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A Lifting Argument
for the Generalized Grigorieff Forcing

Radek Honzík and Jonathan Verner

Abstract In this short paper, we describe another class of forcing notions
which preserve measurability of a large cardinal � from the optimal hypothesis,
while adding new unbounded subsets to �. In some ways these forcings are
closer to the Cohen-type forcings—we show that they are not minimal—but,
they share some properties with treelike forcings. We show that they admit
fusion-type arguments which allow for a uniform lifting argument.

1 Introduction

In this short paper, we describe another class of forcing notions which preserve mea-
surability of a large cardinal � from the optimal hypothesis, while adding new un-
bounded subsets to �. A typical application is to force the failure of the generalized
continuum hypothesis (GCH) at a measurable cardinal from Assumption 1.1.

Assumption 1.1 There exists j W V ! M with critical point � and
(i) �M � M ;
(ii) there is f W � ! � such that j.f /.�/ D �CC.

Woodin was the first to force the failure of GCH at a measurable cardinal from As-
sumption 1.1 (which is optimal); he used an iteration of the Cohen forcing to achieve
this. At the crucial step, when a suitable generic is needed for the Cohen forcing, he
solved the problem by modifying an existing generic to fit a certain condition; this is
sometimes called “a surgery argument” (see Cummings [3]).

There is an alternative approach, which is more uniform in that the required
generic is obtained directly in the current universe. This approach is based on tree-
like forcings. The first such construction (see Friedman and Thompson [8]) used the
generalized Sacks forcing and the accompanying “tuning fork” argument. With the
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introduction of perfect trees splitting only at certain cofinalities, as in Friedman and
Magidor [7] or Friedman and Honzík [4], it was possible to avoid the necessity of
choosing branches splitting at � to define the desired generic filter. More applications
of the treelike forcings are now available—for instance generalizations of Miller forc-
ing in Friedman and Zdomskyy [9] or the abstract treatment in Friedman, Honzík,
and Zdomskyy [6].

We propose here another class of forcing notions which allow equally uniform
constructions and yet do not have a treelike structure. These forcings are obtained
by generalizing the forcing notions defined with respect to ideals on !, as introduced
by Grigorieff [11]. Variants of the perfect-tree forcing and of Grigorieff forcing for
uncountable cardinals have been studied extensively (see, e.g., Brown and Groszek
[2] and Adersen and Groszek [1]). Although Grigorieff forcing can be generalized
to iterations, and successor cardinals as well, for the sake of brevity we treat here
only the case of products at inaccessibles (see Remarks 3.9 and 3.10 for information
on generalizations). In defining the generalized Grigorieff forcing, we introduce the
notion of a lifting-friendly normal ideal on a large cardinal �—as it turns out, uniform
lifting is determined by this property.

We show the lifting argument for generalized Grigorieff forcing on the test case
(1.1). Many other results in literature can be re-proved by using Grigorieff forcing,
such as obtaining a tree property at a regular � > !1, by collapsing a weakly compact
cardinal. After a more detailed analysis of the combinatorial properties of Grigori-
eff forcing, we think one can obtain new results concerning cardinal invariants at
a regular � > !; see open questions at the end of the paper. As a new result, we
obtain that the uniform lifting argument does not depend on the minimality proper-
ties of the treelike forcings (see Section 3.3 for definitions). Indeed, we prove that
the generalized Grigorieff forcing admits a uniform lifting argument and yet is not
minimal.

The notation of the paper is standard. The paper is self-contained, though fa-
miliarity with [3] (lifting of embeddings) and Kanamori [12] (Sacks forcing at an
uncountable �) is useful.

2 Definition of the Forcing

2.1 Preliminaries

Notation 2.1 Assume that � is regular and Club.�/ is the closed unbounded filter
on �. Let S be stationary. Define:

Club.�/ŒS� D ¹X � � j 9C closed unbounded in � and X � S \ C º: (2.1)

Observation 2.2 For every stationary S , Club.�/ŒS� is a normal (i.e., closed un-
der diagonal intersections) proper filter extending Club.�/.

Proof Properness and upward closure are obvious from the definition. We show
that F D Club.�/ŒS� is closed under diagonal intersection. Let hX˛ j ˛ < �i be a
sequence of elements in F ; for every ˛, let C˛ be a closed unbounded set in � such
that X˛ � S \ C˛ . Then �˛X˛ � S \ �˛C˛ , where �˛C˛ is closed unbounded
and therefore �˛X˛ is in F .

2.2 Grigorieff forcing at an inaccessible cardinal Let � be an inaccessible cardinal.
Unless otherwise stated, all ideals on � will be �-complete and proper.
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Definition 2.3 Let � be inaccessible, and let I be a subset of P .�/. Let us define

PI D
®
f

::: � ! 2
ˇ̌

dom.f / 2 I
¯
;

where f
::: � ! 2 is a partial function from � to 2. Ordering is by reverse inclusion

for p; q in PI , p � q $ p � q.

Remark 2.4 If we let I be the ideal of bounded subsets of � in the previous
definition we obtain the usual Cohen forcing.

A generalization of the following definition will be important later on.

Definition 2.5 For ˛ < � write

p �˛ q $ p � q & dom.p/ \ .˛ C 1/ D dom.q/ \ .˛ C 1/:

We say that hp˛ j ˛ < �i is a fusion sequence if for every ˛, p˛C1 �˛ p˛ and for
limit  , p D

S
˛< p˛ .

The following theorem is easy. We prove it for the convenience of the reader.

Theorem 2.6 Assume GCH, and let I be a �-complete ideal extending the non-
stationary ideal on �. Then PI preserves cofinalities if and only if I is a normal
ideal.

Proof Assume first that I is a normal. Then PI is �-closed. Under GCH it satisfies
the �CC-cc. So it suffices to show that PI preserves �C.

Claim 2.7 If hp˛ W ˛ < �i is a fusion sequence, then the union q D
S

˛<� p˛ is a
condition in PI which is the infimum of the sequence in PI . Moreover q �˛ p˛ for
each ˛ < �.

Proof It is sufficient to show

Lim.�/ \
�
4˛<�

�
� n dom.p˛/

��
�

\
˛<�

�
� n dom.p˛/

�
:

Let � be a limit ordinal in the diagonal intersection. Then for all � < � ,
� … dom.p� /. By continuity on the limit step of a fusion sequence, � … dom.p�/.
By Definition 2.5, � … dom.p˛/ for every ˛ � �.

To prove the theorem we will use fusion to show that, in the extension, every function
f W � ! �C is bounded. So fix a name Pf for such a function and a condition p such
that p  Pf W � ! �C.

We shall construct by induction a fusion sequence hp˛ W ˛ < �i whose union will
force that Pf is bounded. Let p0 D p. If ˛ is limit, let p˛ D

S
ˇ<˛ pˇ . Assume

now that p˛ is constructed. Enumerate all functions q W .˛ C 1/ ! 2 which are
compatible with p˛ as ¹q˛

�
W � < 2˛º (possibly with repetitions). Now construct a

�˛-decreasing sequence hp˛
�

W � < 2˛i of conditions with p˛
0 D p˛ and a sequence

of values hy˛
�

W � < 2˛i such that

p˛
�C1 [ q˛

�  Pf .˛/ D y˛
� ;

and finally let p˛C1 D
S

�<2˛ p˛
�

. This can be done since PI is �-closed and 2˛ < �,
and it completes the inductive construction.
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We now show that the fusion limit r forces that Pf is bounded. Let Y D ¹y˛
�

j

˛ < �; � < 2˛º, and note that, by GCH, jY j � �. So it is enough to show that
r  Pf .˛/ 2 Y for all ˛ < �. Pick ˛ < �, and let r˛ be any extension of r deciding
Pf .˛/. By enlarging r˛ , if necessary, we may assume that dom.r˛/ contains ˛ C 1.

Then r˛ � .˛ C 1/ is compatible with r and hence with p˛ (r �˛ p˛) so it is equal
to some q˛

�
. Since p˛

�C1
[ q˛

�
forces Pf .˛/ D y˛

�
2 Y it follows that so does r˛ .

Assume now that I is not normal and that this is witnessed by a sequence
hA˛ W ˛ < �i (i.e., the diagonal union D D ¹˛ W .9ˇ < ˛/.˛ 2 Aˇ /º of the
sequence is not in I while all A˛’s are elements of I ). Since I is �-complete we
may, without loss of generality, assume that jA˛j D � and that the sequence is
increasing and continuous (i.e., A D

S
ˇ< Aˇ for limit  < �).

Claim 2.8 There is no B 2 I which almost covers all A˛’s, that is, for which
jA˛ n Bj < � for all ˛ < �.

Proof Fix B 2 I , and let g.˛/ D min¹ W A˛ n  � Bº. First notice that
¹˛ < � j g.˛/ < ˛º must be nonstationary because otherwise, by Fodor’s lemma,
there is some  < � and a stationary set S such that for all ˛ 2 S , A˛ n  � B .
Since we assume that the sequence of A˛’s is increasing, it follows that for all ˛,
A˛ n � B . This contradicts our assumption that D is not in I since D n � B 2 I

and  2 I . It follows that ¹˛ < � j ˛ � g.˛/º contains a club. By continuity of
the sequence hA˛ j ˛ < �i, there is a club C such that for all ˛ 2 C , g.˛/ D ˛. It
follows that C \ D is included in B . However C \ D is I -positive while B 2 I—
a contradiction.

We proceed by constructing a PI name for an unbounded function Ph W � ! 2� .
Enumerate all functions f W A˛ ! 2 as ¹f ˛

ˇ
j ˇ < 2�º, and define Ph such that

f ˛
ˇ  Ph.˛/ D ˇ:

To show that PI forces that Ph is unbounded, fix some p 2 PI and ˇ < 2� .
Let B D dom.p/ 2 I . By the previous claim, there is some ˛ < � such that
jA˛ n Bj D �. Then the set H D ¹q 2 PI j dom.q/ D A˛; qjjpº of conditions with
domain A˛ which are compatible with p has size 2� . So there must be some  � ˇ

such that f ˛
 2 H . This shows that p can be extended to q forcing Ph.˛/ D  � ˇ,

finishing the proof of the theorem.

As a preparation for the lifting construction, we will consider the following general-
ization of the definition of �˛ and of the fusion construction. Let I be a normal ideal
on � and S 2 I �, where I � is the dual of I . We will assume that S is composed
of limit ordinals; this is without loss of generality because we can always shrink S

by intersecting it with the class of limit ordinals and still stay in I �. Let PI be the
forcing defined above.

Definition 2.9 Define the relation �S
˛ as follows.

(i) If ˛ is in S :

p �
S
˛ q $ p � q & dom.p/ \ .˛ C 1/ D dom.q/ \ .˛ C 1/:

(ii) If ˛ is in � n S :

p �
S
˛ q $ p � q & dom.p/ \ ˛ D dom.q/ \ ˛:
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We say that hp˛ j ˛ < �i is an S -fusion sequence if p˛C1 �S
˛ p˛ for every ˛ and

p D
S

˛< for limit ˛.

Notice that S D � gives the original definition of �˛ and fusion.

Lemma 2.10 Assume that I is a normal ideal on �, and S is a set in I � which
contains only limit ordinals. Then PI is closed under limits of S -fusion sequences.

Proof Let hp˛ j ˛ < �i be an S -fusion sequence. Then

S \
�
4˛<�

�
� n dom.p˛/

��
�

\
˛<�

�
� n dom.p˛/

�
:

To see this, let � be a limit ordinal in the set on the left-hand side. By the properties
of the diagonal intersection, � … dom.p� / for every � < �; by continuity of the
fusion sequence, � … dom.p�/; by (i) of Definition 2.9 and the fact that � is in S ,
� … dom.p�C1/ and therefore by (ii) of Definition 2.9, � …

T
˛<� dom.p˛/.

Notice that to be a fusion sequence or an S -fusion sequence for S 2 I � in PI are
properties of certain sequences of conditions in the same underlying forcing notion
.PI ; �/.

3 Lifting

3.1 Elementary facts about lifting We now provide a quick review of the results
relevant to lifting of embeddings.

Definition 3.1 Assume the GCH. We say that j W V ! M with critical point �

is a .�; �/-extender ultrapower embedding if

M D
®
j.f /.˛/

ˇ̌
f W � ! V & ˛ < �

¯
for some regular � with � � � < j.�/.

For more details and more general definitions, see [3].

Fact 3.2 Let P be a forcing notion, let G be a P -generic filter over V , and let
j W V ! M be an embedding with critical point �. Then the following hold:

(i) (Silver) Assume that H is j.P/-generic over M such that j ŒG� � H .
Then there exists an elementary embedding j � W V ŒG� ! MŒH� such that
j � � V D j , and H D j �.G/. We say that j lifts to V ŒG�.

(ii) If j is moreover a .�; �/-extender ultrapower embedding and P is a
�C-distributive forcing notion, then the filter G� in j.P/ defined as

G�
D

®
q

ˇ̌
9p 2 G; j.p/ � q

¯
is j.P/-generic over M .

(iii) If j W V ! M is a .�; �/-extender ultrapower embedding, then so is
j � W V ŒG� ! MŒH� (with the same � and �).

Proof For proofs, see [3].
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3.2 Preserving measurability

Definition 3.3 Let j W V ! M be an elementary embedding with critical point �.
We say that a normal ideal I on � is lifting-friendly if

� … j.A/; for some A 2 I �;

where I � is the dual of I .

Examples The nonstationary ideal on � is not lifting-friendly because � is an ele-
ment of j.C / for every closed unbounded subset C of �. For any regular � < �, let
E

�
� denote the set of all limit ordinals with cofinality �. If I is dual to Club.�/ŒE

�
� �

(see (2.1) for notation), then I is lifting-friendly.

Definition 3.4 Let P be a forcing notion, and let � be a regular cardinal. Assume
that every decreasing sequence of conditions in P of length � � has an infimum
in P , and let X � P be given. Then

Cl�� X D
®
p 2 P

ˇ̌ �
9 decreasinghp˛ j ˛ < �i � X

��
inf

�
hp˛ j ˛ < �i

�
� p

�¯
is called the �-closure of X .

It is easy to see that if X is a directed family (for every x; y in X there exists z in
X such that z � x & z � y) closed under limits of sequences of length less than �,
then Cl�� X is a filter in P .

Notation For an inaccessible cardinal ˛, an ordinal ˇ � 1, and a normal ideal I˛

on ˛, let PI˛
.˛; ˇ/ denote the product of ˇ-copies of PI˛

with support � ˛, where
PI˛

is defined as in Definition 2.3.

We now introduce fusion sequences in the context of product forcings.

Definition 3.5 Let p; q 2 PI˛
.˛; ˇ/. Given S 2 I �

˛ , F � ˇ with jF j < ˛ and
ı < ˛ we define

p �
S
F;ı q $ p � q and p.�/ �

S
ı q.�/ for all � 2 F:

Moreover, we say that a sequence�
hpı j ı < ˛i; hFı j ı < ˛i

�
is an S -fusion sequence if it satisfies the following conditions:

(i) jFı j < ˛, Fı � FıC1 for every ı < ˛;
(ii) F D

S
ı< Fı for every limit  < ˛ and

S
ı<˛ Fı D

S
ı<˛ supp.pı/;

(iii) supp.p / D
S

ı< supp.pı/ and p .�/ D
S

ı< pı.�/ for limit  < ˛, � in
the support of p ; and

(iv) pıC1 �S
Fı ;ı

pı for every ı < ˛.
The limit of such a sequence is a condition q with

supp.q/ D

[
ı<˛

supp.pı/ and q.�/ D

[
ı<˛

pı.�/ for � 2 supp.q/:

We now state and prove the main result of this paper. In the theorem we use an
apparently stronger assumption on the strength of j than the one given in (1.1).
However, it can be shown, possibly with some collapsing, that the condition (1.1)
is sufficient (see Gitik [10] for details).
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Theorem 3.6 Assume the GCH, and let � be a critical point of a .�; �CC/-
extender ultrapower embedding j W V ! M such that

(i) �M � M , and
(ii) �CCM D �CC.

Fix some regular cardinal � below the first inaccessible, and let P D P�C1 be the
reverse-Easton iteration of length � � which forces at each inaccessible ˛ � � with
PI˛

.˛; ˛CC/ (where I˛ denotes the dual ideal to Club.˛/ŒE
�
˛ � in V P˛ ).

If G � g is P�C1 D P� � PI�
.�; �CC/-generic over V , then one can lift j to

V ŒG � g� inside V ŒG � g�, thus showing that � remains measurable in V ŒG � g�.

Proof Using standard arguments, one can lift in V ŒG � g� to

j W V ŒG� ! M �
D MŒG � g � H�:

To see this, realize that j.P�/ restricted to � C1 is identical to P�C1. By the extender
representation of j , and by Fact 3.2(iii), each relevant dense open subset of the iter-
ation j.P�/ in the interval .� C 1; j.�// is of the form j.f /.˛/ for some ˛ < �CC

and f W � ! DO.P�/, where DO.P�/ is the set of dense open subsets of P� . Since
the iteration is .�C3/M -distributive over MŒG � g� in the interval, the following sets

Df D

\
˛<�CC

j.f /.˛/

are all open dense. Since the GCH holds in V there are only �C many functions
f W � ! DO.P�/, so we can build our generic H by induction of length �C.

By Silver’s theorem (Fact 3.2(i)) it will be sufficient to prove the following claim.

Claim 3.7 Let P denote PI�
.�; �CC/. We claim that

h D Cl�� j Œg� is a j.P /-generic filter over M �.

Proof It is easy to see that h is a filter and is well defined because by standard
arguments M � is closed under �-sequences in V ŒG � g�, and j.P / is �C-closed
in M �.

By Fact 3.2(iii), every dense open set in j.P / is of the form j.f /.˛/ for some f

in V ŒG� and ˛ < �CC. Moreover, we can assume that hf .˛/ j ˛ < �i is a sequence
of dense open sets in P in V ŒG� for every such f .

Fix a dense open set D in j.P /, represented as j.f /.˛0/ for some f as in the
preceding paragraph, and ˛0 < �CC. We will show that h \ D is nonempty.

Now work in V ŒG�. Choose some function e W � ! � such that j.e/.�/ � �CC

and e.�/ � � for each � < �; for instance e.˛/ D j˛jCC. We say that ˛ < � is
a closure point of e if e.ˇ/ < ˛ for every ˇ < ˛. Let S denote the stationary set
E

�
� D ¹˛ < � W cf ˛ D �º.
Given p 2 P , we will construct an S -fusion sequence�

hp˛ j ˛ < �i; hF˛ j ˛ < �i
�

with limit q. Let p0 D p. At limit stage ˛ < � for � in the domain of p˛ , let

F˛ D

[
ı<˛

Fı and p˛.�/ D

[
ı<˛

pı.�/;

so that conditions (ii) and (iii) of Definition 3.5 are satisfied.
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At successor stage ˛ C 1, where ˛ is not a regular closure point of e greater than
�, do nothing; that is, F˛C1 D F˛ and p˛C1 D p˛ . Note that all elements of S are
in this category.

At successor stage ˛C1, where ˛ is a regular closure point of e greater than �, do
the following. When defining F˛C1 all that is required is some bookkeeping device
so that in the end

S
˛<� F˛ is equal to the support of the fusion limit of p˛’s. So

it remains to describe the construction of p˛C1. We first fix some � < � and an
enumeration hx

�
˛ j � < �i of all functions f with domain F˛ such that for each

� 2 F˛ , x
�
˛.�/ is a function with domain ˛ which is compatible with p˛.�/. (This

can be done since � is inaccessible.)
We let p˛C1 be the limit of a �S

F˛ ;˛-decreasing sequence hp
�
˛ j � < �i below p˛

constructed as follows. We let p0
˛ D p˛ and, since ˛ … S , we can also ensure that

˛ 2 dom
�
p1

˛.�/
�

for each � 2 F˛ . (?)

At limit stages we take the infima and at successor stages we make sure that p
�C1
˛

strengthened by x
�
˛ coordinate-wise is in De.˛/ D

T
ˇ<e.˛/ f .ˇ/; that is, if p is

defined as

p.�/ D

´
x

�
˛.�/ [ p

�C1
˛ .�/ for � 2 F˛;

p.�/ D p
�C1
˛ .�/ for � 2 dom.p�C1/ n F˛;

then p is in De.˛/.
By construction, .hp˛ j ˛ < �i; hF˛ j ˛ < �i/ is an S -fusion sequence. Let q be

its limit. Since we worked below an arbitrary p, we can assume that q is in g.
Observe that by (?), if ˛ is a regular closure point of e greater than �, then

˛ 2 dom
�
q.�/

�
for � 2 F˛: (�)

Moreover, for each regular closure point ˛ of e greater than � and every r � q ,
it holds:

if Œ0; ˛� � dom
�
r.�/

�
for every � 2 F˛; then r 2 De.˛/: (�)

Denote F D
S

˛<� F˛ D supp.q/. Note that F D F �
� , where˝

F �
˛

ˇ̌
˛ < j.�/

˛
D j

�
hF˛ j ˛ < �i

�
:

Choose below j.q/ a �-decreasing sequence hj.r˛/ j ˛ < �i of conditions in j Œg�

such that r0 D q, each r˛ is in g, supp.r˛/ D supp.q/, and satisfies that Œ0; ˛� is
included in the domain of r˛.�/ for each � 2 supp.q/. Such a sequence exists by
a density argument. Let r be the limit of hj.r˛/ j ˛ < �i in M �; r exists because
�M � � M � in V ŒG � g� and j.P / is �C-closed in M �. We claim the following.

Claim 3.8 Condition r is in h \ D.

Proof The condition r is clearly in h, and so it suffices to check that it hits
D D j.f /.˛0/ as well. Notice that � is a regular closure point of j.e/ greater than
j.�/ D �. By (�), the inequality r � j.q/, and elementarity, it suffices to show
that Œ0; �� is included in the domain of r.�/ for each � 2 F D F �

� —then r meetsT
ˇ<j.e/.�/ j.f /.ˇ/ � D as desired. However, this is easy: the cardinal � is in the

domain of r.�/ as an element for each � 2 F because this already holds for j.q/
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by (�) and by elementarity, and � is included in the domain of r.�/ for � 2 F as a
subset because r is the limit of j.r˛/’s.

This finishes the proof of Claim 3.7 and hence the proof of the theorem.

Note that as a corollary of the proof of the theorem (with ˛ D �), we obtain that
PI˛

.˛; ˇ/ preserves ˛C for ˛ inaccessible. It follows that under the GCH, PI˛
.˛; ˇ/

preserves cofinalities.

Remark 3.9 By incorporating ideas of [12], the above argument carries over to
iterations of the forcing PI . Essentially, since we deal with names here, one needs
to “determine” the proper initial segments of the conditions to carry out the fusion
argument.

Remark 3.10 By incorporating ideas from [12] and Friedman and Honzík [5] and
a Þ0-based fusion construction, one can use the Grigorieff forcing at successor car-
dinals. This is useful in the context of supercompact cardinals or generic elementary
embeddings (whose critical point can be a successor cardinal in the larger universe).
Without going into much detail, note that the key point of the constructions in [12]
and [5] is an appropriate version of the fusion argument for trees which is easily gen-
eralizable to the fusion properties of the Grigorieff forcing introduced in this paper.

Remark 3.11 (With the same notation as in Theorem 3.6) If I� is not lifting-
friendly, then the closure Cl�� j Œg� does not give rise to a generic filter: fix � < �CC.
If p is in g, then dom.p.�// is in I� , and therefore j.p/ at j.�/ is not defined on
Ap D j.� n dom.p.�///. By the assumption of not being lifting-friendly, every Ap

contains � as an element and therefore[
p2g

dom
�
j.p/

�
j.�/

��
D

[®
dom

�
r
�
j.�/

�� ˇ̌
r 2 Cl�� j Œg�

¯
does not contain � as an element. This implies that Cl�� j Œg� is not generic over
M � because by a density argument, such a generic must be defined on � on every
� < j.�/CC.

3.3 Lifting and minimality We say that a forcing P is minimal if for every P -generic
filter G and every subset Y of ordinals in V ŒG�, either Y 2 V or G 2 V ŒY �. In other
words, there is no inner model strictly included between V and V ŒG�.

Fact 3.12 Let � be an inaccessible cardinal. Then the Sacks forcing at � is mini-
mal.

For a proof of this fact and more information on the topic of minimality, see [2].
By an easy generalization of Proposition 3.3 in Grigorieff [11], the Grigorieff

forcing we have used is not minimal.

Observation 3.13 Let � be regular, and let I be a normal nonprime ideal on �.
Then PI is not minimal over the ground model.

Proof Let S be a subset of � such that neither S nor S 0 D � n S is in I ; this is
possible because I is not prime. Let I jS denote the set ¹X \ S j X 2 I º, and let
PI jS denote the following set of forcing conditions:

PI jS D
®
f

::: � ! 2
ˇ̌

dom.f / 2 I jS
¯
;
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and similarly for PI jS 0 . Then clearly

PI Š PI jS � PI jS 0 :

By our assumption on S , both forcings PI jS and PI jS 0 are nontrivial and therefore
PI is not minimal: if G is PI -generic, then V ŒG� D V ŒG1�ŒG2�, where G1 � G2 is
PI jS � PI jS 0 -generic.

Corollary 3.14 Assume that � is regular, and let S D E
�
� for some regular � < �.

Let I be the dual ideal to Club.�/ŒS�. Then PI is not minimal.

By a more complicated argument it can be shown that Grigorieff forcing at uncount-
able cardinals (even when defined for co-ideals) is never minimal (see [1] for details).

4 Questions

Question Is there a combinatorial property related to cardinal invariants at a reg-
ular � > ! which distinguishes the generic extension by the Grigorieff forcing and
by the Sacks forcing (product and iteration)? The techniques of this paper would be
useful to obtain a model with this property with a measurable cardinal �.

Question In Repický [13] it was shown that the classical Grigorieff forcing on
! either collapses cardinals or can be decomposed into an iteration of an !1-closed
notion of forcing followed by a ccc notion of forcing. Does a similar decomposition
work for the general case?
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