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Weak Truth Table Degrees of Structures

David R. Belanger

Abstract We study the weak truth table (wtt) degree spectra of first-order rela-
tional structures. We prove a dichotomy among the possible wtt degree spectra
along the lines of Knight’s upward-closure theorem for Turing degree spectra.
We prove new results contrasting the wtt degree spectra of finite- and infinite-
signature structures. We show that, as a method of defining classes of reals, the
wtt degree spectrum is, except for some trivial cases, strictly more expressive
than the Turing degree spectrum.

1 Introduction

A first-order relational structure, henceforth simply a structure, is a tuple of the form
A D .A; .RA

k
/k2I /, where A is a nonempty set (called the universe of A), I is some

set used for indexing, and each RA
k

is a set of tuples from A of a common arity
ar.Rk/—that is, RA

k
� Aar.Rk/. We are interested in those A for which the universe

A is ! and the indexing set I is either ! or a finite set. Unless otherwise specified, we
assume that I D !. We also assume that the sequence .ar.R0/; ar.R1/; : : :/, called
the signature of A, is computable. By padding with empty relations if necessary, we
make the assumption (convenient in some calculations below) that ar.Rk/ � k=2 for
all k. When I is a finite set, we say that A has finite signature.

We are interested in the computational content of a structure A. To give this a
more precise meaning, we identify A with its atomic diagram D.A/ D ¹hk; Eui W Eu 2

RA
k

º. Since this D.A/ is a set of natural numbers, it can be assigned a degree of
complexity in the usual computability-theoretic sense. Recall that reducibility is a
reflexive, transitive, binary relation �r on 2! . Such a �r induces an equivalence
relation �r on 2! , by A �r B ” ŒA �r B and B �r A�. We let .Dr ;�/

denote the partially ordered structure whose universe is the set of all �r -equivalence
classes, and whose order is induced by �r . The elements of Dr are called r-degrees.
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A structure A is said to have r-degree degr .A/, where

degr .A/ D degr
�
D.A/

�
D

®
B � ! W B �r D.A/

¯
:

In most cases, degr .A/ is not invariant under isomorphism—that is, if B is an iso-
morphic copy of A, it is possible that degr .B/ ¤ degr .A/. Define the r-degree
spectrum of A to be

DgSpr .A/ D
®
b 2 Dr W .9B Š A/

�
degr .B/ D b

�¯
:

In this paper, we concentrate our attention on the cases where �r is either Turing
reducibility (�T ) or weak truth table reducibility (�wtt ). Truth table reducibility
(�t t ) also appears. We assume some familiarity with �T , �wtt , and �t t , and anchor
our notation to texts such as Lerman [10] and Soare [14]. Considerable effort has
already gone into studying DgSpT .A/, and, recently, authors have begun studying
other sorts of degree spectra. For example, Soskov and Soskova [15], [16] have
examined the enumeration degree spectrum DgSpe.A/, and Greenberg and Knight
[5] have lifted the Turing degree spectrum into the setting of higher recursion theory.
Chisholm et al. [2] recently examined the tt and wtt degree spectrum of a relation—a
notion distinct from, but related to, the degree spectrum studied here.

Although our new results concern the wtt degree spectrum, we draw inspiration
from, and analogies with, the past few decades’ research on DgSpT .A/. The reader
can find much more information on DgSpT .A/ gathered in the text of Ash and Knight
[1] and in the shorter survey article of Knight [9].

We begin in Section 1.1 with a discussion of some known theorems about
DgSpT .A/, and their relation to our new results about DgSpwtt .A/. In Sections 2,
3, 5, and 6, we look at these new results and their proofs. The longest of these proofs,
that of Theorem 3.6, comprises Section 4.

1.1 Background and overview We begin with a brief overview of our new results,
together with the questions and the known theorems—mainly about the Turing de-
gree spectrum—that inspired them. We hope that this will, in one swoop, motivate
and expose the work in the rest of the paper. Most of the results in this section are
stated in a simplified or weakened form in order to emphasize the main idea over
the details. In each case we indicate where, in the sections that follow, to find the
stronger version and its proof.

For a fixed reducibility �r , our questions about r-degree spectra fall into one or
more of the following broad classes.

Main questions

I. Given a particular structure A, what can we say about DgSpr .A/?
II. Given a particular class of structures (e.g., the models of some fixed theory),

what can we say about their r-degree spectra?
III. Given a class C � 2! of reals, is it possible to write C D

S
DgSpr .A/ for

some structure A? If so, what more can we say of such an A?

Questions of the third variety give a useful point of comparison between the Turing
and wtt degree spectra, and between these and other methods of defining a class of
reals. (For instance, given a structure A, the collection

S
DgSpwtt .A/ is always a

†
1;A
1 -class.) A good first step in our study of the wtt degree spectrum is to check

that it is not the same object as the Turing degree spectrum. In fact, except for some
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trivial cases, there are strictly more classes of reals that can be defined by a wtt degree
spectrum than by a Turing degree spectrum.

Theorem 1.1

(i) If A is a structure, then either DgSpT .A/ consists of a single Turing degree,
or there is a structure B such that DgSpwtt .B/ coincides with DgSpT .A/ in
the sense that

S
DgSpwtt .B/ D

S
DgSpT .A/. In fact, we may take B to be

a graph.
(ii) There is a structure A with finite signature such that DgSpT .A/ is not a

singleton, and
S

DgSpwtt .A/ ¤
S

DgSpT .A/.
(iii) There is a structure A with finite signature such that DgSpT .A/ is not a

singleton, and
S

DgSpwtt .A/ ¤
S

DgSpT .B/ for any structure B.

Parts (i) and (ii) are immediate from Propositions 6.3 and 6.5 below. Part (iii) can be
deduced from part (ii) and Theorem 1.3 below. The next step is to ask for a charac-
terization of the wtt degree spectra which coincide with a Turing degree spectrum. It
can be more intuitive to frame such questions in terms of classes of degrees, rather
than of reals. We make frequent use of the following definitions.

Definition 1.2 Let C � Dr be a class of r-degrees, and fix a degree a 2 Dr .
Write Dr .�a/ D ¹b 2 Dr W b � aº. We say that C contains the cone above
a if Dr .�a/ � C . We say, on the other hand, that C avoids the cone above a if
Dr .�a/ \ C D ;. A nonempty class C � Dr of r-degrees is called upward closed
if, for any degree a 2 C , the class C contains the cone above a.

The following dichotomy theorem was proved by Knight [8, Theorem 4.1].

Theorem 1.3 (Knight) Let A be any structure. Either DgSpT .A/ is upward
closed, or DgSpT .A/ is a singleton.

We give the original, more detailed formulation, along with a sketch of a proof,
below, as Theorem 2.3. As we will see, DgSpwtt .A/ is a singleton if and only if
DgSpT .A/ is a singleton; as a consequence, any wtt degree spectrum that coincides
with a Turing degree spectrum is itself upward closed. We now present a new di-
chotomy for DgSpwtt .A/, similar to Theorem 1.3, which gives a necessary condition
for the wtt degree spectrum to be upward closed.

Theorem 1.4 Let A be any structure. Either DgSpwtt .A/ contains the cone above
some degree a, or DgSpwtt .A/ avoids the cone above some degree a.

Note that only one of the two alternatives in Theorem 1.4 can hold, since any two
degrees a1; a2 have a common upper bound in the wtt degrees—namely their join
a1 _ a2. Note also that, although Theorem 1.4 could easily be deduced from certain
large cardinal hypotheses,1 we actually prove a stronger result by specifying a bound
on a (see Theorem 3.6 and Corollary 3.7 below) within ZFC.

In Section 3 below we construct a structure A such that DgSpwtt .A/ avoids a
cone but is not a singleton. This shows that Theorem 1.4 cannot, without some extra
conditions, be extended to a perfect analogue of Theorem 1.3. We now suggest some
candidate conditions.

Question 1.5 (a) Is it the case that, if DgSpwtt .A/ is upward closed, thenS
DgSpwtt .A/ D

S
DgSpT .B/ for some B? (b) Is it the case that, if DgSpwtt .A/

contains a cone, then DgSpwtt .A/ is upward closed?
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We answer question (a) in the negative. In fact, it is easy to see from the proof of
Proposition 6.5 below that the DgSpwtt .A/ of Theorem 1.1(ii) and (iii) is upward
closed. Although we do not have a full answer to question (b), we do succeed in find-
ing examples of a structure A for which DgSpwtt .A/ is upward closed. In Section 5
we list some additional conditions on a structure A and give an affirmative answer to
questions (a) and (b) for that A.

Here is another remarkable limitation on the Turing degree spectrum, essentially
proved in Knight [8, Section 1].

Theorem 1.6 (Knight) Suppose that A is a structure, that .en/n2! is a sequence
of Turing degrees, and that DgSpT .A/ �

S
n2! DT .� en/. Then there is an n0 2 !

such that DgSpT .A/ � DT .� en0
/.

One of our new theorems, proved in Section 5 below, gives a similar-looking result
for wtt degree spectra of structures with finite signature.

Theorem 1.7 Suppose that A is a structure with finite signature, that .en/n2! is
a sequence of wtt degrees, and that DgSpwtt .A/ �

S
n2! Dwtt .� en/. Then there

is an n0 2 ! such that en0
D 0.

The most direct analogue of Theorem 1.7 does not hold in the Turing case; for ex-
ample, an early paper of Richter [12] constructs, for each Turing degree a > 0, a
partially ordered set P D .!;�/ such that DgSpT .P / D DT .� a/.

Another known result is that every nonsingleton Turing degree spectrum is the
Turing degree spectrum of a graph. A highly effective construction can be found in
the paper of Hirschfeldt, Khoussainov, Shore, and Slinko [6, Appendix A].

Theorem 1.8 (H–K–S–S) If A is a structure and DgSpT .A/ is not a singleton, then
there is a graph G D .!;EG/ such that DgSpT .G/ D DgSpT .A/.

Deliberately ignoring the singleton case, we say that the theory of graphs is universal
for Turing degree spectra. One might ask whether the theory of graphs is similarly
universal for wtt degree spectra. Sadly, it is not. We can see this by taking a structure
B and a wtt degree a > 0 such that DgSpwtt .B/ � Dwtt .� a/ (a suitable B is
constructed in Proposition 6.2 below) and invoking Theorem 1.7 with en D a for
all n. We leave open the question of whether a suitable analogue can be found when
we consider only structures with finite signature.

Question 1.9 Is there a fixed, finite n 2 ! such that, if A is a structure with
finite signature, then there is a structure B on alphabet .R0; : : : ; Rn�1/ such that
DgSpwtt .B/ D DgSpwtt .A/?

2 Knight’s Dichotomy for Turing Degree Spectra

We have already mentioned, as Theorem 1.3, a result of Knight stating that, for a
structure A, the spectrum DgSpT .A/ is either a singleton or upward closed. Because
it motivates our definitions and results in Section 3, we now give a more detailed
formulation, as Theorem 2.3; and because it serves as a prototype for the proofs of
Lemmas 4.1 and 4.2, we also sketch a proof. The following definitions will be used
frequently.

Notation 2.1

(i) We use the word permutation to mean a bijection from ! to !.
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(ii) Given a set S and a permutation � , we say that � fixes S if � � S D idS .
(iii) Given a permutation � and structures A;B, we write � W A Š B to mean

that � is an isomorphism from A to B.
(iv) Given numbers x; z 2 !, we write Œx; z/ to denote the interval ¹y 2 ! W x �

y < zº. We write Œx;1/ to denote the set ¹y 2 ! W x � yº. Following the
usual convention, each natural number x 2 ! is identified with the interval
Œ0; x/.

Definition 2.2 A structure A is called trivial if there exists a finite set S � ! such
that any permutation � fixing S is an automorphism of A. We say that S witnesses
the triviality of A.

For example, any graph .!;E/ with only finitely (or cofinitely) many edges in E is
trivial. A linear order .!;�/, on the other hand, is never trivial. To see this, given any
finite nonempty set S , choose two distinct elements a; b … S ; then the permutation
which transposes a and b and fixes all other elements is not an automorphism of
.!;�/.

If S is a finite set witnessing the triviality of a structure A, � is a permutation,
and B is the isomorphic copy of A given by � W A Š B, then we can compute the
atomic diagram of B using that of A and the restricted map � � S . Since � � S is
a finite set, this implies that B �T A; a symmetric argument also gives A �T B.
A trivial structure therefore has only a single degree in its Turing degree spectrum.
In particular, it is easy to see that any trivial structure with finite signature has ¹0º as
its Turing degree spectrum.

On the other hand, suppose that A is not trivial. Then we can list (noneffectively)
an infinite collection of pairs ¹¹ai ; biººi , pairwise disjoint, where the transposition
of any ¹ai ; biº is not an automorphism of A. By transposing simultaneously any
nonempty subcollection of these pairs ¹ai ; biº, we again get a permutation which
is not an automorphism of A. Thus there are 2@0 -many different atomic diagrams
of structures isomorphic to A. By the pigeonhole principle, the degree spectrum
DgSpT .A/ has cardinality 2@0 as well.

Therefore, no Turing degree spectrum can have cardinality strictly between 1 and
2@0 : in classifying structures into the trivial and the not trivial, we uncover a signifi-
cant gap among the possible Turing degree spectra. The gap is actually much wider,
however, as Knight showed in [8, Theorem 4.1].

Theorem 2.3 (Knight) If A is a structure, then
(1) A is not trivial if and only if DgSpT .A/ is upward closed in the Turing de-

grees;
(2) A is trivial if and only if DgSpT .A/ is a singleton.

We sketch a proof; for a detailed version, the reader should refer to [8].

Definition 2.4 If A is a structure and X; Y � ! are sets of natural numbers, then
we define the restricted diagram A�XY to be the restriction ofD.A/ to those relations
indexed by X and those elements in Y , that is,

A�XY
�
hk; Eui

�
D

´
D.A/.hk; Eui/ if k 2 X and ui 2 Y for each i;
" otherwise:
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This A �XY is seen as a structure with universe Y and alphabet ¹Ri W i 2 Xº. In
practice, X and Y will usually be initial segments of !. When X contains all of A’s
relations, we sometimes write A�Y for A�XY .

Proof of 2.3 (sketch) We have already established part (2) and the “if” direction of
part (1) through our discussion of the cardinality of DgSpT .A/.

We now show the “only if” direction of part (1). Suppose that A is not trivial, and
fix any set C 2 2! such that C �T A. We exhibit a permutation � such that, if B
is the unique structure with � W A Š B, then B �T C . We get C �T B by coding
the elements of C directly into B; to ensure that C �T B, we build � effectively in
C and use the fact that B �T A ˚ � .

Construction. The permutation � is built computably in C as the pointwise limit
of a sequence .�s/s of permutations, alongside which we build a sequence .ms/s of
natural numbers to act as restraints. Begin with �0 D id! and ms D 0.

At each stage s, suppose that we have already defined �s and ms and that Bs is
the unique structure such that �s W A Š Bs . Because A is not trivial, there is a
permutation � which fixes the interval Œ0;ms/ and which is not an automorphism of
Bs . In fact, it is easy to see that there is such a � fixing Œ0;ms/ [ Œms C k;1/ for
some k. From here it is easy to see that there is a � fixing Œ0;ms/ [ Œms C k;1/

which is not an automorphism of Bs �k
msCk

; choose the least such k.
Make a list .G0; G1; : : : ; Gn�1/ of all possible images of Bs �k

msCk
under a per-

mutation of Œ0;ms C k/ fixing Œ0;ms/. Find the least k� 2 ! such that there exist
i; j < n with Gi �k

�

msCk� and Gj �k�

msCk� unequal, but isomorphic through a permu-
tation fixing Œ0;ms/ [ Œms C k�;1/.

Using some fixed computable enumeration of ordered pairs of finite atomic
diagrams, choose i; j as above with hGi �k�

msCk� ; Gj �k�

msCk�i coming as early
as possible in the enumeration. There exist permutations �0; �1, each fixing
Œ0;ms/ [ Œms C k;1/, such that �0 W Bs �k

msCk
Š Gi and �1 W Bs �k

msCk
Š Gj . If

s … C , let � D �0 ı �s; if s 2 C , let � D �1 ı �s . Find the least x 2 ! such that
�.x/ � ms C k�, and let y D �.x/. Let �s be the permutation which transposes y
and ms C k� and fixes all other elements. Define the next �sC1 by �sC1 D �s ı � ,
and define msC1 D ms C k� C 1. This completes the construction.

Verification. Because at each stage s the functions �0; �1 are permutations fixing
Œ0;ms/ and the bounds .ms/s form an increasing sequence, the limit � is an injective
partial function from ! into !. The final transposition .y;ms C k�/ at each stage
guarantees that � is total and surjective. Hence � is a permutation.

Let B be the unique structure such that � W A Š B. Using knowledge of B,
we can recover the sequence .ms/s and the set C inductively, as follows. Suppose
that .m0; m1; : : : ; ms/ are already known. Find the least k� 2 ! such that there
is a permutation fixing Œ0;ms/ [ Œms C k�;1/ which is not an automorphism of
B �k�

msCk� . This k� is the same as the k� from stage s of the construction. So we
may compute msC1 D ms C k� C 1.

Enumerate all possible images .H0; : : : ;Hn/ of B �k�

msCk� under a permutation
fixing Œ0;ms/ [ Œms C k�;1/, and, within the same fixed computable enumeration
as before, choose the earliest pair hHi ;Hj i withHi ¤ Hj . Then B�k�

msCk� is equal
either to Hi , in which case s … C , or to Hj , in which case s 2 C .
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This result is nice enough, and the construction effective enough, that one might wish
to adapt it to the wtt case. As we have stated in Section 1.1, the most direct possible
analogue—swapping wtt for T in the statement of the theorem—does not hold. Still,
the ideas used in proving Theorem 2.3 are useful in the wtt case. We come back to
this construction in proving Proposition 3.4 and Lemma 4.2 below.

3 A Dichotomy for the wtt Degree Spectrum

What follows will require notation from computability theory. To streamline the
discussion, we fix an enumeration .'e/e of some (but not all) computable functions,
and we introduce a nonstandard symbol Ô

e .
Definition 3.1

(i) We let .ˆe/e be the standard effective listing of computable functionals.
(ii) We are interested in those partial computable functions  with domain an

initial segment of !, and which are increasing on their domain. We let .'e/e
be an effective listing of all such  .

(iii) Define the sequence of all wtt-functionals . Ô
e/e operating on structures

as follows. Recall that we identify a structure A with its atomic diagram
D.A/ � !. Given A and natural numbers x; s 2 !, if 'e;s.x/# andˆA

e;s.x/#

while using queries only to A �'e.x/

'e.x/
—that is, asking only oracle questions

of the form “hk; y0; : : : ; yni 2 D.A/‹” with each k; xi < 'e;s.x/—then
Ô A
e;s.x/# D ˆA

e .x/. Otherwise, Ô A
e;s.x/". If there is an s such that

Ô A
e;s.x/# D y, then we write Ô A

e .x/ D y. Otherwise, we write Ô A
e .x/". If

Ô A
e .x/# 2 ¹0; 1º for every x 2 !, then we identify Ô A

e with a subset of ! in
the usual way.

An application of the s-m-n theorem (see [10, I.3.1(v)]) shows that, for any X and
A, we have X �wtt A if and only if there is an e such that X D Ô A

e .
Now let us try to determine where the proof of Theorem 2.3 breaks down when we

substitute �wtt for �T . The cardinality argument for part (2) carries over unchanged.
Proposition 3.2 A structure A is trivial if and only if DgSpwtt .A/ is a singleton.
The construction for the “only if” direction of Theorem 2.3(1) does not on its face
give B �wtt C , since there might not be a computable bound on the length of the
searches used in choosing k. As well, we might not end up with C �wtt B, since
the sequence .ms/s , and hence the length of the searches used to compute C , might
not have a computable bound.

We can do away with these objections in certain cases. If A has finite signature, for
instance, then surely C �wtt B. If A D .!;�A/ is a linear order, then at each stage
s of the construction we getmsC1 � ms C 2, giving B �wtt C . Hence DgSpwtt .A/
is upward closed for any linear order A. We examine the finite-signature case more
closely in Section 5.

It is also useful to consider degree-theoretic conditions on A.
Definition 3.3 We say that a set A 2 2! is of 0-dominated degree (also called
of hyperimmune-free degree) if, for every total function f �T A, there is a
total computable function g such that .8x/Œf .x/ � g.x/�. Equivalently, we
could replace “f �T A” in this definition with “graph.f / �wtt A,” where
graph.f / D ¹hx; yi W y D f .x/º.
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From our point of view, structures of 0-dominated degree behave nicely.

Proposition 3.4 If A is not trivial and is of 0-dominated degree, then DgSpwtt .A/
contains the cone above degwtt .A/. In particular, if A is computable and not trivial,
then DgSpwtt .A/ is all of Dwtt .

Proof Suppose that A is of 0-dominated degree, and fix any set C �wtt A. Build
B �T C using the construction for Theorem 2.3. We use this construction to define
two functions f and g. Let f be given by f .s/ D ms , and let g.s/ D ms C`, where
` is the greatest among all k used in steps t � s of the construction. Then g �T A,
so there is a total computable function  such that .8x/Œg.x/ �  .x/�. Note that f
is dominated by  in the same way.

In building B�!ms
from A˚C , we use only queries to C � sC1 and to A�msCk

msCk
.

Since sC 1 andms C k are no greater than  .s/, this means that B �wtt C . On the
other hand, in recovering C.s/ from B, we use only queries to B�msC1

msC1
. SincemsC1

is no greater than  .s/, this implies that C �wtt B, and hence B �wtt C .

One last approach is to consider a bounded version of triviality for structures. Recall
from Definition 2.2 the notion of a finite set witnessing the triviality of a structure.

Definition 3.5 A structure A is w-trivial if for each total computable function f
there is a finite set S witnessing the triviality of the reduct A�f .jS j/

! .

It is immediate from the definitions that any trivial structure is also w-trivial. There
do, however, exist structures which are w-trivial but not trivial. An easy example can
be found in Section 6 below.

A structure A that is w-trivial but not trivial must have DgSpwtt .A/ of size 2@0 .
Such a DgSpwtt .A/ is nonetheless far from upward closed within the wtt degrees,
to the extent that there is a set X such that DgSpwtt .A/ avoids the cone above
degwtt .X/. In fact, we will exhibit a whole family of such X in the form of a rela-
tivized…0;A

1 -class. A structure that is not w-trivial, on the other hand, is amenable to
a version of the proof of Theorem 2.3, which will be enough to show that its wtt de-
gree spectrum does contain some upward cone. What we have stated is the following
theorem.

Theorem 3.6 Given a structure A:
(1) if A is not w-trivial, then there is a set B �T A such that DgSpwtt .A/

contains the cone above degwtt .B/;
(2) if A is w-trivial, then there is a nonempty relativized …0;A

1 -class P � 2!

such that DgSpwtt .A/ avoids the cone above degwtt .X/ for every X 2 P .

(See Section 4 for a proof of this theorem.) Again, there cannot be wtt degrees a;b
such that DgSpwtt .A/ contains the cone above a and avoids the cone above b, since
the intersection Dwtt .�a/ \ Dwtt .�b/ is nonempty. Hence our classification of
structures into the w-trivial and the not w-trivial admits a simple degree-theoretic
characterization—namely, the dichotomy of Theorem 1.4. With some additional ef-
fort, we can get a localized version.

Corollary 3.7 Given a structure A:
(1) A is not w-trivial if and only if there is a set C �wtt A, C �T A, such that

DgSpwtt .A/ contains the cone above degwtt .C /;
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(2) A is w-trivial if and only if there is a set C �wtt A, C 0 �t t A0, such that
DgSpwtt .A/ avoids the cone above degwtt .C /. (Here A0 is the Turing jump
of the atomic diagram of A.)

The proof will use the following relativized, truth-table version of the low basis the-
orem of Jockusch and Soare [7, Theorem 2.1].

Lemma 3.8 Let A be a set of natural numbers. If P is a nonempty …0;A
1 -class,

then there is an element X 2 P such that X 0 �t t A
0.

The proof of this lemma, omitted here, is a straightforward relativization of the
proof of the superlow basis theorem due to Marcus Schaefer (see, e.g., Downey and
Hirschfeldt [4, Theorem 2.19.9]).

Proof of Corollary 3.7 For (1), take B as in Theorem 3.6, and let C D A ˚ B .
For (2), take P as in Theorem 3.6, and let Q D ¹A ˚ Y W Y 2 P º. Then Q is a

nonempty …0;A
1 class, and X 2 Q implies A �wtt X . Apply the lemma to Q.

Note that it is not possible to replace C 0 �t t A0 in Corollary 3.7(2) with the stronger
condition C �T A. For, if degT .A/ is not 0-dominated and consists of exactly one
wtt-degree (e.g., one of the strongly contiguous c.e. degrees introduced by Downey
[3]; such a degree must contain a w-trivial structure by Proposition 6.1 below), then
it would be absurd for C and A to share a Turing degree.

4 Proof of Theorem 3.6

Proof of part (1) We are to show that if A is not w-trivial there is an isomorphic copy
A� of A such that A� �T A and DgSpwtt .A/ contains the cone above degwtt .A�/.
We do this in two steps. First, in Lemma 4.1, we give a condition on A� which
implies that DgSpwtt .A/ contains the cone above degwtt .A�/. The second step, in
Lemma 4.2, is to show that a suitable A� can be built computably in A.

Lemma 4.1 Suppose that A� is a structure and there is a total computable
function g such that, for every m 2 !, there exists a permutation fixing Œ0;m/ [

ŒmC g.m/;1/ which is not an automorphism of A� �g.m/
mCg.m/

. Then DgSpwtt .A�/

contains the cone above degwtt .A�/.

Proof Fix any C �wtt A�, and perform the construction for Theorem 2.3 with A�

in place of A to get a copy B Š A�. We claim that the construction gives B �wtt C .
To see B �wtt C , notice that, at each stage s, we have k � g.ms/, and so �sC1 and
msC1 can be computed using queries only to C � s C 1 and to A�g.ms/

msCg.ms/
.

To see C �wtt B, define a computable function h by h.0/ D m0, h.s C 1/ D

g.h.s//C 1. Then ms � h.s/ for all s. We can therefore recover C.s/ from B using
only queries to B�h.s/

h.sC1/
.

It is possible for a structure A to have some isomorphic copies A� that satisfy the
conditions of the above lemma and other isomorphic copies that do not. Our sec-
ond lemma connects the existence of a suitable A� with the isomorphism-invariant
property of not being w-trivial.

Lemma 4.2 If A is not w-trivial, then there is an isomorphic copy A� Š A and a
function g meeting the hypotheses of Lemma 4.1.
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Proof Using the fact that A is not w-trivial, fix a computable, increasing function
f such that no finite set S witnesses the triviality of A�f .jS j/

! . We use f to define a
permutation � giving the desired structure A� by � W A Š A�. This � is constructed
as the pointwise limit of a sequence .�s/s of permutations.

We also define a computable, nondecreasing sequence of restraints .ms/s by
m0 D 0, msC1 D ms C f .ms/ C 1. These ms act as restraints in the construc-
tion of �s .

Construction. We define the sequence .�s/s by stages, beginning with �0 D id! .
Suppose that we have already defined �s and wish to define �sC1. Let A�

s be the
unique structure such that �s W A Š A�

s . By choice of f , there is a permutation �s
fixing Œ0;ms/ which is not an automorphism of A�

s �f .ms/
! . Recall our assumption

from Section 1 that the arity ar.Rk/ of a relation Rk does not exceed k=2. Hence
we may assume that there is a set T � Œms;1/ of size jT j � f .ms/ such that �s
fixes the complement ! n T pointwise. Let �s be a permutation fixing Œ0;ms/ and
mapping T into the interval Œms; ms C f .ms//.

Take the least x 2 ! such that �s ı�s.x/ � msC1 � 1, and write ys D �s ı�s.x/.
Let �s be the permutation transposing ys andmsC1�1 and fixing all other numbers,
and define

�sC1 D �s ı �s ı �s :

This completes the construction.
Verification. Let � be the pointwise limit of the .�s/s . Then � is an injective par-

tial function from ! ! !; we claim that � is a permutation. At each stage s, the in-
terval Œ0;ms/ is in the image of �s , and for all t � s we have ��1

t � ms D ��1
s � ms ,

so � is surjective. The addition of �s in the construction ensures that � is total.
Now let A� be the unique structure such that � W A Š A�, and for each s, let

g.s/ D msC1. Given any s 2 ! we may define a permutation  s by

 s D .�s ı �s/ ı �s ı .�s ı �s/
�1:

Then  s is not an automorphism of A� �g.s/
sCg.s/

and fixes Œ0;ms/[ Œms Cf .ms/;1/

pointwise, and hence fixes the smaller set Œ0; s/ [ Œs C g.s/;1/ pointwise as well.

This completes the proof of part (1).

Proof of part (2) Given a w-trivial structure A, we wish to construct a nonempty
…
0;A
1 -class such that no member of P is wtt-below an isomorphic copy of A. Before

providing the proof in full detail, we give a rough plan of how P will be made.
The class P will be defined through a sequence of restraints of the form

“X 2 P ) X.w/ ¤ y,” with w 2 ! and y 2 ¹0; 1º. The set of restraints
will be computably enumerable in A, so P will indeed be a …0;A

1 -class. As well,
each natural number w will be used in at most one of these constraints, so P will be
nonempty. Each restraint will be the result of a diagonalization against the eventual-
ity Ô B

e .w/ D X.w/, for some w 2 !, some wtt-functional Ô
e , and some possible

isomorphic copy B of A.
The challenge will be to diagonalize against all Ô

e;B with only a countable sup-
ply of w 2 !. We must play the w-triviality of A against the computable bound 'e
used in Ô

e . In fact, for a fixed Ô
e , there is a strategy to diagonalize against Ô B

e D X
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for all B Š A while using only finitely many w. First we exhibit the basic strategy,
for a single Ô

e , by proving a weaker result.

Proposition 4.3 If A is w-trivial and Ô
e is a wtt-functional, then there is a

nonempty class P � 2! such that, if X 2 P , then X ¤ Ô B
e for any isomorphic copy

B Š A.

Proof If 'e is not total, then Ô B
e is not total, so any nonempty P will do. Assume,

then, that 'e is total. Recall our assumption in Definition 3.1 that 'e is strictly
increasing. We build P as the class of all elements of 2! satisfying a finite set
of constraints of the form “X 2 P ) X.w/ ¤ y.”

We consider all permutations � and structures B such that � W A Š B. If g is
any total computable function, then there is a finite set S � !, say, of cardinality
n D jS j, such that � � S uniquely determines the reduct B �g.n/! . What’s more,
for any N 2 !, the further restriction B�g.n/N can—as we allow � and B to vary—
take no more than .N C 1/n different values: one for each partial function from
S ! N .

Now suppose that g.n/ is large enough to admit a sequence

N0 < N1 < � � � < Nn < NnC1 � g.n/

such that, for each i � n, we have NiC1 � 'e.Ni C .Ni C 1/n/. Consider
the intervals ŒNi ; NiC1/, for i � n. Since these intervals are pairwise disjoint,
there are n C 1 of them, and the set S has only n elements, for any particu-
lar choice of � and B, the pigeonhole principle gives an i0 � n such that �
maps no element of S into ŒNi0 ; Ni0C1/. Then the restricted diagram B �g.n/Ni0C1

is uniquely determined by its further restriction B �g.n/Ni0

and so can—as we al-
low � and B to vary, preserving �.S/ \ ŒNi0 ; Ni0C1/ D ;—take no more than
.Ni0 C 1/n possible values. Enumerate these possible diagrams D0;D1; : : : ;D`�1,
with ` � .Ni0 C 1/n.

Suppose that �;B are such that �.S/ \ ŒNi0 ; Ni0C1/ D ;, say, with B�g.n/Ni0C1
D

Dj , and note that

Ni0C1 > 'e
�
Ni0 C .Ni0 C 1/n

�
� 'e.Ni0 C `/:

We can ensure that X 2 P ) X ¤ Ô B
e by waiting for Ô

Dj
e .Ni0 C j / to converge

and then adding the constraint: “X 2 P ) X.Ni0 C j / ¤ Ô B
e .Ni0 C j /.”

It therefore suffices to produce a computable g, a natural number n, and a se-
quence N0 < � � � < NnC1 � g.n/ behaving as above. Define a 2-ary computable
function h by h.x; 0/ D x, h.x; y C 1/ D 'e.h.x; y/ C .h.x; y/ C 1/x/, and
let g.x/ D h.x; x C 1/. Then g is a total computable function, giving a suitable
n through w-triviality. We get N0; : : : ; NnC1 by setting Ni D h.n; i/ for each
i � nC 1.

We can get a quick and interesting, though weak, result by iterating the above con-
struction in a recklessly noneffective way.

Proposition 4.4 If A is w-trivial, then there is a set X 2 2! such that X —wtt B
for any isomorphic copy B Š A.
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Proof The construction from Proposition 4.3 uses only finitely many witnesses
w to diagonalize—namely, each w is taken from the interval ŒN0; NnC1/. We can
therefore perform the construction for each Ô

e , e D 0; 1; : : : in turn, either doing
nothing (if 'e is not total) or running the procedure for Proposition 4.3 with the
additional stipulation that N0 be larger than any number thus far considered.

Note that this is already gives a fairly effective proof of Theorem 1.4. The full proof
of Theorem 3.6, of course, will do better still. We now press on with part (2).

Idea. The idea is to use the construction from Proposition 4.3 as the basic module
for meeting the requirement:

Re W e 2 !; X 2 P; B Š A H) X ¤ Ô B
e :

The main obstacle is that the construction we have given is not uniform with respect
to e: it treats a total 'e differently from a nontotal 'e , and, in the total case, it assumes
knowledge of a suitable finite set S . To fix this, we will treat all 'e as if they might
be total, create an effective list ghe;n;xi of uniformly computable functions to use in
place of g, and, for each such ghe;n;xi, make a certain finite number of guesses as
to what a suitable S might be. For each such S , we then diagonalize as in the basic
module.

Each ghe;n;xi will come equipped with a guess—namely, n—for the cardinality
of an S witnessing the triviality of A �ghe;n;xi.x/

! . Although, as has already been
mentioned, the number of guesses we need for S is finite, it far exceeds the bound
ghe;n;xi.x/. This is a source of tension. We overcome this by defining a much faster-
growing computable function fhe;ni and make the wilder guess that S witnesses the
triviality of A �fhe;ni.x/

! . Then we use w-triviality to argue that, for some x and n,
there is indeed a suitable S of size n, and the bound fhe;ni.x/ is large enough to
diagonalize for each guess at S .

Before giving the construction in full, we state and prove some helpful combina-
torial lemmas.

Definition 4.5 We are given a structure A. Define the growth function G as a
two-place function taking as arguments M;N 2 ! [ ¹!º, and yielding the value

GMN D .�n 2 !/Œ9S � N of size n s.t. S witnesses the triviality of A�MN �;

or GMN D ! if there is no such n.

Here are a few easy and useful properties of the growth function.

Facts

(i) The one-place function M 7! GM! is an automorphism invariant of A.
(ii) When M;N 2 ! are finite, GMN is computable effectively in A as a function

of hM;N i.
(iii) G is monotonic in the sense that, if we have M;M �; N;N � 2 ! [ ¹!º, then

M � M � and N � N � implies GMN � GM
�

N� .
(iv) For each M , lims!! G

M
s D GM! .

(v) A is w-trivial if and only if .8M 2 !/.8N 2 ![ ¹!º/ŒGMN is finite� and for
all total computable f there is an n such that Gf .n/! � n.
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(vi) If A is w-trivial and F0 � F1 � � � � is a pointwise-increasing sequence of
total uniformly computable functions, then there exist natural numbers n; y
such that GFn.y/

! D n D G
FnC1.y/
! .

Proof

(i) This is immediate.
(ii) Use brute force: for every subset S � N , check whether S witnesses the

triviality of A�MN .
(iii) If S witnesses the triviality of A�M�

N� , then S also witnesses the triviality of
A�MN .

(iv) This is immediate.
(v) This is immediate from the definition of w-trivial.
(vi) Define a total computable function  by  .x/ D FxC1.x/, and use Fact (v)

to get a y such that G .y/! � y. By Fact (iii), we have 0 � G
F0.y/
! � � � � �

G
FyC1.y/
! � n. The result now follows from the following pigeonhole-type

fact: If � W y C 2 ! y is an increasing sequence, then there is an n such that
�.n/ D n D �.nC 1/.

We have mentioned that, when guessing at suitable sets S to use for the diagonaliza-
tion strategy, we need only finitely many guesses. The following result makes this
precise.

Lemma 4.6 Suppose that M 2 !, that GM! D n, and that t 2 ! is large
enough that GMt D n. Then there is a set S � t of cardinality n witnessing
the triviality of A �M! , and furthermore we can identify from A �Mt a list of sets
.S0; S1; : : : ; SMn�1/, such that S D Sj for some j < `.

Proof Pick any S � ! of cardinality n which witnesses the triviality of A �M! .
Then S \ t must witness the triviality of A �Mt . By our assumption that GM! D n,
we must have jS \ t j � n. Since jS j D n, this implies that S � t .

We may naturally associate with each j < M n a sequence �j W n ! M . We
build a guess Sj by a sequence ; D S

.0/
j � � � � � S

.n/
j D Sj , where each S .i/j

has cardinality i . Suppose that we have already chosen S .i/j and that i < n. Since
jS
.i/
j j D i < n D GMt , this jS

.i/
j j does not witness the triviality of A �Mt . In some

fixed computable enumeration, find the first permutation � fixing S .i/j [ Œt;1/ which
is not an automorphism of A �Mt . Next, find the lexicographically least sequence
hk; x0; : : : ; xar.Rk/�1i for which it is not the case that

RA
k .x0; : : : ; xar.Rk/�1/ holds if and only if RA

k

�
�.x0/; : : : ; �.xar.Rk/�1/

�
holds:

Clearly, S must contain at least one element of the set

U D
®
x0; : : : ; xar.Rk/�1; �.x0/; : : : ; �.xar.Rk/�1/

¯
n S

.i/
j :

Recalling our assumption from Section 1 that ar.Rk/ � k=2, this U has size at most
k � n. We extend S .i/j to S .iC1/j by adding the �j .i/th smallest element of U (if
�j .i/ � jU j, we just add the largest element of U ).

We can see by induction that, for every i , there is a j such that S .i/j � S . In
particular, there is a j such that Sj D S .
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Strategy. Our strategy uses a certain class of partial functions ghe;n;xi. We show
how to use ghe;n;xi before defining it explicitly; for the moment, suffice it to say that
ghe;n;xi is uniformly computable and that, whenever 'e is total, ghe;n;xi is total, and
for all x and y, there is enough space in the interval Œx; ghe;n;xi.y// to diagonalize
against a single S of size n witnessing the triviality of A �ghe;n;xi.y/

! . From ghe;n;xi

we define a second class of functions:

fhe;ni.x/ D ghe;n;xi ı � � � ı ghe;n;xi„ ƒ‚ …
nx times

.0/:

Then fhe;ni is uniformly computable and is total whenever 'e is total, and there is
enough space in the interval Œx; fhe;ni.x// to diagonalize against nx-many different
sets S of size n. Here are the essential steps we use to construct P . Note that we
dovetail at step (1). In the first pass, we have s D 0.

(1) Start with a 3-tuple s D he; n; xi. The number e identifies the requirement
Re that we are trying to fulfill. The number n represents a guess at the size
of a suitable set S against which to diagonalize. The number x is a parameter
that ranges over !.

(2) Wait for a stage t at which fhe;ni;t .x/# and such that Gfhe;ni.x/

t D n. While
we are waiting, return to step (1), this time using s C 1 as the 3-tuple.

(3) Assume—possibly incorrectly—that Gfhe;ni.x/
! D n D Gx! . Use the method

of Lemma 4.6 to make a sequence .Sj /j<xn of guesses at an S of size n
witnessing the triviality of A�fhe;ni.x/

! .
(4) For each j < xn, use the space in the interval�

ghe;n;xi ı � � � ı ghe;n;xi„ ƒ‚ …
j times

.0/; ghe;n;xi ı � � � ı ghe;n;xi„ ƒ‚ …
jC1 times

.0/
�

to diagonalize for Sj , adding restraints to P by the method of Proposition 4.3.
If our assumption at step (3) was correct, then this will satisfy the require-
ment Re .

Definition of ghe;x;ni and allocation of space for diagonalization.
Define a sequence .Mk/k of natural numbers recursively by M0 D 0 and

MkC1 D Mk C .Mk C 1/k . The intervals ŒMk ;MkC1/ form a partition of !. For
any total 'e and any S of size jS j � k, we could use the interval ŒMk ; 'e.MkC1//

as one of the ŒNi ; NiC1/ from the construction in Proposition 4.3, and diagonalize
for the case �.S/\ ŒMk ; 'e.MkC1// D ; by placing restraints on X \ ŒMk ;MkC1/

for X 2 P . To each 3-tuple he; n; xi we assign a sequence of such intervals to use to
meet requirement Re . We make this allocation methodical by defining a uniformly
computable function hhe;n;xi:

hhe;n;xi.0/ D Mhe;n;x;ii; where i is least such that n � he; n; x; ii;

hhe;n;xi.y C 1/ D Mhe;n;x;ii;

where i is least such that 'e
�
hhe;n;xi.y/C

�
hhe;n;xi.y/C 1

�n�
� Mhe;n;x;ii:

The intervals allocated to he; n; xi are those of the form ŒMk ;MkC1/ such that
Mk D hhe;n;xi.y/ for some y. Notice that hhe;n;xi is total whenever 'e is total.
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From here we can define the promised ghe;n;xi:

ghe;n;xi.x/ D hhe;n;xi ı � � � ı hhe;n;xi„ ƒ‚ …
nC1 times

.x/:

Verification. It remains to check that, for every e such that 'e is total, there is a pair
n; x such that Gfhe;ni.x/

! D n D Gx! . Fix any e such that 'e is total, and define a
pointwise-increasing sequence of total uniformly computable functions .Fn/n recur-
sively by F0 D id and FnC1 D fhe;ni ı Fn. We can apply fact (vi) to get a pair n; y
such that GFnC1.y/

! D n D G
Fn.y/
! . Letting x D Fn.y/, this expression becomes

G
fhe;ni.x/
! D n D Gx! . Hence our strategy, when beginning with the triple he; n; xi,

succeeds in satisfying Re .
This completes the proof of Theorem 3.6.

5 Structures with Finite Signature

In this section, we examine the special case of a structure A with finite signa-
ture .RA

0 ; : : : ; R
A
n�1/. As noted above, such an A is w-trivial if and only if A

is trivial if and only if DgSpT .A/ D ¹0º; this, in turn, happens if and only if
DgSpwtt .A/ D ¹0º. We may use Proposition 3.2 together with Theorem 3.6 to
obtain a sharpened dichotomy in the finite-signature case.

Corollary 5.1 Let A be a structure with finite signature. Either DgSpwtt .A/ con-
tains the cone above some degree a, or DgSpwtt .A/ D ¹0º.

Therefore, in restricting our structures to those with finite signature, we also restrict
the possible wtt degree spectra. We will see in Proposition 6.2 below that, for a
structure with infinite signature, the wtt-degree spectrum may be contained within a
single cone Dwtt .� a/ with a > 0. The following proposition shows that such a wtt
degree spectrum is impossible for a structure with finite signature.

Proposition 5.2 If A has finite signature, then DgSpwtt .A/ is not contained in
any cone of the form Dwtt .� e/ with e > 0.

Our proof uses the following definition and lemma from basic model theory.

Definition 5.3 Let A be a structure, let F be a finite set of elements of A, and let
I D .a0; a1; : : :/ be an infinite sequence of natural numbers without repetition. We
say that I is a sequence of quantifier-free order indiscernibles over F if, for every
pair of increasing sequences .i0 < � � � < in�1/ and .j0 < � � � < jn�1/, the tuples
.ai0 ; : : : ; ain�1

/ and .aj0
; : : : ; ajn�1

/ satisfy the same quantifier-free formulas with
parameters from F .

Lemma 5.4 Let A D .!;RA
0 ; : : : ; R

A
n�1/ be a structure with finite signature, and

let m be a natural number.
(i) There is an infinite sequence I of quantifier-free order indiscernibles over

¹0; : : : ; m � 1º.
(ii) There exists an infinite computable structure C D .!;RC

0 ; : : : ; R
C
n�1/ and an

increasing injection � W ! ! ! such that � � m D idm and � embeds C
into A.
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Proof Part (i) is an easy consequence of Ramsey’s theorem (see, e.g., Shelah [13,
Chapter 1, Section 2, Theorem 2.4(1)]). We deduce part (ii) from part (i) as follows.
Let A and m be as in the statement of the lemma, and let I D .a0; a1; : : :/ be the
sequence given by part (i). Passing to a subsequence if necessary, we may assume
that I is increasing. Define � W ! ! ! by �.i/ D i if i < m, and �.j Cm/ D aj for
all j . Let C be the unique structure such that � is an embedding of C into A. Then
C is computable.

We use this lemma to prove Proposition 5.2 by a diagonalization argument.

Proof of Proposition 5.2 Fix a structure A D .!;RA
0 ; : : : ; R

A
n�1/ and a set E of

wtt degree e > 0. We exhibit a permutation � such that, if B is the unique structure
such that � W B Š A, then E —wtt B. We build this � as the pointwise limit of a
sequence .�e/e of permutations, and alongside these we build a sequence .me/e of
natural numbers to act as restraints.

Start with �0 D id! and m0 D 0.
Suppose that �e and me have been defined. We define �eC1 and meC1 as fol-

lows. Begin by letting Be be the unique structure such that �e W Be Š A. Ap-
ply Lemma 5.4(ii) to the structure Be and the number me , and take the resulting
structure Ce and embedding �e . Because Ce is computable and E is not, there
is an xe 2 ! such that either Ô Ce

e .xe/" or Ô Ce
e .xe/# ¤ E.xe/. If 'e.xe/", let

meC1 D max.me; xe/ C 1; otherwise, let meC1 D max.me; xe; �e.'e.xe/// C 1.
Choose a permutation �e W ! ! ! such that �e � meC1 D �e � meC1, and �e fixes
Œ0;me/[ ŒmeC1;1/. Define �eC1 D �e ı�e . Let � be the pointwise limit of .�e/e .
This completes the construction.

Verification. The definition of �eC1 can be rewritten as �eC1 D �e ı �e�1 ı � � � ı

�0 ı id! . Since each �e acts nontrivially only on the interval Œme; meC1/, and these
intervals form a partition of !, the limit � is a permutation. Let B be the unique
structure such that � W B Š A; we claim that e —wtt B. Indeed, for each e,
either 'e.xe/", in which case Ô B

e .xe/" by definition; or, for each i � e C 1, we
have �i � meC1 D �eC1 � meC1, giving �i � 'e.xe/ D �e � 'e.xe/, so that
Ô B
e .xe/ D Ô Ce

e .xe/ ¤ E.xe/.

Theorem 1.7 follows immediately.

Proof of Theorem 1.7 Dovetail the construction above, with e D 0; 1; 2 : : : .

Finally, we mention some cases where the wtt degree spectrum is provably upward
closed. We gave a brief argument in Section 3 that, if A is a linear order, then the
proof of Theorem 2.3 actually guarantees upward closure for DgSpwtt .A/. This
argument can now be formalized using Lemma 4.1 and applied to other examples.

Proposition 5.5

(i) If A D .!;�A/ is a linear order, then DgSpwtt .A/ is upward closed.
(ii) If A D .!;EA/ is a structure where EA is an equivalence relation having

more than one infinite class, then DgSpwtt .A/ is upward closed.
(iii) If A D .!;EA/ is a structure where EA is an equivalence relation having

infinitely many nonsingleton classes, then DgSpwtt .A/ is upward closed.

Proof

(i) Apply Lemma 4.1 to A, with g.m/ D mC 2.
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(ii) Let U1 and U2 be distinct infinite equivalence classes. Take the isomorphic
copy A� specified by

EA�

.3x; 3y/ holds ” EA.x; y/ holdsI
EA�

.3x C 1; z/ holds ” z D 3y C 1; or .z D 3y and y 2 U1/I

EA�

.3x C 2; z/ holds ” z D 3y C 2; or .z D 3y and y 2 U2/:

Then A� is isomorphic to A, and A� �wtt A. Apply Lemma 4.1 to A�, with
g.m/ D mC 3.

(iii) Build a permutation � by the following recursive procedure:

�.0/ D 0;

�.2x C 1/ D .�y/Œy not in the image of � � 2x C 1�;

�.2x C 2/ D .�z/Œz not EA-equivalent to any y in the image of � � 2x C 2:

Let A� be the inverse image of A under � , that is, � W A� Š A. Then
A� �wtt A. Apply Lemma 4.1 to A, with g.x/ D x C 6.

Parts (ii) and (iii) can be combined into a single corollary.

Corollary 5.6 Let A D .!;EA/ be an equivalence relation. Then DgSpwtt .A/
is upward closed if and only if A is not trivial.

The constructions for (ii) and (iii) in Proposition 5.5 are more typical than that for (i).
By and large, Ramsey-type considerations make it difficult to meet the hypothesis of
Lemma 4.1 without first rearranging a model’s elements.

As one last example, we mention a large class of graphs A, each of which has
an isomorphic copy A� �wtt A to which we can apply Lemma 4.1. The proof is
omitted.

Proposition 5.7 If A D .!;EA/ is a graph, and if

.8n/.9 distinct a0; a1; a2; a3 � n/.8x < n/
h
a0E

Aa1

^ :a2E
Aa3 ^

^
0�i�3

:aiE
Ax

i
holds, then DgSpwtt .A/ is upward closed. In particular, if A has infinitely many
nonsingleton components, then DgSpwtt .A/ is upward closed.

6 Some Specific Examples

This section is devoted to a few elementary constructions each giving a partial answer
to the question: What sets of wtt degrees can form a wtt degree spectrum?

Recall from Definition 3.3 that a set A is of 0-dominated degree if and only if,
whenever f is a function such that graph.f / �wtt A, this f is dominated by a
computable function. We say that a wtt-degree a is 0-dominated if its elements are
of 0-dominated degree.

Proposition 6.1 A wtt-degree a contains a structure that is w-trivial but not trivial
if and only if a is not 0-dominated.
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Proof The “only if” direction is immediate from Theorem 3.6 and the observation
in Proposition 3.4 that, if A is 0-dominated, then DgSpwtt .A/ contains a cone.

For the “if” direction, suppose that a is not 0-dominated, and fix a member A 2 a.
Let f be a strictly increasing function that is not computably dominated, and such
that graph.f / �wtt A. We construct a structure B D .!;RB

0 ; R
B
1 ; : : :/, with each

RB
k

unary, such that B is w-trivial, B is not trivial, and B �wtt A. For each k,
define

RB
2k D

´
¹kº if k is in the image of f;
; otherwise;

RB
2kC1 D

´
! if k 2 A;

; if k … A:

Then B �wtt A. To see that B is w-trivial, let  be any increasing total computable
function, and take n such that  .n/ < f .n/. Let S D ¹k W 0 � k < nº. This S has
cardinality n and witnesses the triviality of B� .n/! , as desired.

Our next construction gives a wide class of possible wtt-degree spectra, and, as men-
tioned in Section 5 above, highlights an important difference between the finite- and
infinite-signature cases.

Proposition 6.2 For any wtt degree a, there is a B such that DgSpwtt .B/ D

Dwtt .� a/.

Proof If a D 0, then we can use any computable B which is not trivial. So suppose
that a > 0, and fix a member A 2 a. Define B D .!;RB

0 ; R
B
1 ; : : :/, with each RB

k

unary, as follows:

RB
0 D ¹0; 2; 4; 6; : : :ºI

RB
kC1 D

´
! if k 2 A;

; if k … A:

Then A is wtt-below any isomorphic copy C of B, since we can decide whether a
given k is in A by checking whether RC

k
.0/ holds. On the other hand, if X is a set

such thatX �wtt A, thenX must be infinite and co-infinite, and so we may construct
an isomorphic copy C of B such that C �wtt X as follows:

RC
0 D X I

RC
kC1 D

´
! if k 2 A;

; if k … A:

Our next construction shows that, as a set of reals, every T degree spectrum not
consisting of a single degree is equal to a wtt-degree spectrum. Hence wtt-degree
spectra of nontrivial structures are at least as expressive, when considered as subsets
of 2! , as T-degree spectra of nontrivial structures.

Proposition 6.3 If A is a structure which is not trivial, then there is a graph
H D .!;EH / such that

S
DgSpwtt .H/ D

S
DgSpT .A/.

Proof By Theorem 1.8, we may fix a graph G D .!;EG/ with Turing degree
spectrum DgSpT .G/ D DgSpT .A/. We may assume that G has no isolated points,
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that is, for all x there exists a y such that .x; y/ 2 EG . We use G to build a new
graph H D .!;EH / with the following properties:

(i) DgSpT .H/ D DgSpT .G/;
(ii) DgSpwtt .H/ is upward closed;
(iii) Given X 2 2! and a copy K Š H , if X �T K, then there is another copy

L Š H such that X �wtt L.
This is then the desired H by the following string of equivalences:

X 2
S

DgSpT .A/ iff X 2
S

DgSpT .G/; by choice of G;
iff X 2

S
DgSpT .H/; by (i),

iff X �T K for some K Š H;

since DgSpT .H/ is upward closed,
iff X �wtt L for some L Š H; by (iii),
iff X 2

S
DgSpwtt .H/; by (ii):

Construction. We transform G into the new graph H by appending exactly one new
vertex to each vertex ofG, and then adding a countable perfect matching. Pictorially,
the transformation behaves like this:

G H

� � �

We define the edge relation on H by cases, closing under symmetry:
� If x D 4n, y D 4m, and .m; n/ 2 EG , then .x; y/ 2 EH .
� If x D 4n and y D 4nC 1, then .x; y/ 2 EH .
� If x D 4nC 2 and y D 4nC 3, then .x; y/ 2 EH .

We claim that this H satisfies conditions (i), (ii), and (iii).
Verification of (i). Notice first that H �T G, and second that, if a copy G0 Š G

is transformed in the same manner as above into a graph H0, then H0 Š H . Thus
DgSpT .G/ � DgSpT .H/. For the opposite inclusion, suppose thatH0 is an isomor-
phic copy of H . Define a set A � ! of vertices by

A D
®
x 2 ! W .9 at least two distinct y/

�
.x; y/ 2 EH0

�¯
:

Because G has no isolated points, the subgraph induced by H0 on A is isomorphic
to G. Define an injection � W ! ! ! by

�.n/ D the nth element enumerated into A;
and let G1 be the unique structure such that � is an embedding of G1 into H . Then
G1 Š G and G1 �T H . We conclude by the upward-closure result of Theorem 2.3
that DgSpT .G/ � DgSpT .H/.

Verification of (ii). For any n, the elements a0 D 4n C 2, a1 D 4n C 3,
a2 D 4nC 6, and a3 D 4nC 10 satisfy the statement:

.8x < n/
h
a0E

Ha1 ^ :a2E
Ha3 ^

^
0�i�3

:aiE
Hx

i
:

Hence Proposition 5.7 implies that DgSpwtt .H/ is upward closed.
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Verification of (iii). Suppose that K is an isomorphic copy of H and that
X �T K, say, by the computation D.K/ D ˆXe . We get the required L by the
following “padding” procedure. For each n 2 !, let un be the least such that ˆX�un

e

computes the restricted diagram K �n, that is, such that ˆXe computes K �n with
use un. Define a sequence .vn/n2! by v0 D u0, vnC1 D vn C 2un C 3. We define
the edge relation on L by the following cases, closing under symmetry.

� If x D vm and y D vn, then .x; y/ 2 EL if and only if .m; n/ 2 EK .
� If vm < x < vmC1 � 1, then .x; x C 1/ 2 EL if and only if x � vm is odd.

That is,K is embedded into L by the mappingm 7! vm, and the remaining elements
of L form an infinite perfect matching. Since K itself contains an infinite perfect
matching, L and K are isomorphic. Now we check that L �wtt X . Given a number
x, look at the computation of ˆX�x

e to find the least m such that vm > x. We
can use the computation of ˆX�x

e to recover both the restricted diagram K �m and
the sequence .v0; : : : ; vm�1/. This information is enough to construct the restricted
diagram L�x .

We end with a construction of a wtt degree spectrum that, as a set of reals, does not
coincide with any Turing degree spectrum. When combined with Proposition 6.3,
this establishes the result promised in Section 1.1 that, as a means of specifying a set
of reals, the wtt degree spectrum of a nontrivial structure is strictly more expressive
than the Turing degree spectrum of a nontrivial structure. As usual, there is some ten-
sion between the complexity of the construction and the contrivedness of the object
being built. The following class of structures appears to be a good compromise.

Definition 6.4 Let A D .!; 0A; SA; EA/ be a structure with 0A a unary relation,
and SA; EA binary relations. We say that A is a labeled graph if the reduct .!;EA/

is a graph and the reduct .!; 0A; SA/ is isomorphic to the natural numbers with
zero and successor (with 0A and SA interpreted as a constant and a unary function,
respectively). Given an element n 2 !, let ıA.n/ be the neighborhood of n in
.!;EA/, that is,

ıA.n/ D
®
m 2 ! W .m; n/ 2 EA

¯
:

For any natural number e, let eA denote the unique eth element:

eA
D SA

�
SA

�
� � �SA„ ƒ‚ …

e times

.0A/
��
:

Proposition 6.5 There is a labeled graph A such that
S

DgSpwtt .A/ ¤S
DgSpT .A/.

Proof Let a be the concatenation operator for strings, and let . Q̂
e/e be the enu-

meration of all wtt reductions given by

Q̂ Y
e .x/ D

´
ˆYe .x/ if useˆYe .x/ < 'e.x/;
" otherwise.

We build A, together with a set Z � !, to satisfy the following requirements:
P : A �T Z.

Ne: If B is a labeled graph and B D Q̂ Z
e , then A © B.
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The requirement P ensures that degT .Z/ 2 DgSpT .A/, while the requirements Ne

together ensure that degwtt .Z/ … DgSpwtt .A/.
Strategy. We build Z by initial segments �0 � �1 � � � � � Z. At each stage

n, we specify �n and A �n. The reduct .!; 0A; SA/ will be ordered in the most
straightforward way, namely, eA D e for all e.

We begin by declaring that each negative requirement Ne has not acted. At a
stage of the form nC 1 D he; xi C 1, if Ne has not yet acted, we may choose to fix
the set ıA.e/ as either a finite or a cofinite set. The goal is to satisfy Ne by ensuring,
if B is labeled graph and B D Q̂ Z

e , thatˇ̌
ıA.e/

ˇ̌
¤

ˇ̌
ıB.eB/

ˇ̌
or

ˇ̌
! n ıA.e/

ˇ̌
¤

ˇ̌
! n ıB.eB/

ˇ̌
:

After we decide to fix ıA.e/, we say that Ne has acted. At the end of the stage, we
define �nC1 and the restricted diagram A�nC1 based on the decisions made at earlier
stages for other neighborhoods ıA.i/.

We meet P by coding the atomic diagram of A directly into Z. For each n,
�nC1 will equal �n a 0s a 1a 0r a 1 for some s to be specified below and a number
r representing the atomic diagram A�n by some fixed computable encoding.

Construction. At stage n D 0, we let �0 D ;.
At each stage of the form n C 1 D he; xi C 1, we try to fulfill requirement Ne

as outlined above. If Ne has not yet acted, then use a 00-oracle to extend �n, if
possible, to a string � D �n

a 0s such that Q̂ �
e;s converges to give a large initial

segment of an atomic diagram D, having at least 2nC 1 elements, of a B as in Ne .
If jıD.eD/j � nC 1, then we fulfill the requirement Ne by declaring that ıA.e/ will
be a subset of ¹0; : : : ; n�1º. Otherwise, the complement has size jıD.eD/j � nC1,
and so we fulfill Ne by declaring that ! n ıA.e/ will be a subset of ¹0; : : : ; n � 1º.
We then preserve the computation by letting �nC1 D � a 1a 0r a 1, with r a number
representing A�n. Declare that Ne has acted.

If Ne has acted at an earlier stage, or if no suitable � exists, then Ne does not act at
stage nC1, and we instead carry out the following procedure. Let B be the (possibly
partial) atomic diagram given by B D Q̂ �n

a 0!

e . One of four conditions must hold.
(i) There is a y such that Q̂ �n

a 0!

e .y/".
(ii) B contains more than one element of the form eB.
(iii) B contains no element of the form eB.
(iv) The requirement Ne has already acted at an earlier stage.

If (i), then choose an extension � D �n
a 0s long enough that, if � is a string extend-

ing � , then Q̂ �
e.y/". If (ii), choose � D �n

a 0s long enough that, for some y, the
atomic diagram Q̂ �

e �y contains more than one e. If (iii) or (iv), choose � D �n. In
any case, let �nC1 D � a 1a 0r a 1, with r a number representing A�n.

Verification. It is easy to see that P is satisfied. For each n, we can find an initial
segment � a 1a 0r a 1 of Z such that exactly 2n entries of � are 1. Then we can use
r to recover the restricted diagram A�n.

Now we check that Ne is fulfilled. If, at any stage n C 1, we declared Ne has
acted, then our diagonalization strategy using ıA.e/ succeeds. So suppose that Ne

never acts, and suppose, for a contradiction, that the requirement Ne is not met. Let
B D Q̂ Z

e be as in the statement of Ne . Then there is an n D he; xi and a y such that
Q̂ �n
e �y contains a well-defined eth element. Let C D Q̂ �n

a 0!

e . Either C contains a
finite substructureD as in the construction, C is not total as a characteristic function,
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or C contains more than one element of the form eC. Of these three possibilities, the
first implies that Ne acts at stage n C 1, a contradiction; the second puts us in case
(i) of the construction; and the third, in case (ii). But in case (i), our choice of �nC1

implies that B is also not total as a characteristic function, also a contradiction; and
in case (ii), our choice of �nC1 implies that B has multiple elements of the form eB

and hence is not a labeled graph, another contradiction.

As an aside, we note that a labeled graph A D .!; 0A; SA; EA/ can be encoded into
a single binary relation R with only a small loss of information. Namely:

.n; n/ 2 R ” n 2 0A
I and, for all pairs n ¤ m;

.n;m/ 2 R ” .n;m/ 2 SA or .n;m/ 2 EA and .m; n/ … SA:

In this encoding, we lose the edges between consecutive elements .n; SA.n// of the
labeled graph.

Note

1. Namely, if a] exists for all reals a, then a wtt version of Martin’s cone lemma (see [11])
gives the desired cones.
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