrees of categoricity are strong.

Csima, Franklin, and Shore [2] have shown that for every computable ordinal ˛,
0.˛/ is a (strong) degree of categoricity. They also showed that if ˛ is a computable
successor ordinal and d is d.c.e. in and above 0.˛/, then d is a (strong) degree of
categoricity.

The work on degrees of categoricity so far has gone into showing that various
degrees are degrees of categoricity. In this paper we address the question: What
are examples of degrees that are not degrees of categoricity? Certainly, as there are
only countably many computable structures, there are only countably many degrees
of categoricity. In Section 3, we give a basic construction of a degree below 000

that is not a degree of categoricity. In Section 4 we show that degrees of 2-generics
(indeed, of 2-generics relative to perfect trees) are not degrees of categoricity. In
Section 5 we show that noncomputable hyperimmune-free degrees cannot be degrees
of categoricity. Finally, in Section 6, we show that there exists a †0

2 degree that is
not a degree of categoricity.

2 Notation

For general references, see Harizanov [4] for computable structure theory, and Soare
[7] for computability theory.
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We use T to denote a tree (a subset of 2<! closed under initial segments). All
other uppercase letters are used for subsets of the natural numbers, and lowercase
bold letters are used for Turing degrees. We use ˛, ˇ, � , and � to represent strings (el-
ements of 2<!). When dealing with strings, � denotes string extension. For A � N
and n 2 !, we let A � n D ¹x 2 A j x < nº and let A �� n D ¹x 2 A j x � nº,
with analogous definitions of � � n and � �� n for � 2 2<! . We let ˆn denote the
nth oracle Turing reduction and 'n the nth Turing reduction.

We use calligraphic letters (A; B; M) to denote computable structures. We let
An denote the nth partial computable structure under some effective listing. For
simplicity, we assume all computable structures have domain ! or an initial segment
of !. We also assume all structures are in a finite language.

We let Part.A; B/ denote the set of partial isomorphisms between A and B. That
is, the set of functions that, on their domain/range, are injective homomorphisms
from a substructure of A to a substructure of B. Note that if Ai and Aj are com-
putable structures according to our listing, then if for some � and some t we have
ˆ�

e;t … Part.Ai;t ; Aj;t /, then for all A � � , ˆA
e … Part.Ai ; Aj /. Also, if f is a

bijection such that for all n, f � n 2 Part.A; B/, then f W A Š B.
For �; � 2 2<! we write � <L � if � � � or if there is some n such that �.n/ D 0,

�.n/ D 1, and for all k < n, �.k/ D �.k/. That is, if � comes before � in the usual
lexicographical order. We say a set A is left-c.e. if there is a computable sequence
˛s 2 2<! , where A.n/ D lims ˛s.n/, and for all s, ˛s <L ˛sC1. Left-c.e. sets have
been studied extensively in the area of algorithmic randomness (see Nies [6]). It is
easy to see that all c.e. sets are also left-c.e. The converse does not hold. However,
every left-c.e. set is Turing equivalent to a c.e. set (since A �T ¹� j � <L Aº), and
it is this feature of left-c.e. sets that we will make use of.

Finally, we use the following definition.

Definition 5 Let A be a computable structure. We define CatSpec.A/ to be the
set of degrees d such that A is d-computably categorical.

3 Basic Construction

It will follow from several of the results in this paper that there is a degree x �T 000

which is not a degree of categoricity. However, we will briefly sketch a proof of this
fact here, since the ideas we use are expanded on in the proofs in Sections 4 and 6.

For the proof, we will construct a noncomputable set X such that for all m; k

either X does not compute an isomorphism from Am to Ak , or there is a computable
isomorphism from Am to Ak . Given the construction, suppose the degree x of X

is a degree of categoricity, witnessed by A. Let B be an arbitrary computable copy
of A. Since A is x-computably categorical, X computes an isomorphism from B

to A. By the construction, there is then a computable isomorphism from B to A.
Since B is arbitrary, A is computably categorical, for a contradiction.

We will build X by finite extensions using a ;00 oracle. At each stage we will use
the ;00 oracle to try to extend X to block some ˆX

l
from being an isomorphism. If

such a block is not possible, we will argue that a computable isomorphism can be
found.

Proposition 3.1 There is a degree x �T 000 such that x is not a degree of cate-
goricity.
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Proof (sketch) We build X by finite extensions using a ;00 oracle. We start with
X0 D hi. For stage s C 1, we will ensure that either ˆX

l
is not an isomorphism

from Am to Ak or there is a computable isomorphism from Am to Ak , where
s D hl; m; ki.

We start stage s C1 by using ;0 to diagonalize against X being computable by 's .
We then use ;0 to determine if there is a � � Xs and a time t such that ˆ�

l;t
can

be seen not to be an injective homomorphism from Am to Ak . If there is, we let
XsC1 D � and proceed to the next stage. If there is not, we ask ;00 if there exists
� � Xs and n 2 ! such that for all � � � , we have that ˆ�

l
omits n from its domain

or range. If such a � exists, we note that ˆY
l

is not an isomorphism for any Y � � ,
so we let XsC1 D � .

If the answer to both questions is no, then for any 
 � Xs we have that ˆ



l
is

a partial injective homomorphism, and for every n there is a � � 
 with n in the
domain and range of ˆ�

l
. Note that this � also extends Xs , so these properties also

hold for � . We let ˛0 D Xs and ˛nC1 be the first extension of ˛n, which puts n into
the domain and range of ˆ

˛nC1

l
. Letting A D

S
n2! ˛n and f D ˆA

l
, we have that

f is a computable isomorphism from Am to Ak . Thus we let XsC1 D Xs and move
to the next stage.

This completes our construction of X . We have X �T ;00, and as noted in the
explanation before the proof, the degree x of X is not a degree of categoricity.

4 2-Generic Relative to Some Perfect Tree

We wish to generalize Proposition 3.1 to show that a large class of sets have degrees
that are not degrees of categoricity. To do this we will use the concept of sets that are
n-generic relative to some perfect tree. Recall that a set G is n-generic if for every
†0

n set, either it meets the set or some initial segment cannot be extended to meet the
set.

Definition 6 A set G is n-generic if for every †0
n subset S of 2<! , either there

is an l such that G �� l 2 S , or there is an l such that for all � � G �� l we have
� … S .

We relativize this notion from 2<! to a perfect tree.

Definition 7 A set G is n-generic relative to the perfect tree T if G is a path
through T and for every †0

n.T / subset S of 2<! , either there is an l such that
G �� l 2 S , or there is an l such that for all � � G �� l with � 2 T we have
� … S .

Definition 8 A set G is n-generic relative to some perfect tree if there exists a
perfect tree T such that G is n-generic relative to T .

It has been shown that almost all sets are 2-generic relative to some perfect tree.

Theorem 4.1 (Anderson [1, Theorem 2.3]) For any n, all but countably many sets
are n-generic relative to some perfect tree.

We will prove that every degree containing a set that is 2-generic relative to some per-
fect tree is not a degree of categoricity. As a result, we are able to limit the degrees
of categoricity to an easily defined countable class (distinct from the hyperarithmeti-
cal sets). It will follow as a corollary that for any degree x there is a degree y with
x �T y �T x00 such that y is not a degree of categoricity.
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We can view the proof of our theorem as the proof to Proposition 3.1 relativized
twice, in successive stages. We first relativize the proof from a single �0

3 set to any
2-generic set. The idea is that if G computes an isomorphism, then we can find an
initial segment G �� l such that for every extension of G �� l , the answer to both
of the questions we ask in the original proof is no. We can then build a computable
isomorphism as in the original proof.

We next relativize from every 2-generic to every 2-generic relative to an arbitrary
perfect tree T . The key here is that the proof of Proposition 3.1 is stronger than
required. In the original proof, we show that if G computes an isomorphism, then
there is a computable one. It suffices to fix some H �T G such that if G computes
an isomorphism, then so does H . When we relativize to T , we obtain this for T in
the place of H .

Theorem 4.2 Let G be 2-generic relative to some perfect tree. Then the degree of
G is not a degree of categoricity.

Proof Let G be 2-generic relative to the perfect tree T . Suppose the degree of
G is a degree of categoricity, witnessed by A. Let B be an arbitrary computable
structure such that A is isomorphic to B. We will show that there is an isomorphism
f W A ! B with f �T T . Since our choice of B is arbitrary, we can then conclude
T 2 CatSpec(A), so T �T G for a contradiction.

Let ‰ be such that ‰G is an isomorphism from A to B. Let Rs be the set of
strings � such that ‰�

s contains values contradicting it being a partial injective ho-
momorphism from A to B; that is, ‰�

s … Part.A; B/. We note that Rs is (uniformly)
computable. Let

S D
®
� 2 2<!

j 9n 8s 8� 2 T
�
� � � !�

� 2 Rs _ n … dom.‰�
s / _ n … ran.‰�

s /
��¯

:

We note that S is †0
2.T /. Suppose for some j we have G �� j 2 S , witnessed

by n. Since ‰G is an isomorphism from A to B, let m > j , and let s be large
enough so that n is in the domain and range of ‰

G��m
s . Then letting � be G �� m we

have G �� m 2 Rs , contradicting ‰G being an isomorphism. We conclude that G

does not meet S .
By genericity, there is an l such that for all � 2 T with � � G �� l , we have

� … S . Hence we have

8� 2 T
�
� � G �� l ! 8n 9s 9� 2 T�

� � � ^ � … Rs ^ n 2 dom.‰�
s / ^ n 2 ran.‰�

s /
��

: (1)

We can now construct our isomorphism f W A ! B with f �T T to complete
the proof. We will T -computably build A D

S
i2! ˛i so that f D ‰A.

Let ˛0 be G �� l . Given ˛i , let ˛iC1 be the first � we find satisfying (1) with i for
n and ˛i for � . We note that every ˛i � G �� l (and ˛i 2 T ), so finding a � which
satisfies (1) is always possible. This completes our construction.

We note that A �T T so f �T T . From the construction, it is clear that f is
total and surjective. To show that f is an isomorphism, it suffices to show that for
all i and t we have ˛i … Rt .

Suppose ˛i 2 Rt for some i; t . Let j > i be sufficiently large such that
j 2 dom.‰A

s ) requires s > t . We then have ˛j … Rs for some s > t , so ˛j … Rt .
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Since ˛i � ˛j , we have ˛i … Rt , for a contradiction. We conclude that for all i; t ,
we have ˛i … Rt . Thus f is an isomorphism from A to B.

As noted at the start of the proof, this implies G �T T , for a contradiction. We
conclude that G is not a degree of categoricity.

Corollary 4.3 Let A be a set, and let G be 2-generic(A). Then the degree of G˚A

is not a degree of categoricity.

Proof Let T D ¹� 2 2<! j 9� 2 2<! Œ� � � ˚ A�º. Then G ˚ A is 2-generic
relative to T , so by Theorem 4.2, the degree of G ˚ A is not a degree of categoric-
ity.

Corollary 4.4 Let x be any Turing degree. Then there exists y with x �T y �T x00

such that y is not a degree of categoricity.

Proof Let X be a set of degree x, and let G �T X 00 be 2-generic(X ). Let y be the
degree of X ˚ G. Then x �T y �T x00 and, by Corollary 4.3, y is not a degree of
categoricity.

5 Hyperimmune-Free

Recall that a degree y is hyperimmune-free if every function f �T y can be bounded
by a computable function (see [7]). We note that all known degrees of categoricity x
are such that 0.
/ �T x �T 0.
C1/ for some ordinal 
 , and hence are hyperimmune
(or computable). This suggests the question: Is there a (noncomputable) degree of
categoricity which is hyperimmune-free? We show that no such degree exists.

Theorem 5.1 Let b be a noncomputable hyperimmune-free degree. Then b is not
a degree of categoricity.

Proof Let b be a noncomputable hyperimmune-free degree, and assume for a con-
tradiction that b is a degree of categoricity. Let A witness that b is a degree of
categoricity. Let B be an arbitrary computable structure such that A is isomorphic
to B. We will show there is an isomorphism g W A ! B such that g �T ;0. Since
B is arbitrary, we will then have 00 2 CatSpec(A). Hence b � 00, contradicting
b being noncomputable and hyperimmune-free. Therefore it suffices to show there
exists such a g.

Let f W ! ! ! be an isomorphism from A to B with f �T b. We note that
since f is bijective, f �1 �T b. Since b is hyperimmune-free, let h be a computable
function which dominates f and f �1.

We now use h to build an infinite computably bounded tree T � !<! whose
infinite paths code isomorphisms between A and B. Then ŒT � must have a
;0-computable member (indeed, a low member), so there exists g �T ;0 with
g W A Š B as desired.

The infinite paths through T will code isomorphisms by having the map from
A to B on the even bits, and the inverse map on the odd bits. For � 2 !<! , let
�0.n/ D �.2n/ and �1.n/ D �.2n C 1/. Let T be defined by

T D

°
� 2 !<!

j 8n � length.�/
hh

�.n/ � h
�jn

2

k�i
^ �0 2 Part.A; B/

^ �1 2 Part.B; A/ ^
�
i ¤ j !

�
�i

�
�j .n/

�
D n _ �i

�
�j .n/

�
"

��i±
:
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Then T is a computably bounded tree. Let Qf .2n/ D f .n/ and Qf .2nC1/ D f �1.n/.
Then Qf 2 ŒT �, so T is infinite. Let Qg 2 T be such that Qg �T ;0. Let g.n/ D Qg.2n/.
Then g �T Qg �T ;0 and g W A Š B as desired.

6 †0
2

Degree

Theorem 6.1 There is a †0
2 degree that is not a degree of categoricity.

Proof We build a set D with †0
2-degree d that is not a degree of categoricity. This

time, instead of a ;00-oracle construction, we build D to be left-c.e. in ;0. We again
meet the requirements:

Rhe;i;j i: If ˆD
e W Ai Š Aj , then there is a computable isomorphism between Ai

and Aj .
If, for example, Rhe;i;j i were the highest priority requirement, we would ask ;0,

.9� � 1/.9t /.ˆ�
e;t … Part.Ai;t ; Aj;t //? If yes, we would extend to � .

If no, then (while letting ı0 D 0 and also addressing other requirements) at all
subsequent stages s we would ask ;0, .8� � 1; j� j D s/.8k � s/.9� � �/.9t /

.k 2 dom ˆ�
e;t ^ k 2 rng ˆ�

e;t /?
If the answer is always “yes,” then we can use ˆe to build a computable isomor-

phism between Ai and Aj .
If the answer is “no” at some stage, then at that stage we set ıs D � such that

ˆ�
e cannot be extended to an isomorphism. This is a move that is left-c.e. in ;0, and

causes injury to lower priority requirements.
We now give the formal construction. Of course, in addition to the Rhe;i;j i re-

quirements discussed above, we must also meet noncomputability requirements:
Ne W D ¤ 'e .
At each stage s, requirements of the form Rhe;i;j i will either be unsatisfied, under

consideration, or satisfied. Requirements of the form Ne will either be unsatisfied
or satisfied. The status of each requirement will change at most finitely often. We
will have ıs denote the stage s approximation to D. We will either have ısC1 � ıs

or ısC1 � �he;i;j i, where ıs � ıkb0 and �he;i;j i � ıkb1 for some k < s, so that the
approximation will be left-c.e. in ;0.

Stage 0: Set ı0 D ;.
Stage sC1 D 2mC1: For each Rhe;i;j i currently under consideration, in turn, ask

;0, .8� � �he;i;j i; j� j D s/.8k � s/.9� � �/.9t /.k 2 dom ˆ�
e;t ^k 2 rng ˆ�

e;t /‹ If
there is a least Rhe;i;j i for which the answer is “no,” then let ısC1 � �he;i;j i be such
that .9k/.8� � ısC1/.k … dom ˆ�

e _ k … rng ˆ�
e/. Declare Rhe;i;j i to be satisfied.

Declare Nn and Rn to be unsatisfied for all n > he; i; j i, canceling any associated
�n for those Rn that were under consideration.

If the answer was always “yes,” let he; i; j i be least such that Rhe;i;j i is unsatisfied.
Ask ;0, .9� � ısb1/.9t /.ˆ�

e;t … Part.Ai;t ; Aj;t //? If the answer is “yes,” let ısC1

have this property, and declare Rhe;i;j i to be satisfied. If the answer is “no,” let
�he;i;j i D ısb1, let ısC1 D ısb0, and declare Rhe;i;j i to be under consideration.

Stage s C 1 D 2m C 2: Let n be least such that Nn is not satisfied. Use ;0 to
determine whether .9t /.'n;t .jısj/ D 0/. If yes, define ısC1 D ısb1. Otherwise,
define ısC1 D ısb0. Declare Nn to be satisfied.

This completes the construction.
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Lemma 6.2 The approximation ¹ısºs2! defines a set D that is left-c.e. in ;0.

Proof The construction is ;0-computable, so the sequence ¹ısºs2! is ;0-comput-
able. We either have ısC1 � ıs , or we have ısC1 � �he;i;ki for some Rhe;i;ki that
was under consideration at stage s C 1. In the first case, certainly ıs <L ısC1. In
the second case, note that at the greatest stage t C 1 � s where �he;i;j i was defined,
we had let ıtC1 D ıtb0 and �he;i;j i D ıtb1. As Rhe;i;j i remained under consideration
between stages t C1 and s C1, there was no shift to �k for any k � he; i; j i between
stages t C 1 and s. It is easy to see by induction on t C 1 � t 0 � s that ıt 0 � ıtC1

and that if �n was defined at stage t 0, then �n � ıt 0 . So ıs � ıtb0 and ısC1 � ıtb1.
That is, the approximation ¹ısºs2! is left-c.e. in ;0.

Lemma 6.3 For each n, there is a stage s after which the status of requirement
Rn ceases to change. Each requirement Rn is met.

Proof Consider the requirement Rhe;i;j i, and let s be the least stage by which the
status of each Rn for n < he; i; j i ceases to change. Note that Rhe;i;j i had status
“unsatisfied” at stage s. At stage s C 1, the status of Rhe;i;j i becomes “satisfied”
or “under consideration.” The only way for the status of Rhe;i;j i to change back to
unsatisfied would be if there was a change in status for some Rn with n < he; i; j i.
So Rhe;i;j i is never again unsatisfied.

Suppose there is a stage greater than s where Rhe;i;j i becomes satisfied. Let t be
the least such stage. At stage t we set ıt such that ˆ

ıt
e … Part.Ai;t ; Aj;t /, or such

that there exists k such that for all � � 
t , k … dom ˆ�
e or k … rng ˆ�

e . Since there
is no change in status for any Rn with n < he; i; j i beyond stage s, it is easy to see
by induction on t 0 > t that ıt 0 � ıtC1 and that if �n was defined at stage t 0, then
�n � ıt 0 . So D � ıt and ˆD

e … Part.Ai ; Aj /; that is, Rhe;i;j i is met, and indeed has
the status satisfied at all stages beyond t .

Suppose there is no stage greater than s where Rhe;i;j i becomes satisfied. In this
case, Rhe;i;j i maintains the status under consideration at all stages greater than s,
and �he;i;j i does not change after it is defined at stage s C 1. We now show that
Rhe;i;j i is met, by building a computable isomorphism f W Ai ! Aj . First note
that .8� � �he;i;j i/.8t /.ˆ�

e;t 2 Part.Ai;t ; Aj;t //. Since Rhe;i;j i remains under
consideration at all stages n > s, .8� � �he;i;j i; j� j D n/.8k � n/.9� � �/.9t /

.k 2 dom ˆ�
e;t ^ k 2 rng ˆ�

e;t /. Let �0 D �he;i;j i. Given �n, let �nC1 � �n be such
that n 2 dom ˆ�

e and n 2 rng ˆ�
e , and let j�nC1j � n C 1. Since we know such

�nC1 exists, we can search and find it effectively. Let B D
S

n2! �n. Then B is
computable, and ˆB

e W Ai Š Aj .

Lemma 6.4 The requirements Nn are all met.

Proof We prove by induction on n that if s is the least stage when all requirements
Ri and Nj for i � n, j < n cease to change status, then Nn is satisfied at all stages
beyond stage s C 1. Indeed, suppose the result holds for k < n, and that Rn obtains
its final status for the first time at stage s. At stage sC1, Nn is either already satisfied,
or receives attention and becomes satisfied. Since all the Rk for k � n do not change
status after stage s, it is easy to see that D � ısC1, so Nn remains satisfied beyond
stage s C 1.



Degrees That Are Not Degrees of Categoricity 397

Remark 6.5 The set D constructed in Theorem 6.1 is such that D �T ;0.

Proof Fokina, Kalimullin, and Miller [3] showed that all degrees which are com-
putably enumerable in and above (c.e.a.) .;0/ are degrees of categoricity. If we had
D �T ;0, then D would be c.e.a. .;0/, for a contradiction.

We note that since all †0
2 degrees are hyperimmune, this implies there is a hyperim-

mune degree which is not a degree of categoricity (see Jockusch [5]).

7 Conclusion

Considerable ground remains open in finding how low in complexity a degree can be
without being a degree of categoricity. On one side, it is not known if there is a �0

2

degree which is not a degree of categoricity. On the other side, it has not been shown
that every 3-c.e. degree is a degree of categoricity.

We can also consider questions about categorizing the degrees of categoricity.
What other classes of degrees can be shown to lack (or have) degrees of categoricity?
Must every degree of categoricity x be such that 0.
/ �T x �T 0.
C1/ for some
ordinal 
?

Finally, the connection between degrees of categoricity and strong degrees of cat-
egoricity can be further explored. The question posed by Fokina, Kalimullin, and
Miller [3], of whether there is a degree of categoricity which is not strong, remains
open. In fact, every computable structure constructed so far that witnesses a degree
of categoricity does so by witnessing a strong degree of categoricity.
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