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Large Cardinals, Inner Models, and Determinacy:
An Introductory Overview

P. D. Welch

Abstract The interaction between large cardinals, determinacy of two-person
perfect information games, and inner model theory has been a singularly pow-
erful driving force in modern set theory during the last three decades. For the
outsider the intellectual excitement is often tempered by the somewhat daunting
technicalities, and the seeming length of study needed to understand the flow of
ideas. The purpose of this article is to try and give a short, albeit rather rough,
guide to the broad lines of development.

1 Introduction

The following article grew out of a series of three tutorials at the conference on the
development of large cardinal hypothesis and their connections to proofs of the de-
terminacy of two-person perfect information Gale–Stewart games. The intention was
to give a perspective, not to specialists in set theory, who in any case either would
have no need for such or would know where to go find it, but to those interested in
the foundations of set theory already with some technical knowledge of Zermelo–
Fraenkel axiomatics and the construction of Gödel’s universe L, but who may not
have seen a systematic production of the hierarchy of increasing strong axioms of
infinity arising from embeddings of the universe V and in particular the connections
of these axioms with the descriptive set theory of the real continuum. It was hoped
that the lectures would provide a fast ascent without oxygen to some of the peaks of
the last twenty years. In this we believed that a lot could be learned, not in detail, nor
even attempting to provide a working knowledge (for which a longer-term devotion
would be required, and again for which there are thorough texts) but that would bring
about at least some familiarity with the technical tools, as well as some insight as to
why they had been developed and how they had been used.
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We should also like to urge the reader to study Jensen’s masterly, and nontechnical,
overview [11] if he or she has not already done so.

1.1 Overview The roots of modern set theory lie surprisingly deep in the history of
the subject, although it is admittedly rather young compared to other areas of math-
ematics. It is well known that it concerns itself still with the question that vexed
its founding father: Cantor’s continuum problem (or hypothesis, hence CH), which
states that any set of real numbers is either equinumerous with all of R or is count-
able. However some of the early analysts such as the those from the French school,
Lebesgue, Borel, Baire, and then the Russians, Luzin and more particularly Suslin,
introduced both further questions and new methods of representation that are still key
today. Today descriptive set theory is that branch of set theory which seeks to inves-
tigate, not the whole real continuum but definable parts or fragments of it. In doing
this two things are achieved: (i) one may concentrate on perhaps simpler parts of
the continuum for which the questions are more tractable, and (ii) the definable parts
are rather concretely given, and as such the results proven may give more definite
information to the analyst who is uninterested in foundational questions. At the same
time this gives clues to the most general question concerning the whole continuum.
The roots of descriptive set theory can also be traced back to Cantor himself: he first
tried (and succeeded) to solve the CH for closed sets. His ambition was to proceed
through increasingly complicated sets until, somehow, he had conquered the whole
continuum. He, and Bernstein, showed that a closed set is the union of a perfect set
with a countable set of isolated points. Thus closed sets enjoyed the “perfect subset
property” (PSP). CH for closed sets follows: if a closed set is uncountable the perfect
part is nonempty and can easily be shown to be equinumerous with R. Borel defined
a hierarchy of more complicated sets: one starts with the class of open sets at the
base level and then builds up levels by the process of taking complementation and
countable unions of the sets created so far. This Borel hierarchy is built in precisely
!1-many stages, and was much studied. It was found that PSP holds for Borel sets.

Suslin then showed the same for the analytic, or †1
1
-sets. More detailed defini-

tions are below, but an analytic subset of R (depicted on the x-axis) is one that is the
projection of a Borel set in the .x; y/-plane down to that x-axis. This can be seen as a
further step in Cantor’s original plan: now any analytic set satisfies CH. However the
program stopped there. Later Gödel was to show that in L, his constructible hierar-
chy, although CH was true, coanalytic or …1

1
-sets failed to have the PSP. Hence it was

consistent with the axioms of ZFC that PSP failed at this level. Hence the analysts
had gone as far as they could have done using analytical techniques. However, the
PSP is only an example of one of several properties. The property of being Lebesgue
measurable (LM) was also shown to hold for first Borel, then analytic (and since
complements of measurable sets are measurable too, also coanalytic) sets. The case
is similar for the Baire property (BP, i.e., a set A with the Baire property is almost an
open set, in that there is an open set O so that the symmetric difference of the two
sets A and O is “thin” in the sense of being the union of countably many nowhere
dense sets), and moreover for the uniformization property: that coanalytic regions
of the plane could be uniformized by coanalytic functions. Together this clutch of
properties became (more recently) collectively known as the regularity properties.
Again the BP and LM could both consistently fail for the same reason as for the PSP:
in the Gödel universe �1

2
-sets failed to have them.
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Proceeding in another direction Banach had considered Lebesgue’s problem of
defining a translation-invariant countably additive measure on R. He replaced the
translation-invariance part of the requirement with that of asking the measure of a
single point to be nonzero. Was such a measure possible? Again this was ruled out
by an axiom of choice construction, as Vitali had shown would happen for any mea-
sure satisfying Lebesgue’s requirements. However Banach’s requirements allowed
one to generalize away from P .R/ to consider measures on P .S/ for any set S

(Banach [1]). The additivity of such a measure, were it to exist, would be that of
the cardinality of S . If such existed for an uncountable set S with jS j D �, then
� was called real-valued measurable. Ulam [36] showed that a real-valued mea-
surable cardinal was weakly inaccessible in Hausdorff’s sense. If the measure was
atomless, then 2@0 > �. In this way large cardinals and measures enter the scene.
Ulam also defined the ultimately more consequential notion of a 2-valued measure
�-additive measure. With Tarski the cardinals � admitting such measures on their
power sets were shown to be strongly inaccessible, but not until the work of Hanf
[9] was it shown that the least measurable cardinal could not be the least inaccessi-
ble.

Shortly thereafter Scott [31] used the technique of ultrapowers from model theory
to show that the existence of a measurable cardinal implied V ¤ L (see Theorem 2.5
below). This technique has become ubiquitous in modern set theory, with the real-
ization that a measurable cardinal allows an ultrapower of the whole universe V into
some proper inner model M , with a first-order truth-preserving elementary embed-
ding: j W V �!e M . Embeddings of the universe V with stronger properties arose
from the work of Solovay and of Reinhardt, and these were defined using ultrafilters
on different base sets. The cardinals that were the first point moved, or the critical
point of such embeddings was called supercompact, and the embeddings they pro-
duced had markedly different aspects to those from simple measures alone. Together
with large cardinals defined from other differing directions, these would eventually
all be seen to lie in a well-ordered spectrum of increasing strength giving rise to
stronger and stronger embedding properties, which to a first approximation can be
said to be about how much of V is carried over into the target model M . (We give
definitions of the more prominent of these again below.)

“Inner models” in this account are transitive class models of ZFC. (This can be
given a first-order formulation.) Gödel’s L was the first inner model to be discov-
ered (besides V itself, of course). Relativized constructibility is easy to define: one
enlarges the language of set theory to include (one or more) additional predicates
into the first-order definability operator. Thus models hLŒ��;2; �i where � is a two-
valued �-additive measure on some � may be defined. Solovay defined such, and
their properties were investigated by Silver and Kunen. LŒ�� was seen to be a gen-
eralization of L: the generalized continuum hypothesis (GCH) held, and there was
a global well order of its universe. The definability of that well order on its real
continuum was, however, �1

3 rather than �1
2 which had been the case for L.

Other generalized notions of definability were possible: instead of definability
relative to a predicate one may start with a set R and define

L0.R/ D R; L˛C1.R/ D Def
�˝

L˛.R/;2
˛�

;

Lim.�/ �! L�.R/ D
[
˛<�

L˛.R/:
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The universe L.R/ D
S

˛2On L˛.R/ is then an inner model of ZF (not nec-
essarily AC as there is not necessarily a well order of R definable over any of the
levels L˛.R//. For R D R this has been a model of tremendous importance as we
shall see. One can regard it as a laboratory for very generalized notions of definabil-
ity over analysis: it contains the projective sets of analysis right down at the bottom
and allows for definitions over analysis but containing more and more ordinals.

There was a further striking result concerning measurability.

Theorem 1.1 (Solovay [33]) (ZFC) If there is a measurable cardinal, then all
†1

2
-sets of reals have the regularity properties of LM, BP, and PSP.

This was probably the first indication that large cardinals could really influence how
the continuum would look to an analyst: by assuming some measure on some remote
cardinal the nature of V!C1 is fundamentally different.

However researchers were already deriving the regularity properties from a quite
unexpected quarter. This was the notion of a two-person, perfect-information game
(see Definition 3.1 below). Curiously, Zermelo had first published on the existence
of winning strategies for finite games, but Polish mathematicians such as Steinhaus,
Banach, and Mazur in the 1920s took up the question of infinite length games (see
the historical remarks in [6, Section 6H]). As an example such a game GA is based on
a subset A � !! (the “payoff set”) and then two players alternate choosing integers
n0; m0; n1; m1; : : : (with perfect knowledge of the other’s moves) and after !-many
moves, the mutually constructed infinite sequence z 2 !! may or may not lie in A.
If it does, player I is deemed to have won. Otherwise player II wins.

It was then asked for which payoff sets A could a player have a winning strategy
(in the obvious sense)? In their formulations R was taken as !! with moves taken
from !. In descriptive set theory it is usual to consider the reals as !! rather than
the Euclidean R: !! is homeomorphic to the irrationals, and only the countable set
of rationals is “omitted.” Moreover the topology determined by finite sequences (see
below) is very conducive to descriptive set-theoretical arguments: the resulting Baire
space is an example of a well-studied space, being a Polish space, that is, a separable
complete metric space; moreover it is homeomorphic to the direct product of any
finite number of copies of itself. Questions of dimension are thus made irrelevant:
proving a result about the descriptive set theory of the one-dimensional space !! , in
general one has the result for the k-dimensional .!!/k .

With this topology one sees that if A � !! is an open set, and player I has a
winning strategy, then any run of the game using that strategy has essentially been
won by I by a finite stage. Mazur had already conjectured the connection between
the class of A for which the games GA are determined games (meaning one of the
players has a winning strategy) and the Baire property for that class. This was proven
by Banach in 1935.

We now know that determinacy implies the regularity properties. Let � be a class
of subsets of !! . If GA is determined for all A 2 � we write Det.�/. If � has
some minimal closure properties (this is “adequacy” in Moschovakis’s terminology;
see [26]) which we shall not define here, but are enjoyed by all the definable pro-
jective classes †1

n; …1
n, and so forth, then as the combined work of Banach, Mazur,

Oxtoby (BP), Mycielski–Swierczkovski [27] (LM), Davis [2] (PSP) (all by 1964)
showed, we have the following.
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Theorem 1.2 (ZFC) Assume Det.�/. Then all sets in � have the regularity prop-
erties BP, LM, and PSP.

Actually some more can be extracted from these proofs: assuming Det.�/ the point
class 9R� also enjoys these regularity properties. Here 9R� is the point class of
projections of sets A 2 � . (Here it is particularly useful to be able to prove re-
sults simultaneously in any finite dimension.) That is, B 2 9R� if and only if
9A 2 � B D ¹x j 9y.x; y/ 2 Aº.

By Martin’s result on Borel determinacy, in other words, that ZFC ` Det.�1
1
/

(see Theorem 3.8 below), we thus have the regularity properties for 9R�1
1
D †1

1
(see below for the definition of these classes within the projective hierarchy; in brief
the projective sets are those definable in analysis, that is, definable over the standard
model of second-order number theory). The conclusion of the regularity properties
for †1

1
is of course nothing more than the work of the earlier analysts. However, now

we have that Det.…1
1
/ yields them for †1

2
.

In short, determinacy is, unexpectedly perhaps, yielding the regularity properties
on Baire space (and this transfers to other complete Polish spaces, such as Cantor
space 2! , as well as back to the Euclidean R).

Solovay had obtained in 1965 (as mentioned above) the very same †1
2
-regularity

results from a measurable cardinal. It turned out that determinacy for coanalytic sets
follows too.

Theorem 1.3 (Martin [19]) (ZFC) The existence of a measurable cardinal implies
Det.…1

1
/.

It turned out that Det.…1
1/ was equivalent to a nontrivial elementary embedding of

L to L (the Martin–Harrington theorem; see Theorem 3.9 below).
Martin [21] later went on to show that Det.…1

2
/ followed from the existence of

a nontrivial elementary embedding j W V� �!e V�. This is one of the strongest
hypotheses known for a large cardinal property, and it led to the feeling that PD, the
determinacy of all point classes in the projective hierarchy was stronger than all large
cardinal hypotheses then known. This was amplified by Woodin’s result that PD was
indeed provable from a hypothesis even stronger than the one Martin used. Later
results, coming from quite a different direction, of Foreman, Magidor and Shelah
showed that a supercompact cardinal (defined below) implied that all sets of reals
in L.R/ were Lebesgue measurable. This hypothesis was much weaker than the
Martin–Woodin hypotheses and opened up the possibility that perhaps PD might not
be so strong after all, since LM , being one of its consequences, was not.

So, it was after these results that it was discovered that embeddings of proper
inner models (not of the whole of V into an inner model) are equivalent, broadly
speaking, to that of the determinacy of point classes within the projective hierarchy
(although such had been established for some point classes strictly within �1

2
). In the

case of a …1
1-set A the point was to use a representation of A as a tree on (finite

sequences from) ! � !<! in an auxiliary open game. The latter game would be in a
different space of moves but importantly would be an open game there and thus would
(in ZFC) have a winning strategy ��. Indiscernibility (from Silver’s indiscernibles
from the embedding of L to L) was used to “integrate out” a strategy � for the
original integer game GA from ��. This rough scheme applies for the higher point
classes …1

n: homogeneous tree representations of the set A were now on !�!<� for
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larger ordinals � and the homogeneity guarantees that there are sufficiently coherent
towers of measures on the tree to run the argument. A subtle kind of cardinal was
defined, the Woodin cardinal, which allowed the correct properties of these trees to
be propagated through the increasing complexity of the projective hierarchy.

When the dust settled, we had the following.
Theorem 1.4 (Martin and Steel [23]) (ZFC) The existence of n Woodin cardinals
with a measurable above them all, implies Det.…1

nC1
/.

Theorem 1.5 (Martin and Steel [23], Woodin 1985) (ZFC) The existence of in-
finitely many Woodin cardinals with a measurable cardinal above them all, implies
ADL.R/.
The notion of a Woodin cardinal is much weaker than a supercompact, so the original
thought concerning the consistency strength of PD turned out to be quite incorrect.
In fact, an exact equiconsistency obtains (see Theorem 3.19 below). Now we have
that large cardinals are sufficient to prove definable determinacy, and that conversely
definable determinacy implies the existence of inner models of those large cardinals.
The question arises as to whether we should wish to adopt definable determinacy
as a new “axiom.” For a full account of this discussion the reader is referred to the
excellent account of Koellner’s [14], but we summarize as follows.

There is now a point of view that there is a case for assuming projective determi-
nacy, or PD, as a natural “completion” for the theory of the hereditarily countable
sets: if one takes the theory ZFC�

CPDC “Every set is countable,” then this the-
ory proves that all projective sets of reals have the regularity properties. Moreover
the only sentences (as yet) known to be independent of the theory are Gödel-like
sentences (see Woodin [38], [39]). If we move to a more global perspective and
consider ADL.R/, then we have a very robust phenomenon concerning it: it appears
(empirically) that any theory extending ZFC of sufficient strength implies it outright
(not just its consistency, we emphasize). This is the case of course of theories that are
also themselves mutually inconsistent when put together, but they all have ADL.R/ as
part of their common core consequences. If we were ever to choose one such theory
as constituting a new “axiom” we should be sure to get ADL.R/. Woodin has also
shown that ADL.R/ is remarkable in that it is also implied by its consequences.
Theorem 1.6 (Woodin) (ZFC) If all sets of reals enjoy the LM and PSP properties,
and Unif.†2

1/ also holds, then ADL.R/.
The latter uniformization property also holds in L.R/ assuming AD there. We thus
cannot find a different theory or axiom implying the regularity consequences in L.R/

without automatically getting AD there. Koellner in [14] makes a comparison with
an empirical science: we are remarkably obtaining back from our “empirical con-
sequences” of the theory, that is, the observations of the regularity properties, the
theory itself. This of course does not happen in physical theories, but the very re-
markability of this phenomenon is one reason why many set theorists, especially
those on or near the realist wing, feel that determinacy hypotheses such as ADL.R/

are compelling assertions about the set-theoretical universe.
Woodin has also shown that large cardinals in inner models are obtainable from

determinacy hypotheses.
Theorem 1.7 (Woodin) (ZFC) The theories ZF C AD and ZFC C “There exist
infinitely many Woodin cardinals” are equiconsistent.
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There are some equivalents over ZFC for levels of projective determinacy which we
shall not detail here (cf. Koellner and Woodin [15]).

Woodin has also demonstrated a very impressive array of results concerning at-
tempts to develop a logic, the �-logic, that would factor out the baleful effects of the
set-forcing independence results. One is thus interested in sentences, theories, and
so forth which survive attempts to alter their truth value by forcing arguments. Such
sentences are deemed “generically absolute.”

Theorem 1.8 (Woodin) (ZFC) Assume that there is a proper class of Woodin car-
dinals. Then the (first-order) theory of L.R/ is generically absolute. It thus cannot
be altered by any set forcing.

See Theorem 3.20 below. In particular as it only requires infinitely many Woodin
cardinals to establish that ADL.R/, and as any set forcing will still leave infinitely
many Woodin cardinals intact, every attempt to build a model using (set) forcing
techniques will still result in a generic extension in which AD holds in the L.R/ of
that generic extension. Now compare that with the following.

Theorem 1.9 (Woodin) (ZFC) Suppose that there is a proper class of inaccessible
cardinals and that the theory of L.R/ is generically absolute. Then ADL.R/ holds.

As with Theorem 1.6, the last theorem can also be viewed as another recovery theo-
rem: ADL.R/ is being recovered from its consequences. Here we are witnessing that
it must hold if the kind of generic absoluteness that flows from the existence of large
cardinals holds true.

1.2 Preliminaries Our notation and formalisms are quite standard and can be found
in many textbooks, but in particular we mention Jech [10] and Kanamori [12]. We
let L P2 denote the first-order language of set theory; by ZF we mean a formulation
of first-order Zermelo–Fraenkel. We occasionally mention the theory ZF�, which is
ZF with the power set axiom dropped. For ZF� it is usual to include the collection
scheme, rather than the replacement scheme, as the latter without power set is too
weak to prove some basic facts.

By L
P2; PA

we mean the standard language of set theory with an (optional) predicate
PA. In both these languages we freely make use of abstract terms t D ¹z j '. Ey; z/º as

if they were part of the languages. ZFA is then a formulation of ZF with instances of
the predicate PA allowed in the axioms. A set is transitive, Trans.x/, if every element
of x is at the same time a subset of x.

The class of all ordinals is denoted On; Sing is the class of singular ordinals; Card
is the class of all cardinals (we assume AC throughout and that cardinals are initial
ordinals). SingCard, Reg are the classes of singular cardinals and regular cardinals,
respectively. Inacc is the class of (strongly) inaccessible cardinals. For a limit ordinal
� , by the “cofinality of �” (cf. .�/) is meant the least ı such that there is a function
f W ı �! � with ran.f / unbounded in � (� 2 Reg then, if cf.�/ D � ). The rank
function �.x/ D ˛ is �ZF

1 , and the relation of y and ˛, y D V˛ , is …ZF
1 . We let xy

denote the set of all functions from the set x to y. It is often customary to deviate
from the practice when x D ! and we are considering, for example, !! or !X as
spaces, and then we shall write !! or X! .

It is useful to fix a recursive enumeration h�i j i < !i of Seq Ddf
<!! so that

(i) �0 D ./; �1 D .0/I (ii) i � j�i j
�
Ddf lh.�i /

�
I (iii) �i � �j �! i < j:
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(We may similarly define recursive enumerating sequences h�k
i j i < !i

for k.<!!/.)
The Kleene–Brouwer ordering is defined as follows: for s; t 2 <!On put

s <KB t $ s � t _
�
s.i/ < t.i/ where i 2 ! is least with s.i/ ¤ t .i/

�
:

Finally, recall that a set B � R is …1
n if it can be defined in Z2 with

x 2 B $ 9f18f2 � � �Qfn8kR.k;
����!
fi � k; x � k/ with R 2 †0

1

with the fi 2 NN and k 2 N. (Z2 is a formalization of second-order number theory,
or analysis; see Simpson [32].) A set is …1

n.a/ for some a 2 R if the parameter a

is allowed into the above defining †0
1-relation R. The class …1

n is the union over
a of the classes …1

n.a/. As the typeface indicates, a boldface point class indicates
that, in general, real parameters are present in the definition of a member of that
class. A lightface point class such as †1

1 (also called lightfaced analytic), or …1
n, is

one which involves no such parameters. As is usual in set theory, we make little
distinction between R and !! , or even P .!/ on occasion.

2 Inner Models, Elementary Embeddings, and Covering Lemmas

Gödel constructed an inner model of V (here the hierarchy of well-founded sets
WF D

S
˛2On V˛) by taking a “definable power set” operation x �! Def.x/, where

x is shorthand for the first-order structure hx;2i D hx;2�x � xi. By the parsimo-
nious nature of the Def function Gödel showed that the sets so constructed were very
regular, that they appeared in a definable order (thus a global axiom of choice was
verified to hold in L), and that few subsets of any cardinal were admitted; the last
justifies the GCH, the generalized continuum hypothesis as holding in L.

The Def function can be augmented as a relativized definability operation
x �! DefA.x/ using definability over hx; A � x;2� x � xi in the wider
L P2; PA-language; this gives us the ability to construct both from the ordinals as
well as using information from the predicate A. These two definability functions
are given by �ZF�

1 - or �
ZF�

A
1 -terms and hence are absolute. Given a model W (thus

given by some class term) we define the relativization of a formula ' (or a theory
T ) denoted by 'W (resp., T W ), to be the formula ' with all quantifiers 8vi ; 9vj

replaced by 8vi 2 W , 9vj 2 W (resp., the same for all formulae in T ). We think of
this as expressing that the formula ' (or theory T ) holds in W .

We let V D L abbreviate the statement that every set is constructible, or more
formally: 8x9˛.x 2 L˛/. That .V D L/L was shown by Gödel [7], as well
as (AC/L, (GCH/L thereby establishing: Con.ZF/ H) Con.ZFC C GCH/. Why
should V D L? As this is a hierarchy of sets constructed by syntactico-semantical
means, and not responding to any particular intuitions about set existence, most set
theorists do not believe V D L (but see the discussion in [11]).

We shall see good reasons for asking whether there are other inner models, some
associated with the notions of elementary embeddings. We first define our terms.

Definition 2.1 (Inner model of ZF) We have

IM.M/$ Trans.M/ ^ On �M ^ .ZF/M :
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In the above we are assuming that M is given by some term of the language. The
notion of being an inner model of ZF actually has a first-order formalization: it is
well known (see [10]) that

ZF ` IM.M/$ 8u �M9v � u
�
Trans.v/ ^ Def

�
hv;2i

�
�M

�
:

The notion of an inner model of ZFC is simply the above with AC added at the
relevant points.

We single out the following beautiful theorem as the motivation for this account.

Theorem 2.2 (ZF) The following are equivalent:
(a) 9j W L �!e L;
(b) 9.!2 �  2 SingCard ^ . … SingCard/L/;
(c) Det.…1

1/.

Here (a) expresses that there is a truth-preserving map between L and itself (see
Definition 2.3 below) which is nontrivial: that is, it is not the identity map. This is
actually a culmulative theorem established over several years: (a)$ (b) (Devlin and
Jensen [4]); (a)! (c) (Martin [19]); (c)! (a) (Harrington [8]). Part (a) of the above
theorem is sometimes stated as 0# exists. For the (c)! (a) direction, Martin actually
showed that the determinacy of games at the third level of the difference hierarchy
of analytic sets proved the existence of 0#. This was then reduced by Harrington to
a single analytic in the work cited. For an elegant proof of the Harrington result see
Sami [28].

One should consider the overall form of this theorem: even if it is anachronisti-
cally stated, it is a deep result; it takes concepts that a priori have no connection with
each other but by deep analysis are shown to be equivalent. The first, (a), involves an
elementary embedding of L to itself.

Much large cardinal theory is about which ultrafilters can or do exist on (large)
sets; in particular, when those large sets are the power set of some cardinal of an
inner model, then there is usually an equivalent formulation in terms of elementary
embeddings, as defined below, of that inner model such as stated at (a).

It is often stated that 0# exists is the first large cardinal axiom, in that it transcends
Gödel’s L in a drastic fashion: such embeddings cannot be added by Cohen-style
forcing arguments and so can never be established by using small large cardinals
where the latter are those consistent with the universe being L itself (such as inac-
cessible, weakly compact, or ineffable cardinals, etc.). Indeed from properties of 0#,
one can show that the L becomes a very thin inner model of V , and in some way
becomes very similar to the class of ordinals alone.

The second clause, (b), is the negation of a form of the so-called covering lemma
due to Jensen. What is being negated is the assertion that all singular cardinals are
seen by L to be singular: whilst L may have many “cardinals” that it does not see,
or have, functions for mapping them to smaller ordinals, functions that may exist in
V , the assertion is that, nevertheless, L can recognize the singularity of any singular
cardinal of V . It must then possess functions cofinal in these cardinals. If this failed
for just one singular cardinal, then 0# would exist. The covering lemma (which has
stronger forms with more ramifications—see below) then asserts that the cardinality
and cofinality structure of V is reflected inwardly to some extent into that of L. If (a)
holds however, this picture entirely collapses. The final clause (c) is then at first
glance quite extraordinary: we are asked to believe that the determinacy of coanalytic
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games, thus something right down at the bottom of the ramified hierarchy of sets, has
a global effect: that it engenders an elementary embedding j W L �!e L. It seems
to have nothing to do with the other two clauses.

It is one of the triumphs of the California school of set theory in the 1980s that
this picture relating large cardinals and determinacy for the projective point classes,
and on to sets in L.R/ came fully into focus, and was conclusively analyzed. The
equivalences in the theorem thus also show that determinacy is not some arcane
curiosity in the set theorists’ Wunderkammer but holds a central role in our current
understanding of what the subject is about.

We explore the background to Jensen’s (a)$ (b). Again we have to define some
terms.

Definition 2.3 (i) Let M; N be inner models of ZF; j W M �! N is an
elementary embedding if the function j takes elements x 2 M to elements
j.x/ 2 N in a “truth-preserving way”: for any formula '.v0; : : : ; vn�1/ and
any Ex D x0; : : : ; xn�1 2M , then

'.Ex/M
$ '

���!
j.x/

�N
:

In this case we write: j W M �!e N . (We shall always assume that j ¤ id, and
shall write cp.j / for the critical point: the least ordinal ˛ such that j.˛/ > ˛, if it
exists.)

(ii) If the above holds, but with the formulae restricted to a certain class, for
example, the †k formulae, then we write j WM �!†k

N .

In the above scheme, we have assumed that the models M; N satisfy IM.M/,
IM.N / above and are given by terms of our basic set-theoretical language, and the
same holds true for j . Our embeddings in this paper will all have critical points in
the ordinals. It is an easy consequence of the ZF-axioms (using the definition of the
rank function, the V˛-hierarchy, and replacement) that if j W M �!†1

N , then by a
(metatheoretic) induction on k we may prove j WM �!†k

N for any k 2 !.
If 9j W L �!e L, then we may define a derived measure U D Uj on � D cp.j /

as follows: we set

X 2 Uj $ X 2 P .�/L
^ � 2 j.X/:

Then Uj is a normal measure (see [12, p. 52]) on P .�/L. Suppose that we have
j W M �!e N , cp.j / D �, and define U D Uj . Then we construct an ultrapower
defining ˇ̌

Ult.M; U /
ˇ̌
D

®
Œf �� W f 2

�M \M
¯
;

where

f � g$
®
˛

ˇ̌
f .˛/ D g.˛/

¯
2 U

and on which we can define a pseudo-2 relation E:

fEg$
®
˛

ˇ̌
f .˛/ 2 g.˛/

¯
2 U:

Because of where Uj comes from, we are guaranteed that E is well founded on
Ult.M; U /; we may define by recursion along E the Mostowski–Shepherdson tran-
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sitivizing collapse isomorphism � W .Ult.M; Uj /; E/ �! .N ;2/ with N transitive,
and we have, with k.�.Œf �// D j.f /.�/,

We can, and often do, have .M;2/ D .V;2/. Also, starting from any �-complete
U on P .�/V (for an uncountable regular �), then we can define Ult.V; U / and we
may prove outright that the E-relation on Ult.V; U / will be well founded. In general
for well-founded cases we may then define the map � as above.

Taking these facts together then, we have the following.

Theorem 2.4 (ZFC) Let � > !. The following are equivalent:
(a) there is a �-complete nonprinciple ultrafilter on P .�/;
(b) 9j W V �!e M with cp.j / D �.

Scott took the construction of an ultrapower from model theory and used it to prove
the first theorem demonstrating that a “large cardinal” was incompatible with V D L.

Theorem 2.5 (Scott [31]) (ZF) We have
9�.� a measurable cardinal/ H) V ¤ L:

Proof If V D L, let � be the least such measurable cardinal (MC), form the ultra-
power and so the embedding above. Then from j W V �!e N and elementarity we
have .V D L/V �! .V D L/N ; so as Trans.N /, N D L. However, “� is the least
MC” implies that (“j.�/ is the least MC”/N . However, N D V ^ j.�/ > �!

The assumption of this theorem implies 9j W V �!e M , but again by Gödel’s
results on the absoluteness of the L-construction, LM D L, so j � L W L �!e L.
Note that no first-order formula '.v0/ can differentiate between � and j.�/:
'.�/L $ '.j.�//L. Moreover, both ordinals are inaccessible cardinals in the
sense of L.

So we investigate the consequences of this embedding from L to L and shall
discover that such indiscernibility of these critical points in fact characterizes such
embeddings. Kunen [16] showed that if 9j W L �!e L, then a number of conse-
quences follow.

(i) Then there is such a j : L �!e L with cp.j / < !1. Moreover, defining U0

from such a j with critical point �0 least, we are guaranteed well-foundedness of
iterated ultrapowers: that is, we may define j01 W L �!e L by taking the ultrapower
of L by U0; define U1 on P .�1/L where �1 Ddf j01.�0/, and then Ult.L; U1/ will
also be well founded. We then may transitivize it and obtain L again. We thus have an
embedding map j12 W L �!e L with critical point �1; we then define �2 D j12.�1/

and U1 on P .�2/L. The process may be iterated without breaking down, forming
a directed system hhN˛i; j˛ˇ ; �a; U˛i˛�ˇ2On with (in this case) all N˛ D L and
elementary maps into direct limits at limit stages �, and the �˛ forming a class C of
L-inaccessibles, which is closed and unbounded below any uncountable cardinal.
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(ii) The iteration points of such ultrapowers enjoy full-blooded indiscernibility
properties in L: if '.v0; : : : ; vn/ is any formula of L and E , Eı any two ascending
sequences from ŒC �nC1, then .'.E/$ '.Eı//L.

Definition 2.6 (The 0#-mouse) Let j˛ˇ , and so forth, be as above. Let

M0 D hL�
CL
0

;2; U0i:

This structure is called the 0#-mouse, which itself has iterated ultrapowers using
maps that are the restrictions of the

j˛ˇ � M˛ WM˛ �!e Mˇ where M˛ D hL�
CL
˛

;2; U˛i:

Remark 2.7 The viewpoint is shifted to that of the mouse (M0) generating the
model (in this case L/. All of this is a paradigm for generalized constructible inner
models K—the core models.

By these means we argue for the following.

Theorem 2.8 (ZF) If 9j W L �!e L, then 8 > !.. 2 Card/ �! . Inacc/L/.

Proof The above implies that C \ is unbounded below  . However, C is closed,
so  2 C . Each  2 C is inaccessible in L.

Theorem 2.9 (Jensen) (ZF) Suppose  2 SingCard,  � !2, but . 2 Reg/L.
Then 9j W L �!e L, with j ¤ id; that is, 0# exists.

Proof Suppose :9j W L �!e L, but  is chosen least with  2 SingCard
but . 2 Reg/L. Without loss of interest, we shall assume that (i) cf./ > !;
(ii) ı <  �! ı! <  . Let � D cf. ). By assumption then � <  , and so we may
choose X0 �  with jX0j D � but X0 unbounded in  . By (ii) we will assume also
that for some X � X0 we have (a)  2 X � LCL (b) !X � X (c) jX j D �! <  .

Let � W hX;2i �! hM;2i D hLı ;2i be the collapsing isomorphism with
�./ D ı, say. Then we have

(1) cf.ı/ D � also, with jıj D jM j D jX j <  .
Suppose that we had P .ı/M D P .ı/L. Then we could define a measure derived

from ��1 in the usual manner: let ˛ D crit.��1/, and define U by

Z 2 U ” Z 2 P .ı/M
^ ˛ 2 ��1.X/:

Then U would be a countably complete ultrafilter on P .ı/L (that is why we chose
!X � X as this implies !M � M ), and this in turn implies that Ult.L; U / is well
founded. However that implies 9j W L �!e L:
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Hence we must have P .ı/M ¨ P .ı/L. So
(2) 9ˇ � ı.Def.Lˇ / \P .ı// ª Lı .
Choose ˇ least so that (2) holds. By so-called fine structural methods Jensen

showed how there is a superstructure L� for some � > CL and a sufficiently ele-
mentary map Q� � ��1, Q� W Lˇ �! L� , and because there is a “new” subset of ı

definable over Lˇ there must also be a “new” subset of  D ��1.ı/ that is not in
L� . However this is absurd as by L’s construction .P ./ � LC/L.

Remark 2.10 The assumptions (i) and (ii) can be dropped, but not without some
difficulty, in particular when cf./ D !; however the format of the argument remains
roughly the same.

Theorem 2.11 (Jensen: The full L-covering lemma) (ZF+:0#) For any X � On,
if jX j > !, then there exists Y 2 L with (a) jY j D jX j and (b) Y � X .

The above result Theorem 2.9 is then a corollary of this. As are the following.

Corollary 2.12 (ZF+:0# exists)

(a) Let .� 2 Reg/L with � � !2. Then cf.�/ D j� j.
(b) Let � 2 SingCard. Then �C D �CL.

Remark 2.13 Part (b) of Corollary 2.12 is sometimes called WCL the weak cov-
ering lemma. The reason is that for other inner models M we may have WCL.M/

provable (obtained by replacing L by M in the corollary’s statements), while the full
CL.M/ is not. There is a result of Mitchell that shows that if there are sufficiently
many measurable cardinals in an inner model, there may be many so-called Prikry
sequences (generic for Prikry forcings associated with the measurables) in V that
must mess up the full covering lemma.

Generalizations
If 0# D M0 exists as above, perhaps there is no nontrivial j W LŒ0#� �!e LŒ0#�,

and then we have a CL.LŒ0#�/? This is indeed the case; however, if this new assump-
tion fails, then we have .0#/#. We then get a theorem along the lines of a new covering
lemma in the form of CL.LŒ0#�/ which holds if and only if :j W LŒ0#� �!e LŒ0#�.
.0#/# is again a countable object, and we can repeat this process. After we have done
this uncountably often our #-like mouse objects are no longer countable and we have
to resort to uncountable mice M .

Instead of toiling inductively through seas of such objects, Dodd and Jensen first
proved the following.

Theorem 2.14 (Dodd and Jensen [5]) (ZF) There is an inner model KDJ, so that
if there is no inner model with a measurable cardinal, then (a) there is no nontrivial
embedding j IKDJ �!e KDJ and (b) CL.KDJ/.

This was the first core model to go beyond L (if one discounts the models LŒ0#�,
etc.).

Theorem 2.15 (Steel [35]) (ZFC) If there is no inner model for a Woodin cardinal,
then there is a model KSteel, which is again rigid, and over which WCL.KSteel/ holds.

Perhaps there is some ultimate model which, although not L, is an inner model, LŒE�,
say, which is the “core” of V , with E coding up all possible “measures” or means of
generating embeddings of models, and hopefully one has, say, WCL.LŒE�/? Maybe,
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but to date the following “inner model program” has worked on the following in-
ductive template. Assume that you have built core models K�0 for any strictly
weaker large cardinal assumption � 0 than “There is an inner model with a large
cardinal � .” Now assume that there is no inner model for such a cardinal as � ,
and build K� , which, you should show, still under this assumption, is rigid and over
which WCL.K�/ holds. Finally, if the latter fails you have (by contraposition) an
inner model with a �-cardinal. Continue. This programmatic approach to filling out
V with wider and thicker inner models depending on the strength of the large cardi-
nals existing in inner models of V has become known as the “inner model program.”
Currently, however, the program is stuck at the level roughly of � a Woodin limit of
Woodin cardinals.

We have further remarks.

Theorem 2.16 (Magidor [18]) (ZF) Assume :0#. If X � On is uncountable and
closed under the primitive recursive set functions, then X D

S
n<! Yn with each

Yn 2 L.

This is thus a decomposition rather than a covering theorem, but its proof is es-
sentially (but perhaps surprisingly) a variant on Jensen’s argument. The primitive
recursive set functions mentioned are a mild collection of absolute functions on sets
generalizing those on numbers (cf. Devlin [3]).

For many constructions, ordinal combinatorial properties up to a successor car-
dinal C are needed. The significance of the WCL over a model M , say, is that
C D CM for certain cardinals of V (including the singular cardinals). The requi-
site ordinal combinatorial property may be established in the inner model M . Pro-
viding that the property is then sufficiently simple that it is absolute to V , we then
have that the combinatorial property is valid in V as well and is available for us for
that original construction. The weak covering lemma (under the rigidity assumption
as always) has thus delivered for us a piece of absolute knowledge about V : one such
combinatorial principle is the following.
� : There is hC˛ j ˛ 2 Sing \ Ci with

(i) C˛ � ˛ is closed; it is unbounded in ˛ if cf.˛/ > !;
(ii) otp.C˛/ < ˛;
(iii) ˇ 2 C˛ �! Cˇ D ˇ \ C˛ .
Such a sequence can be thought of as a uniformly presented sequence of witnesses

to the singularity of ordinals below C, which cohere or glue together nicely as ex-
pressed in (iii). This is useful for inductive constrictions up to C and, in particular,
for singular  . Since the properties (i)–(iii) are absolute between M and V , if such
can be constructed in M and C D CM we have such a good sequence in V .

Remark 2.17 Jensen first established � for all  2 Card, in L. This was then
established in the core models over the years as they were developed (in KDJ by the
author, in KSteel by Schimmerling and Zeman [30], and with other results by other set
theorists for intermediate models which we have not defined; see also Schimmerling
and Zeman [29] for an overview). As intimated, principles such as � can be seen as
identifying very uniform singularizing functions for singular ordinals. Certain large
cardinals have an effect of implying the nonexistence of certain such sequences in V .
Other forcing axioms outright contradict the existence of any � -sequences at all.
The study of such principles and their various weakenings has told us a lot about the
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interrelationship between large cardinals and inner models. The reference [29] gives
an outline of which inner models can admit such sequences: it was a fundamental
question which these authors solved as to which canonical inner models could in the
end support such sequences. Since it was known that large cardinals contradicted
�-principles, it was germane to find precisely where these principles broke down.

Remark 2.18 It is possible to establish the “correct successor cardinal” computa-
tion for certain classes of regular limit cardinals  other than singulars alone: for 

weakly compact in V (Jensen originally for L);  Ramsey (see Mitchell [24] orig-
inally for KDJ, later in Mitchell [25] for KSteel);  Jonsson (Welch [37] for KSteel),
again thereby showing that for cardinals in these classes, their successors in V also
enjoy certain combinatorial properties. However for inaccessibles in general this will
fail.

3 Determinacy: The Martin–Harrington Theorem

We have mentioned extremely briefly the history of determinacy; a complete source
for this material is Moschovakis [26]. We have stated that the regularity properties
hold for the projective sets, if all such sets are determined. In this section we define
the basic terms relating to determinacy and outline the route leading from large car-
dinals to projective determinacy. In particular, we demonstrate the key concepts of
weakly homogeneous tree and the (weakly) homogeneously Suslin property for sets
of reals (see Definitions 3.11, 3.14 below). It is the descriptive set-theoretical analy-
sis and representation of sets via trees that goes back implicitly to Suslin for †1

1-sets
and, for trees with special measures on them, that enables these theorems. The large
cardinals enter the picture, as they are needed to provide the special measurability
properties on the trees to make the analysis work. However, it was then seen later
that the determinacy of sets which became thus provable in turn proved “reversals”
in the form of demonstrations of the existence of inner models of the large cardi-
nals which had been needed to prove the determinacy in the first place. (Notice that
determinacy statements alone, being as they are statements about the existence of
strategies, which are essentially themselves reals and so statements about elements
of V!C1, cannot prove that large cardinals actually exist in V as the latter statements
are about, say, some large V�C1, but they can, and do, prove the existence of inner
models of those large cardinals.) The relationship between the determinacy of coan-
alytic sets and embeddings of L was thus the first evidence of a very rich picture that
subsequently emerged. What was at first dark and mysterious about determinacy be-
came fully understood through this analysis. Whatever one’s position on the concept
of large cardinals or strong axioms of infinity, we cannot understand determinacy
of the projective sets, say, without it. The “reversals” alluded to above prove this.
Even if one dislikes arguments from “extrinsic evidence” to the existence of large
cardinals as actual sets, there is no denying their explanatory, and so instrumental,
power. Probably for many set theorists that instrumental power alone is a consider-
able motive for their adoption. Explanatory power is a strong conceptual motivator in
other areas of mathematics: mathematicians would have no hesitation in embedding
what they were doing in some larger or new kind of space, if it led to understanding.
If we regard set theory purely as a mathematical activity, for a moment imagining it
shorn of any foundational pretensions, then adoption of such axioms might well be
considered unexceptionable.
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Another significant definability property one may ask for is uniformization. Sup-
pose that �; H are two point classes of sets of reals. We say that Unif.�; H/ holds if
whenever Q 2 � \P .kR � R/ (k < !/, then there is P � Q, P 2 H, and

8x
�
9yQ.y; x/ H) 9ŠyP.y; x/

�
:

(P thus acts as a function uniformizing the relation Q by choosing a unique ele-
ment in the relation for each x for which such is possible.) Classically one had
(the Novikoff–Kondo–Addison theorem) Unif.…1

1; …1
1/. We let PU (projective uni-

formization) abbreviate the statement that every projective relation can be projec-
tively uniformized. It is the fundamental outcome of Moschovakis’s analysis of the
scale property in the projective hierarchy that projective determinacy implies the ex-
istence of projectively definable scales, and thence that PU holds (again, cf. [26]).

At a first encounter it seems an unusual position to take, to posit winning strate-
gies for infinite games as plausible set-theoretical axioms. Why should such strate-
gies even exist? However we see now that the regularity properties of sets is actually
equivalent to determinacy, that is, to the existence of such strategies, for all sets de-
finable from R and the ordinals (cf. Theorem 1.9). The regularity properties have
been the bread and butter of analysts for decades and are innately uncontroversial.
That the early analysts were unable to establish these properties beyond the coana-
lytic, was indeed because they were trammeled by working, albeit implicitly, only
with ZFC-provable tools.

Games

Definition 3.1 For A � !! (or more generally X!/ the infinite perfect infor-
mation game GA is defined between two players I, II, alternately playing elements
ni ; mi 2 X :

I n0 n1 n2 � � � nk � � � ,

II m0 m1 � � � mk � � �

together construed as constructing x D .n0; m0; : : : ; nk ; mk ; : : :/ 2 X! .
We say that I wins if and only if x 2 A; otherwise II wins. Notions of strategy

and winning strategy are defined in the obvious fashion. Notice that for A � !! a
strategy � for, for example, I is a map from

S
k

2k! �! !. Since there is a recursive
bijection <!! $ !, we can think of � as essentially a subset of ! or, again, as a real
number.

We speak of a topology of open and closed sets of a space X! by letting a typical
basic open set be a neighborhood Ns where s 2 SeqX is a finite sequence of elements
of X :

Ns Ddf
®
x 2 X!

ˇ̌
9k < !.x � k D s

¯
:

Notice that this is suitable for talking about payoff sets in such games: if in the above
A is an Ns , then essentially if I is to win, then he will have done so after jsj many
rounds of the game (where jsj is the length of the sequence s). An open set is then
a countable union of basic open neighborhoods; a closed set is a complement of an
open set, and so forth. When X D ! and an open set, U , is given as a union of
basic open neighborhoods defined by a recursively given set of sequences numbers s

coding elements of <!!, then we say that U is semirecursive, or †0
1. More generally

we speak of open sets and †0
1
-sets in parameter codes which are themselves subsets
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of ! or again real numbers. If A is an open set in this topology, then I will win by
essentially winning at some finite stage of the game; for II to win, then she or he must
be vigilant to the end to play into the complementary closed set.

The basic theorem here is the following.

Theorem 3.2 (Gale and Stewart) (ZF) Let A � X! be an open set. Then GA is
determined; that is, one of the players has a winning strategy.

Proof Note that if I wins it is because the play has been maneuvered so that
there is a finite stage .n0; m0; : : : ; nk/ so that N.n0;m0;:::;nk/ � A. Essentially I
has won by this stage as it matters not what nl is played for l > k. Player II,
however, playing into the closed set which is X!nA, must be vigilant to the end
in order to win. Suppose then that I has no winning strategy. Then for every n0

II has a reply m0 so that I has no winning strategy in the game GA=.n0;m0/, where
A=.n0; m0/ Ddf ¹x 2 A j x.0/ D n0; x.1/ D m0º. For, if there was an n0 such that
I did always have a winning strategy in this latter game for whichever m0 II played,
�.m0/, say, then this would amount to a winning strategy for I in GA: first play n0,
wait for m0, and then use �.m0/. Thus given n0 II should play m0 so that I has no
such strategy. However if she or he continues in this way, this is a winning strat-
egy for II: always respond so that I has no winning strategy from that point on. The
resulting play x cannot be in A.

The maxim here is that we can always in ZFC prove Det.Open/ for any space X!

and so by taking complements Det.Closed/ too. (AC is needed only to well order
X if need be.) Many proofs of determinacy of complicated sets in !! or X! in-
volve reducing the game to a closed game in some larger space Y ! . The latter are
determined by the Gale–Stewart theorem. The difficulty arises in showing that the
player with the winning strategy for the open set on the space Y ! also has one for
the related but much more complicated set in X! .

Definition 3.3

(i) A tree T on ! �X (for X ¤ ¿/ is a set of sequences in
S

k
k! � kX , where

if .�; u/ and k � j� j D juj, then .� � k; u � k/ 2 T . Similarly define trees
on n! �X .

(ii) For such a tree T we set

T� Ddf
®
u

ˇ̌
.�; u/ 2 T

¯
; T �

� Ddf
[

k�j� j

T��k ; and Tx D

[
k

Tx�k :

Definition 3.4 For T a tree,
(i) ŒT � Ddf ¹.x; f / j 8k.x � k; f � k/ 2 T º is the set of branches through T ;
(ii) p ŒT � Ddf ¹x 2

!!.or k.!!// j 9f .x; f / 2 ŒT �º is the projection of T ;
(iii) a set A � k.!!/ is �-Suslin (for � � !, � 2 Card/ if A D pŒT � for some

tree on ! � �.

Clearly, a tree is well founded (under �) if ŒT � D ¿. For a C � ! �X a closed set,
there is a tree T on ! �X with C D ŒT �. This is true in particular for X D !. If C

has a recursively open complement, then we may take T as recursive set of sequences
from

S
k.k! � k!/.

If A � !! is †1
1, then A D pŒT � for a tree on ! � !—thus such sets are projec-

tions of closed sets—and conforms to the idea that x 2 A$ 9y 2 !!.x; y/ 2 ŒT �.
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This classical result (due to Suslin) is sometimes stated that analytic (D †1
1
) sets are

“!-Suslin.” Many of the classical properties of analytic sets as studied by analysts
can be attributed to this (and similar) representations.

Given this last fact, we can represent …1
1
-sets, being complements of †1

1
’s, as

those sets where the tree T for the complement is well founded. We may thus define
rank functions for such trees by finding functions that map the nodes into the ordinals
in a tree-order-preserving way. We do this next.

Let then A 2 …1
1 be a (lightface) coanalytic set. Then by the above discussion

there is a recursive tree T (meaning that there is a recursive set of sequence numbers)
on ! � ! with

8x.x 2 A$ Tx is well founded/:

Tx being countable, we have that rk.Tx/ < !1. Consequently,

x 2 A, 9g.g W Tx �! !1 in an order-preserving way/:

That is, we may define a tree OT on ! � !1 as follows:
OT D

®
.�; u/

ˇ̌
8i; j < j� j W �i � �j ^

�
� � j�i j; �i

�
2 T �! u.i/ < u.j /

¯
:

Then one can see that

x 2 A$ 9g 2 !!1

�
.x; g/ 2 Œ OT �

�
$ x 2 pŒ OT �:

The above reasoning thus shows that any …1
1-set A is !1-Suslin. Further:

(i) OT 2 L, and by the absoluteness of well-founded relations on ! between
ZF�-models containing all countable ordinals Œ OT � ¤ ¿$ .Œ OT � ¤ ¿/L;

(ii) if the underlying set is a …1
1.a/-set for some real parameter a, then OT 2 LŒa�.

Now the argument can be stepped up to †1
2-sets: suppose x 2 B $ 9y.x; y/ 2 A

(we write B D pA) with A 2 …1
1; hence there is a tree OTA on .! � !/ � !1 with

.x; y/ 2 A$ 9g 2 !!1

��
.x; y/; g

�
2 ŒbT A�

�
:

However, there is a �ZF
0 -definable bijection ! � .! � !1/$ .! � !/ � !1 thus

redefining the tree bT A as T but on different sequences, so that for any x; y we have

.x; y/ 2 pŒbT A�$ 9g 2 !!1

��
.x; y/; g

�
2 ŒbT A�

�
$ 9g 2 !!1

��
x; .y; g/

�
2 ŒT �

�
:

However, now we again use a �ZF
0 -bijection ! � !1 $ !1to recast T as a tree T on

!1 alone; then
x 2 B $ x 2 pA$ x 2 pŒT �:

We have the following.

Theorem 3.5 (Shoenfield) (ZF) Any †1
2-set is !1-Suslin, as a projection of a tree

T 2 L.

Corollary 3.6 (ZF) Let B be any †1
2-relation. Then 9xB.x/ $ .9xB.x//L. In

particular, †1
2-sentences are absolute between L and the universe V . Moreover, if

A � N is †1
2, then A 2 L.

Theorem 3.7 (Levy) (ZF) There is an ordinal �1 < !L
1 such that .L�1

;2/ �†1

.V;2/.
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Proof Let A be a †1-sentence in L true in V . By Löwenheim and Skolem, the
following holds:

There is a countable well-founded transitive model .M;2/ with .A/M :

The latter can be expressed as a †1
2-assertion about a real number x (coding such

an .M;2/). By Corollary 3.6 there is such an x, and Mx 2 L!L
1

. By the upward
persistence of †1-sentences .A/Mx H) .A/L. Hence L!L

1
�†1

V .

We sometimes wish to be more specific about the tree for …1
1, and for this we use

the Kleene–Brouwer ordering: <KB is a linear ordering, and it restricts to linear
orderings on <!� for cardinals � � !. One may check the following:

If T is a tree on �, then T is well founded if and only if T is well ordered by <KB.
In particular, we have for a …1

1-set A that there is a tree T on ! � ! so that

x 2 A$ Tx is well founded $ Tx is well ordered by <KB :

For a tree T on ! � � we then have a linear ordering <x corresponding to the KB
ordering of Tx with the following definition and properties:

i <x j  !df .�i ; �j … Tx ^ i < j / _ .�i … Tx ^ �j 2 Tx/

_ .�i ; �j 2 Tx ^ �i <KB �j /:

In fact, <x is the union of orderings given by initial segments of x: for � 2 <!!

define

i <� j  !df i < j < j� j ^ .�i ; �j … T �
� ^ i < j / _ .�i … T �

� ^ �j 2 T �
� /

_ .�i ; �j 2 T �
� ^ �i <KB �j /:

Then
(i) <xD

S
k <x�k ;

(ii) define T �
A on ! � � by

.�; u/ 2 T �
A  !df 8i; j < j� j

�
i <� j $ u.i/ < u.j /

�
:

Then
x 2 A$ 9g 2 !�

�
.x; g/ 2 ŒT �

A �
�
:

In the above, � � ! may be any cardinal of course. After the basic definitions
were introduced Det.†0

3/ (see Davis [2]) was the extent of provable determinacy
(indeed provable within Z2). Remarkably Friedman [6] showed that for Borel deter-
minacy roughly, order type ˛-iterations of the power set operation (together with
some replacement) would be needed to establish Det.†0

˛/, thus establishing that
Z ° Det.�1

1/. This phenomenon would start at †0
4. Paris then showed Det.†0

4/

(using ZFC), but there matters languished.

Theorem 3.8 (Martin [20]) (ZF) We have Det.Borel/ for Borel subsets of !! .

Theorem 3.9 (Martin and Harrington) (ZF)

9j W L �!e L; j ¤ id” Det.…1
1/:

Proof .�!/ (Martin) We assume the left-hand side, and then by the work of Silver
and Kunen, we have a closed and unbounded set C � !1 of indiscernibles for .L;2/.

Let A 2 …1
1. The usual game GA involves integer moves but has a complicated

payoff set. We replace the space !! with a larger one X! for some X to be defined,
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and we relate A to some closed A� � X! . By the Gale–Stewart theorem, this is
determined. We have to show that winning strategies in GA� can be translated to
winning strategies for the same player in GA.

Definition 3.10 GA� is defined between two players I, II playing as follows:

I .n0; �0/ .n1; �1/ .n2; �2/ � � � .nk ; �k/ � � � ,

II m0 m1 � � � mk � � �

together constructing

x D
�
.n0; �0/; m0; .n1; �1/; m1; .n2; �2/; m2; � � � .nk ; �k/; : : :

�
:

The rules are that ni ; mi 2 !, �i 2 !1. We think of the �i as laying out a function
g W ! �! !1 with g.i/ D �i , and the integers yielding x D .n0; m0; n1; : : :).

Winning conditions: I wins if and only if .x; g/ 2 T �
A .

Then g witnesses that Tx is well founded by giving an order-preserving map from <x

into !1. Note that the game is closed in the sense that if I loses it happens at some
finite stage (by messing up the ordering, which cannot be redeemed at a later stage).
Equivalently, II is playing into an open set, and if she or he wins, does so at a fi-
nite round. Note that T �

A is defined in L, and so, by the Gale–Stewart theorem, is
determined in L.

Claim If �� is a winning strategy for I (resp., II) in GA� in L, then there is a
winning strategy for I (resp., II) in GA.

Proof of Claim. If �� is a winning strategy for I it can be used to play in GA by
suppressing the ordinal moves and clearly wins (both in L and V ). Suppose then that
�� 2 L is, in L, a winning strategy for II.

The idea is that II simulates a run of GA� by using indiscernibles from
C0 Ddf C \ !1 as “typical” ordinal moves for I. Player II defines a strat-
egy � :

S
n

2nC1! �! ! as follows; fix n < !, and consider the formula
'.!1; T �; ��; �; E�; m/ which defines a term t .!1; T �; ��; �; E�/ D m:

E� 2 nC1!1 ^ ��.� � nC 1; E�/ 2 T �
^ ��.�; E�/ D m:

As ��; T � 2 L the term t will have a fixed value m 2 N for any E� 2 nC1C0 that is
chosen, since the latter are indiscernibles for the formula '. So she or he sets (in V

where C0 lives):

�.�/ D m D t .!1; T �; ��; �; E�/ for any E� 2 nC1C0:

Now argue that x 2 A, even though II followed this strategy; we would have
that there is an order-preserving embedding g W .!; <x/ �! .C0; </ (as C0 is
uncountable). However, that corresponds to a run of the game GA� (with ordinal
moves delivered by g), where II has used ��, which was supposed to be winning,
which is a contradiction!

It is an exercise to show that if a GA for A � !! is determined, A is countable or
else contains a perfect subset and hence is the size of the continuum. However, in L

there is an uncountable …1
1-set which has no perfect subset. Conclusion: Det.…1

1/ is
false in L, and so ZF ° Det.…1

1/. In the above we constructed a winning strategy
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for II in V . However, the statement “9�Œ� is a winning strategy for II in GA�” is a
strictly †1

3-statement, and as such is not in general absolute to L.
We should like to establish Det.…1

n/ for other n > 1, but this requires consider-
ably more ingenuity. The key is to find representations of projective sets as projec-
tions of trees enjoying so-called homogeneity properties which entail that there are
measures (and more) on the trees. This tree representation was implicit in the proofs
of Det.…1

1/ of Martin and in Martin and Solovay [22] where such trees were used
to analyze …1

2-sets. However the notion was only made explicit in Kechris [13]. For
the rest of this article we shall work in ZFC unless otherwise stated.

Definition 3.11 (Homogeneous trees and sets) Let T be a tree on ! �X , and let
� > ! be a cardinal.

(A) Then T is a �-homogeneously Suslin tree if and only if 9hU� j � 2 Seqi,
where

(i) each U� is a �-complete measure on T� ;
(ii) for any � � � , U� projects to U� : that is,

u 2 U� $
®
v 2 T� W v � j� j 2 u

¯
2 U� I

(iii) the U� form a countably complete tower: if �i 2 Seq, Zi 2 U�i
are such that

i < j �! �i � �j , then there is a g 2 !X so that 8i.g � i 2 Zi /.
(B) We say that A � !! is �-homogeneously Suslin if A D pŒT � for a �-

homogeneously Suslin tree T.

Notice that one way to phrase (iii) is to say that if x 2 pŒT �, then hUx�i W i < !i

form a countably complete tower. Although the notion had to be isolated, in fact
Martin had used essentially the fact that if there exists a measurable cardinal �, then
any analytic set is pŒT � for a �-homogenously Suslin tree on ! � �.

Theorem 3.12 Suppose that A is �-homogeneously Suslin for some �. Then GA

is determined.

Proof Suppose A D pŒT � with T �-homogeneously Suslin on !�� (some � � �).

Definition 3.13 GA� is defined between two players I, II playing as follows:

I .n0; �0/ .n1; �1/ .n2; �2/ � � � .nk ; �k/ � � � ,

II m0 m1 � � � mk � � � ,

together constructing

x D
�
.n0; �0/; m0; .n1; �1/; m1; .n2; �2/; m2; � � �

�
:

Rules: We have ni ; mi 2 !, �i 2 �. Winning conditions: As before I wins if and
only if .x; g/ 2 ŒT � where g.i/ D �i .

Again this is a closed game, and so there is a winning strategy for one of the players in
LŒT �. Now to show that II has a winning strategy in GA if she has a winning strategy
�� in GA� , we use the !1-completeness of the measures rather than indiscernibility.

She defines a strategy � W
S

n
2nC1! �! ! as follows: for n < ! and then for

� 2 2nC1!; u 2nC1 �, define

�.�; u/ D ��
�
�.0/; u.0/; : : : ; �.2n/; u.2n/

�
2 !:
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Define Z�;k Ddf ¹u 2 T .� � nC1/ W �.�; u/ D kº. Since U��nC1 is a measure on
T .� � nC1/, by its !1-completeness, for precisely one value of k is Z�;k 2 U��nC1.
So let that value of k, k0, say, be the response given by the strategy

�.�/ D k0 where k0 is the unique value of k0 with Z�;k0
2 U��nC1:

Again we check that � is a winning strategy for II in GA. If x is a result of a play with
II using � , but nevertheless x 2 A, then by (iii) in the definition of �-homogeneously
Suslin 9g 2 !X , so that for every n, g � nC 1 2 Zx�2nC1;�.x�2nC1/. This implies
.x; g/ 2 ŒT � and is then a losing outcome of the game where II in fact uses ��, thus
contradicting that the latter is a winning strategy for II. Hence x 2 A.

Hence determinacy would follow if we could establish homogeneity properties for
trees.

Definition 3.14 A � !! is weakly homogeneously Suslin if A D pB , where
B � .!!/2 is homogeneously Suslin.

In fact this is not the official definition of weakly homogeneously Suslin which de-
fines “weakly homogenous trees” and is in terms of towers of measures, but never-
theless has this equivalence. These were also studied by Kechris [13] and Martin.

Weakly homogeneously Suslin sets (being the projections of weakly homoge-
neous trees) can be thought of as generalizations of analytic sets and are of great
interest in their own right: we have seen that if there is a measurable cardinal, then
†1

2-sets are weakly homogeneously Suslin.

Theorem 3.15 If a set A is weakly homogeneously Suslin, then it has the regular-
ity properties (Lebesgue measurability, the Baire and perfect subset properties).

It thus has the consequences of being determined, without actually being so. Unfor-
tunately, A being weakly homogeneously Suslin does not imply that it is homoge-
neously Suslin. However, one important feature is that they do have complements
defined as projections of trees QT with the latter definable from their weakly homoge-
nously tree T .

Lemma 3.16 Let A be pŒT � with T weakly homogeneously Suslin. Then there is
a tree QT with !!nA D pŒ QT �.

However, on its own this is no help. The breakthrough was the following theorem.

Theorem 3.17 (Martin and Steel [23]) Suppose that � is a Woodin cardinal and
that T is a �C weakly homogeneously Suslin tree. Then for  < �, the QT above is
 -homogeneously Suslin.

There is thus some trade-off: the completeness of the measures drops. However, we
now have the following.

Theorem 3.18 (Martin and Steel) Suppose that �0 is a Woodin cardinal and that
� > �0 is measurable. Then Det.…1

2/. Further, if �n�1 < �n�2 < � � � < �0 are
n � 1 further Woodin cardinals, then Det.…1

nC1/. Thus

ZFCC “there exist infinitely many Woodin cardinals” ` PD:

Proof Let A � !! be …1
2. Then A is the complement of a †1

2-set on !! , which is
itself the projection of a …1

1-set B � .!!/2. B is �-homogeneously Suslin for some
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homogeneous tree T , as � is measurable, and a fortiori is also �C
0 -homogeneously

Suslin. By Theorem 3.18 we have a  -homogeneously Suslin tree QT projecting to A

with  -complete measures. By Theorem 3.12 we have that GA is determined, and
we are done. The last two sentences follow by repetition of the argument.

The exact consistency strength of the assumption above is slightly stronger, with the
.(H/ being very involved.

Theorem 3.19 (Woodin) We have

Con.ZFCC “there exist infinitely many Woodin cardinals”/

” Con.ZFCC ADL.R//:

The final conclusion of Theorem 3.18 yields the boundary of the provability of PD
from large cardinal axioms. This is not a relative consistency result; PD holds out-
right. Set forcing can change the character of the universe locally but, roughly speak-
ing, does not destroy large cardinal properties beyond the rank of the partial order.
Consequently if V has a proper class of Woodin cardinals, then PD is not only prov-
able outright but is absolute into set-forcing extensions. Much more is possible.

Theorem 3.20 (Woodin) Suppose that there is a proper class of Woodin cardi-
nals; then Th.L.Rº/ is absolute with respect to set forcing. Thus if V ŒG� is a set-
generic extension, then �

L.R/
�V
�

�
L.R/

�V ŒG�
:

The larger cardinals that we look at next will again all prove PD and in fact ADL.R/

outright. We have seemingly reached a particular stage beyond which these determi-
nacy properties are simply unavoidable.

4 Large Cardinals

Much large cardinal theory is about which ultrafilters can or do exist on (large) sets;
in particular, when those large sets are the power set of some cardinal of an inner
model M (which might be V itself), then there is usually an equivalent formulation
in terms of elementary embeddings, of that inner model M . In the past, large car-
dinals, or the axioms asserting their existence, were often claimed as justified by a
variety of differing arguments (an example being the paper of Solovay, Reinhardt,
and Kanamori [34]). Such arguments tended to give a somewhat patchwork view of
large cardinals: some justified “by analogy with !,” others by reflection principles
of one kind or another. Contemporary set theory now tends to see large cardinals
in a linear, indeed well-founded, hierarchy of consistency strength, but moreover as
providing a lined-up picture of embedding properties ordered by the degree that the
embedding “pulls in” to its range model, more, or less, of the V˛-hierarchy. There
is some oversimplification here, as pulling in some V� into a range model M will
be weaker than ensuring that such an M has more closure properties, such as being
closed under �0-sequences for a �0 < �. However, the overall slogan holds true:
the more closure properties the range model enjoys, the stronger the embedding and
the stronger the large cardinal needed to justify it. Again the unificatory impulse
which sees large cardinals as positioned within a somewhat continuous spectrum of
embeddability relations can be said to lead to a greater understanding of possible
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embedding phenomena. The very possibility of mathematically defining an embed-
ding of L to L immediately then impresses us with the need to study the whole such
hierarchy: if the universe of constructible sets can embed to itself, then why not the
model KDJ ? However, if this occurs, then there is an inner model with a measurable
cardinal (see Theorem 2.14 above). In short, there seem to be no lines to be drawn
here.

Such embeddings are almost all expressible in terms of the existence of ultrafil-
ters, or in other words, measures (or sequences of such) on certain sets. We have
seen that a measure U on P .�/ in V yields an ultrapower .Ult.V; U /; E/ which is
well founded and hence isomorphic to a transitive inner model .M;2/ of ZFC. The
following facts hold:
� V�C1 D .V�C1/M ;
� .j.�/ is measurable with measure j.U //M ;
� U …M and thus V�C2 ¤ .V�C2/M ;
� � may, or may not, be measurable in M because of the presence in M of

some other measure U . (If � was the least measurable of V , then it cannot
contain such a U , by the Scott argument.)

Thus given an elementary embedding j W V �!e M , the above shows precisely
which initial part of V can be expected to be in M in general, namely, V�C1. The first
generalizations of this concept consider sequences of such measures concentrating on
different subsets of the same cardinal �. (There are potentially then 22� of those for
a given measurable cardinal �.) Beyond that we start to ask for sets of higher rank to
be in the range model, and this motivates the next definition.

Definition 4.1 A cardinal � is ˛-strong if there is an embedding j W V �!e M

with Va D .V˛/M , with cp.j / D �, and j.�/ � ˛.

Thus a measurable cardinal is .� C 1/-strong. The larger the ˛, the stronger the
embedding, as more of the initial V hierarchy is preserved by the identity map into
the inner model M .

Definition 4.2 A cardinal � is strong if it is ˛-strong for all ˛.

Note the order of quantifiers: for every ˛ there is an embedding j , depending on ˛.
One may wonder about the first-order formalizability of the above notions in ZF.
However just as the first statement of the existence of a measure on P .�/ is equivalent
to the existence of a class embedding j (which we might formulate in ZFC Pj ), it is
possible to give an extender representation of such embeddings. Thus for an ˛-strong
embedding j we may find a generalization of a measure on P .�/ called an extender,
which we may think of as given by a sequence of measures hEa W a 2 Œ˛�<!i with
each Ea itself a measure on P .Œ��jaj/.

Given an ˛-strong embedding j W V �!e N we define an ˛-extender at � gener-
alizing what we did for measures:

X 2 Ea $df X 2 P
�
Œ��jaj

�
^ a 2 j.X/:

The sequence E D hEa W a 2 Œ˛�<!i then has satisfactory coherence properties, in
fact enough so that we can define an extender ultrapower .Ult.V; E/; E/ from it. In
the situation described, this ultrapower has a well-founded E-relation and is again
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isomorphic to some .M;2/ which in general is not necessarily equal to .N;2/ but
which can be elementarily embedded back into .N;2/, and we thus shall have again

It is possible to view the Ult.V; E/ as a direct limit of the “ordinary” ultrapowers
by the measures Ea. It is part of the flexibility of the approach that this is inessential
though.

Having thus generalized the notion of measure ultrapower to extender ultrapower
we can use these to give us first-order formulations of ˛-strong, and so forth. A sim-
plified statement is as follows.

Lemma 4.3 Let ˛ be a strong limit cardinal; then � is ˛-strong if and only if there
is an ˛-extender sequence E D hEa W a 2 Œ˛�<!i at �, with V�C˛ � Ult.V; E/ ^

j.�/ > ˛.

The notion of � being strong is then also first-order (although involving a quantifier
over On). One may note the following easily proven fact: �-strong implies that
V� �†2

V .

Definition 4.4 � is superstrong if there is j W V �!e M with Vj.�/ �M .

Note that ˛-strong only asked for V˛ �M whilst j.�/ > ˛. This seemingly innocu-
ous extension is in fact a powerful strengthening. Again it has a first-order formaliza-
tion. We proceed to a definition of Woodin cardinal. First we define a strengthening
of the concept of strong.

Definition 4.5 Let A � V . We say that � is A-strong in V if for every ˛ there are
M, B � V with IM.M/ and an L P2; PA-elementary embedding

j W hV; Ai �!e hM; Bi such that cp.j / D �; V˛ �M and V˛ \ A D V˛ \ B:

This is not a first-order formalization, but now consider an inaccessible � and rela-
tivize the notion from V down to V�.

Theorem 4.6 An inaccessible cardinal � is called Woodin if for every A � V�

there is a � < � which is A-strong in V�.

There are many other equivalent formulations (cf. Kanamori [12, Section 26]).
A Woodin cardinal is necessarily Mahlo but may fail to be weakly compact. It turned
out that this is precisely the right concept to analyze the various determinacy prop-
erties. Subsequently it turned out to be also precisely the right concept to gauge a
whole host of other set-theoretical phenomena, and thus it has become one of the
central notions of modern set theory.

Lemma 4.7

(i) If � is superstrong, then it is a Woodin limit of Woodins.
(ii) If � is Woodin, then .“there are arbitrarily large strong cardinals”/V� .
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A particular constellation of cardinals is also of interest for determinacy of infinite
games played with reals, rather than integers. The assertion ADR is that for every
A � !R, the game GA is determined, where in the game now, players play a com-
plete real number at each round instead of a single integer. The following conjecture
emerged.
Conjecture (The “ADR hypothesis”) The consistency strength of ADR is that of a
cardinal � that is simultaneously a limit of infinitely many Woodins �n < �nC1 � � � <

� and of �-strong cardinals �n < �n < �nC1.
The hypothesis is also interesting since (given a mild strengthening of AD), the
ADR -hypothesis is equivalent to the assertion that every set of reals is Suslin. The
following is another connection between the worlds of large cardinals and determi-
nacy of games.
Theorem 4.8 (Woodin ((), Neeman-Steel ())) We have

Con.ZFC ADR/, Con.ZFCC ADR-hypothesis/:
We continue our cataloging of some more large cardinals through elementary em-
beddings.
Definition 4.9

(i) A cardinal � is ˛-supercompact if there is a j W V �!e M with ˛M �M .
(ii) � is supercompact if it is ˛-supercompact for all ˛.

An embedding arising from a measurable cardinal � in general only implies the clo-
sure of M under � sequences, so this definition only starts to have bite once ˛ > �.
The closure under all ˛-sequences is again a considerable strengthening over the
“strong” hierarchy of principles. It masks also a telling difference in the kind of em-
beddings: up to this point the embeddings j have always been “continuous at �C”
meaning that sup.j “�C/ D j.�C/. If j is a 2�-supercompact embedding, this fails
with sup.j “�C/ < j.�C/ occurring. While seeming a rather technical difference
this in fact introduces a wide variety of new phenomena. Current inner model theory
has a target of producing a good fine structural inner model of a supercompact cardi-
nal, but this target is not yet met. It can do so for strong cardinals, Woodin cardinals,
Woodin limit of Woodin cardinals, but although we know what the inner models
should look like, for example, for measurably Woodin cardinals, we are unable to
prove they exist, the chief difficulty being the inability to prove that sufficiently many
ultrapowers of the models are well founded in order for their construction to get off
the ground. This has been dubbed the “iterability problem.”

Woodin has recently proposed versions of inner models constructed from a single
supercompact cardinal (dubbed “Ultimate L”) that would allow the importation to
the model of witnesses for all large cardinals, including even larger ones, that may
exist in V , in one stroke. However, establishing these models with the relevant prop-
erties is still a work in progress.

Continuing onward we come to such larger cardinals, the extendible cardinals of
Solovay, Reinhardt, and Kanamori [34].
Definition 4.10

(i) A cardinal � is ˛-extendible if there are �; j with j W V�C˛ �!e V�C˛ ^

cp.j / D �.
(ii) � is extendible if it is ˛-extendible for all ˛.
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Even 1-extendibility is a strong concept.

Lemma 4.11 If � is 1-extendible, then it is superstrong (and there are many such
below it).

Lemma 4.12 If � is extendible, it is supercompact; �-extendible implies
V� �†3

V .

Ascending further we find the following.

Definition 4.13 A cardinal � is huge if there is j W V �!e M with cp.j / D

� ^ j.�/M �M .

However if we try to maximize the extendibility properties we run into inconsistency.
Let L P2; Pj be the usual language with an additional class predicate Pj ; let ZFCj be
a formulation of the axioms with the additional predicate symbol allowed into all
instances of separation and collection.

Theorem 4.14 (Kunen [17]) (ZFC Pj
) There is no nontrivial L P2-elementary em-

bedding j W V �!e V .

It is unknown whether AC is necessary for this theorem (see below). The proof of
Kunen’s theorem is actually a direct ZFC result about sets.

Theorem 4.15 (Kunen) (ZFC) There is no nontrivial elementary embedding
j W V�C2 �!e V�C2.

The 2 is an essential artefact of the argument. That there may be a nontriv-
ial j W V�C1 �!e V�C1 is not known to be inconsistent; if this is to be the
case, then �0 D cp.j / < �, and it can be shown that � has cofinality !, be-
ing sup¹�0; j.�0/; jj.k0/; : : :º. There are now several proofs of Kunen’s theorem
(see [12]).

For such V�C1 the model L.V�C1/ and its possible elementary embeddings has
become an object of study and is likely to be significant. Likewise, recent work
of Woodin has focused attention on the possibility of an embedding of V to itself
being consistent with ZF without choice. Generalizations of such principles are thus
beyond the consistency strength of large cardinals considered with AC. It is perhaps
then the case, that there is a choiceless realm of strong axioms or large cardinals,
lying in a region where AC fails, thus between the AC-world and inconsistency. It
is an interesting observation that there are no deep proofs of the inconsistency of
any putative large cardinal axiom yet proposed: usually a half a page at most is
needed to see off any inconsistent candidate. So perhaps instead of this picture of all
inconsistency proofs being of a simple nature, the .ZF Pj /-version of Kunen’s theorem,
if true, may be the first example where hard work has to be done.
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