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Indiscernibles, EM-Types, and Ramsey Classes of Trees

Lynn Scow

Abstract The author has previously shown that for a certain class of struc-
tures I, I-indexed indiscernible sets have the modeling property just in case the
age of I is a Ramsey class. We expand this known class of structures from or-
dered structures in a finite relational language to ordered, locally finite structures
which isolate quantifier-free types by way of quantifier-free formulas. This result
is applied to give new proofs that certain classes of trees are Ramsey. To aid this
project we develop the logic of EM-types.

1 Introduction

A generalized indiscernible set (which we will abbreviate as an indiscernible) is a
set of tuples from a model M, .ai W i 2 I/, indexed by a structure I in a homoge-
neous way: the complete type of a finite tuple of parameters .ai1 ; : : : ; ain/ in M is
fully determined by the quantifier-free type of the indices .i1; : : : ; in/ in I. If I is
known, we call the indiscernible an I-indexed indiscernible set. Generalized indis-
cernible sets were originally developed in Shelah [17] and have been used in many
places, for example, Baldwin and Shelah [2], Laskowski and Shelah [11], Džamonja
and Shelah [3], Guingona [6], Kim and Kim [9], and Takeuchi and Tsuboi [21]. In
[3], indiscernibles indexed by trees were studied, and a specific property was proved
of them. One of the main goals of Scow [16] was to consider this specific property
generalized from a tree to an arbitrary structure, I, named the modeling property
(for I-indexed indiscernibles), and relate this property to a combinatorial property
of the age of I. The appropriate notion turned out to be the one of Ramsey class (see
Definition 3.6). A “dictionary” theorem was proved: if I is a structure in a finite rela-
tional language, linearly ordered by one of its relations, then the age of I is a Ramsey
class just in case I-indexed indiscernible sets have the modeling property (see Defi-
nition 3.1). In Theorem 3.12, we extend this dictionary to the case where I is locally
finite, linearly ordered by one of its relations, and has a certain technical property,
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qfi: quantifier-free types realized in I are isolated by quantifier-free formulas. This
generalizes the dictionary theorem to certain situations where we have an infinite lan-
guage containing function symbols, in particular to the case where I is ordered and
locally finite in a finite language. The locally finite-linearly ordered-qfi case en-
compasses two indexing structures I from the literature, I0 D .!<! ;E;^; <lex/ and
Is D .!<! ;E;^; <lex; .Pn/n<!/, where E, ^,<lex, Pn are interpreted as the partial
tree-order, the meet function in this order, the lexicographic order on sequences, and
the nth level of the tree, respectively. It is known from Kim, Kim, and Scow [10]
and [21] that both of these structures index indiscernibles with the modeling prop-
erty. Corollaries 3.17 and 3.18 conclude that the ages of I0, Is , respectively, form
Ramsey classes. The latter constitutes an alternative proof of a known result (see
Nguyen Van Thé [15], Fouché [4]). It was brought to the author’s attention that the
former result appears in Leeb [12] and was later surveyed in Graham and Rothschild
[5]. Subsequent proofs have been found by Solecki (unpublished) using ideas from
[20] and also by Sokic ([19, Theorem 2]). It was conjectured that results might travel
both ways through the dictionary theorem: known Ramsey classes would yield new
structures to index indiscernibles; known results on indiscernibles would yield new
Ramsey classes. The author hopes some new example of a Ramsey class may yet
come to light as a result of the dictionary theorem.

In Section 2 we give the basic lemmas around qfi and further develop a notion
of EM-type used in [10]. In the process, we give restatements of certain definitions
from [16] in Definitions 2.1, 2.5, and 2.8 that drop reference to a linear order on
I. The technology of EM-types primarily addresses the question, “What uniform
definable character of an initial, indexed set of parameters may be preserved in an
indiscernible indexed by the same set?” In the technology developed in this section,
there is no use of a linear order on the index structure, I. Though indiscernibles
indexed by unordered I do not exist in all structures M (see [16]), the technical
lemmas of this section are still of some independent interest for studying unordered
indiscernibles in a limited setting.

In Section 3 we prove the main theorem, Theorem 3.12, that in the more general
case of locally finite-linearly ordered-qfi, I -indexed indiscernibles have the mod-
eling property just in case age.I / is a Ramsey class. From this theorem we deduce
the partition result, Corollary 3.17, that age.I0/ is a Ramsey class.

In Section 4 we provide an alternate proof of the result that I0-indexed indis-
cernibles have the modeling property (from [21]) using only a result of [4], The-
orem 3.12, and the technology of EM-types. The arguments in Theorem A.5 are
finitary and can be adapted to a direct proof of Corollary 3.17, modulo a few appli-
cations of compactness.

1.1 Conventions Much of our model-theoretic notation is standard (see Hodges [7]
and Marker [13] for references). For t 2 ¹0; 1º, by 't we mean ' if t D 0, and
:' if t D 1. For an L0-structure I and a sublanguage L� � L0, by IjL� we mean
the reduct of I to L�. By qftpL0

.i1; : : : ; inI I/ we mean the complete quantifier-free
L0-type of .i1; : : : ; in/ in I (if L0 is clear, it is omitted). The complete quantifier-free
type of a substructure of I is the complete quantifier-free type of a tuple that enu-
merates some substructure of I. By Diag.N /, we mean the atomic diagram of N .
By age.I/ we mean the class of all finitely generated substructures of I closed under
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isomorphisms. In this paper, a complete quantifier-free type is always a type in a
finite list of variables.

For a tuple a D .a1; : : : ; am/ and a subsequence � D hi1; : : : ; iki of h1; : : : ; mi,
by a � � we mean .ai1 ; : : : ; aik /. For a subset Y � I and a type �.¹xi W i 2 I º/,
by �j¹xi Wi2Y º we mean the restriction of q to formulas containing variables in
¹xi W i 2 Y º. If a tuple a satisfies a type �.x/ in a structure M, we write a �M � ,
where M is omitted if it is the monster model (see Convention 2.1).

We write x; a; { to denote finite tuples and ˛; ˇ to denote ordinals. The un-
derlying set of a structure I is given by the unscripted letter, I . For a se-
quence � WD h�0; : : : ; �n�1i, we denote the length by `.�/ D n. Given a tuple
a D .a1; : : : ; an/, by .a/i we mean ai and by

S
a we mean ¹ai W 1 � i � nº. We

often abbreviate expressions .ai1 ; : : : ; ain/ by a{ .

2 Basic Notions

The definition for I-indexed indiscernible sets was first presented in [17]. We set our
notation in the following.

Definition 2.1 (Generalized indiscernible set) Fix an L0-structure I and an
L-structure M for some languages L and L0. Let ai be same-length tuples of
parameters from M indexed by the underlying set I of I.

(1) We say that .ai W i 2 I / is an I-indexed indiscernible (set in M) if for all
n � 1, for all sequences i1; : : : ; in, j1; : : : ; jn from I ,

qftpL0

.i1; : : : ; inI I/ D qftpL0

.j1; : : : ; jnI I/

) tpL.ai1 ; : : : ; ain I M/ D tpL.aj1
; : : : ; ajn

I M/:

We omit M where it is clear from context.
(2) In the case where the L0-structure I is clear from context, we say that the

I-indexed indiscernible .ai W i 2 I / is L0-generalized indiscernible.
(3) Given a sublanguage L� � L0, we say that the L0-generalized indiscernible

set .ai W i 2 I / is L�-generalized indiscernible if it is an IjL�-indexed
indiscernible.

(4) A generalized indiscernible (set) is an I -indexed set .ai W i 2 I / for some
set I that is an I-indexed indiscernible for some choice of structure I on I .

We will always assume that generalized indiscernible sets are nontrivial, that is,
that whenever i ¤ j , ai ¤ aj .

Notation 2.2 For convenience, I as in Definition 2.1 is referred to as the index
model and L0 is the index language; M is referred to as the target model and L is the
target language. In this paper, parameters .ai W i 2 I / in M are always assumed to
be tuples such that `.ai / D `.aj / for all i; j , and without loss of generality we often
assume that `.ai / D 1.

Convention 2.1 For our purposes, there is no loss in generality to assume that we
are working not just in a target model M but in a monster model M of Th.M/. From
now on we write � ' for �M '. We will reserve L for the language of this model.
Parameters with no identified location come from M.

We define certain technical restrictions on I that we make in this paper and follow
with a proposition.
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Definition 2.3

(1) Say that I has quantifier-free types equivalent to quantifier-free formulas
(qteqf) if for every complete quantifier-free type q.x/ realized in I, there
is a quantifier-free formula �.x/ equivalent to q in I, that is, such that
q.I/ D �.I/.

(2) Say that I is qfi if, for any complete quantifier-free type q.x/ realized in
I, there is a quantifier-free formula �q.x/ such that Th.I/8 [ �q.x/ ` q.x/.

Observation 2.1 If I realizes finitely many quantifier-free n types, for each n,
then it is clear that I is qteqf. For example, if I is a uniformly locally finite
L0-structure where L0 is a finite language, or more specifically, I is an L0-structure
where L0 is a finite relational language, then I is qteqf.

Proposition 1

(1) I is qfi just in case it has qteqf.
(2) In the case that I is a structure in a finite language and is locally finite, then

I is qfi.

Proof (1) If I is qfi, clearly it has qteqf (note that �q 2 q). Suppose
that I has qteqf. Fix a complete quantifier-free type q.x/ realized in I, and
say that it is equivalent to the quantifier-free �q in I. Then, for all  ˛ 2 q,
I � 8x.�q.x/ !  ˛.x//. Thus, Th.I/8 ` 8x.�q.x/ !  ˛.x// and so I is qfi.

(2) This surprisingly helpful observation is surely folklore, but we provide a proof
for completeness. Fix n. We will show that I has qteqf. By assumption, every
n-tuple from I generates a finite substructure of I, and L0 is finite. Thus we may
enumerate the finite L0-structures up to isomorphism type as .Di /i<! (! is not im-
portant here). Let d i be an enumeration of Di ; for each i , say that jDi j D N.i/.
For a particular i , let ˆd i

gr be a formula in variables .x1; : : : ; xN.i//, satisfied by d i

in I, that describes the extensions of the relation symbols on d i , the graphs of the
function symbols on d i , and any equalities or inequalities between constant symbols
and the .d i /j . Clearly such a formula exists as a finite conjunction of literals.

Now given a complete quantifier-free n-type realized in I, q.y1; : : : ; yn/,
there must be some l < ! and some .xij W j � n/ for ij � N.i/ such that
q.xi1 ; : : : ; xin/[¹ˆ

d l
gr º is consistent. But then there are terms �k D �k.xi1 ; : : : ; xin/

such that
q.xi1 ; : : : ; xin/ [ ¹ˆd l

gr º ` .�k D xk/

for all 1 � k � N.i/. Let �k D �k.xi1 ; : : : ; xin Iy1; : : : ; yn/, and substitute �k for
xk in ˆd l

gr to obtain

ˆd l
gr

�
x1; : : : ; xN.i/I �1.y/; : : : ; �N.i/.y/

�
:

The latter is a quantifier-free formula equivalent to q in I. By (1) we are done.

Remark 2.4 Note that for a locally finite structure I, I is qfi just in case for every
complete quantifier-free type q.x/ of a finite substructure of I, there is a quantifier-
free formula �q.x/ such that Th.I/8 [ �q.x/ ` q.x/.

The assumption made on index models I for an I-indexed indiscernible in [17] is
exactly that I has qteqf (equivalently, qfi). The statements of qteqf and qfi
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offer different perspectives on the same condition, and we will use the terms inter-
changeably.

We define what it means for a generalized indiscernible to inherit the local struc-
ture of a set of parameters. In this definition, the parameters and the indiscernible
need not be indexed by the same structure, only by structures in the same language.
In Ziegler [24] the following notion is named lokal wie. The same notion is referred
to as based on in [10], [16], and Simon [18]. Below we promote a synthesis of the
two names.

Definition 2.5 (Locally based on) Fix I, J L0-structures and a sublanguage
L� � L0. Fix a set of parameters I WD .ai W i 2 I /.

(1) We say that the J -indexed set .bi W i 2 J / is L�-locally based on the ai

(L�-locally based on I) if for any finite set of L-formulas, �, and for any
finite tuple .t1; : : : ; tn/ from J , there exists a tuple .s1; : : : ; sn/ from I such
that

qftpL�

. t I J/ D qftpL�

.sI I/;

and
tp�.bt IM/ D tp�.asIM/:

We abbreviate this condition by “the bi are L�-locally based on the ai .”
(2) If the J -indexed set .bi W i 2 J / is L0-locally based on the ai , we omit

mention of L0.

Observation 2.2 It is easy to see that the property of one indexed set being lo-
cally based on another is transitive. Fix L0-structures I;J;J0, and fix parameters
.ai W i 2 I /, .bj W j 2 J /, and W WD .ck W k 2 J 0/. Then, if W is locally based
on the bi , and the bi are locally based on the ai , we may conclude that W is locally
based on the ai . In fact, we may further conclude that age.J0/ � age.J/ � age.I/
by focusing attention on the complete quantifier-free types of substructures.

Definition 2.6 Fix languagesL� � L0. Given anL0-structure I and an I -indexed
set I WD .ai W i 2 I /, define the (L�-)EM-type of I to be:

EMtpL�.I/.xi W i 2 I /

D
®
 .xi1 ; : : : ; xin/ W  from L; i1; : : : ; in from I;

and for any .j1; : : : ; jn/ from I such that

qftpL�

.j1; : : : ; jnI I/ D qftpL�

.i1; : : : ; inI I/;�  .aj1
; : : : ; ajn

/
¯
:

If L� D L0, we may omit mention of it.

Remark 2.7 The specific case of the above definition for I a linear order is called
an “EM-type” in Tent and Ziegler [22]. This notation is not to be confused with
EM(I;ˆ), which in Baldwin [1] and Shelah [17] refers to a certain kind of structure.
The relevant similarity is that ˆ.xi W i 2 I / is proper for .I;Th.M// in the sense of
[1] and [17] if it is the set of formulas satisfied in M by an I-indexed indiscernible.
By Proposition 2(3), given an L0-structure I, L0-EM-types indexed by I may always
be extended to a set ˆ proper for .I;Th.M//, provided that I-indexed indiscernible
sets have the modeling property.

The following notation for the type of an indiscernible follows [13]. In the classical
case of order indiscernibles, where the index structure is a linear order of the form
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.N; </, there is a canonical orientation of the variables in any quantifier-free n-type
(e.g., q.x1; : : : ; xn/, where x1 < � � � < xn). Here we deal with an arbitrary structure
I where there may not be such a canonical orientation, and so we define the type
of an indiscernible to include all orientations of variables in all types. From this
perspective, the use of canonical orientations of variables is something of an aesthetic
device for special cases.

Definition 2.8 Given an I-indexed indiscernible set I WD .ai W i 2 I /, define
(1) for any complete quantifier-free type �.v1; : : : ; vn/ realized in I:
p�.I/ D

®
 .x1; : : : ; xn/ W  from L and there exists i1; : : : ; in

from I such that .i1; : : : ; in/ �I � and �  .ai1 ; : : : ; ain/
¯
I

(2)
tp.I/ WD

˝
p�.I/ W n < !; � is a complete quantifier-free
n-type realized in I

˛
:

Observation 2.3 Let �.v1; : : : ; vn/ be the complete quantifier-free type of a
finite substructure of I in some enumeration. Suppose there is a permutation � of
¹1; : : : ; nº such that realizations of �.v1; : : : ; vn/, �� WD �.v�.1/; : : : ; v�.n// are iso-
morphic as tuples. If I is an I-indexed indiscernible set, then the following informa-
tion will be contained in tp.I/ W  .x1; : : : ; xn/ 2 p�.I/ ,  .x1; : : : ; xn/ 2 p�� .I/.

Remark 2.9 The set p�.I/ does not seem terribly useful for a set of parameters I
if I is not generalized indiscernible, as p�.I/ may not be a consistent type. The type
EMtpL0.I/ is always a consistent type, though it may be trivial.

The following definitions are for Proposition 2.

Definition 2.10 Fix an L0-structure I and a language L. We define Ind.I;L/ to
be
Ind.I;L/.xi W i 2 I / WD

®
'.xi1 ; : : : ; xin/ ! '.xj1

; : : : ; xjn
/ W n < !; {; | from I;

qftpL0

.{I I/ D qftpL0

.| I I/; '.x1; : : : ; xn/ 2 L
¯
:

Definition 2.11 Let �.xi W i 2 I / be an L-type, and let U D .ai W i 2 I / be
an I -indexed set of parameters in M. We say that � is finitely satisfiable in U if for
every finite I0 � I , there is a J0 � I , a bijection f W I0 ! J0, and an enumeration
{ of I0 such that qftpL0

.{I I/ D qftpL0

.f .{/I I/ and .af .i/ W i 2 I0/ � �j¹xi Wi2I0º.

Observation 2.4 If I and J are L0-structures with the same age, then they realize
the same complete quantifier-free types. Suppose that { from I realizes a complete
quantifier-free type �.v1; : : : ; vn/. Since I and J have the same age, the substructure
of I generated by { is isomorphic to some substructure of J. An isomorphism taking
one substructure to the other takes { to a tuple | from J satisfying the same complete
quantifier-free type.

In the next proposition we detail how two sets of parameters indexed byL0-structures
may interact by way of EM-type, tp, and the property of being locally based on.
These sets of parameters are indexed by sets I; J , and the parameters may or may not
be indiscernible according to the intended structures I;J on I; J . Table 1 illustrates
the roles of the different bold-face letters.
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Table 1 Indexed sets used in Proposition 2.

Indexing set I=J-indexed indiscernible set I=J -indexed set
I I D .ci /i ; W D .di /i U D .ai /i ; V
J J D .bi /i T D .ei /i

Proposition 2 Fix an L0-structure I, any I -indexed set of parameters U D .ai W

i 2 I / (possibly indiscernible), and an I-indexed indiscernible set I D .ci W i 2 I /.
Let J be an L0-structure with the same age as I, and let J WD .bi W i 2 J / be any
J-indexed indiscernible set. Assume that I � J is a substructure in items (3), (7),
and (8).

(1) For any complete quantifier-free type � realized in J, if p�.I/ � p�.J/, then
p�.J/ � p�.I/.

(2) [Two sets of indiscernibles] J is locally based on the ci just in case
tp.I/ D tp.J/.

(3) [Two sets of parameters] A J -indexed set of parameters T D .ei W i 2 J / is
locally based on the ai just in case EMtpL0.T/ � EMtpL0.U/.

(4) For an I -indexed set of parameters V, V � EMtpL0.U/ if and only if
EMtpL0.V/ � EMtpL0.U/.

(5) For an I-indexed indiscernible set W WD .di W i 2 I /, tp.W/ D tp.I/ just
in case W � EMtpL0.I/, just in case EMtpL0.W/ D EMtpL0.I/.

(6) If Ind.I; L/ is finitely satisfiable in U, then there is an I-indexed indis-
cernible W WD .di W i 2 I / locally based on the ai .

(7) There is a J -indexed set of parameters T D .ei W i 2 J / such that
EMtpL0.U/ � EMtpL0.T/.

(8) Suppose that T is any J -indexed set of parameters, and L� � L0. If
EMtpL0.U/ � EMtpL0.T/, then EMtpL�.U/ � EMtpL�.T/.

Proof

(1) Suppose that p�.I/ � p�.J/. Let '.x/ 2 p�.J/. Assume, for contradiction,
that there is no tuple from I witnessing that ' 2 p�.I/. Then there is a tuple
from I that witnesses that .:'/ 2 p�.I/, by Observation 2.4 and the fact
that I and J have the same age. Since J is indiscernible and '.x/ 2 p�.J/,
in fact for all | from J satisfying �, � '.b| /, and so it is not possible that
.:'/ 2 p�.J/, as our assumption would have us conclude.

(2) Suppose that J is locally based on the ci . Fix a complete quantifier-free
type �.v/ realized in J. By (1), we need only show that p�.I/ � p�.J/
to show that tp.I/ D tp.J/. Suppose that some tuple from I witnesses
that '.x/ 2 p�.I/. Then by indiscernibility, every tuple { from I satisfy-
ing � is witness to � '.c{/. By the property of being locally based on, it
would be impossible for a tuple | from J satisfying �.v/ to have � :'.b| /.
Thus all tuples | from J satisfying � (and there is at least one) witness that
' 2 p�.J/.

The other direction follows from the technique in (3) for representing
�-types as formulas.

(3) Suppose that T is locally based on the ai , and fix '.xi1 ; : : : ; xin/ 2

EMtpL0.U/. Let { WD .i1; : : : ; in/. If '.xi1 ; : : : ; xin/ … EMtpL0.T/,
then � :'.e| / for some | from J satisfying the same quantifier-free type
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as {. By assumption, there exists {0 from I satisfying the same quantifier-free
type as | and � :'.a{0/. But the condition '.xi1 ; : : : ; xin/ 2 EMtpL0.U/
implies that such an {0 cannot exist.

Suppose that EMtpL0.T/ � EMtpL0.U/. Fix a finite � � L and any e|

from T. Let | WD .j1; : : : ; jn/. For contradiction, suppose that
no { exists in I; with the same quantifier-free type as |
and such that a{ �� e| : (1)

Let ' be the conjunction of positive and negative instances of formu-
las from � satisfied by e| . So � '.e| /. By equation (1), for arbitrary
{ D .i1; : : : ; in/ from I with the same quantifier-free type as | , � :'.a{/.
Thus :'.xi1 ; : : : ; xin/ 2 EMtpL0.U/ � EMtpL0.T/. But then since | satis-
fies the same quantifier-free type as {, � :'.e| /, which is a contradiction.

(4) This is clear.
(5) This follows because the indiscernibility assumption conflates the “there ex-

ists” condition in tp.I/ with the “for all” condition in EMtpL0.I/. We use
(2) and (3) to conclude that tp.W/ D tp.I/ , EMtpL0.W/ � EMtpL0.I/.
However, the first condition is symmetric and W, I are both I-indexed indis-
cernible sets, so we may substitute EMtpL0.W/ D EMtpL0.I/ for the second
condition. To obtain the equivalence with W � EMtpL0.I/, use (4).

(6) First observe that if �.xi W i 2 I / is finitely satisfiable in U, then
� [ EMtpL0.U/ is satisfiable. So there exists W satisfying Ind.I; L/ [

EMtpL0.U/. Thus W is generalized indiscernible and W � EMtpL0.U/. By
(3) and (4), W is locally based on the ai .

(7) We obtain T D .ei W i 2 J / as a realization of the type
�.xj W j 2 J /

D
®
'.xj1

; : : : ; xjn
/ W | from J such that for some { from I with

qftpL0

.| I J/ D qftpL0

.{I I/; '.xi1 ; : : : ; xin/ 2 EMtpL0.U/
¯
:

But this type is clearly finitely satisfiable in U, as I and J have the same
age.

(8) This is clear, as a union of quantifier-free L0-types is equivalent to each
quantifier-free L�-type.

For an L0-structure I, if I-indexed indiscernibles have the modeling property, we
may find J-indexed indiscernibles locally based on an I-indexed set of parameters,
for anyL0-structure J with age.J/ � age.I/, as is observed in [24] and [16] (equiva-
lently, if every complete quantifier-free type realized in J is realized in I). We prove
a weaker result below, for clarity. The term “stretching” is well-known terminology
in the linear order case (see Hodges [7] and Baldwin [1]).

Definition 2.12 Fix L0-structures I and J such that age.J/ D age.I/. Given
an I-indexed indiscernible I D .ai W i 2 I /, we say that a J-indexed indiscernible
J D .bi W i 2 J / is a stretching of I onto J if tp.I/ D tp.J/.

The lemma below is only a slight generalization of [17, Chapter VII, Lemma 2.2] in
that the qteqf hypothesis is not needed.

Lemma 2.13 For any L0-structures I and J such that age.J/ D age.I/ and
I-indexed indiscernible I D .ai W i 2 I /, there is a stretching of I onto J.
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Proof Fix I D .ai W i 2 I /, I, J as above. Define � to be the type

�.xs W s 2 J / WD
®
'.xs1

; : : : ; xsn
/ W .s1; : : : ; sn/ from J; �.v1; : : : ; vn/ is a

complete quantifier-free type in I; qftp.s1; : : : ; snI J/ D �;

and '.x1; : : : ; xn/ 2 p�.I/
¯
:

Claim 2.14 Any realization J D .bi W i 2 J / of � will be a stretching of I onto J.

Proof Let J � � . By Observation 2.4, I and J realize the same complete
quantifier-free types. By Proposition 2(1), to see that tp.I/ D tp.J/ holds we need
only show that p�.I/ � p�.J/ for an arbitrary complete quantifier-free type �
realized in J. Note that any formula '.x/ in p�.I/ will automatically be in p�.J/,
by definition of � . A realization of � is automatically J-indexed indiscernible by
the fact that tp.I/ D tp.J/ and that I;J realize the same complete quantifier-free
types.

To see that � is finitely satisfiable in M, take a finite subset �0 � � . Let
¹jk W k � N º list all the members of J mentioned in any formula in �0. Let
B be the substructure of J generated by ¹jk W k � N º. By assumption, there is
a substructure A of I isomorphic to B , by some isomorphism f W B ! A. Then
.f .jk//k�N has the same complete quantifier-free type as .jk/k�n and the tuple
.af .jk/ W k � N/ works to satisfy �0.xj0

; : : : ; xjN
/, by generalized indiscernibility

of I.

3 Modeling Property and Ramsey Classes

In applications one looks for I-indexed indiscernibles to have the modeling property,
meaning that I-indexed indiscernible sets can be produced in the monster model of
any theory so as to inherit the local structure of an initial I -indexed set of parameters.

Definition 3.1 (Modeling property) Fix an L0-structure I. We say that I-indexed
indiscernibles have the modeling property if given any parameters .ai W i 2 I /

in the monster model of some theory, M, there exists an I-indexed indiscernible
.bi W i 2 I / in M locally based on the ai .

We repeat definitions for Ramsey classes given in Kechris, Pestov, and Todorcevic
[8] and Nešetřil [14].

Definition 3.2 Define an A-substructure of C to be a substructure A0 � C iso-
morphic to A where we do not reference a particular enumeration of A0.

We refer to the set of A-substructures of C as
�

C
A

�
.

Remark 3.3 We may think of an A-substructure of C as the range of an embed-
ding e W A ! C . If A has no nontrivial automorphisms, then A-substructures may
be identified with embeddings of A in C .

Definition 3.4 For an integer k > 0, by a k-coloring of
�

C
A

�
we mean a function

f W
�

C
A

�
! �, where � is some set of size k (typically � WD ¹0; : : : ; k � 1º).

Definition 3.5 Fix a class U of L0-structures, for some language L0. Let A;B;C
be structures in U , and let k be some positive integer.



438 Lynn Scow

(1) By
C ! .B/Ak

we mean that for all k-colorings f of
�

C
A

�
, there is a B 0 � C , where B 0 is

L0-isomorphic to B and the restricted map, f �
�

B0

A

�
, is constant.

(2) If, for a particular coloring f W
�

C
A

�
! k we have a B 0 � C such that

f �
�

B0

A

�
is constant, we say thatB 0 is homogeneous for this coloring (homo-

geneous for f ).

Definition 3.6 Let U be a class of finiteL0-structures, for some languageL0. The
class U is a Ramsey class if for any A;B 2 U and positive integer k, there is a C in
U such that C ! .B/A

k
.

Remark 3.7 In the case where L0 contains a linear ordering, coloring substruc-
tures A � C is equivalent to coloring embeddings of A into C . It is observed in [14]
that if we color embeddings, we can never find homogeneous B � C containing A,
if A has a nontrivial automorphism and we color the embedded copies of A in C dif-
ferent colors. If I-indexed indiscernibles have the modeling property, then because
of the case of M a linear order, there cannot exist a finite substructure A � I with
a nontrivial automorphism (see Observation 2.3). The example of this phenomenon
with I an unordered symmetric graph is worked out in [16].

We want some additional notation for the function symbols case. For the rest of this
section we work with index structures I that are linearly ordered by some relation,<.
By increasing we will always mean <I-increasing.

Definition 3.8 For I locally finite and linearly ordered by <, define cl.�/ on I to
take finite tuples a in increasing enumeration in I to the smallest substructure of I

containing a, also listed in increasing enumeration.

Remark 3.9 In Definition 3.8, cl.a/ is a finite, increasing tuple in I.

Observation 3.1 Let I be as in Definition 3.8. For a finite subset A � I , let
C.A/ WD

S
cl.a/, where a lists A in increasing order. Then C.�/ defines a closure

property on finite subsets A;B � I ; that is, A � C.A/, C.C.A// D C.A/, and if
A � B , then C.A/ � C.B/.

Remark 3.10 Our use of cl.�/ in the next theorem and also in Corollary A.3 is
quite similar to the technique of the strong-subtree envelopes in Todorcevic [23, Sec-
tion 6.2].

The next theorem uses some additional notation.

Definition 3.11 Fix a structure I linearly ordered by a relation <. Fix a finite
tuple b from I and a finite subset A � I .

(1) By pb.x/ we mean the complete quantifier-free type of b in I.
(2) By pA.x/ we mean pa.x/, where a is A listed in increasing enumeration.
(3) We say that b is an increasing copy of A if the substructure B of I on

S
b

is isomorphic to A.
(4) Fix a finite tuple i from A (i.e.,

S
{ � A), and let a list A in <I-increasing

order. We say that i isolates � in A if a � � D i .

We give the main theorem.
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Theorem 3.12 Suppose that I is a qfi, locally finite structure in a language L0

with a relation < linearly ordering I . Then I-indexed indiscernible sets have the
modeling property just in case age.I/ is a Ramsey class.

Proof (: Here we use the locally finite and ordered hypotheses. Suppose that
age.I/ is a Ramsey class. Fix an initial set of parameters I WD .ai W i 2 I / in M. We
wish to find an I-indexed indiscernible J WD .bj W j 2 I/ locally based on the ai .
By Proposition 2(6), it suffices to show that Ind.I; L/ is finitely satisfiable in I.

Let � be a complete quantifier-free n-type realized by some tuple { in I. Let A be
the substructure generated by { in I (say A has size N ). There is some sequence �
so that { isolates � in A. Fix this � and call it �� . If | �I �,

S
cl.|/ is isomorphic

to A by the homomorphism induced by | 7! {. If b is an increasing copy of A, then
b � �� �I � and cl.b � ��/ D b. Note that for realizations | �I �, cl.|/ � �� D | ;
thus for |; | 0 �I �, cl.|/ D cl.| 0/ ) | D | 0. So we have shown that �� sets up a
correspondence

| 7! cl.|/ (2)

between realizations of � in I and copies of A in I.
Now let �0 � � be a finite subset. �0 mentions only finitely many formu-

las ¹'1; : : : ; 'lº DW �. We may assume that the variables occurring in �0 are
xp1

; : : : ; xpr
for some increasing tuple p in I. Let B WD

S
cl.p1; : : : ; pr /, and

let p isolate the sequence �B in B . Let �1; : : : ; �s be the complete quantifier-free
types realized in the set ¹p1; : : : ; prº. It suffices to find a copy B 0 of B in I such that

for all 1 � t � s; for all realizations |; | 0 of �t in B 0; a| �� a| 0 (3)

since then b
0
� �B � �0, for b

0
the increasing enumeration of B 0.

The argument in [16, Claim 4.16] shows that we only need to accomplish equation
(3) for one �t , as the rest follows by induction. So fix a complete quantifier-free
n-type �t realized in I. For some choice of { �I �t , let

S
cl.{/ DW E. Linearly

order the finitely many .�; n/-types, and suppose that there are K of them, for some
finite K. Define a K-coloring on all copies E 0 of E in I: E 0 gets the kth color if its
increasing enumeration e0 has the property that e0 � ��t

DW | indexes a| with the
kth �-type. By the assumption of a Ramsey class, there is a copy Bt of B in I that
is homogeneous for this coloring. Since all copies E 0 of E in Bt get the same color,
by definition of the coloring, there is a .�; n/-type �.x/, and all | �I � such that
| D e0 � ��t

for e0 the increasing enumeration of some E 0 Š E in Bt are such that
a| � � . But every realization of � in Bt is such a | by equation (2) and the fact thatS

cl.�/ acts as a closure relation under which Bt is closed.

Proof ): Let K WD age.I/. Suppose that I-indexed indiscernible sets have the
modeling property. We want to show that age.I/ is a Ramsey class. We adapt the
well-known technique of compactness in partition results to our context.

Claim 3.13 Let I be qfi, locally finite, and linearly ordered by one of its rela-
tions. If for all k < ! and A;B 2 K: I ! .B/A

k
, then K is a Ramsey class.

Proof Let T WD Th.I/, k;A;B; I as above, and suppose that A;B have cardinal-
ity n;N , respectively. Let LC WD L0 [ ¹P0; : : : ; Pk�1º, and consider the follow-
ing LC-theory S . For the complete quantifier-free types pD for finite substructures
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D � I, substitute a formula equivalent modulo T8, using the qfi hypothesis:

S WD T8 [ Diag.I/ [

°
8x

�
pA.x/ !

_
i<k

Pi .x/
�±

[
®
:9x

�
Pi .x/ ^ Pj .x/

�
W i ¤ j < k

¯
[

°
:9x

�
pB.x/

^

_
s<k

� ^
1�i1<���<in�N

�
pA.xi1 ; : : : ; xin/ ! Ps.xi1 ; : : : ; xin/

���±
:

If we assume that no C exists in K such that C ! .B/A
k

, then S is finitely sat-
isfiable, by taking finitely generated substructures of I and a bad coloring on such
a substructure in order to interpret the new predicates, Pi . Note that the formulas
equivalent to complete quantifier-free types in I are equivalent to the same types in
models of T8 (in particular, in substructures of I). By compactness, S is satisfied
by some structure J whose restriction to the constants in Diag.I/ is a structure I�

whose L0-reduct is isomorphic to I by some map f W I � ! I . There is a col-
oring by the P J

i of the A-substructures of J for which there is no copy of B in J

homogeneous for this coloring. If we restrict this coloring to
�

I�

A

�
, there is still no

homogeneous copy of B . By standard methods of reducts and expansions, the map
f yields a k-coloring of the A-substructures of I for which there is no homogeneous
copy of B .

Now fix I as in the statement of the theorem. The proof continues as in [16]; we
repeat a shortened proof here for completeness. At this point the qfi hypothesis is
no longer needed.
Claim 3.14 Fix A;B 2 K and k < !. Then I ! .B/A

k
.

Proof Fix a k-coloring of the A-substructures of I, g W
�

I
A

�
! ¹1; : : : ; kº. Since I

is linearly ordered, we can understand g as being defined on n-tuples a �I pA. We
need to find B 0 � I isomorphic to B , homogeneous for this coloring.

Let A have size n. Fix a language L D ¹R1; : : : ; Rkº with k n-ary relations, and
construct an L-structure M as follows:

(1) jMj D I ;
(2) the relation Rs , 1 � s � k, is interpreted as follows:

For i1; : : : ; in from jMj,

RM
s .i1; : : : ; in/ ,

(a) { �I pA, and
(b) g..i1; : : : ; in// D s.

Let .ai W i 2 I / be the I -indexed set in M such that ai D i . We work in a monster
model M of Th.M/. By assumption, we can find an L0-generalized indiscernible
.bj W j 2 I / in M locally based on the ai . Since K D age.I/, we may find a copy of
B in I,D0. By assumption,D0 is a finite structure. EnumerateD0 in<D0 -increasing
order as .jk W k � N/. By the modeling property, for � WD L, there is some
i1; : : : ; iN such that

qftpL0

.i1; : : : ; iN I I/ D qftpL0

.j1; : : : ; jN I I/; and

tp�.bj1
; : : : ; bjN

I M1/ D tp�.ai1 ; : : : ; aiN I M/:
(4)
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Subclaim 3.15 D WD .ik W k � N/ � I is a copy of B in I that is homogeneous
for the coloring, g.

Proof D Š D0, as qftpL0

.{/ D qftpL0

.|/ and D;D0 are structures. So D is a
copy of B , and it remains to show thatD is homogeneous for the coloring, g. The bi

are generalized indiscernible, so there is some choice of l0 so that for any increasing
copy c0 of A in D0, � Rl0

.c0/. We show that all copies of A in D are colored l0
under g.

Let c be any increasing copy of A in D. There is some sequence � so that c
isolates � in {. By the first part of equation (4), for c0

WD | � � , c0 is an increasing
copy of A. Thus � Rl0

.c0/. By the second part of equation (4), � Rl0
.c/, that is,

g.c/ D l0.

3.1 Applications We make use of Li -generalized indiscernible sets for i D s; 1; 2,
where the languages Li are defined as follows.

Definition 3.16

(1) We fix languages
Ls D

®
E;^; <lex; .Pn/n<!

¯
; L1 D ¹E;^; <lex; <lenº;

L0 D ¹E;^; <lexº:

(2) We let Is; I1; I0 be the intended interpretations of Ls; L1; L0, respectively,
on !<! : E is interpreted as the partial tree-order; ^ as the meet function
in this order; <lex as the lexicographic ordering on sequences extending the
partial tree-order; Pn to hold of � just in case `.�/ D n; � <len � to hold just
in case `.�/ < `.�/.

Corollary 3.17 age.I0/ is a Ramsey class.

Proof I0-indexed indiscernible sets have the modeling property by a result from
[21]. For completeness, an alternate proof of this result is given as Theorem A.5.

It remains to verify the conditions of Theorem 3.12. Since I0 is locally finite in
a finite language, I0 is qfi by Proposition 1. Thus by Theorem 3.12, age.I0/ is a
Ramsey class.

Corollary 3.18 ([4]) We have that age.Is/ is a Ramsey class.

Proof In [10] and [21], it was concluded that Is-indexed indiscernible sets have
the modeling property, relying on a key result from [17].1 It remains to verify the
conditions in Theorem 3.12.

Note that I0 D Is � ¹E;^; <lexº. In Corollary 3.17 we argue that I0 is qfi by
way of Remark 2.4. Let Ts be the theory of Is , and let T0 be the theory of I0.

Thus, for any complete quantifier-free .L0; m/-type of a substructure of I0, p,
there exists an .L0; m/-formula �p such that

.T0/8 [
®
�p.x/

¯
` p.x/: (5)

For any complete quantifier-free .Ls; m/-type q.x/ realized in Is , there is some p0

so that p0 D q � L0. Thus, for some choice of tl 2 ¹0; 1º for l < !:
p0.x/ [

®
Pl .xi /

tl W i < m; l < !
¯

` q.x/: (6)
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Using equation (5), we have

.Ts/8 [
®
�p0

.x/
¯

[
®
Pl .xi /

tl W i < m; l < !
¯

` q.x/: (7)

We use the fact that, for all i ¤ k < !,

.Ts/8 `
�
8y:

�
Pi .y/ ^ Pk.y/

��
; (8)

and that any complete quantifier-free type q realized in Is contains at least one
Pk.xj / for every j < m (though in other models of Ts this may not be the case).
Thus there exist i0; : : : ; im�1 < ! such that,

.Ts/8 [

°
�p0

.x/ ^

� ^
j <m

Pij .xj /
�±

` q.x/: (9)

Thus we have shown that Is is qfi. By Theorem 3.12, age.Is/ is a Ramsey
class.

We give an additional remark in connection with [21, Example 17]. Here the authors
provide the example of It WD I0 � ¹E; <lexº and show that It -indexed indiscernibles
do not have the modeling property. We observe that this fact is also a corollary of
Theorem 3.12. Let Lt WD ¹E; <lexº.

Corollary 3.19 ([21, Example 17]) It -indexed indiscernibles do not have the mod-
eling property.

Proof Let Kt WD age.It /. By Theorem 3.12, It -indexed indiscernibles have the
modeling property just in case Kt is a Ramsey class, by a quick verification of the
conditions. By [14, Theorem 4.2(i)] and the presence of a linear ordering, if Kt

is a Ramsey class, then Kt has the amalgamation property. However, an example
analyzed in [21, Example 17] provides the counterexample to amalgamation. Let A
be the finite structure given by a0 E a1; a2; a3 and a0 <lex a1 <lex a2 <lex a3.
Let Bi be the structures below, where a diagonal edge between nodes denotes that
the bottom node is E-related to the top node, the absence of an edge between nodes
denotes no E-relation, and <lex both refines E and obeys the rule that x <lex y if x
is to the left of y on the page. Then A Lt -embeds into B1; B2 by ai 7! bi ; ci (see
Figure 1).

Suppose there exists some amalgam C for .A;B1; B2/. By a small abuse of
notation, we use the labels “bi ; ci ,” 0 � i � 4, to refer to the images of these
points in C . First, observe that b4; c4 in C must be E-comparable (by inspec-
tion of Kt ), as both points are E-predecessors of the same point, b2.D c2/. If
b4 E c4, then b4 E c4 E c3 D b3, contradicting the data in B1. If c4 E b4,

Figure 1 B1 and B2 have no Lt -amalgam over A.
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then c4 E b4 E b1 D c1, contradicting the data in B2. Thus, no such amalgam
exists.

Appendix

As an application of EM-types, we give an alternate proof that I0-indexed indis-
cernible sets have the modeling property. This proof eschews [17, Appendix 2.6] in
favor of Lemma A.2 below, whose statement is taken from Nguyen [15], where the
original result is attributed to [4].

First we clarify the notion of height we are using.

Definition A.1 Fix a finite tree T partially ordered by E, and let � 2 T .
(1) We say that ht.�/ D j¹� W � E �; � ¤ �ºj.
(2) We say that ht.T / D max¹ht.�/ W � 2 T º.

Lemma A.2 ([15, Section 2.2, Lemma 2]) Fix m 2 !, and let Km
u be the class

of all finite Lt -substructures of !�m of height m, all of whose maximal nodes have
height m.2 Then Km

u is a Ramsey class.

Corollary A.3 Ks is a Ramsey class.

Proof The idea is simple, but we fill in the steps. FixDt in Km
u . We may interpret

the .Pn/n naturally on Dt so that for � 2 Dt , ht.�/ D n $ Pn.�/, and we may
interpret the meet function ^ on Dt in the usual way, as it is definable from E. In
this way we obtain a naturalLs-expansion ofDt , which we call exp.Dt /. In fact any
Lt -embedding f W At ! Bt for At ; Bt 2 Km

u naturally induces an Ls-embedding
Nf W exp.At / ! exp.Bt /.

Fix D 2 Ks such that n is maximal so that PD
n ¤ ;, and let n � m. We

define an Lt -structure from D uniquely up to Lt -isomorphism. Let k be least so
that the Ls-substructure Em � Is on the set k�m contains a copy of D, and fix
one such copy D0 � Em. Suppose that D0 has i -many E-maximal elements, and
choose a size-i subset Y of km that E-majorizes these maximal elements. Let
fillm.D

0/ be the Lt -reduct in Em on the set ¹� 2 k�m W .9x 2 Y /� E xº.
Then fillm.D

0/ 2 Km
u . There is a first-order Lt -formula ‰ D ‰D that carves

out D0, that is, ‰.fillm.D
0// D D0. For an Lt -structure Dt ŠLt

fillm.D
0/,

let S.Dt / be defined as the Ls-substructure of exp.Dt / defined on the set ‰.Dt /.
Then S.Dt / ŠLs

D0.
Fix A;B in Ks and k 2 !. Let m be maximal so that PB

m is nonempty. By
Lemma A.2, we may choose Ct 2 Km

u so that

Ct !
�
fillm.B/

�fillm.A/

k
: (10)

Let C WD exp.Ct /.

Claim A.4 C ! .B/A
k

.

Proof Fix a coloring c W
�

C
A

�
! k. We convert c into a coloring c0 W

�
Ct

fillm.A/

�
!

k as follows. Given At a copy of fillm.A/ in Ct , let c0.At / WD c.S.At // (by
the above, S.At / ŠLs

A/. By equation (10), there is a copy Bt of fillm.B/ in Ct

homogeneous for this coloring. Then S.Bt / is a copy of B in C that is homogeneous
for c, as every copy of A in S.Bt / extends to a copy of At in Bt .
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The use of EM-types and Corollary A.3 allows us to finitize the proof of Theorem A.5
below, up to some applications of compactness. All the other techniques and ideas
below are not new, and may be seen in [17] and [10] as well as the original argument
in [21].

Theorem A.5 ([21, Theorem 16]) I0-indexed indiscernible sets have the modeling
property.

Proof In the following, numbers (n) refer to items from Proposition 2. Let
I WD .ai W i 2 !<!/ be a set of parameters in a monster model M of some theory.
We must show that there is an I0-indexed indiscernible set L0-locally based on the
ai .
Step 1. By Corollary A.3 and Theorem 3.12, there is an Is-indexed indiscernible
T WD .di W i 2 !<!/ that is Ls-locally based on the ai . By (3), EMtpLs

.T/ �

EMtpLs
.I/, so by (8),

EMtpL0
.T/ � EMtpL0

.I/: (11)
Step 2. We aim to find an I1-indexed indiscernible U WD .ei W i 2 !<!/ that is
L1-locally based on T. By (6), U may be obtained by the following claim.

Claim A.6 Ind.I1; L/ is finitely satisfiable in T.

Proof Let F1 � Ind.I1; L/ be some finite subset. There is some n so that all vari-
ables occurring in F1 are indexed by nodes in !<n. There is some finite set � � L

such that all formulas occurring in F1 are from �. Let .�i .x0; : : : ; xm�1/ W i < N/

enumerate the quantifier-free L1-types of size-m substructures of !<n, where we
may assume that � is a set of L-formulas in m variables. Because expansions of �i

to complete quantifier-free Ls-types may allow Pk.xi / and Pk.xj / for i ¤ j , we do
some coding. For any function f W m ! m and .j0; : : : ; jm�1/ DW | 2 !m, define

�i
f;| WD �i

[
®
Pjf .0/

.x0/; : : : ; Pjf .m�1/
.xm�1/

¯
: (12)

By Ls-indiscernibility, we know that for any increasing tuple | 2 !m and
f W m ! m, if �i

f;|
is realized in Is , then there is a complete type p in M

such that for any l �Is
�i

f;|
, tp.d l IM/ D p. Enumerate the .�;m/-types in M as

.ıi W 1 � i < K/ for some K 2 !, and fix ı0 WD ;. Let N 0 WD N � mm. Fix an
enumeration ..fˇ ; �ˇ / W ˇ < N 0/ of functions f W m ! m and types � D �i , for
i < N . Let

f W Œ@0�
m

! KN 0

map an m-tuple | 7! ˛, for ˛ < KN 0 if
(1) .sˇ /ˇ<N 0 is the ˛th sequence from KN 0 , and
(2) for all ˇ < N 0, if there exists l from Is satisfying �ˇ

fˇ ;|
, then tp�.d l IM/ D

ısˇ
; otherwise, sˇ D 0.

By Ramsey’s theorem, there is an infinite subset of @0 that is homogeneous for this
coloring. The L1-subtree of I1 obtained by restricting to the levels in this infinite set
indexes a subset of T D .di W i < !<!/, a finite subset of which will satisfy F1.

By (3), EMtpL1
.U/ � EMtpL1

.T/. Thus,

EMtpL0
.U/ �by (8). EMtpL0

.T/ �by equation (11) EMtpL0
.I/: (13)
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Step 3. If we show that Ind.I0; L/ is finitely satisfiable in U, then by (6), there is an
I0-indexed indiscernible J WD .bi W i 2 !<!/ locally based on the ei . By equation
(13) and item (3), the ei are L0-locally based on the ai , so by Observation 2.2, we
are done. It remains to show the following.

Claim A.7 Ind.I0; L/ is finitely satisfiable in U.

Proof A finite subset F0 � Ind.I0; L/ contains only variables indexed by nodes
in !�n for some n. To satisfy F0 in U, it suffices to show that the type of an
L0-generalized indiscernible k-branching tree of height n is satisfiable in U.

We follow [3] to show that there is an L0-embedding of � W k�n ! !<! such
that for all i <lex j , we have �.i/ <len �.j /. We define lm < !; hm W k�m ! !<!

by induction on m:

hi

�
hi

�
D hi; for all i < !;

lm D max
®
`
�
hm.�/

�
C 1 W � 2 k�m

¯
; (14)

hmC1

�
htia�

�
D htia

h0; : : : ; 0i„ ƒ‚ …
.tC1/�lm

ahm.�/:

Define � WD hn. The range of k�n under � is an L1-subtree W � I1, sometimes
called a skew subtree. We know that U is alreadyL1-generalized indiscernible. Since
the L0-type of a tuple in W determines its L1-type in I1, .e�.i/ W i 2 k�n/ is
L0-generalized indiscernible.

Notes

1. By Theorem 3.12, Corollary A.3 presents an alternate route to proof.

2. The latter condition is not entirely explicit in the statement, but appears in the proof and
is intended by the author.
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