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Vapnik–Chervonenkis Density on Indiscernible
Sequences, Stability, and the Maximum Property

Hunter Johnson

Abstract This paper presents some finite combinatorics of set systems with
applications to model theory, particularly the study of dependent theories.
There are two main results. First, we give a way of producing lower bounds
on VCind-density and use it to compute the exact VCind-density of polynomial
inequalities and a variety of geometric set families. The main technical tool used
is the notion of a maximum set system, which we juxtapose to indiscernibles. In
the second part of the paper we give a maximum set system analogue to Shelah’s
characterization of stability using indiscernible sequences.

1 Introduction

In the recent past, there have been a number of papers relating various measures
of the combinatorial structure of NIP theories to one another (see Aschenbrenner,
Dolich, Haskell, MacPherson, and Starchenko [1], Guingona and Hill [5], and Ka-
plan, Onshuus, and Usvyatsov [7]). One fact which emerged from this is the close
relation of dp-rank and VC-density restricted to indiscernible sequences. Guingona
and Hill have used the term VCind-density to describe VC-density restricted to indis-
cernibles. At the end of their paper [5], Guingona and Hill ask if there is a useful
characterization of when a formula has VCind-density equal to VC-density. We offer
such a characterization below (see Corollary 3.8) and use it to compute the exact
VCind-density of certain formulas.

A separate goal of this paper is to show how maximum set systems can in many
cases be used as more accessible surrogates for indiscernible sequences. To this
end we, translate Shelah’s well-known characterization of stability in terms of indis-
cernible sets to a version involving maximum set systems.
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2 Notation

Let there be a fixed complete theory T , with a large saturated model M D hM; : : :i.
All sets and models, unless otherwise stated, are assumed to be elementarily em-
bedded in the model M. We write formulas in partitioned form '.x; y/, where
x D hx1; : : : ; xli, and y D hy1; : : : ; yki. We use P .X/ to denote the power set
of X .

For A � Mjyj and b 2 Mjxj,
'.b; A/ WD

®
a 2 A Wˆ '.b; a/

¯
:

We use S'.A/ for A � Mjyj to denote the set of '-types over A, where a
'-type over A is a maximal consistent set of the form ¹˙'.x; a/ W a 2 Mjyjº. We
let S'.A/jB D ¹tp'.b=A/ W b 2 Bº when B � Mjxj. For an individual type
p 2 S'.A/, we often identify p and the set of its positive parameter instances
¹a 2 A W '.x; a/ 2 pº without further comment. Similarly, we sometimes identify
S'.A/jB and ¹'.b; A/ W b 2 Bº, as in the following definition.

Definition 2.1 Let C � P .Mjxj/. We will say that '.x; y/ traces C if for some
A � Mjxj, C � S'.A/.

We now give some purely combinatorial definitions. For the rest of this section
suppose thatX is a set and that C � P .X/. ForA � X , let C jA D ¹C\A W C 2 Cº.
Say that C shatters A if C jA D P .A/.

Definition 2.2 The Vapnik–Chervonenkis (VC) dimension of C , denoted VC.C/,
is jAj, where A � X is of maximum finite cardinality such that C shatters A.

If the VC-dimension of C does not exist, we write VC.C/ D 1. The VC-dimension
was first considered in Vapnik and Chervonenkis [16] and was introduced into model
theory by Laskowski [11]. The following notion of a maximum VC family was de-
fined by Welzl [17].

Definition 2.3 Say that C is d -maximum for d 2 ! if, for any finite A � X ,
jC jAj D

�
jAj

�d

�
.

Here
�

n
�k

�
is shorthand for

Pk
iD0

�
n
i

�
if k < n and 2n otherwise.

Lemma 2.4 (Sauer’s lemma [13], Shelah [14]) If C has VC.C/ D d , then for any
finite A � X ,

jC j
A

j �

 
jAj

� d

!
:

Thus a d -maximum set system is “extremal” among set systems of VC-dimension d .
These set systems are highly structured and well understood (see Floyd [4] and
Kuzmin and Warmuth [10]). There are several examples that arise from natural al-
gebraic situations. In fact it is conjectured that all d -maximum set systems arise
from (or embed naturally in) arrangements of half-spaces, either in a Euclidean or
hyperbolic space (see Rubinstein and Rubinstein [12]).

It is easy to see that if C is d -maximum on X , and A � X has jAj D d C 1, then
C j

A
D P .A/ n ¹C º

for some C � A. Floyd [4] calls such a C the forbidden label of C on A.
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Let ŒX�m WD ¹A � X W jAj D mº. For a fixed d -maximum C � P .X/, associate
with each A 2 ŒX�dC1 the forbidden label CA � A, where C jA D P .A/ n ¹CAº.

Floyd proves the following.

Proposition 2.5 ([4, Lemma 3.15]) On a finite domain X , any d -maximum set
system C is characterized by its forbidden labels, in the sense that 8B � X ,

B 2 C ” 8A 2 ŒX�dC1.B \ A/ ¤ CA:

Proof Left-to-right is obvious. For right-to-left, let B satisfy the given conditions.
Then C [¹Bº shatters no sets not shattered by C . By Sauer’s lemma, B must already
be in C .

We now define the notion of a forbidden code, which is essentially the “form” of a
forbidden label when an ordering is present.

Let LC .X/ D ¹CA W A 2 ŒX�dC1º denote the forbidden labels of C on X .
Let < be a fixed but arbitrary linear order on X . For each CA 2 LC .X/, let
CA D ht0; : : : ; td i, where each ti 2 ¹0; 1º, and ti D 1 if and only if the i th ele-
ment of A is in CA. Define LC .X/ D ¹CA W CA 2 LC .X/º.

We will refer to LC .X/ as the set of forbidden codes on X for C , with respect
to<. When a maximum set system has a unique forbidden code, that code determines
everything about the system at the level of finite traces. Technically, we say that the
system is finitely characterized by the code.

Definition 2.6 The set system C � P .X/ is finitely characterized by � 2 2dC1

if for any finite X0 � X , and A � X0, the following are equivalent:
1. A 2 C jX0 ,
2. there are not elements a0 < � � � < ad inX0 such that ai 2 A ” �.i/ D 1.

There is a natural way in which forbidden codes can serve as combinatorial invariants
for finite unions of points and <-convex subsets in X . To see this, suppose that
.X;</ is a dense and complete linear order and that B � X is a finite union of
convex subsets. Let d be the number of boundary points of B . We can imagine that
B is defined by some L< D ¹<º formula  .x; c1; : : : ; cd / with c1 < � � � < cd 2 X .
Define F .B/ D ¹ .X; c0

1; : : : ; c
0
d
/ W c0

1 < � � � < c0
d

2 Xº. Intuitively, the elements
of F .B/ � P .X/ are the “homeomorphic images” of B in .X;</. In Johnson [8]
we show that F .B/ is finitely characterized by some � 2 2dC1.

Define the genus of B , denoted G.B/, to be the � 2 2dC1 that finitely charac-
terizes F .B/. Equivalently, define G.B/ to be any � 2 2dC1 such that there are no
a0 < � � � < ad in X such that ai 2 B if and only if �.i/ D 1, for all i D 0; : : : ; d .

In [8] we show that such an � exists and is unique, as well as the further fact that
for any � 2 2<! , there is some B � X such that G.B/ D �. Simple rules for
computing genus are given in Table 1.

To give an example of applying the table, suppose that X D R and that < is the
usual ordering. Then the genus of the point ¹0º is h11i, and the genus of the interval
.0; 1/ is h101i. Conversely, to consider all subsets of R with genus h11i, let C be all
the singletons. Similarly, the collection of all subsets of genus h101i is exactly the
set of all infinite convex subsets which are not coinitial or cofinal.

The assumption that .X;</ is complete was made to give a clear presentation of
the genus concept and is sufficient for this paper. One can, however, define the genus
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Table 1 A key for assigning forbidden codes to unions of convex sets.

Code Translation
h1 : : :i do nothing
h0 : : :i .�1; : : :

h: : : 0; 0 : : :i remove point
h: : : 0; 1 : : :i end interval
h: : : 1; 0 : : :i begin interval
h: : : 1; 1 : : :i add point
h: : : 0i : : : ; 1/

h: : : 1i do nothing

of B � X on other orders by considering the shortest � 2 2<! which B does not
induce, sidestepping the issue of boundary points.

The link between genus and forbidden codes is given in the following theorem.

Theorem 2.7 Suppose that .X;</ is a complete dense linear order without end-
points. If � 2 2dC1 and C D ¹C � X W G.C / D �º, then C is d -maximum on X
and LC .X/ D ¹�º.

Proof We provide a sketch of the proof that C is d -maximum, which is very sim-
ilar to the well-known proof that unions of intervals are maximum.

Let X0 � X be finite, and let C D ¹C � X W G.C / D �º. Let a WD maxX0, and
let Xa

0 D X0 n ¹aº. Define Ca D ¹C 2 C jX
a
0 W C [ ¹aº 2 C jX0 & C 2 C jX0º. By

induction on jX0j and d , Ca is .d � 1/-maximum and C jX
a
0 is d -maximum. Then

jC jX0 j D jCaj C jC jX
a
0 j, and, by Pascal’s identity, jC jX0 j D

�
jX0j

�d

�
.

3 Results

3.1 VCm and VCind-density We now apply the above to achieve our results. Recall
the following definitions.

Definition 3.1 A formula '.x; y/ has VC-density at most r for r 2 R if there is
K 2 ! such that for every finite A � Mjyj, jS'.A/j < K � jAjr . We denote this by
VCd.'/ � r .

Definition 3.2 A formula '.x; y/ has VCind-density at most r for r 2 R if there
is K 2 ! such that for every finite and indiscernible sequence Nb D hbi W i < N i 2

Mjyj�N , jS'.range. Nb//j < K �N r . We denote this by VCdind.'/ � r .

The study of VC-density has emerged several times in model theory. See [1] for
historical remarks.

There has been some study of the fact that frequently VCd.'/ is bounded by
a simple (and uniform) function of jxj (see [1] and Johnson and Laskowski [9]).
When this is true, it justifies the heuristic practice of “parameter counting” to guess
the complexity of set systems. Guingona and Hill showed that in a dp-minimal
theory, VCdind.'/ � jxj. Thus there is interest in bounding VCd.'/ by a function of
VCdind.'/ (obviously VCd.'/ � VCdind.'/). This may not be possible in general,
but we now show a practicable route to achieving it for a given formula.

Definition 3.3 For a set A � Mjyj, we denote the traces of '.x; y/ on A by

Tr.'; A/ D P
�
S'.A/

�
:
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We refer to the traces of ' on sets of cardinality � by

Tr�.'/ D

[
A2ŒMjyj��

Tr.'; A/:

The following is easy, but interesting, because the collection of d -maximum set sys-
tems would seem, a priori, to be very diverse. It also informs Definition 3.5.

Lemma 3.4 Let � be infinite. For each d 2 !, there is some C 2 Tr�.'/ such
that C is d -maximum if and only if for each n 2 !, n � d , there is Cn 2 Trn.'/

such that Cn is d -maximum.

Proof For the right-to-left direction, it is easily seen that the property of being
d -maximum is elementary. Apply the compactness theorem and the saturation of M.
For left-to-right, note that if C is d -maximum and X 0 � X with jX 0j D n, n � d ,
then C jX

0 is d -maximum.

As a consequence of Lemma 3.4, if � is infinite, then there exists C 2 Tr�.'/ which
is d -maximum if and only if there is C 0 2 Tr@0

.'/ such that C 0 is d -maximum.

Definition 3.5 The VC-maximum dimension of ' is defined by

VCm.'/ WD max
®
d 2 ! W 9C 2 Tr@0

.'/ s.t. C is d -maximum
¯
:

Note that the definition of VC-maximum dimension does not use model theory.
If hai ii2I is a sequence of indiscernibles and .I; </ is a complete and dense

linear order without endpoints, for B � hai ii2I , define G.B/ to be the genus of
¹i 2 I W ai 2 Bº � I . With these assumptions, for m 2 !, make the definition

Pm.B/ D
®
� 2 2m

W 9i0 < � � � < im�1 2 I W aij 2 B ” �.j / D 1
¯
:

If � 2 2k , � 2 2l , and l � k, write � E � if � is a subsequence of �, meaning
that for some order-preserving embedding f W l ! k (where k and l are regarded as
ordinals) 8i 2 l; �.f .i// D �.i/.

We observe that

8� 2 2m; � 2 Pm.B/ ” G.B/ µ �: (1)

Assume in Lemma 3.6 that the formula '.x; y/ is NIP.

Lemma 3.6 (Transfer lemma) Let hai ii2I be a sequence of indiscernibles,
where .I; </ is a complete and dense linear order without endpoints. Assume
that B � hai ii2I is defined by '.hai ii2I ; c/, A � hai ii2I , and A0 � A can be
traced as A0 D A \ B 0, where B 0 � hai ii2I is such that G.B 0/ D G.B/. Then,
there exists c0 2 Mjyj such that '.A; c0/ D A0.

Proof First, consider the case in which A is finite.
Let m D jAj, and suppose that ai0 < � � � < aim�1

is an enumeration of A. Since
G.B 0/ D G.B/, we have Pm.B/ D Pm.B

0/ by (1). Let � 2 Pm.B
0/ be such that for

each j D 0; : : : ; m � 1, aij 2 A0 ” �.j / D 1. Then � 2 Pm.B/, and for some
ak0

< � � � < akm�1
in hai ii2I ,

M ˆ

m�1̂

j D0

'.akj
; c/�.j /
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and thus

M ˆ 9y
m�1̂

j D0

'.akj
; y/�.j /:

Then, by indiscernibility,

M ˆ 9y
m�1̂

j D0

'.aij ; y/
�.j /;

and the witnessing c0 is the desired parameter.
The case in which A is infinite now follows by compactness and the saturation

of M.

Theorem 3.7 For any '.x; y/, VCm.'/ D VCdind.'/.

Proof First, note that we always have VCm.'/ � 0 and VCdind.'/ � 0.
Now suppose that VCdind.'/ � d , for some positive d 2 !. Let 0 < � < 1=2.

By compactness, Ramsey’s theorem, and saturation of the monster model, there is
some indiscernible sequence hai ii2R such that jS'.A/j � jAjd�� for arbitrarily large
finite A � hai ii2R.

Claim 9B 2 S'.hai ii2R/ with lg.G.B// D d C 1.

First, we argue that there is B 2 S'.hai ii2R/ with lg.G.B// � d C 1. Suppose, to
the contrary, that 8B 2 S'.hai ii2R/, we have lg.G.B// � d . Let A � hai ii2R be
finite, and consider an arbitrary B 2 S'.hai ii2R/. There are 2dC1 � 1 possibilities
for G.B/. For any choice of G.B/, by Theorem 2.7,ˇ̌®

C \ A W C 2 S'

�
hai ii2R

�
; G.C / D G.B/

¯ˇ̌
�

 
jAj

� d � 1

!
:

These two facts imply that jS'.A/j � .2dC1 � 1/ �
�

jAj

�d�1

�
D O.jAjd�1/. Because

this holds for any finite A � hai ii2R, the hypothesis on hai ii2R is violated.
We now assume that B 2 S'.hai ii2R/ and that lg.G.B// � d C 1. Without loss

of generality, ' is NIP, because otherwise we have VCm.'/ D VCdind.'/ D 1. Un-
der these assumptions, G.B/ D n � dC1 for some n 2 !. Inducting on n, it follows
by compactness and saturation of the monster that there is some B 0 2 S'.hai ii2R/,
with lg.G.B 0// D d C 1. This proves the claim.

Now take B as in the claim. It follows from the transfer lemma that on any finite
A � hai ii2R, ®

B 0
\ A W B 0

� hai ii2R;G.B 0/ D G.B/
¯

2 Tr.'; A/:

This implies, by Theorem 2.7, that ' traces arbitrarily large d -maximum set systems,
and, by Lemma 3.4, Tr@0

.'/ contains a d -maximum set system. Thus VCm.'/ � d .
To show the other direction, suppose that VCm.'/ � d . By compactness, satu-

ration, and Ramsey’s theorem (or, alternatively, by the Erdös–Rado theorem), there
is an infinite indiscernible sequence A D hai ii2! on which ' traces a d -maximum
set system. It follows from the definition of d -maximum that S'.A/ witnesses that
VCdind.'/ � d .
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It should be noted that Guingona and Hill prove that VCdind.'/ is equal to several
other invariants, among which VCm.'/ may obviously be included.

An immediate corollary is the following.

Corollary 3.8 For any formula '.x; y/, VCd.'/ D VCdind.'/ if and only if '
traces an infinite d -maximum set system, where d D VCd.'/.

This condition is easier to use in practice than a direct appeal to a nonconstructive
combinatorial principle such as the Ramsey or Erdös–Rado theorem. We give an
algebraic example in the theory of real closed fields (RCF). Though we make efforts
to be precise in the following statements, we are just considering a definable family
that results from a polynomial inequality where the coefficients form the parameter
set.

Without loss of generality we work in R. Let y be a finite sequence of variables.
For a given m 2 !, let Ym denote the set of monomials which occur in the general
polynomial of degree m with variables y. Consider a family of polynomials of the
form

p.c1; : : : ; cd ; y/ D u0.y/C c1u1.y/C � � � C cdud .y/;
where for each i D 0; : : : ; d , ui .y/ 2 Ym and for each i D 1; : : : ; d , ci 2 R. Define
C D ¹pos.p.c; y// W c 2 Rd º, where pos.p.y// D ¹a 2 Rjyj W p.a/ � 0º.

Such a C can clearly be traced by some '.x; y/ D p.x; y/ 2 Lring, in R ˆ RCF.
It is known (see Floyd [4, Section 8.1]) that for such a ', we have VCm.'/ � d . As
it is well known that VCd.'/ D d , we have VCdind.'/ D VCd.'/ for polynomial
inequalities '.

Floyd’s result is based on an application of Dudley’s theorem (see [3, Theo-
rem 4.2.1]), which can apply to somewhat more general situations (see Ben-David
and Litman [2]).

Many familiar geometric families, such as circles, ellipses, positive half-spaces,
hyperbolas, and so on, therefore have VCind-density equal to VC-density. The above
approach notably does not apply to geometric families which are not polynomially
definable (in the above sense) such as axis-parallel rectangles, or convex d -gons.

3.2 Stability Here we show how to characterize the stability of ' using the maximum
systems in Tr.'; A/. (For a review of the relevant notions from stability theory, see
Hodges [6].)

Recall that the ladder dimension of a formula '.x; y/ is defined by writing
LD.'/ � n if and only if there are a0; : : : ; an�1 in Mjxj and b0; : : : ; bn�1 in Mjyj

such that M ˆ '.ai ;bj / ” i < j . Finite ladder dimension is equivalent to
stability for formulas. The VC-dimension can be thought of as a generalization of
ladder dimension, and in general coVC.'/ � LD.'/, where coVC.'/ denotes the
VC-dimension of S'.Mjyj/ conceived as a set family.

For a setX and C � P .X/, define a graph GC D .V;E/where V D C and where
E.C1; C2/ holds if and only if jC1�C2j D 1. For C1; C2 2 C , define disth.C1; C2/

to be the Hamming distance jC1�C2j, and distGC
.C1; C2/ to be the graph distance

in GC , with distGC
.C1; C2/ D 1 if C1 and C2 belong to different components.

The following was proved by Kuzmin and Warmuth [10].

Lemma 3.9 ([10, Lemma 14]) Let X be a finite set. Suppose that C � P .X/ is
d -maximum and that C1; C2 2 C . Then
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disth.C1; C2/ D distGC
.C1; C2/:

In particular, GC is connected.

The equivalence of disth and distGC
is clearly still true when X is infinite, though

the graph GC will not be connected in general. In fact, in many natural maximum set
systems (e.g., open intervals on a densely ordered set), GC is totally disconnected.

Theorem 3.10 For '.x; y/ a formula, ' is stable with LD.'/ � n if and only if
for every A � Mjyj and every C 2 Tr.'; A/ which is d -maximum for some d 2 !,
for any C1; C2 2 C , jC1 n C2j � n.

Proof First, suppose that '.x; y/ is a stable formula with LD.'/ � n, and
A � Mjyj.

Let C1; C2 2 C , where C 2 Tr.'; A/ is d -maximum for some d 2 !. We will
show that jC1 nC2j � n. Note that it suffices to consider the case in which A is finite.
Thus we may assume, by Lemma 3.9, that GC is connected.

Let ¹a1; : : : ; akº � C1 n C2 be a set of distinct elements. By Lemma 3.9, after
possibly reordering, there are Bk ; Bk�1; : : : ; B1 in C , on the path from C1 to C2 in
GC , such that ai 2 Bj iff i < j . Thus k � n, and consequently jC1 n C2j � n.

Conversely, suppose that LD.'/ > n. Let B D ¹b0; : : : ; bnº � Mjxj, and de-
fine A D ¹a0; : : : ; anº � Mjyj such that M ˆ '.bi ; aj / ” i < j . Put
C D S'.A/jB . Then by Theorem 2.7, C is 1-maximum, and jA n ;j D jAj D nC 1.

The above theorem shows that much of the nature of Shelah’s famous characteri-
zation of stable formulas by indiscernibles (see [15]) is already visible at the level
of maximum traces. Unspooling the theorem reveals a structural characterization of
stable maximum set systems, as we now show.

If X is a set, and C � P .X/, define the ladder dimension of C to be the maximal
n 2 ! such that there are x1; : : : ; xn 2 X and B1; : : : ; Bn 2 C with xi 2 Bj if and
only if i < j . Say that C is stable just in case it has finite ladder dimension.

If A � X , define C�A D ¹C�A W C 2 Cº.

Lemma 3.11 If C � P .X/ has LD.C/ D n, then for any A � X , we have
LD.C�A/ � 2n, and this bound is tight.

Proof Suppose that LD.C�A/ D 2n for an integer n. Then there exist x1; : : : ; x2n

in X and C1; : : : ; C2n 2 C such that for all i; j � 2n, xi 2 Cj�A if and only if
i < j . Consider the case in which there are indices i1 < � � � < in such that for each
k D 1; : : : ; n, xik … A. Then these elements, together with an appropriate choice
of Cj1

; : : : ; Cjn
, witness that LD.C/ � n. Now suppose that the opposite holds,

namely, that there are indices i1 < � � � < inC1 such that for each k D 1; : : : ; nC 1,
xik 2 A. Then ik < j and xik … Cj are equivalent, since both are equivalent to
xik 2 Cj�A. Reindexing by C 0

j D C2n�j and taking an appropriate j1 < � � � < jn,
we have that xik 2 C 0

jl
if and only if k < l . Thus LD.C/ � n. A similar argument

shows that LD.C/ � n in the case in which LD.C�A/ D 2n C 1 is odd. This
establishes the bound.

To see that the bound is tight, fix n 2 !. Let X be the integers between �n and n,
inclusive, but not including zero. Let C D ¹Œ0; i � \X W 0 < i � nº [ ¹Œ�i; 0� \X W

0 < i � nº. Clearly LD.C/ D n. But LD.C�Œ�n;�1�/ D 2n.
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Note that the example in the above proof is 1-maximum.

Corollary 3.12 Let C � P .X/ be d -maximum of ladder dimension n.
1. If ; 2 C , then C � ŒX��n.
2. C�B � ŒX��2n for any B 2 C .
3. C � ŒX��2n�B for any B 2 C .

Proof The claim in (1) is clear from Theorem 3.10. For the claim in (2) note that
; 2 C�B (because B 2 C ), and the ladder dimension of C�B is at most 2n by
Lemma 3.11. Therefore C�B � ŒX��2n by (1). Claim (3) follows after applying
�B to both sides of the containment in (2).

The 2n bound in Corollary 3.12(2) is tight, as the following example shows. Let
X D ¹1; : : : ; 2nº, and let C D ŒX��n. Clearly LD.C/ D n. Now putting
B D ¹1; : : : ; nº gives C�B an element of cardinality 2n.

On the other hand, it seems possible that for some B � X , it holds that
C�B � ŒX��n, where the hypotheses are as in Corollary 3.12. However, since the
hypotheses admit all finite maximum classes, this conjecture may be too optimistic.
Such a result would clearly be the best possible.

It is also evident from the above that the stable maximum set systems are exactly
those maximum set systems C � P .X/ which can be realized as C � ŒX�m�B for
some m 2 ! and B � X (because the latter systems are clearly stable).

It would be useful to know whether every C of ladder dimension n embeds into a
O.n/-maximum set system C 0 (see [2] for relevant embedding notions). It is conjec-
tured (see [4]) that the vast majority of set systems are not embeddable in maximum
systems of the same VC-dimension, prompting the question of whether stable set sys-
tems, which are well behaved in so many respects, are also unusual in this way. Very
little is known about model-theoretic criteria for when a definable family embeds in
a maximum family, other than the easy observation that this is frequently possible in
dimension 1.

Many nice properties of maximum set systems, in particular the existence of com-
pression schemes (see [10] for definitions), are inherited under the relation of em-
bedded substructure. Compression schemes emphasize the amount of information
needed to represent a '-type rather than the definability of the representation, and as
a consequence they can be used to bound not only the VC-density of a set system,
but also the size of the multiplicative constant in the definition of VC-density.

4 Conclusion

In model theory, much of the combinatorial content of theories comes from consid-
ering formulas restricted to indiscernible sequences. The existence of sequences of
indiscernibles is guaranteed by Ramsey’s theorem (and compactness), though it is
rarely required to exhibit a concrete sequence of indiscernibles.

When dealing with a certain formula '.x; y/ on a sequence A D hai ii2I , it is a
weaker condition to assume that ' is maximum on A than to assume that A is indis-
cernible. However, as we have seen, if ' is maximum on A, that provides “enough”
indiscernibility for some combinatorial notions to manifest. Namely, dp-rank, NIP,
and stability can all be understood in terms of the maximum property. Avoiding the
use of indiscernibles has the potential to make these concepts, particularly dp-rank,
much more accessible to non–model theorists.
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Unlike indiscernible sequences, maximum domains are frequently easily con-
structible. In the semilinear case, it follows from the work of Floyd and Dudley that
a basic semilinear family will be maximum on a set of points which is in “general
position,” for which it is sufficient to take a randomly selected set of points.

Moreover, the similarity of maximum families and formulas on indiscernible se-
quences provides a point of contact between work done in computational learning
theory and model theory, where, especially recently, researchers are pursuing com-
patible combinatorial goals, but without a common framework.
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