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Finiteness Classes and Small Violations of Choice

Horst Herrlich, Paul Howard, and Eleftherios Tachtsis

To Ulrich Felgner on the occasion of his 70th birthday�

Abstract We study properties of certain subclasses of the Dedekind finite sets
(addressed as finiteness classes) in set theory without the axiom of choice (AC)
with respect to the comparability of their elements and to the boundedness of
such classes, and we answer related open problems from Herrlich’s “The Finite
and the Infinite.” The main results are as follows:

1. It is relatively consistent with ZF that the class of all finite sets is not the only finiteness
class such that any two of its elements are comparable.

2. The principle “Small Violations of Choice” (SVC)—introduced by A. Blass—implies
that the class of all Dedekind finite sets is bounded above.

3. “The class of all Dedekind finite sets is bounded above” is true in every permutation
model of ZFA in which the class of atoms is a set, and in every symmetric model of
ZF.

4. There exists a model of ZFA set theory in which the class of all atoms is a proper class
and in which the class of all infinite Dedekind finite sets is not bounded above.

5. There exists a model of ZF in which the class of all infinite Dedekind finite sets is not
bounded above.

1 Background, Terminology, and Known Results

The classical definition of a finite set is that a set X is finite if there exists a bijection
f W X ! n, where n is a natural number (n D ¹m 2 ! W m < nº, where as usual
! denotes the set of all natural numbers). Otherwise, X is said to be infinite. To put
it in other words, X is finite if there exists an injection f W X ! ! and there is no
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injection g W ! ! X . In this paper we shall use the word finite in this classical sense
and, as usual, infinite will mean “not finite.”

Dedekind provided an alternative definition of finite (and consequently of infi-
nite) which did not use the notion of natural numbers. In particular, a set X is called
Dedekind finite if there is no bijection between X and a proper subset of X . Other-
wise, X is called Dedekind infinite. Equivalently, X is Dedekind finite if and only if
there is no injection f W ! ! X . Following the notation in Herrlich [5], we shall ad-
dress such sets asD-finite (D-infinite) sets. Furthermore, an infinite Dedekind-finite
set shall be addressed here as a Dedekind set.

Now, in ZFC set theory, that is, Zermelo–Fraenkel set theory plus axiom of choice
(AC), “finite” coincides with “D-finite” and “infinite” coincides with “D-infinite,”
so it follows that no new information is added upon the notion of finite when one
lives in the ZFC world. However, if AC is discarded from the list of axioms of set
theory (and it is consistent to do so, as there are models of set theory in which AC is
false; for an extensive survey on such models, the reader is referred to Howard and
Rubin [8]), then the above notions of finite split and Dedekind indeed provided an
alternative way to talk about finite and infinite. In particular, there are models of set
theory without choice in which Dedekind sets exist. So a D-finite set may not be
finite; equivalently, an infinite set may not be D-infinite.

We shall adopt the standard notation for the comparability of sets as follows.

Definition 1.1 Let X and Y be two sets.
1. X � Y if there exists an injection f W X ! Y .
2. X � Y if there exists a bijection f W X ! Y .
3. X < Y if X � Y and X 6� Y .

So according to the terminology of Definition 1.1, a set X is finite if and only if
X < ! and it is D-finite if and only if ! 6� X .

Since the appearance of Dedekind’s notion of finite, several other possible defini-
tions of finite have been considered and examined extensively in the literature (see,
e.g., De la Cruz [2], Herrlich [5], Howard and Yorke [9], Lévy [13], Tarski [14],
Truss [15]). In the absence of AC, most of the various definitions of finite are not
equivalent, and therefore without AC one cannot be certain of what may be the right
definition of a finite set (though, it is agreed that the classical one occupies the most
prominent place).

Besides the finite and the D-finite sets, we consider here three other notions of
finite which were considered by Herrlich in [5].

Definition 1.2 Let X be a set.
1. X is called A-finite if X cannot be expressed as the disjoint union of two

infinite sets. Otherwise, X is called A-infinite. If X is an infinite, A-finite set,
then X is called amorphous.

2. X is called B-finite if X has no infinite linearly orderable subsets. Otherwise,
X is called B-infinite.

3. X is called C-finite if there is no surjection f W X ! !. Equivalently, X is
C -finite if there is no injection from P .X/ (the power set of X ) into a proper
subset of P .X/. Otherwise, X is called C-infinite.

We note that A-finite was called Ia-finite by Lévy in [13], and in the paper by Truss
[15] the class of A-finite sets is called �1.1 Also, C -finite is III-finite in [13],2 and
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the class of C -finite sets is called �4 in [15]. Finally, in [15], the class of B-finite
sets is called �3 and the class of D-finite sets is called �.

We also make the following remark.

Remark 1.3 A-finite implies B- and C -finite and each of the latter two notions of
finite impliesD-finite; none of the former implications is reversible in ZF (Zermelo–
Fraenkel set theory minus AC), and it is consistent with ZF that there exists aB-finite
set which is C -infinite (see [5, Theorem 9]). Problem 1 in [5] asks whether it is prov-
able in set theory without choice that every C -finite set is aB-finite set. We note here
that the answer to this question is already known to be in the negative. In particular,
Truss [15] shows that in Mostowski’s linearly ordered model (for its description, see
[8, p. 182, model N 3]) the B-infinite set A of atoms is a C -finite set. Although
Lévy has not considered B-finiteness in his paper [13], nevertheless the cited result
also follows from [13, Lemma 2, Theorems 3 and 4].

Truss and Herrlich worked from the same point of view—looking at subclasses of
the class of D-finite sets rather than at definitions of finite. For example, Truss [15,
Corollary, p. 197] proved the following.

Theorem 1.4 If any two members of the class ofD-finite sets are comparable with
respect to �, then the class of A-finite sets is identical to the class of finite sets. (The
conclusion of this theorem is equivalent to the assertion that there are no amorphous
sets.)

In the same spirit, Herrlich [5] considered certain subclasses of the D-finite sets
(addressed as “finiteness classes” in [5]) and investigated closure properties (called
“stability properties” in [5]) under basic set-theoretical operations (e.g., it was exam-
ined whether such classes are closed under unions, products, the power set operation,
etc.), where “finite” is one of the above prescribed four notions of finite (A- or B- or
C - or D-finite) plus the classical concept of finite.

Herrlich [5, Definition 6] gave the following definition.

Definition 1.5 A class U of sets is called a finiteness class if it satisfies the fol-
lowing conditions:

1. U contains every finite set;
2. U contains with any set A every set X with X � A;
3. ! … U.

We note that parts 2 and 3 of the definition imply that all finiteness classes are com-
prised of D-finite sets.

Definition 1.6

1. Fin is the class of all finite sets.
2. D-Fin is the class of all D-finite sets.
3. For any Dedekind set X , Fin.X/ is the class of all sets Y such that Y � X .

Proposition 1.7 ([5, Theorem 10]) The following statements hold.
1. Fin is the smallest (with respect to inclusion) finiteness class.
2. For any Dedekind set X , the class Fin.X/ is a finiteness class which is prop-

erly larger than Fin.
3. D-Fin is the largest (with respect to inclusion) finiteness class.

Proposition 1.7 follows immediately from the definitions.
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Regarding finiteness classes, the following two questions were posed in Prob-
lems 2 and 3, respectively, in [5].

Question 1.8

(1) Are all finiteness classes bounded with respect to �? (Here, “bounded with
respect to �” naturally means “bounded above with respect to �,” where a
finiteness class U is bounded above with respect to � if there exists a set U
such that, for each X 2 U, X � U .)

(2) Can Fin be characterized as the only finiteness class in which any two ele-
ments are comparable with respect to �?

The research in this paper is motivated by the above problems and our aim is to
provide negative answers to both questions in the setting of ZF set theory.

In particular, regarding the boundedness of finiteness classes, we shall prove that it
is consistent with ZFC (there exists a Dedekind set) both to have all finiteness classes
bounded as well as to have an unbounded finiteness class. For the first assertion, we
shall consider Blass’s principle of small violations of choice (SVC) introduced in [1]
(and listed as Form 191 in [8]), and which is the following statement:
(SVC) There is a set S such that, for every set a, there exist an ordinal ˛ and a

function from S � ˛ onto a.
We will prove that SVC implies that the class D-Fin is bounded with respect to �.
Since SVC is true in every permutation model with the class of atoms being a set
and true in every symmetric model of ZF (see [1, Theorems 4.2 and 4.3]), we shall
obtain that D-Fin (hence, by Proposition 1.7(1), every finiteness class) is bounded
in all such models.

On the other hand, we shall establish that there is a model of ZFA with a proper
class of atoms and a model of ZF (using Easton’s proper class forcing) in each of
which there is a finiteness class which is not bounded above.

Regarding Question 1.8(2), besides providing a negative answer, we shall scruti-
nize conditions that yield comparability of elements of finiteness classes (see Sec-
tion 2.1 below), and we shall also show that it is consistent to have finiteness classes
in which any two of their elements are comparable with respect to �, but may fail to
share some naturally expected condition of comparability.

For constructions of ZFA-models with a proper class of atoms, the reader is re-
ferred to Blass [1], Felgner [3], Felgner and Jech [4], Howard, Rubin, and Rubin [7],
and Jech [10, Section 11.2]. For a treatment of Easton forcing, the reader is referred
to either Jech [11] or Kunen [12].

2 Main Results

2.1 Comparability of members of finiteness classes Here, we work toward a negative
answer to Question 1.8(2), namely, “Can Fin be characterized as the only finiteness
class in which any two elements are comparable with respect to �?”

We first observe that two sets X and Y are comparable with respect to � if one of
the following four conditions is satisfied:

(a) X � Y or Y � X ;
(b) at least one of the sets X and Y is finite;
(c) X � W1 and Y � W2, where the symmetric difference W14W2 of W1

and W2 is finite (then X and Y are comparable with respect to �, since
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W1 � W2 and W2 � W1 are both finite sets, hence W1 � W2 � W2 � W1

or W2 �W1 � W1 �W2, and consequently W1 � W2 or W2 � W1);
(d) X � W1 and Y � W2, where W1 �W2 or W2 �W1 is finite.
Note that (a) and (c) strictly imply (d) and that two sets X and Y are comparable

if and only if they satisfy (d) (clearly, (d) implies that X and Y are comparable; if X
and Y are comparable, say, X � Y , and we let f W X ! Y be an injection, then
X � f ŒX�, Y � Y , and f ŒX� � Y D ;, and hence it is a finite set).

So there are two extremes concerning the comparability (with respect to �) of the
members of some class C of sets.

(A) Any two members of C are comparable.
(B) Members X and Y of C are comparable only if (a) or (b) or (c) above is

satisfied.
We shall prove (see Theorem 2.2(3) and Theorem 2.4) that, for a finiteness class

C, any of the four possibilities for (A) and (B) can happen (i.e., (A) and (B) both
hold, exactly one of (A) and (B) holds, none of (A) and (B) holds).

Our first result below shows that, for a finiteness class C, condition (B) above is
equivalent to “members X and Y of C are comparable only if (b) or (c) above is
satisfied.” Note that this will not be true for arbitrary classes C.

Theorem 2.1 Let C be a finiteness class. Then C satisfies .B/ if and only if it
satisfies the condition “members X and Y of C are comparable only if (b) or (c)
above is satisfied.”

Proof ( ) This is clear.
(!) Assume that C satisfies condition (B), and let X and Y be two comparable

members of C. Then, by our assumption, (a) or (b) or (c) holds. If (b) or (c) holds,
then the proof is complete. If (a) holds, say, with X � Y , then X � Y � ¹Y º. Since
C is a finiteness class and Y � Y � ¹Y º, Y � ¹Y º is in C. By our assumption, one
of (a), (b), or (c) must hold with X and Y replaced by X and Y � ¹Y º, respectively.
Since X � Y and Y \ .Y �¹Y º/ D ;, (a) cannot hold (unless X D ;, in which case
(b) holds). Hence (b) or (c) must hold for X and Y � ¹Y º. But if either (b) or (c)
holds for X and Y � ¹Y º, then the one that holds must also hold for X and Y . This
completes the proof of the implication and of the theorem.

Theorem 2.2 The following statements hold.
1. Let C be a finiteness class. Then C satisfies .B/ if and only if every member

of C is A-finite.
2. The class consisting of all A-finite sets is the largest finiteness class satisfying
.B/.

3. For any amorphous set X , the finiteness class Fin.X/ satisfies .A/ and .B/.

Proof 1. (!) Assume that the finiteness class C satisfies (B), and let X 2 C. If X
is finite, then there is nothing to prove. So we may assume that X is infinite. Toward
a proof by contradiction, assume thatX D X1[X2, whereX1\X2 D ; andX1 and
X2 are infinite. Then by letting Y D X2,X and Y are comparable. Since (b) does not
hold for X and Y , it follows by Theorem 2.1 that (c) must. Therefore, there are two
sets W1 and W2 and injective functions f from X onto W1 and g from Y onto W2

such thatW14W2 is finite. SinceW1�W2 is finite andX1 is infinite, we may assume
without loss of generality that, for all t 2 X2, f .t/ is inW2. (This may require a finite
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number of alterations of f of the following type. If t 2 X2 and f .t/ 2 .W1 �W2/,
then choose t 0 2 X1 such that f .t 0/ 2 W2 and replace f with the function f 0

which agrees with f except that f 0.t/ D f .t 0/ and f 0.t 0/ D f .t/.) Then the set
Z D X � f �1.W1 � W2/ ¥ X2. Further, for all t 2 Z, f .t/ 2 W2 D Range.g/.
Therefore g�1 ı f restricted to Z is an injective function whose domain is Z and
whose range is a subset of X2. Since X2 is a proper subset of Z, it follows that Z
is Dedekind infinite. Since Z 2 C, C is not a finiteness class (recall that ! is not
a member of a finiteness class). This is a contradiction, finishing the proof of the
implication.

1. ( ) Assume that every element of C is either finite or amorphous. Let X; Y
be two comparable elements of C. If X or Y is finite, then (b) holds and we have
nothing to prove. So assume that both X and Y are infinite sets; hence they are
amorphous due to our hypothesis. Assume that X � Y , and let f W X ! Y be an
injection. Then X � f ŒX� and Y � Y , and since Y is amorphous, it follows that
f ŒX�4Y is finite. Hence, (c) is satisfied for X and Y , and consequently C satisfies
(B) as required.

2. This follows immediately from (1).
3. Let X be an amorphous set. The result follows immediately from (1) and the

fact that, since X is A-finite, the power set of X is the finite-cofinite algebra.

In the following theorem, we provide a negative answer to Question 1.8(2).

Theorem 2.3 It is relatively consistent with set theory without choice that there
exists an amorphous set. In particular, it is relatively consistent with ZF that Fin is
not the only finiteness class such that any two of its elements are comparable with
respect to �.

Proof The first assertion of the theorem is well known (see the basic Fraenkel
model for ZFA in [8, p. 176, model N 1]).

The second assertion of the theorem follows, on one hand, from the fact that the
latter result about the model N 1 can be transferred to ZF using [10, Theorem 6.1]
(first embedding theorem by Jech and Sochor) and [10, Section 6.3, Problems 1 and
5], and on the other hand, from Theorem 2.2(3). This completes the proof of the
theorem.

Next we investigate the relationship between conditions (A) and (B) for certain finite-
ness classes. It turns out that, in general, (A) and (B) are mutually independent.

Theorem 2.4 The following statements hold:
1. For any amorphous set X , the finiteness class Fin.X � 2/ satisfies .A/, but

not .B/.
2. There exists a ZF-model with a Dedekind set X such that the finiteness class

Fin.X/ satisfies neither .A/ nor .B/.
3. There exists a ZFA-model with a finiteness class which satisfies .B/, but not
.A/.

Proof 1. Fix an amorphous set X , and let Y;Z 2 Fin.X � 2/. By the definition of
the class Fin.U / (for a Dedekind set U ), we may assume without loss of generality
that Y;Z are subsets of X � 2. We consider the following cases:

(i) Y or Z is finite. Then Y and Z are comparable in view of condition (b).
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(ii) Y and Z meet X � ¹0º and X � ¹1º each in infinite sets. Then Y and Z are
comparable in view of condition (c) (for X � ¹0º and X � ¹1º are amorphous
sets, hence Y4Z is finite).

(iii) Y and Z meet X �¹iº in an infinite set and X �¹j º in a finite set, where i; j
are distinct elements of 2. Then Y andZ are comparable in view of condition
(c) since their symmetric difference is finite.

(iv) Y meets exactly one of the sets X � ¹0º and X � ¹1º in an infinite set, and
Z meets exactly the other one in an infinite set. Let Y0 D Y \ .X � ¹0º/,
Y1 D Y\.X�¹1º/,Z0 D Z\.X�¹0º/, andZ1 D Z\.X�¹1º/, and assume
that Y0, Z1 are infinite and that Y1, Z0 are finite. Since X � ¹0º � X � ¹1º

(� X ), we obtain that Y0 � W for some W � X � ¹1º. Since X � ¹1º is
amorphous, it follows thatW andZ1 are comparable. By case (iii), it follows
that W [ Y1 and Z are comparable. Since Y � .W [ Y1/, we obtain that Y
and Z are comparable.

That Fin.X � 2/ does not satisfy (B) follows from the fact that X � 2 is not
amorphous and from Theorem 2.2(1).

2. This follows from Herrlich and Tachtsis [6, Proposition 18]. In the second
Cohen model (see [8, model M7]) there is a Dedekind set X D

S
i2! Xi , where

¹Xi W i 2 !º is a pairwise disjoint family of two-element sets. In [6], it was estab-
lished that, for any two subsets M and K of ! such that M � K and K �M are
infinite, the sets

S
m2M Xm and

S
k2K Xk are incomparable in this model. Thus,

Fin.X/ does not satisfy (A).
Consider now the elements X and Y D

S
n2! X2n of Fin.X/. Clearly, X and

Y are comparable, but neither (b) nor (c) is satisfied for X and Y . Hence, by Theo-
rem 2.1, Fin.X/ does not satisfy condition (B).

3. We start with a ground model M of ZFACAC with a set of atomsA D A0[A1,
where A0 \ A1 D ; and each Ai , i D 0; 1, is a countably infinite set of atoms.
The group G of permutations of A is the group of all permutations  such that
 .A0/ D A0 and  .A1/ D A1. The normal ideal I of supports is the set of all finite
subsets of A. Let N be the permutation model which is determined by G and I .

Using standard techniques in Fraenkel–Mostowski models one verifies that both
A0 and A1 are amorphous sets in N , so we leave this as an easy exercise for the
reader.

Consider the finiteness class M D Fin.A0/ [ Fin.A1/. Clearly, M 2 N since
every permutation of A in G fixes M. In particular, any  2 G fixes Fin.A0/ and
Fin.A1/. We complete the proof by establishing the following two claims.

Claim 2.5 The class M does not satisfy .A/.

Proof Assume the contrary. Then since A0; A1 2 M, A0 � A1 or A1 � A0.
Suppose that A0 � A1, and let f W A0 ! A1 be an injection in N , say, with
support E. Since E is finite and A0 is infinite, let a; b be two distinct elements of
A0 � E, and assume that f .a/ D c for some c 2 A1. Consider the permutation  
of A in G which swaps a with b and fixes A � ¹a; bº pointwise. Then  2 fix.E/,
hence  .f / D f . However,

.a; c/ 2 f !
�
 .a/;  .c/

�
2  .f /! .b; c/ 2 f;
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meaning that f is not injective, which is a contradiction. Hence, A0 6� A1 and
in a similar manner one verifies that A1 6� A0. Thus, M does not satisfy (A) as
claimed.

Claim 2.6 The class M satisfies .B/.

Proof In view of part 1 of Theorem 2.2, it suffices to show that every element of M
is A-finite. Let X 2M. By the definition of M, X 2 Fin.Ai / for some i 2 2. Since
X � Ai and Ai is amorphous in the model, it follows that X is A-finite. Hence, we
have the result of the claim.

The proof of part 3, as well as of the theorem, is complete.

2.2 All of the finiteness classes can be bounded with respect to � In this section as
well as the next one, we attack Question 1.8(1) of Section 1—namely, “Are all finite-
ness classes bounded with respect to �?” We will prove that the statement “Every
finiteness class is bounded above” is undecidable in ZFC (there exist Dedekind sets),
which of course means that there exist two models of ZF C (there exist Dedekind
sets), one of which satisfies the statement and the other satisfies its negation.

Lemma 2.7 Assume S witnesses SVC. Then for every set a there exists an ordinal
˛ such that a � ˛ �P .S/, where P .S/ is the power set of S .

Proof Let a be any set, and let, by SVC (as witnessed by S ), ˛ be an ordinal and
f be a function from S � ˛ onto a. For every x 2 a, let

�x D min
®
� 2 ˛ W f �1

�
¹xº

�
\

�
S � ¹�º

�
¤ ;

¯
:

Clearly, the mapping g W a! ˛ �P .S/ defined by
g.x/ D

�
�x ;

®
s 2 S W f

�
.s; �x/

�
D x

¯�
; x 2 a;

is an injection.

Theorem 2.8 SVC implies there exists a set B such that, for every Dedekind finite
set X , X � B . Hence, SVC implies that every finiteness class is bounded above with
respect to �.

Proof Assume S witnesses SVC, and let X be any Dedekind finite set. We will
prove that X � ! � P .S/. By Lemma 2.7, consider an ordinal ˛ and an injective
function f W X ! ˛ � P .S/. Without loss of generality assume that, 8i < ˛,
Ran.f / \ .¹iº �P .S// ¤ ;.

Definition 2.9 8A 2 P .S/, UA WD ¹ˇ < ˛ W .ˇ;A/ 2 Ran.f /º and
TA WD ¹x 2 X W 9ˇ < ˛; f .x/ D .ˇ;A/º.

Lemma 2.10 8A 2 P .S/, the sets UA and TA are finite, and .TA/A2P .S/ is a
partition of X .

Proof Assume by way of contradiction that, for some A � S , UA is infinite. Since
f is injective, it follows that, for each 
 2 UA, there exists exactly one x
 2 X

such that f .x
 / D .
; A/. Since UA is infinite, V D ¹x
 W 
 2 UAº is an infinite
well-ordered subset of X , contradicting the fact that X is Dedekind finite. Hence,
UA is finite as required.

It is also easy to verify that TA � UA, TA \ TB D ; for distinct subsets A and B
of S , and

S
¹TA W A 2 P .S/º D X . This completes the proof of the lemma.
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Since, for every A 2 P .S/, UA 2 Œ˛�
<! and ˛ is an ordinal, it follows that each

UA has a fixed well-ordering and so it is feasible without using any form of choice to
define for every A 2 P .S/ an injection gA W UA ! jUAj.

Letting B D ! � P .S/, we define a function h W X ! B as follows. Let x 2 X .
Then there exist a unique Ax � S such that x 2 TAx

and a unique ordinal ˇx 2 UAx

such that f .x/ D .ˇx ; Ax/. Define

h.x/ D
�
gAx

.ˇx/; Ax

�
:

Then h is an injection. Indeed, let x and y be two distinct elements of X . There
are two cases:

(a) Ax D Ay . Then ˇx ¤ ˇy , so gAx
.ˇx/ ¤ gAx

.ˇy/ D gAy
.ˇy/ for gAx

is
injective on UAx

. Thus, h.x/ ¤ h.y/ since they have different first coordinates.
(b) Ax ¤ Ay . Since Ax and Ay are the second coordinates of h.x/ and h.y/,

respectively, it follows that h.x/ ¤ h.y/.
The second assertion of the theorem follows from Proposition 1.7(3), finishing

the proof of the theorem.

Corollary 2.11 The statement “Every finiteness class is bounded with respect to
�” is true in every permutation model of ZFA (in which the class of atoms is a set)
and in every symmetric model of ZF.

Proof SVC is true in all of these models (see [1, Theorems 4.2 and 4.3]). Hence,
we have the result.

Corollary 2.12 The statement “Every finiteness class is bounded with respect to
�” is consistent with ZFA C (there exist Dedekind sets) and with ZF C (there exist
Dedekind sets).

Proof The basic Fraenkel permutation model and the basic Cohen symmetric
model are, respectively, models of ZFA C (there exist Dedekind sets) and of ZF C
(there exist Dedekind sets) (see [8]). By Corollary 2.11, “every finiteness class is
bounded above” is true in each of these models.

2.3 Two models of ZFA and ZF set theory in which D-Fin is not bounded We com-
mence this section by constructing a suitable model for ZFA set theory which has a
proper class of atoms and which will witness a finiteness class which is not bounded
with respect to �.

We start with a transitive model M of ZFACAC with a set of atomsA D
S

i2@1
Ai ,

where A D ¹Ai W i 2 @1º is pairwise disjoint and, for each i 2 @1, Ai D ¹ai ; biº.
Let G be the group of all permutations of A which fix A pointwise. Let I be the
normal ideal of all finite subsets of A, and let M0 be the permutation model which is
determined by G and I . Then M0 is a model of ZFA which contains Dedekind sets
(e.g., any infinite subset of A).

For every set x of M0, we denote by ker.x/ the kernel of x, that is, the
set TC.x/ \ A, where TC.x/ is the transitive closure of x, that is, the set
x [ .

S
x/ [ .

S S
x/ [ � � � .

Let M00 be the subclass of M0 consisting of all atoms and of all sets x 2M0 such
that ker.x/ �

S
i2K Ai for some K 2 Œ@1�

�! (D the set of all countable subsets
of @1). Note that, by the definition of M00, A is a proper class in M00 and M00 is a
transitive class.
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Theorem 2.13 .M00;2/ is a model of ZFA set theory in which there is a finiteness
class which is not bounded with respect to �. Hence, D-Fin is not bounded with
respect to � in M00.

Proof M00 is similar to the model given in [1, Theorem 3.1, p. 36], so we shall give
a sketchy proof of .M00;2/ being a model of ZFA. For the reader’s convenience, we
discuss the validity of the axiom scheme of replacement in M00.

Lemma 2.14 If � is a permutation of A (not necessarily in the group G)
such that, when � is extended to M (by recursion on the ranks; �.;/ D ;,
�.x/ D �Œx� D ¹�.y/ W y 2 xº), � � M00 is an 2-automorphism of M00, then the
sentence .8x1/ : : : .8xn/ .F.x1; x2; : : : ; xn/ $ F.�x1; �x2; : : : ; �xn//, where F
is a formula in the language of set theory with n free variables x1; x2; : : : ; xn, is true
when relativized to M00.

Proof The proof is by straightforward induction on the complexity of F .

Let S be a set in M00, and let F.x; y; Ep/, where Ep D .p1; p2; : : : ; pn/ 2 M00

and the pi ’s are parameters, be a formula in the language of set theory such that
f D ¹.x; y/ W F.x; y; Ep/ is true when relativized to M00º is a function on S in M00,
that is, S is included in the domain of f , f � S is a function, and f � S is in M00.
We will prove that f ŒS� D ¹y 2M00 W 9x 2 S such that F.x; y; Ep/º 2M00.

To this end, let E be a support of S and of Ep, and let K 2 Œ@1�
�! be chosen so

that E [ ker.S/ [ ker. Ep/ �
S

j 2K Aj . It is not hard to verify, using Lemma 2.14,
that f ŒS� has support E, and consequently f ŒS� 2 M0. In order to complete the
proof, we show that ker.f ŒS�/ �

S
j 2K Aj . It suffices to verify that, 8y 2 f ŒS�,

ker.y/ �
S

j 2K Aj . Assume the contrary, and let y 2 f ŒS� and x 2 S be such
that F.x; y; Ep/ is true in M00, but there exists a 2 ker.y/ �

S
j 2K Aj . Let i 2 @1

be such that a 2 Ai , and let k 2 @1 be such that Ak \ .ker.y/ [
S

j 2K Aj / D ;.
(Note here that the cardinal @1 is considered in M0 and that it is the same as the @1

of M, since the latter is a pure set, i.e., its kernel is empty, and M0 contains the pure
part (that is, the pure sets) of the model M. Since M satisfies AC, @1 is regular in
M, thus also regular in M0. This justifies the existence of a k 2 @1 with the cited
property.) Let ' D .ai ; bk/ ı .bi ; ak/; that is, ' swaps Ai with Ak and fixes all the
other atoms pointwise. Then ' … G, and ' satisfies the following.

(1) ', when extended to M0, is an 2-automorphism of M0 (note that ' is well
defined, for '.x/ 2M0 for all x 2M0. In particular, if x 2M0 with support E, then
'.E/ is a support for '.x/). Furthermore, since 8x 2 M0, ker.'.x// D '.ker.x//,
we obtain that ' � M00 becomes an 2-automorphism of M00. Thus, by Lemma 2.14,
F.'.x/; '.y/; '. Ep// is true in M00.

(2) Since ' fixes
S

j 2K Aj pointwise and ker.S/ [ ker. Ep/ �
S

j 2K Aj , it fol-
lows that '.S/ D S and '. Ep/ D Ep. Furthermore, as x 2 S , it follows that
ker.x/ � ker.S/, hence '.x/ D x too.

(3) '.y/ ¤ y; otherwise, '.ker.y// D ker.'.y// D ker.y/ and so '.a/ 2 ker.y/,
which is a contradiction.

From the above observations, we conclude that F.x; y; Ep/ and F.x; '.y/; Ep/ are
true in M00, contradicting the functionality of F on S . Thus, the axiom scheme of
replacement is valid in M00 as required.

We now prove the second assertion of the theorem. For each K 2 Œ@1�
�! , let

SK D
S

k2K Ak , and let MK D .Fin.SK//
M00 (D ¹Y 2 M00 W M00 ˆ Y � SKº).
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Clearly, M D
S
¹MK W K 2 Œ@1�

�!º is a (proper) finiteness subclass of M00.
Toward a proof by contradiction, assume that there exists a set U 2 M00 such that,
for every X 2M, X � U in M00.

Fix K 2 Œ@1�
�! such that ker.U / � SK , and let L 2 Œ@1�

! be such that
K \ L D ;. Then SK \ SL D ;, SL 2 M, and, by our hypothesis, SL � U .
Let f 2 M00 be an injection of SL into U , and let E be a support of f . Pick an
l 2 L such that Al \ E D ; (recall that E is a finite subset of A). Assume that
f .al / D x and f .bl / D y for some x; y 2 U . Since al ¤ bl and f is injec-
tive, x ¤ y. Consider now the permutation � D .al ; bl / (i.e., � transposes the
atoms al and bl and fixes all the other atoms pointwise). Then � 2 fixG.E/, hence
�.f / D f . Furthermore, since ker.x/, ker.y/ are both subsets of ker.U /, hence of
SK , and � fixes SK pointwise, it follows that �.x/ D x and �.y/ D y. Now, we
have the following:

.al ; x/ 2 f !
�
�.al /; �.x/

�
2 �.f /! .bl ; x/ 2 f:

But this contradicts the fact that f is an injection. Therefore, the class M is not
bounded with respect to �, finishing the proof of the theorem.

Next we construct a ZF-model M (which can be roughly thought of as the ZF-
analogue of the model M00 of Theorem 2.13) in which Dedekind sets exist and the
class of all Dedekind finite sets is not bounded above. Since our model resembles
the ZF-model given in [1, Theorem 3.2], most of the parts of our proof below will be
sketchy.

We start with Gödel’s constructible universe L (which satisfies ZFC and the ax-
iom of constructibility V D L). Let F be an Easton index function inL on the proper
class of all regular cardinals of L (see [11, Theorem 15.18, pp. 232–34] for the latter
notion). We define a proper class P of forcing conditions as follows: P consists of
all functions p with values 0 and 1, whose domain consists of triples .�; i; �/, where
� 2 Dom.F /, i < 2 < F.�/, and � < �, and such that, for every regular cardinal �
ofL, j¹.�; i; �/ 2 Dom.p/ W � � �ºj < �. Note that this implies that, for � D �, the
function whose domain consists of all triples with � as the first coordinate is a partial
function from 2�� into 2 whose domain has cardinality less than �. (P is the Easton
product of P� , � regular, where P� consists of all partial functions p from ¹�º�2��
into 2 of cardinality less than �; see [11, p. 233].) A condition p is stronger than q
if and only if p � q. Let G � P be a P -generic filter over L, and let V D LŒG�

be the resulting extension model. Exactly as in the proof of [11, Theorem 15.18] one
verifies that cardinals and cofinalities are preserved by the extension.

So the forcing notion P adjoins for every regular cardinal � 2 L a pair of
generic subsets of �, namely, b0

� D ¹
 < � W 9p 2 G;p.�; 0; 
/ D 1º and
b1

� D ¹
 < � W 9p 2 G;p.�; 1; 
/ D 1º. For every regular cardinal � of L and
for i 2 2, let ai

� D ¹x � � W x4b
i
� 2 L and jx4bi

� j < �º, where4 denotes the op-
eration of symmetric difference between sets. Extend the language of ZF by adding
a unary function symbol S , which in V is interpreted by defining S.ai

�/ D a
1�i
� and

S.x/ is undefined for x 2 V such that x ¤ ai
� for all regular cardinals � and i 2 2.

(Note that (the interpreted) S behaves as the permutations of A in the group G of the
above ZFA-model).

LetB D ¹bi
� W � 2 Dom.F /; i 2 2º, and letM D HOD.B/; that is,M is the sub-

model of V which consists of all sets that are hereditarily ordinal-definable (HOD),
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in the extended language, from finitely many elements of B (for ordinal-definable
and HOD sets, see [11, pp. 194–96]).

For every regular cardinal � 2 L and for every x 2 P .�/ consisting of regular
cardinals, let Dx;� D

S
¹¹a0

�
; a1

�
º W � 2 xº. Using the fact that M D HOD.B/,

one may verify that each Dx;� is a Dedekind finite set. Indeed, fix a regular cardinal
� 2 L and an infinite subset x � � consisting of regular cardinals. By way of
contradiction, assume that Dx;� is Dedekind infinite, hence there exists an infinite
subset y � x and a bijection f W ! ! Dy;� in M . Pick a cardinal � 2 y such
that � does not appear as a subscript of any of the (finitely many) generic b’s used
in the definition of the function f , and let n;m 2 ! be such that f .n/ D a0

�
and

f .m/ D a1
�
. Let p 2 G be such that

p 
 . Pf is injective) ^
�
Pf . Ln/ D Pa0

�

�
^

�
Pf . Lm/ D Pa1

�

�
; (1)

where Ln and Lm are the canonical names of n and m, respectively (see [12, Defini-
tion 2.10]). As in part of the proof of [1, Theorem 3.2, p. 40], one may define two
automorphisms g and h of P such that

(a) g fixes the name Pf , but sends Pa0
�

to Pa1
�
,

(b) h fixes the names Pf , Pa0
�
, and Pa1

�
,

(c) hg.p/ is compatible with p,
(d) hg.p/ 
 Pf . Ln/ D Pa1

�
.

In view of (a)–(d) and equation (1), we conclude that there is a forcing condition
s 2 G such that

s 

�
Pf . Ln/ D Pa1

�

�
^

�
Pf . Lm/ D Pa1

�

�
;

which yields that f is not injective, which is a contradiction. Therefore, Dx;� is
Dedekind finite as asserted.

For every regular cardinal � 2 L and for every infinite x 2 P .�/ consisting of
regular cardinals, let Mx;� D Fin.Dx;�/. Let also M be the union of the Mx;�’s.
Clearly, M is a finiteness class of M .

Theorem 2.15 The finiteness class M is not bounded above in the ZF-model M .

Proof By way of contradiction, assume that M has a�-upper bound inM , say, U .
Since U is a set, there exists a cardinal number � 2 Dom.F / such that every element
of U is in HOD.¹bi

�
W � < �; i < 2º/ and such that infinitely many regular cardi-

nals less than � do not appear as subscripts of the generic b’s used in the previous
definitions. Let Z� be the infinite set of all those regular cardinals less than �, and
consider the set DZ� ;� D

S
¹¹a0

�
; a1

�
º W � 2 Z�º.

By our assumption, there exists an injection f W DZ� ;� ! U in M . By the
properties of � and Z� , we may conclude that there is a � 2 Z� such that f and all
the elements of U are ordinal-definable in V using b’s with subscripts different than
�. Assume that f .a0

�
/ D q and f .a1

�
/ D r for some distinct elements q and r of U .

Let p 2 G be such that

p 
 . Pf is injective) ^
�
Pf . Pa0

�
/ D Pq

�
^

�
Pf . Pa1

�
/ D Pr

�
: (2)

Similarly to the above proof (prior to the current theorem), one defines two automor-
phisms g and h of P such that

(i) g fixes the names Pf , Pq, Pr , but sends Pa0
�

to Pa1
�
,
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(ii) h fixes the names Pf , Pq, Pr , Pa0
�
, and Pa1

�
,

(iii) hg.p/ is compatible with p,
(iv) hg.p/ 
 Pf . Pa1

�
/ D Pq.

Due to (i)–(iv) and equation (2), there is a forcing condition s 2 G such that

s 

�
Pf . Pa0

�
/ D Pq

�
^

�
Pf . Pa1

�
/ D Pq

�
;

which yields that f is not injective, which is a contradiction. Thus, M is not bounded
in the model M , finishing the proof of the theorem.

Notes

1. Actually, Truss [15] considers the above classes ofD-finite sets as classes of cardinalities
of such sets where, without AC, the cardinality jX j of a set X is defined as the set of all
sets Y of minimum rank such that X � Y .

2. Lévy’s formulation of III-finiteness is, in particular, the second clause of (3) in Defini-
tion 1.2, that is, X is III-finite if and only if P .X/ is D-finite.
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