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Substructural Fuzzy-Relevance Logic

Eunsuk Yang

Abstract  This paper proposes a new topic in substructural logic for use in re-
search joining the fields of relevance and fuzzy logics. For this, we consider
old and new relevance principles. We first introduce fuzzy systems satisfying
an old relevance principle, that is, Dunn’s weak relevance principle. We present
ways to obtain relevant companions of the weakening-free uninorm (based) sys-
tems introduced by Metcalfe and Montagna and fuzzy companions of the sys-
tem R of relevant implication (without distributivity) and its neighbors. The
algebraic structures corresponding to the systems are then defined, and com-
pleteness results are provided. We next consider fuzzy systems satisfying new
relevance principles introduced by Yang. We show that the weakening-free uni-
norm (based) systems and some extensions and neighbors of R satisfy the new
relevance principles.

1 Introduction

The purpose of this paper is to extend the world of fuzzy logic to the realm of rele-
vance logic, and vice versa. For this purpose, recall first some historical facts asso-
ciated with fuzzy and relevance logics. Fuzzy logic based on t-norms has a distin-
guished history, the most famous examples being k. (Lukasiewicz logic), G (Godel-
Dummett logic), [] (product logic), BL (basic fuzzy logic), and MTL (monoidal
t-norm logic). These logic types are generally called ¢t-norm (based) logic. T-norm
logic is not a type of relevance logic because, while such logic proves the weakening
(W) ¢ — (Y — ¢), an arbitrary logic with (W) and modus ponens admits of a theo-
rem ¢ — ¥ such that ¢ and y are irrelevant to each other. The system RM (the R of
relevant implication with mingle) has been considered as a type of relevance logic.
In particular, Dunn [7] investigated RM capturing the tautologies on denumerable
infinite sets of truth values and showed that RM is complete with respect to (w.r.t.)
linearly ordered Sugihara matrices. According to Cintula [5], a (weakly implicative)
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logic L is said to be fuzzy if it is complete w.r.t. linearly ordered matrices (or alge-
bras). Then, though RM is not a t-norm logic, it is still a fuzzy logic in Cintula’s
sense and is thus a type of fuzzy and relevance logic.

One interesting point is that Sugihara algebra with identity on the real unit interval
[0, 1] is a uninorm, a generalization of t-norms where the identity can lie anywhere
in [0, 1] (see Yager and Rybalov [21]). Metcalfe [15] introduced the uninorm logic
UL, which captures the tautologies of left-continuous conjunctive uninorms and their
residua, as a weakening of MTL and a strengthening of MAILL (multiplicative
additive intuitionistic linear logic). Recently, Metcalfe and Montagna [16] have in-
vestigated UL and several axiomatic extensions of it as substructural fuzzy logical
systems lacking structural rules like weakening or contraction. They introduced the
weakening-free uninorm systems UL, IUL (involutive uninorm logic), UML (uni-
norm mingle logic), and IUML (involutive uninorm mingle logic). Among them,
TUML is the RM” (RM plus constants T, F and the corresponding axioms) with
(FP) t <> f (see Definition 14 below).! Thus, the system IUML may be regarded as
a uninorm (based) version of RM or RMT in the sense that the logic characterized
by models based on [0, 1] is TUML but not RM( ” Furthermore, since the system
UL is a weakening of RM", both RMT and UL seem to be not merely fuzzy, but rel-
evant. (Note that relevance systems such as R, RM, E of entailment and T of ticket
entailment all reject (W).) Therefore, it makes sense to wonder if the weakening-free
uninorm systems introduced in [16] are all relevant.

The answer depends on the circumstances. Under the following situation, the
answer is “no.” We most frequently call a system relevant if it satisfies the strong
relevance principle (SRP) in Anderson and Belnap [1] that ¢ — 1 is a theorem
only if ¢ and ¥ share a propositional variable, and sometimes if it satisfies the weak
relevance principle (WRP) in Dunn [7] that ¢ — 1 is a theorem only if either (i)
¢ and ¥ share a propositional variable, or (ii) both —¢ and y are theorems. For
instance, the system R is strongly relevant in that it satisfies the principle SRP, and
the system RM is weakly relevant in that it satisfies the principle WRP. However, the
system UL is neither strongly nor weakly relevant because it proves such formulas
as (o) (¢ A —p) — (¥ v —¥). Instead, although proving (o), the system TUML
seems to be weakly relevant because it proves (EM) ¢ vV —¢, and so the statements
—(¢ A —¢) and ¥ Vv =y are both theorems of IUML. However, since IUML also
proves (B) ((p — F) A @) — , it still does not satisfy WRP. Therefore, none of the
weakening-free uninorm systems are relevant in the sense that they satisfy neither
SRP nor WRP.

Next, consider the circumstances under which the answer is “yes.” Very recently,
the present author [22] introduced new strong and weak relevance principles because
the principles SRP and WRP do not work on relevance systems with propositional
constants (see Galatos, Jipsen, Kowalski, and Ono [11] and Restall [20]). According
to him, a system is said to be strongly relevant if it satisfies the new strong relevance
principle (NSRP) in [22] that ¢ —  is a theorem only if ¢ and ¥ either explicitly
or strong implicitly share a propositional variable, and weakly relevant if it satisfies
the new weak relevance principle (NWRP) that ¢ — 1 is a theorem only if either
(i) ¢ and v share either explicitly or strong implicitly share a propositional variable,
or (ii) both =¢ and ¥ are theorems (see Section 3 below).” The weakening-free
systems in [16] are all relevant in the sense that they satisfy the principle NSRP or
the principle NWRP since theorems such as () and (8) strong implicitly share at
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least one propositional variable. Therefore, they are all relevant in that they satisfy
NSRP or NWRP.

Let us call the relevance principles in [1] and [7] old relevance principles, and
the relevance principles in [22] new relevance principles. Here, we introduce logics
being both fuzzy in Cintula’s sense and relevant in the old and new senses.

Related to the old relevance principles, one interesting point is that, while IUML
proves the sentence (f), the IUML without constants T, F and the corresponding
axioms (RIUML) does not. This shows that, among the systems obtained from the
weakening-free uninorm systems introduced in [16] by omitting constants T, F and
the corresponding axioms, systems proving (EM) satisfy WRP and so are weakly
relevant in the old sense (see Theorem 2 in Section 2). This provides a way to ob-
tain relevant companions of the weakening-free uninorm systems in [16], that is, the
method that drop constants T, F (and the corresponding axioms) from a weakening-
free uninorm logic L, but instead add (EM) to L if it does not prove it. Using this
method, we can obtain weakening-free fuzzy systems satisfying WRP and so weakly
(but not strongly) relevant in the old sense. We verify this by introducing several
systems. More exactly, in Section 2.1, we first introduce the relevant uninorm logic
RUL, the logic for a relevant companion of the uninorm logic UL, and its axiomatic
extensions (i.e., relevant companions of IUL, UML, and IUML) as substructural
relevant fuzzy logics. We can analogously consider fuzzy companions of relevance
systems by adding an axiom ensuring prelinearity (together with (EM)) to relevance
systems. Next, we introduce a method to obtain fuzzy companions of the relevance
systems RW (the R without contraction), R, RM, or of their distributivity-free sys-
tems LRW, LR, and LRM, respectively. More precisely, we next introduce the
contractionless fuzzy relevant logic FRW, the logic for a fuzzy companion of both
LRW and RW (briefly (L)RW), and its axiomatic extensions FR, FRM (i.e., fuzzy
companions of (L)R, (L)RM) as substructural fuzzy relevant logics. We will call
these two types of logic substructural fuzzy-relevance logics. The results will show
that the fuzzy relevant logics are also relevant fuzzy logics because the systems are
between the weakest relevant fuzzy logic RUL and the strongest logic RIUML.

Many logics with the “prelinearity” axiom (PL¢) (A11 in Definition 2 below) are
complete w.r.t. linearly ordered algebras (or matrices).* For example, the system
UL is obtained by adding (PL{) to MAILL and complete w.r.t. linearly ordered
UL-algebras. In Section 2.2, we define algebraic structures corresponding to the
systems introduced in Section 2.1 and then prove their completeness. In fact, since
the method of the algebraic completeness proof is standard, we will instead show
that they are weakly implicative fuzzy logics, the class of which is presented in [5].
This implies that they are all fuzzy logics in Cintula’s sense. Furthermore, we prove
that they also satisfy WRP. This will ensure that they are all weakly relevant in the
old sense and so both fuzzy and relevant. Therefore, the study will introduce, in the
view of substructural logic, one new research area—fuzzy-relevance logic—bridging
fuzzy logic and relevance logic, each of which has been independently investigated.
(Namely, it introduces the logics belonging to the intersection of the families of fuzzy
and relevance logics.)

In addition, in Section 2.3, we briefly consider the fuzzy-relevance systems elim-
inating (PLy) as both weakly implicative logics, the class of which is also presented
in [5], and substructural relevance logics.
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The fuzzy-relevance systems introduced in Section 2 would not be interesting to
some (or many) fuzzy logicians because they are not t-norm systems nor even uni-
norm (based) systems. Instead, the principles NSRP and NWRP may be interesting
to such logicians because these principles ensure that some weakening-free uninorm
systems are relevant. More precisely, in Section 3, we preliminarily introduce NSRP
and NWRP because they are not familiar to the readers. In Section 4.1, we prove
that the weakening-free uninorm systems in [16] and the fuzzy companions of the
relevance systems with constants T and F FRWT, FRT, FRMT all satisfy NSRP or
NWRP. In Section 4.2, we introduce a method to obtain strong relevant companions
from UL and its weakening-free extensions. We also call the systems introduced
in Sections 4.1 and 4.2 substructural fuzzy-relevance logics. In addition, as in Sec-
tion 2.3, in Section 4.3, we consider substructural relevance logics obtained from the
systems by omitting (PLy).

All the systems (i.e., the systems with and without (PL¢)) introduced in Sections 2
and 4 are substructural logics placed somewhere over FL, (full Lambek logic with
exchange) (see Remark 3 below). Thus, all the (fuzzy-)relevance logics investigated
here are substructural logics. For simplicity, we henceforth call them (fuzzy-)rele-
vance logics and not substructural (fuzzy-)relevance logics.

For convenience, we adopt the notation and terminology similar to that in Cintula
[5], Esteva and Godo [9], [10], Héjek [12], and Metcalf and Montagna [16] and
assume familiarity with them (together with the results found therein).

2 Fuzzy-Relevance Logics (I)

In this section, we introduce several fuzzy-relevance systems satisfying the principle
WRP and their corresponding non-fuzzy-relevance systems.

2.1 Syntax We base (fuzzy-)relevance logics on a countable propositional language
with formulas FOR built inductively as usual from a set of propositional variables
VAR, binary connectives —, &, A, V, and constants f, t, with defined connectives:

dfl. —=¢ :=¢ — f, and

df2. g > Y= (g =PI A W = 9).
We moreover define ¢ as ¢y & -+ & ¢, n factors, where ¢; := ¢ A t, and similarly
for ¢".

For the remainder of the paper, we will utilize the customary notation and termi-
nology. We use the axiom systems to provide a consequence relation.

We start with the following axiomatization of RMAILL (relevant multiplicative
additive intuitionistic linear logic) as the basic relevance logic defined here.’

Definition 1 RMAILL consists of the following axiom schemes and rules:

Al.g = ¢ (self-implication, SI)
A2.(pAY) =@, (0 AY) > ¢ (A-elimination, A-E)
A3. ((p=>Y)n(@—x) = (0= (Y A)) (A-introduction, A-I)
Ad. o —> (VY)Y — (e V) (\v-introduction, V-I)
AS. (g > DA — ) > (eVy)—x) (Vv-elimination, V-E)
A6. (p&Y) — (Y &) (&-commutativity, &-C)
Al (p&t) < ¢ (push and pop, PP)
A8. (90 > (¥ = ) < (p&Y) — x) (residuation, RE)

A9. (o > ¥) = (¥ = 1) = (¢ = X)) (suffixing, SF)
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Al0. ¢ vV —p (excluded middle, EM)
o> Yoy (modus ponens, mp)
YAy (adjunction, adj)

Relevant uninorm logic RUL, the basic relevant fuzzy logic defined here, is
RMAILL extended with the “prelinearity” axiom scheme below.

Definition 2 RUL is RMAILL plus
AlL (¢ = YV (Y = @) (PLy)

Relevant fuzzy logics are defined by extending RUL with suitable axiom schemes as
follows.

Definition 3 A logic is an axiomatic extension (extension for short) of L if and
only if (iff) it results from the addition of axiom scheme(s) to L. In particular, the
following are relevant fuzzy logics extending RUL:

o involutive RUL RIUL is RUL plus (DNE) —=—¢ — ¢;
o idempotent RUL RUML is RUL plus (ID) (¢ & ¢) <> ¢;
e involutive RUML RIUML is RIUL plus (ID) and (FP) t <> f.°

Remark 1 By eliminating the axiom (EM) from the systems RUL, RIUL,
RUML, and RIUML and adding propositional constants T, F (and the correspond-
ing axioms, i.e., A12 and A13 in Section 4), we obtain the weakening-free uninorm
systems UL, IUL, UML, and IUML, respectively, as introduced in [16]. However,
note that, since IUML proves (EM), we obtain IUML simply by adding constants
T, F (and the corresponding axioms) to RIUML.

The system LRW is the FL, with (DNE). Fuzzy relevant logics are defined by ex-
tending LRW or RMAILL with suitable axiom schemes as follows.

Definition 4 The following are fuzzy relevant logics extending LRW:

e fuzzy LRW FRW is LRW plus A1l and (EM);
e fuzzy LR FR is FRW plus (SIN) ¢ — (¢ & ¢);
e fuzzy LRM FRM (= RM) is FR plus (SDE) (¢ & ¢) — ¢.

We may instead consider the systems FRW, FR, and FRM as fuzzy relevant
logics extending RW. (Note that the system RW is LRW plus (distributivity, D)
@AWV y)— (e AY¥) V(e A)x)),and so we can obtain FRW, FR, and FRM
by adding the axiom scheme(s) in Definition 4 to the systems RW, R, and RM,
respectively.) However, here we introduce them as extensions of LRW in place of
RW because the basic relevance logic RMAILL is a distributivity-free system.

Remark 2 By eliminating both A11 and (EM) from the system FRW, we obtain
the distributivity-free relevance logic LRW; by eliminating A11 from the systems
FR and FRM, we get LR and LRM, respectively. Note that LR and LRM each
prove (EM). Note also that the systems FRW and FRM are the same as RIUL and
RM, respectively, and that the system RIUML is FRM (= RM) plus (FP). There-
fore, the fuzzy relevant logics FRW, FR, and RM are all between RUL and RIUML
and so are relevant fuzzy logics extending RUL. Tables | and 2 summarize some ax-
iom schemes and the extensions of RMAILL introduced above.

For easy reference, we let Ls be the set of fuzzy-relevance logics defined previously.
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Table 1 Some axiom schemes in fuzzy-relevance logics.

Axiom schema Name

——A— A Double negation elimination (DNE)
A—>A&A Square increasing (SIN)

A&A < A Idempotence (ID)

t<f Fixed-point (FP)

(o = ¥) vV (¥ — @) | Prelinearity (PL¢)

Table 2 Some extensions of RMAILL obtained by adding the corresponding
additional axiom schemes.

Logic Additional axiom schemes
RUL (PLy)

RIUL (= FRW) | (PL) and (DNE)

FR (PL¢), (DNE) and (SIN)
RUML (PL¢) and (ID)

RM (= FRM) (PL¢), (DNE) and (ID)
RIUML (PLt), (DNE), (ID) and (FP)

Definition 5 Ls = {RUL, RIUL (= FRW), RUML, RIUML, FR, RM
(= FRM)}.

A theory is a set of formulas. A proof in a theory T over L (€ Ls) is a sequence s of
formulas such that each element of s is either an axiom of L, a member of 7', or is
derivable from previous elements of s by means of a rule of L. T I~ ¢, more exactly
T k1 ¢, means that ¢ is provable in T w.r.t. L, that is, there is an L-proof of ¢ in 7.
If 1, @, thatis, T = @, ¢ is said to be a theorem of L. A theory T is said to be
inconsistent if T F F; otherwise it is consistent.

The relevant (local) deduction theorem (R(L)DT) for L is as follows.

Proposition 1 Let T be a theory over L (€ Ls), and let ¢, be formulas.

(i) (RLDT) T U{g} b1 ¥ iff there is n such that T ‘=1, ¢ — .
(ii) (RDT) For L with (SIN), T U{e} Fr v iff T b ¢ — .

Proof  For (i), see Novak [19, Theorem 9, Corollary 1]; (ii) is the enthymematic
deduction theorem (see Meyer, Dunn, and Leblanc [18, Lemma 4]). ]

An easy computation shows the following.

Proposition 2
(i) RMAILL proves

D @ —>x0)—>Ue—>Y)—>(@—x) (prefixing, PF)
2 (p—=>v)—> (p&)) = (Y &))) (monotonicity, MT)
B (p—=>W—=x)—> W —(p—)) (permutation, PM)
@ (& W&y) = (p&yY) & y) (associativity, AS)
5) (¢ = ¥) = (Y - —p) (contraposition, CP)
©6) ¢ > ¢ (double negation introduction, DNI)
(7)) =(@VY) < (e AY) (de Morganl, DM1)
8) (= V=) = =(¢ A V) (V=)

9 (& (W Vvy) < (e&Y)V(p&y)) (& V-distributivity, &V-D)
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(10) (p& (Y A ) = (p&Y) A (@& ) (&A)
A1) (& @) — @ (t-square decreasing, SDE,)
(12) ¢ & (t—>¢)
(I13) =(¢ A =¢), =p V =—¢

(i) RUL proves

(1) (e VYY) < —(p AY) (de Morganil, DM2)
2) (p& (W Ax) < (p&Y)A(p&))) (& A-distributivity, &A-D)
3) (¢ = V)V Y — ) (PL)
(4) Foreachn, (p — ¥); vV (f = @)! (}-prelinearity, PL})
G (enle =f) = WV —)) thatis, (¢ A=) = (Y vV —Y)

©) (A WV ))—= (eAY)V(pAy) (distributivity, D)

(iii) RUL having (SIN) proves
(D) (AY) > (&)
(iv) RUML proves
(D) (p&y) > (@ V)
2 (pVvy) = (p&Y) vV ((p&Y) > (9 AY)))
B) (p&y) < (@ry) vV e&y) < (9 V)
(v) RIUL (= FRW) proves

1 ¢ < =g (double negation, DN)
(vi) FR without (EM) proves

(1) ¢Vv—g (excluded middle, EM)

(2) —(p A —p) (noncontradiction, NC)

(vii) RM (= FRM) proves
M (=)= (g > V) < (mp V)
2) =(p=>v)—> (¢ > V) < (moAY))
3) (p—=>—~v) > ((p&Y) < (9 AY))
@) —(p—>—-Y) > ((p&Y) < (¢ VY))
5) =(¢g = ¢) > (¥ —> V)
6) f—>t

In L (€ Ls), the negation — may be taken as a primitive connective, and the constant
f can be instead defined as —t (see Proposition 2(i)(12)).

For convenience, —, A, V, and — are used ambiguously as propositional connec-
tives and as algebraic operators, but context should clarify their meanings.

2.2 Semantics Suitable algebraic structures for the (fuzzy-)relevance logics are ob-
tained as varieties of residuated lattices in the sense of [11].

Definition 6 A pointed commutative residuated lattice is a structure (A, t, f, A,
V, %, —) such that:’

@D (A, A, V) is a lattice,

(II) (A, *,t) is a commutative monoid,
) y<x—>cziffxxy <z, forall x,y,z € A (residuation),
(IV) f is an arbitrary element of A.

As ¢" in Section 2.1, by x", we denote x * --- * x, n factors.
Note that the class of pointed commutative residuated lattices characterizes the
system FL.. Thus, we henceforth call such residuated lattices FL,-algebras.
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Definition 7 Let—x :=x — f,andletx; := x A L.

(i) (RMAILL-algebra) An RMAILL-algebra is a pointed commutative residu-
ated lattice satisfying the condition
EM)t <xV—x.

(ii) (RUL-algebra) An RUL-algebra is an RMAILL-algebra satisfying the condi-
tion
(PL) 1 < (x = y): V(¥ = X)r.

In an analogy to Definition 7, we can define algebras corresponding to the systems
introduced in Definitions 3 and 4. When we define the FL.-algebra, we can use in
place of (IIT) a family of equations as in [11] and [12].

An RMAILL-algebra is said to be linearly ordered if the ordering of its algebra is
linear; that is, x < y or y < x (equivalently, x A y = x or x A y = y) for each pair
x,y. Note that, in RMAILL-algebras, the operator — can be defined using — and
f, as above. Thus, an RMAILL-algebra (4, ¢, f,—, A, V, %, —) may be abbreviated
to (A,t, f, A\, V, %, —).

Asin Section 2.1, for brevity, by L-algebra(s), we henceforth ambiguously express
algebras corresponding to all L systems, if we need not distinguish them, but context
should determine which algebras are intended.

Definition 8 (Evaluation) Let # be an L-algebra. An sA-evaluation is a function
v: FOR — 4 satisfying: v(p — ¥) = v(p) = v(¥), v(p A ¥) = v(p) A v(Y),
v(eVvy) =v(p) Vo), vip&y) = v(p)xv(y), v(t) =7, v(f) = f (and hence
v(=g) = —v(p)).

Definition 9 ([5, Definitions 16-17])  Let +A be an L-algebra, let T be a theory,
let ¢ be a formula, and let K be a class of L-algebras.

(1) (Tautology) ¢ is a t-tautology in A, briefly an A-tautology (or A-valid), if
v(@) > t for each A-evaluation v.
(i) (Model) An A-evaluation v is an A-model of T if v(¢p) >t foreach ¢ € T.
By Mod(T, A), we denote the class of A-models of T'.
(iii) (Semantic consequence) ¢ is a semantic consequence of T w.r.t. X, denoted
by T Ex ¢, if Mod(T, A) = Mod(T U {¢}, A) for each A € K.

Definition 10 (L-algebra, [5]) Let A, T, and ¢ be as in Definition 9. A is an
L-algebra if, whenever ¢ is L-provable in any T (i.e., T Fr ¢, L an L logic), it
is a semantic consequence of T w.r.t. {#} (i.e., T =4 ¢, 4 a corresponding
L-algebra). By MOD(L), we denote the class of L-algebras; by mop! (L), the class
of linearly ordered L-algebras. Finally, we write T =r ¢ and T |=IL @ in place of

T Emopw) ¢ and T =51 (1) @, respectively.

Note that, since each condition for an RMAILL-algebra (more generally, L-algebra)
has the form of an equation or can be defined in an equation, it can be ensured that
the class of all RMAILL-algebras (L-algebras) is a variety. Then, as in [16], we can
show that L is complete w.r.t. an algebraic semantic given by a variety of L-algebras.
We instead show that L is a weakly implicative fuzzy logic. This also implies the
completeness of L.

Let a theory T be linear if, for each pair ¢, ¢ of formulas, T - ¢ — ¥ or
T = ¥ — ¢. We denote the class of all RUL-algebras as RUL and the class of all
L-algebras as L. The system RUL is an algebraizable logic in the sense of Blok and
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Pigozzi (see Czelakowski [6]). Then, since it implies that all axiomatic extensions
of RUL are also algebraizable and that their equivalent algebraic semantics are the
subvarieties of RUL defined by the translations of the axioms into equations, L is
also algebraizable, and its equivalent algebraic semantic L is the subvariety of RUL.

Cintula [5] defined weakly implicative logic (WIL) as a logic satisfying A1, (mp),
transitivity (¢ — ¥, ¥ — x F ¢ — y), and congruence w.r.t connectives and
called a WIL L a fuzzy logic (i.e., a weakly implicative fuzzy logic or WIFL) if it is
complete w.r.t. linearly ordered (corresponding) matrices. He also showed that, for a
finitary WIL L, the following are equivalent.

(1) L is a fuzzy logic.

(2) L has the linear extension property; that is, for each theory T', if T ¥ ¢, then

there is a consistent linear theory 7’ 2 T such that 77 ¥ ¢.

(3) L has the prelinearity property, that is, for each theory T, if T, ¢ — ¥ F x

and T,y — ¢ F y,then T + y.
(4) L has the subdirect decomposition property; that is, each ordered L-matrix is
a subdirect product of linearly ordered L-matrices.

We can easily show that the system RMAILL is a WIL. Let a logic extending
RMAILL be a relevant multiplicative additive intuitionistic linear logic (briefly, an
RMAILL). For an RMAILL L, Proposition 2(ii)(4) is the condition for L to be a
fuzzy logic.

Theorem 1 Let L be an RMAILL. Then L is a fuzzy logic iff, for each n,
FL (e = ¥)i v (¥ — o).

Proof The left-to-right direction is obvious. For the right-to-left direction, we
show that L has the prelinearity property. Let T, 9 — ¥ b, yand T, ¢ — ¢ Fr .
By the theorem (RLDT), for some n,m, T -y, (¢ — ¥)f — yand T b, (y —
©){" — x. Let m < n. Proposition 2(i)(11) ensures that we can obtain 7" t,
(¢ = ¥){ = yand T by, (¥ — ¢)¢ — x. Then, by A5 (together with (adj) and
(mp)), we get T, (¢ — ¥)§ vV (¥ — ¢)¢) — x. Thus, by Proposition 2(ii)(4)
and (mp), T Fy, x, as desired. O

Then, from Theorem 1, we establish the following corollaries.

Corollary 1 (Strong completeness)  Let T be a theory over L (€ Ls), and let ¢ be
aformula. Then T & @ iff T |:lL ®.

Corollary 2 L is a fuzzy logic (in Cintula’s sense).

Now we verify the relevance of L.

Theorem 2

(i) L does not satisfy SRP (in [1]).

(ii) L satisfies WRP (in [7]).

Proof (i) This directly follows from Proposition 2(ii)(5).

(ii) We prove this contrapositively. Namely, we assume that ¢, ¥ share no propo-
sitional variables and either ¥y —¢ or ¥y ¥ and show that ¥; ¢ — . For
this, consider an algebra A = ({1, % 0}, %, %, min, max, *, —), where, letting —x
(ie.x >3 =1-ux,

min(x,y) ifx <-y,
X*y= )
max(x,y) otherwise,
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and
max(—x,y) ifx <y,
X—=>y= . .
min(—x,y) otherwise.

The axioms of L are 4-tautologies for all assignments of values to the variables, and
the rules preserve this property. This ensures soundness; that is, if -7, ¢, then =4 .
Let ¢ and ¥ share no propositional variables, and let either ¥*; —¢ or ¥y . If
1 —¢ and ¥ ¥, then assign the values yielding v(¢) = 1/2 to all the variables of
¢ and the values yielding v(y) = O to all the variables of v; if ¥ —¢ and 1 ¥,
then assign the values yielding v(¢) = 1 to all the variables of ¢ and the values
yielding v(y) = 1/2 to all the variables of i; otherwise, that is, if ¥; —¢ and
¥, ¥, assign the values yielding v(¢) = 1 to all the variables of ¢ and the values
yielding v(y) = 0 to all the variables of . Then, in each case, v(¢ — V) is 0.
Thus, £ 4 ¢ — Y. Therefore, by soundness, ¥ ¢ — V¥, as required. O

Corollary 3 L is a relevance logic (in the weak sense of [7]).

Corollary 4 L is both a fuzzy logic and a relevance logic.

2.3 Substructural relevance logics (I) Let RMAILL, RMALL (= LRW plus
(EM)), LR, RMAILML, LRM, and RMALML be the systems excluding (PL;)
from the systems RUL, RIUL (= FRW), FR, RUML, RM, and RIUML, respec-
tively. We let Ls™ be the set of these systems; that is, we have the following.

Definiton 11  Ls— = {RMAILL, RMALL, LR, RMAILML, LRM,
RMALML}.

Since L™ (€ Ls™) is an RMAILL and so a WIL, Theorem 1 shows that L (€ Ls)
is a WIFL (see Corollary 2); moreover, L is the weakest fuzzy logic extending L™.
(Note that the systems LRM and RMALML are not the same as RM and RIUML,
respectively, because the former systems exclude (D), i.e., Proposition 2(ii)(6).) More
exactly, [5, Theorem 1] says that, fora WIL L, T - ¢ iff T |= ¢, and so we obtain
the following corollary.

Corollary 5 (Strong completeness)  For each theory T over L™ (€ Ls™) and for-
mula o, T Fr— @ iff T EL- ¢.

Let us verify the relevance of L™ (€ Ls™). Before verifying this, we first note that an
easy computation shows the following.

Proposition 3 LRM and RMALML each prove ~(¢ — ¢) — (Y — V), that is,
Proposition 2(vii)(5).

Corollary 6 For L~ € {LRM,RMALML}, L~ does not satisfy SRP (in [1]).

We can further show the following.

Theorem 3
(i) For L~ € {RMAILL, RMALL, RMAILML, LR}, L~ satisfies SRP (in [1]).
(ii) For L~ € {LRM, RMALML)}, L~ satisfies WRP (in [7]).
Proof (i) First note that L™ (¢ {RMAILL, RMALL, LR}) satisfies the matrices
considered in [2] in order to show that R?, the t-free fragment of R, satisfies SRP.

Thus, we prove that the system RMAILML satisfies SRP. We assume that ¢, ¥
share no propositional variables and show that Fgyvammr ¢ — . For this, con-
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sider the algebra «+ in the proof of Theorem 2(ii). The axioms of RMAILML are
A-tautologies for all assignments of values to the variables, and the rules preserve
this property. This ensures soundness. Let ¢ and ¥ share no propositional variables.
Assign the values yielding v(¢) = 1/2 to all the variables of ¢ and the values yield-
ing v(y) = 0 to all the variables of y. Then, v(¢p — V) is 0. Thus, 4 ¢ — V.
Therefore, by soundness, ¥rymammr ¢ — ¥, as required.

(ii) This proof is analogous to that of Theorem 2. O

Corollary 7 L™ is a relevance logic (in the strong or weak sense of [1], [7]).

Remark 3 As is known, the relevance logics RW, R, RM and fuzzy logics such as
UL and BL are all substructural logics extending FL,. Since the system RMAILL is
the FL, with (EM), the (fuzzy-)relevance systems introduced in Definitions 5 and 1 1
are all substructural logics extending FL.. Thus, the system RMAILL may instead
be expressed as FL¢™ (in the substructural logic tradition) and analogously for the
other systems. Note that, in the literature of substructural logic, FL,.. is already
introduced as FL, plus contraction and RW and R as InDFL, (= FL, plus distribu-
tivity and involution) and InDFL,., respectively (see [11]). Thus, the introduction
of FL¢™ (including FL,) and its extensions in Definition 11 is a step in the natural
evolution of relevance logic (in particular associated with fuzzy logic) in the search
for weaker systems.

3 Propositional Constants and New Relevance Principles

This section summarizes our work in [22]. More exactly, we briefly recall new strong
and weak relevance principles introduced in [22], that is, NSRP and NWRP, because
they are unfamiliar to the readers. (As we mentioned in footnote 2, we assumed that
formulas such as (¢ At) — (tV ) satisfy SRP in L (€ Ls) because its antecedent and
consequent implicitly share at least one propositional variable. The introduction of
NSRP and NWRP will show the reason for this assumption. However, the principles
NSRP and NWRP were introduced without such an assumption (see [22]).) Before
introducing these principles, we consider intensional features of propositional con-
stants t, f, T, F and some (defective) weak versions of the new principles.

Many logical systems with propositional constants are equivalent to those with-
out propositional constants because, in the latter systems, propositional constants
are definable. For instance, the constants F and T can be defined as ¢ A —¢ and
@ V -, respectively, in classical logic (CL). However, such equivalences are not
valid in the systems R and RT (R plus constants T, F, and axioms A12, A13 below)
because we cannot define the propositional constants t, f or T, F, respectively, using
propositional language from which they are excluded.

One interesting fact to mention is that, in the literature of relevance logic (see,
e.g., [2], [8]), the constant t is interpreted as the conjunction of all true sentences,
and similarly for the others. More exactly, the propositional constants in R and R
can be interpreted as follows (see Anderson and Belnap [2, Section 27.1.2] and Dunn
[8, Section 1.3]):®

df3. t = the conjunction of all true sentences;
df4. f = the disjunction of all false sentences;
df5. T = the disjunction of all sentences;
df6. F = the conjunction of all sentences.
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Here, df3 and df4 are semantic interpretations. The corresponding syntactic inter-
pretations can be provided as follows:’

df3’. t = the conjunction of all theorems;
df4’. f = the negation of t.

These are not object-definitions, but metadefinitions, which cannot be provided
by means of the object-language for the t-free fragment of R (calling it here R?).
That is, the propositional constants t, f, T, F are not object-definable in R T, F are
not in R. Thus, we cannot eliminate those constants in R or RT. (We use the word
object-definition for a clear distinction from metadefinition.) Although df3 to df6,
df3’, and df4’ are not object-definitions of propositional constants, they cannot be
defined as we please because the definitions are based on (syntactic and semantical)
roles of the constants in the proof of soundness and completeness for a relevance
logic. In fact, the above interpretations are given according to such roles of the
constants in R and RT. (Note that, as mentioned in [22], the propositional constants
t, T, f, F correspond to the least true element 7, the greatest (true) element T, and
their negations, i.e., the greatest false element f, and the least (false) element L,
respectively, in algebraic semantics; see [2], [7], [8].)

The relevance principle is a metacriterion or metaprinciple, by virtue of which
we can examine whether a system is a relevance logic. Similarly, metadefinitions
or interpretations can be used to assess variable sharing between the antecedent and
consequent of an implication (as a theorem), as far as they are given as above (i.e.,
according to syntactic and semantical roles of the constants). Let metadefinitions
of propositional constants be given like this, that is, based on the above roles of
constants; let the antecedent and consequent ¢, Y of a statement ¢ —  implicitly
share a propositional variable by virtue of the metadefinitions. For example, in R,
the antecedent p A t and the consequent t \V g of the theorem (p A t) — (t V q)
implicitly share (the conjunction of) “all true sentences (or theorems)” by virtue of
df3 (or df3’).

Before introducing new relevance principles, we introduce their weak versions
and related facts in order to help the readers better understand them.

Definition 12 ([22, Definition 6])

(i) (The implicit strong relevance principle, ISRP) ¢ — v is a theorem only if
¢ and v implicitly share a propositional variable where the word implicitly
means that we can identify a sharing variable by means of metadefinitions or
interpretations such as df3 to df6, df3’, and df4’.

(ii) (The implicit weak relevance principle, IWRP) ¢ — v is a theorem only if
(a) ¢ and ¥ implicitly share a propositional variable or (b) both —¢ and ¥
are theorems.

Let ¢ — ¥ satisfy the relevance principle ISRP (resp., IWRP) in a logic L if it is a
theorem of L and its antecedent ¢ and consequent ¥ implicitly share a propositional
variable (or both the negation of its antecedent and its consequent are theorems).
Then we can prove the following.

Proposition 4 (see [22, Proposition 4])
(1) (¢ At) = (tV V) satisfies ISRP in R.
(i) ((p — F)& @) — ¥ satisfies ISRP in RT and UL.
(iii) ((¢ = F) A @) —  satisfies ISRP in R”.
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iv) ((¢ = ¢) = f) = (¥ — V) satisfies ISRP in IUML.
W) (¢ A=) = (Y Vv =) satisfies IVRP in RM.
(vi) =(¢ — @) — (¥ — V) satisfies INVRP in RM and RM".

Proof We can easily prove (i) to (v) using df3 (or df3’), df4 (or df4’), and df6.
Then, (vi) follows from Proposition 2(vii)(5), Proposition 5(iv)(1) and the second
condition of IWRP. O

The principles ISRP and IWRP, however, do not prevent us from giving metadefini-
tions of propositional constants to the systems having their object-definitions. (Note
that the constants T and F can still be interpreted as df5 and df6, respectively, in
CL.) For instance, if CL has not only the object-definitions (df7) T := ¢ VvV —g,
(df8) F := ¢ A —¢, but also the metadefinitions df5, df6, then the statement
(p N —p) — g satisfies ISRP and IWRP in CL since the sentences T, F — F, and
T < (F—>F) < ((p A—p) — q) are all theorems of CL. (We generally regard the
statement (p A —p) — ¢ as an example of paradoxes of material implication, and
many irrelevant logics such as CL, intuitionistic logic, etc., can allow (2), from which
an irrelevance between the antecedent and consequent of an implication arises.)

Note that a propositional constant in a logic L is said to be object-definable in that
it can be defined by means of the object-language for L and metadefinable in that it
can be defined by virtue of metadefinitions such as df3 to df6, df3’, and df4’. Let
a propositional constant be strongly metadefinable in a logic L if it is metadefinable
but not object-definable in L, for example, the constants t and f in R and T and F
in RT; let the antecedent and consequent of an implication strong implicitly share a
propositional variable if we can establish variable sharing between them by virtue of
strong metadefinitions.

The new strong and weak relevance principles introduced in [22] are defined as
follows. '’

Definition 13 ([22, Definition 8])
(i) (The new strong relevance principle, NSRP) ¢ — 1 is a theorem only if ¢
and y either explicitly or strong implicitly share a propositional variable.
(ii) (The new weak relevance principle, NWRP) ¢ —  is a theorem only if (i) ¢
and ¢ either explicitly or strong implicitly share a propositional variable, or
(ii) both —¢ and  are theorems.

The principles NSRP and NWRP prevent logics with both object-definable and meta-
definable propositional constants from satisfying the relevance principles. For in-
stance, CL satisfies neither NSRP nor NWRP since, in CL, the constants T and F
can be defined not merely by df7 and df8, but by df5 and df6.

4 Fuzzy-Relevance Logics (1)

4.1 Fuzzy-relevance logics with constants T, F In this section, we introduce several
substructural fuzzy-relevance systems satisfying new relevance principles, that is,
NSRP and NWREP. First, we provide axiomatizations of the L with constants T, F.

Definition 14
(i) UL is RUL minus (EM) plus constants F, T, and
Al2.F — ¢ (ex falso quodlibet, EF)
Al3. ¢ - T (verum ex quodibet, VE)
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(ii) IUL (= FRW?) is UL plus (DNE).
(iii) FRT is IUL plus (SIN).

(iv) UML is UL plus (ID).

(v) RMT is UML plus (DNE).

(vi) TUML is RMT plus (FP).

Definition 15 Ls™ = {UL,IUL (= FRW"), FRT UML, RM" TUML}.
An easy computation shows the following.

Proposition 5
(i) L (€ Ls) proves

(D) (pA) > (V).

(i) LT (e LsT) proves
(D) (@ A=¢) > (¥ V=),
(2) ((p > F)&o) —> .

(iii) FRT, UML, RM", and IUML each prove
M (¢ >F)rne)— .

(iv) RMT and IUML each prove
(1) =(¢ > ¢) > ¥ —> V).

First, note that, using the standard technique, we can provide algebraic completeness
results for LT (€ LsT). For this, it suffices to note that L.T-algebras are obtained as va-
rieties of pointed bounded commutative residuated lattices; that is, for LT-algebras,
it suffices to replace the condition (I) in Definition 6 with

T) (A, T,L,A,V) is a bounded lattice with top element T and bottom ele-

ment L.

Since the condition (I') can be defined in equations, it is clear that the class of
LT-algebras forms a variety. Then, as in [16], we can show that LT is complete w.r.t.
an algebraic semantic given by a variety of LT-algebras. Moreover, as in Section 2.2,
we can prove the following.

Theorem 4 Let L be a multiplicative additive intuitionistic linear logic. Then L
is a fuzzy logic iff, for each n, =p, (p — ¥)i' vV (¥ — ).

Proof See Theorem 1. O

Corollary 8 (Strong completeness)  Let T be a theory over LT (€ LsT), and let ¢
be a formula. Then T Fpr @ iff T IZILT ®.

Corollary 9 LT is a fuzzy logic (in Cintula’s sense).

For the relevance of LT, note that the constants T, F, t, f are not object-definable in
LT (e LsT) without the constants. Note also that, in LT, the constant t can instead
be interpreted as df3’ (or df3) and the constant f as its negation (see df2 and Propo-
sition 2(i)(12)); and the constants T and F as df5 and df6, respectively (see A12 and
A13 in Definition 14). Then, we can show the following.

Proposition 6
(i) (¢ At) = (tV V) satisfies NSRP in L (€ Ls) and LT (€ LsT).
(i) (¢ A (¢ = f)) = (¥ Vv (¥ — f)) satisfies NSRP in LT (€ Ls").
(iii) ((¢ — F) & @) — ¥ satisfy NSRP in LT (€ Ls").
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iv) ((p — F) A @) —  satisfy NSRP in LT € {FRT, UML,RM" ,IUML).
(v) =(p = @) = (Y — V) satisfies NSRP in IUML.
(vi) =(¢p = @) = (¥ — V) satisfies NWRP in RM".

Proof See [22, Proposition 5]. O]

Proposition 6 shows that theorems strong implicitly sharing variable(s) can satisfy
NSRP. Thus, we verify the relevance of LT (€ LsT) as follows.

Theorem 5
(i) For LT € LsT\ {RMT}, LT satisfies NSRP.
(ii) RMT satisfies NWRP.

Proof (i) We can prove this by using the matrices considered in Theorem 2 w.r.t
UML and IUML. Let L € {UL,IUL,FR™}. Contrapositively, assume that ¢

and ¥ share neither propositional variables nor propositional constants and show

tlhat ¥r ¢ — . For this, consider an algebra A = ({1,%,%,%,%,%,0},1,0,

3 %,min, max, %, —), where: Letting —x (i.e., x — %) =1-x,

+
+

+ 5T 2t 1 1 1
- 1" s 5 3 3 50
/1 0o o 0 0 00
5+ 5 1 1 1 1
s 1l 5§ & & & & O
2t | 5 1 1 1 1
3 6 3 6 6 6
1+ 5 1L 1 1 1
2y s 3 1 % 3
s | % 35 3 3 § 0
1 5 5 5 5 5
s |V & § § & &0
o |1 1 1 1 1 11

+ S5t 2+t 1t 1+ 1
* 1M s 5 3 3 5 0
+l1r 1 1 1 1 10
5+ 5 5 5 5 1
s |1 & & & & & 0
2t 5 5 5 2 1
3 6 6 6 3 6
1+ 5 5 1L 1 1
2y s 5 1 13
s | 5 35 32 3 § 0
1 1 1 1 1 1
s /1! & s s s & 0
0O |0 0 0 0 0 00

In each matrix, for — and *, the superscript 4 indicates designated values. The
axioms of L are +#A-tautologies for all assignments of values to the variables, and the
rules preserve this property. This ensures soundness; that is, if -7 ¢, then =4 ¢. Let
¢ and ¥ share neither propositional variables nor propositional constants. If -7 i,
assign the values yielding v(¢) > 1/3 to all the variables of ¢ and the values yielding
v(y) = 1/3 to all the variables of ¥. Otherwise, that is, if ¥, 1, assign the values
yielding v(¢) = 1/3 to all the variables of ¢ and the values yielding v(y¥) < 1/3 to
all the variables of . Then, in each case, v(¢ — ¥)is 1/6 or 0. Thus, F£4 ¢ — V.
Therefore, by soundness, ¥ ¢ — v, as required.

(ii) This proof is analogous to that of Theorem 2. O
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Corollary 10

() For LT € LsT\ {RM"}, LT is a relevance logic (in the new strong sense of

[22]).

(ii)) RMT is a relevance logic (in the new weak sense of [22]).
Then, from Corollaries 9 and 10, the next corollary directly follows.

Corollary 11 LT is both a fuzzy logic and a relevance logic.

4.2 Strong relevant companions The system IUML is RMT" plus (FP). Here, we
note that, while IUML satisfies NSRP, RMT does not. This fact gives an insight into
a method to obtain relevant companions of weakening-free uninorm (based) logics.
We introduce here a way to obtain strong relevant companions of weakening-free
logics extending UL. Let L be the system UL.

Definition 16 We introduce several extensions of L as follows.

Involutive L IL is L plus (DNE) ——¢ — ¢.

Square increasing L. L. is L plus (SIN) ¢ — (¢ & ¢).
Involutive L, IL. is L, plus (DNE).

Square decreasing L L, is L plus (SDE) (¢ & ¢) — ¢.
Involutive L, IL, is L, plus (DNE).

Idempotent L L, is L. plus (SDE).

Involutive L., IL¢p is L¢, plus (DNE).

Tables 3 and 4 summarize some axiom schemes and the extensions of UL introduced
in Definition 16.
Definition 17
(i) ELs = {L,IL,L;,IL., L, 1L, Lep, Iy )
(ii) For EL (€ ELs), EL/ is EL plus (FP).
(iii) ELs/ = (L’ 1LY, L/ 1L/ L 1L L] 1L/ ).

Table 3 Some axiom schemes in fuzzy-relevance logics.

Axiom schema | Name

——A—> A Double negation elimination (DNE)
A—> A& A Square increasing (SIN)

A&A— A Square decreasing (SDE)
A&A< A Idempotence (ID)

Table 4 Some extensions of L (= UL) obtained by adding the corresponding
additional axiom schemes.

Logic | Additional axiom schemes

IL (DNE)
L. (SIN)
ILc | (DNE)and (SIN)
L, (SDE)

IL, | (DNE)and (SDE)
Lep (ID) (= (SIN) + (SDE))
ILc, | (DNE)and (ID)
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Proposition 7 (¢ = @) = f) > (¥ — V) satisfies NSRP in each ofLI{, IL;:,
L, and 1LY,
Proof  The proof is immediate since (FP) t <> f is an axiom in each system, and

so the antecedent and consequent of ((¢p — ¢) — f) — (Y — ) implicitly share
the statement v — . O

Theorem 6 For EL' € ELs” | EL' satisfies NSRP.
Furthermore, as in Section 2, we can prove the completeness of EL”/.

Theorem 7 (Strong completeness) Let T be a theory over EL/ (€ ELs”/), and let
@ be a formula. Then Ty, r @ iff T |=lELf @.

From Theorems 6 and 7, we obtain the following corollary.

Corollary 12 EL' is both a fuzzy logic (in Cintula’s sense) and a relevance logic
(in the new strong sense of [22]).

4.3 Substructural relevance logics (1) Let MAILL, MALL (= LRWT), LRT,
MAILML, LRMT, and MALML be the systems eliminating (PL¢) from the sys-
tems UL, TUL (= FRWT), FRT, UML, RM”, and TUML, respectively. We let
LsT~ be the set of these systems; that is, we have the following.

Definition 18 Ls™™ = {MAILL, MALL, LR", MAILML, LRM", MALML}.

Since LT~ (e LsT) is a WIL, Theorem 4 shows that LT (e LsT) is a WIFL (see
Corollary 9); moreover, LT is the weakest fuzzy logic extending LT~. More exactly,
[5, Theorem 1] says that, for a WIL L, T+ ¢ iff T | ¢, and so we obtain the
following corollary.

Corollary 13 (Strong completeness) For each theory T over LT (€ Ls™™) and for-
mula ¢, Thpr— ¢ iff Tl=p1- .

Let us verify the relevance of LT~ (€ LsT™). However, we first note that an easy
computation shows the following.

Proposition 8 LRMT and MALML each prove —(¢ — @) — (Y — V), that is,
Proposition 2(vii)(5).

Corollary 14 LRM? does not satisfy NSRP (in [22]).
Furthermore, as in Section 4.1, we can show the following.

Theorem 8
(i) For L™ € {MAILL,MALL, LRT ,MAILML, MALML}, L~ satisfies NSRP

(in [22]).
(ii) LRMT satisfies NWRP (in [22]).

Proof
(i) The proof is immediate since LT~ also satisfies the matrices considered in [2]
in order to show that the system RO satisfies SRP (w.r.t. MAILL, MALL,
and LRT) or the matrices considered in Theorem 2 (w.r.t. MAILML and
MALML).
(ii) This proof is analogous to that of Theorem 2. O
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Corollary 15 LT~ is a relevance logic (in the new strong or weak sense of [22]).

Remark 4 Since the system MAILL is the FL, | , the (fuzzy-)relevance systems
introduced in Definitions 15 and 18 are all substructural logics extending FL, | .
Thus, the introduction of FL,; and its extensions in Definition 18 is also a step
in the natural evolution of relevance logic (in particular associated with fuzzy logic)
in the search for weaker systems.

5 Concluding Remarks

We introduced several fuzzy-relevance logics with and without constants T, F and
provided completeness results for them by showing that such logics are WIFLs. We
furthermore proved that they satisfy old and new relevance principles. In addition,
we considered relevance logics obtained from the fuzzy-relevance logics by omitting
prelinearity. All of the systems investigated here are extensions of the substructural
logic FL,, and so they are all substructural logics. They also have the associative
intensional conjunction (so-called fusion) &. Therefore, such systems all can be
called associative (fuzzy-)relevance logics.

The fuzzy-relevance logics without constants T and F are not characterized by
models based on uninorms. Note that the uninorm-based systems introduced in [16]
have constants T and F, and the systems with T and F investigated here are not
relevant in the old senses. This implies that, as far as uninorm (based) systems have
T and F, they cannot be relevant in the old senses and so are not fuzzy-relevance
logics in the old senses.

Notes

1. For the introduction of propositional constants t, f, T, and F, see Sections 2 and 4. In
particular, in order to interpret these constants in relevance logic, see Definitions 3—6 in
Section 3.

2. While Sugihara matrices (as a semantic for RM) need not have a fixed point, such ma-
trices on [0, 1] (as a semantic for IUML) have such a point, for example, 1/2 in the
standard involutive negation 1 — x so that the logic IUML requires the corresponding
axiom (FP) (see [7], [16]). Note that Sugihara matrices with an odd number of elements
introduced in [7] have a fixed point corresponding to (FP).

3. Here, we regard R! (the R with the constant t) as R. Often in the literature of relevance
logic, R is used for the t-free fragment of Rt. One reason for that is that Rt proves
formulas such as (y) (p At) — (t Vv ¥) and so seems not to satisfy the old relevance
principles (see [11]). However, we have to mention that, in the literature of relevance
logic (e.g., Anderson and Belnap [2]), the constant t is interpreted as the conjunction of
all true sentences. Thus, (y) does implicitly satisfy SRP, and so the relevance principles
in a sense do not fail in Rt. Hence, here we assume that such formulas satisfy SRP. We
will, in Section 3, introduce NSRP and NWRP as principles allowing implicit variable
sharing.

4. This is not a necessity, however, as some logics, for example, psBL (pseudo-BL) and
psMTL (pseudo-MTL), are not (see Hdjek [13], [14]).
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The systems RMAILL and MAILL are the FL, with (EM) and FL, | , respectively
(see [11]). While RMAILL does not prove formulas such as (8) ((¢p — F) & ¢) — v,
MAILL does. Thus, the system MAILL is neither strongly nor weakly relevant in the
old senses. Here, we introduce RMAILL as a relevant companion of MAILL. Note that
the system FL, does not prove (8) and so is strongly relevant in the old sense. Then, we
may establish FL, as the basic relevance logic. However, if this is so, RUL must require
not merely (PL¢), but the additional axiom (EM), which is irrelevant to fuzziness. Here,
we want to use RUL as the weakest fuzzy logic obtained from some weakly implicative
logic by adding (PL¢) (but no more).

Roughly speaking, in IUML, t and f both correspond to a fixed point, for example, the
element 1/2 in the real unit interval [0, 1], because the involutive negation —x may be
defined as 1 — x (see [16, Proposition 19]). Since t = —f in involutive uninorm logics,
the sentence t <> f <> —f is a theorem in RIUML.

A lattice does not have to have top and bottom elements T and L, and so ¢ and f need
not be the same as T and L, respectively, in pointed commutative residuated lattices.
Note that lattices having T and L are called bounded lattices (see (I') in Section 4).

Here, “true sentences” correspond to t-tautologies in <A, that is, A-tautologies, as in
Section 2.2. Note that, if propositional quantification is possible, each constant can be
defined as follows: t := (Vp)(p — p), f := @p)—~(p — p), T := (Ap)p, and
F := (Vp)p (see Anderson, Belnap, and Dunn [3] and Beal and Restall [4]).

. The interpretation df4’ is given, for example, in [8, p. 131]. The constant t is gener-

ally interpreted as in endnote 8 (see Meyer [17, p. 173]). We use df3’ here because
it corresponds more exactly to df3 when we consider the soundness and completeness
of R.

Here, the phrase “¢ and ¥ explicitly share a propositional variable” is the same as “¢
and v share a propositional variable” in the SRP and WRP in [1] and [7] (see [22]).
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