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To Anand Pillay on the occasion of his 60th birthday

Abstract We use hyperbolic towers to answer some model-theoretic questions
around the generic type in the theory of free groups. We show that all the finitely
generated models of this theory realize the generic type p0 but that there is a
finitely generated model which omits p.2/0 . We exhibit a finitely generated model
in which there are two maximal independent sets of realizations of the generic
type which have different cardinalities. We also show that a free product of
homogeneous groups is not necessarily homogeneous.

1 Introduction

This paper is motivated by the works of Pillay [9] and of Sklinos [18], which study
the weight of the generic type in the free group.

Following the work of Sela [11], [12] and of Kharlampovich and Myasnikov prov-
ing that nonabelian free groups are elementarily equivalent, we denote by Tfg their
common first-order theory. Sela [15] also showed that Tfg is stable.

Every stable theory admits a good model-theoretic notion of independence, of
which we give a brief account in Section 2 for readers lacking a model theory back-
ground. (The interested reader is referred to Pillay [7].)

Poizat proved that Tfg is connected in the sense of model theory, that is, that
there is a model of Tfg which admits no proper definable subgroup of finite index.
A consequence of stability is that connectedness is equivalent to saying that Tfg
admits a unique generic type over any set of parameters. We denote by p0 the generic
type over the empty set. Pillay gives a characterization of elements that realize p0 in
nonabelian free groups. In fact, he shows more generally the following.
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Theorem 1.1 ([9, Fact 1.10(ii) and Theorem 2.1(ii)]) A subset of a nonabelian free
group F is a maximal independent set of realizations of p0 if and only if it is a basis
of F.

An immediate consequence of this result is that in a nonabelian free group F, maxi-
mal independent sets of realizations of the generic type all have the same cardinality.

The notion of weight of a type p can be intuitively thought of as a generalized
exchange principle (see Section 2), and when it is finite, it bounds the ratio of the
cardinality of two maximal independent sets of realizations of p. In particular, it is
straightforward to see that if a type p has weight 1, then any two maximal indepen-
dent sets of realizations of p (in any model) have the same cardinality.

In this light, the following result might look surprising.

Theorem 1.2 ([9], [18]) The generic type p0 of the theory of nonabelian free
groups has infinite weight.

Intuitively one can explain this behavior of the generic type by noticing that two
bases of a fixed nonabelian free group have the same cardinality as a consequence of
the universal property and not of some exchange principle.

It is thus natural to ask whether we can witness infinite weight in an explicit model
in terms of independent sets of generic elements, or even whether we can witness that
the generic type does not have weight 1.

Question 1 Is there a model of the theory of the free group in which one can
find two maximal independent sets of realizations of the generic type with different
cardinalities?

Sections 2 and 3 serve as introductory material for the notions we need from model
theory and geometric group theory, respectively. In Section 2 we give formal defini-
tions of independence and weight. In Section 3 we describe in detail the geometric
notion which lies at the core of this paper, namely, hyperbolic towers.

In Section 4, we examine p0 with respect to the notion of isolation. We give the
proof of an unpublished result of Pillay which shows that p.2/0 is not isolated in the
theory axiomatized by p0 (after adding a constant to the language of groups). We
then classify the hyperbolic tower structures admitted by the fundamental group S4
of the connected sum of four projective planes. We use this to deduce that the type
p0 is realized in every finitely generated model of Tfg , but that S4 omits p.2/0 , thus
giving an explicit witness to Pillay’s nonisolation result. This also enables us to see
that no type in S.Tfg/ (apart from the trivial one) is isolated.

In Section 5, we answer Question 1 in the affirmative by exhibiting a suitable
finitely generated model of Tfg .

Finally, we use this result in Section 6 to see that homogeneity is not preserved
under taking free products, thus answering a question of Jaligot.

2 Independence and Weight

In this section we give a quick description of the model-theoretic notions we use.
The exposition is biased towards our needs and by no means complete.

We fix a stable first-order theory T , and we work in a “big” saturated model M,
which is usually called the monster model (see Marker [1, p. 218]). As mentioned in
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the introduction, stable theories admit a good notion of independence, the prototypi-
cal examples being linear independence in vector spaces and algebraic independence
in algebraically closed fields.

In a more abstract setting Shelah gave the following definition of (forking) inde-
pendence (see [16, p. 85, Definition 1.4]).

Definition 2.1 Let '. Nx; Nb/ be a first-order formula in M, and let A � M

(the underlying domain of M). Then '. Nx; Nb/ forks over A if there are infinitely
many automorphisms .fi /i<! 2 AutA.M/ and some k < !, such that the set
¹'. Nx; fi . Nb// W i < !º is k-inconsistent, that is, every subset of cardinality k is
inconsistent.

Recall that an m-type p. Nx/ over A � M of the first-order theory T is a consistent
(with T ) set of formulas with parameters in A with at most m free variables. For
example, the type tp. Na=A/ of a tuple Na 2 M is the set of formulas that Na satisfies
in M. (In fact, saying that M is saturated is exactly like saying that every m-type
p. Nx/ over a set of parameters of cardinality strictly less than jM j is the type of anm-
tuple Na 2 M .) The type of Na over A can equivalently be thought of as the collection
of sets which are definable over A and which contain Na.

If A � B , we say that Na is independent from B over A if there is no formula in
tp. Na=B/ which forks over A. In the opposite case we say that Na forks with B over
A (or Na is not independent from B over A). Heuristically, one can think of the latter
case as expressing the fact that the type of Na over B contains much more information
than the type of Na over A alone.

Indeed, the definition implies that there is a formula with parameters inB satisfied
by Na which forks over A. Thus the set X defined by this formula contains Na, is defin-
able overB , and admits an infinite sequence of k-wise disjoint translates by elements
of AutA.M/. (Here AutA.M/ denotes automorphisms of M fixing A pointwise.)

Consider now a set Y which is definable over A alone and contains Na: any au-
tomorphism in AutA.M/ necessarily fixes Y . Clearly X can be assumed to be con-
tained in Y , and thus so are all of its automorphic images (under AutA.M/). Thus
in some sense, X is much smaller than any definable set Y given by a formula in
tp. Na=A/, and the type of Na over B “locates” Na much more precisely than its type over
A alone.

A consequence of stability is the existence of nonforking (independent) exten-
sions. Let A � B , and let p. Nx/ be a type over A. Then we say that q. Nx/ WD tp. Na=B/
is a nonforking extension of p. Nx/, if p. Nx/ � q. Nx/ and, moreover, Na does not fork
with B overA. A type overA is called stationary if for any B � A it admits a unique
nonforking extension over B .

Let C D ¹Nci W i 2 I º be a set of tuples. We say that C is an independent set
over A if for every i 2 I , Nci is independent from A [ C n ¹ Nciº over A. If p is a type
over A which is stationary and .ai /i<� ; .bi /i<� are both independent sets over A of
realizations of p, then tp..ai /i<�=A/ D tp..bi /i<�=A/ (see [7, Lemma 2.28, p. 29]).
This allows us to denote by p.�/ the type of �-independent realizations of p.

For the purpose of assigning a dimension (with respect to forking independence)
to a type, one might ask what is the cardinality of a maximal independent set of
realizations of a type and whether any two such sets have the same cardinality. This
naturally leads to the definition of weight.
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Definition 2.2 The preweight of a type p. Nx/ WD tp. Na=A/, prwt.p/ is the supre-
mum of the set of cardinals � for which there exists ¹ Nbi W i < �º an independent set
over A, such that Na forks with Nbi over A for all i . The weight wt.p/ of a type p is the
supremum of ®

prwt.q/
ˇ̌
q a nonforking extension of p

¯
:

The special case of weight 1 can be thought of as an exchange principle: an element
a in the set of realizations of a weight 1 type cannot fork with more than one element
from an independent set.

Thus, as in the case of the dimension theorem for vector spaces, one can easily
see that any two maximal independent sets of realizations of a weight 1 type must
have the same cardinality.

3 Hyperbolic Towers

In this section we define hyperbolic towers. Hyperbolic towers were first used by
Sela [12] to describe the finitely generated models of the theory of nonabelian free
groups. They also appeared in Perin [3] where the geometric structure of a group
that elementarily embeds in a torsion-free hyperbolic group is characterized.

In order to define hyperbolic towers we need to give a few preliminary definitions.

3.1 Graphs of groups and graphs of spaces We first go briefly over the notion of
graph of groups; for a more formal definition and further properties the reader is
referred to Serre [17].

A graph of groups consists of a graph � , together with two collections of groups
¹Gvºv2V.�/ (the vertex groups) and ¹Geºe2E.�/ (the edge groups), and a collection
of embeddings Ge ,! Gv for each pair .e; v/ where e is an edge and v is one of its
endpoints. To a graph of groups � is associated a group G called its fundamental
group and denoted �1.�/. (The use of algebraic topology terminology will be made
clear below.) There is a canonical action of this group G on a simplicial tree T
whose quotient GnT is isomorphic to � . Conversely, to any action of a group G on
a simplicial tree T without inversions, one can associate a graph of groups � whose
fundamental group is isomorphic to G and whose underlying graph is isomorphic
to the quotient GnT . An element or a subgroup in G which fixes a point in T (or,
equivalently, which is contained in a conjugate in G of one of the vertex groups Gv)
is said to be elliptic.

A fundamental example is the special case where � consists of two vertices v and
w joined by a single edge e: then, the fundamental group of � is the amalgamated
product Gv�Ge

Gw . Graphs of groups can thus be thought of as a generalized version
of amalgamated products.

The van Kampen lemma gives a useful perspective on graphs of groups. It states
that if a topological space X can be written as a union X1 [ X2 of two of its path
connected subspaces, and if Y D X1 \ X2 is also path connected, the (usual) fun-
damental group �1.X/ of the space X can be written as an amalgamated product
�1.X1/ ��1.Y / �1.X2/ where the group embeddings �1.Y / ,! �1.Xi / are induced
by the topological embeddings Y ,! Xi .

Similarly, to a graph of groups � we can associate a (not unique) graph of spaces:
to each vertex v 2 V.�/ (resp., edge e 2 E.�/), we associate a (sufficiently nice)
topological space Xv (resp., Xe) such that �1.Xv/ D Gv (resp., �1.Xe/ D Ge).
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Figure 1 A graph of groups and an associated graph of spaces.

To each pair .e; v/ of an edge and an endpoint is associated a topological em-
bedding fe;v W Xe ,! Xv which induces on fundamental groups the embedding
Ge ,! Gv . Then the fundamental group of the graph of groups � is isomorphic
to the fundamental group �1.X/ of the space X built by gluing the collection of
spaces ¹Xv j v 2 V.�/º and ¹Xe � Œ0; 1� j e 2 E.�/º using the maps fe;v . More
precisely, if e is an edge joining v to w, we identify each point .x; 0/ of Xe � ¹0º to
the image of x in Xv under fe;v and each point .x; 1/ in Xe � ¹1º to the image of x
in Xw under fe;w . Conversely, given a graph of spaces, there is a graph of groups
associated to it. Figure 1 illustrates this duality.

Definition 3.1 (Bass–Serre presentation) Let G be a group acting on a simplicial
tree T without inversions; denote by � the corresponding quotient graph of groups
and by p the quotient map T ! � . A Bass–Serre presentation for � is a pair
.T 1; T 0/ consisting of
� a subtree T 1 of T which contains exactly one edge of p�1.e/ for each edge e
of �;
� a subtree T 0 of T 1 which is mapped injectively by p onto a maximal subtree

of � .

The choice of terminology is justified by the fact that to such a pair .T 1; T 0/, we
can associate a presentation of G in terms of the subgroups Gv for v 2 V.T 0/, and
elements of G which send vertices of T 1 in T 0 (Bass–Serre generators).

3.2 Surface groups We now recall some standard facts about surfaces and surface
groups. Unless otherwise mentioned, all surfaces are assumed to be compact and
connected.

The classification of surfaces gives that a surface without boundary † (or closed
surface) is characterized up to homeomorphism by its orientability and its Euler
characteristic �.†/. It can be easily deduced from this that a surface with (possi-
bly empty) boundary † is characterized up to homeomorphism by its orientability,
its Euler characteristic �.†/, and the number of its boundary components. The ori-
entable closed surface of characteristic 2 is the sphere, that of characteristic 0 is the
torus; the nonorientable closed surface of characteristic 1 is the projective plane, and
that of characteristic 0 is the Klein bottle.

The connected sum† of two surfaces†1 and†2 is the surface obtained by remov-
ing an open disk from each †i and gluing the boundary components thus obtained
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one to the other. We then have �.†/ D �.†1/ C �.†2/ � 2. One then sees, for
example, that the closed nonorientable surface of characteristic �1 is the connected
sum of three projective planes. Puncturing a surface (i.e., removing an open disk)
decreases the Euler characteristic by 1.

Let † be a surface with boundary. Each connected component of @† has cyclic
fundamental group, and gives rise in �1.†/ to a conjugacy class of cyclic subgroups,
which we call maximal boundary subgroups. A boundary subgroup of �1.†/ is a
nontrivial subgroup of a maximal boundary subgroup of �1.†/.

Suppose that † has r boundary components, and let 1; : : : ; r be generators of
nonconjugate maximal boundary subgroups. Then �1.†/ admits a presentation of
the form ˝

a1; : : : ; a2m; 1; : : : ; r
ˇ̌
Œa1; a2� � � � Œa2m�1; a2m� D 1 � � � r

˛
if it is orientable and

hd1; : : : ; dq; 1; : : : ; r j d
2
1 � � � d

2
q D 1 � � � ri

if not. The Euler characteristic of the corresponding surface is given by�.2m�2Cr/
in the orientable case and �.q � 2C r/ in the nonorientable case.

Note that in particular, the fundamental group �1.†/ of a compact surface† with
nonempty boundary @† is a free group. However, we think of it as endowed with the
peripheral structure given by its collection of maximal boundary subgroups.

Note also that the presentation given for the nonorientable case is equivalent to˝
a1; : : : ; a2h; d1; : : : ; dp; 1; : : : ; r

ˇ̌
Œa1; a2� � � � Œa2h�1; a2h�d

2
1 � � � d

2
p D 1 � � � r

˛
for any h; p such that 2h C p D q. This comes from the fact that the r-punctured
connected sum of h tori and p projective planes (for p > 0) is homeomorphic to
the r-punctured connected sum of 2h C p projective planes (since they are both
nonorientable, have the same Euler characteristic, and have r boundary components).

Let S be the fundamental group of † a surface with boundary, and let C be
a set of two-sided disjoint simple closed curves on †. Let ¹Tc j c 2 Cº be a
collection of disjoint open neighborhoods of the curves of C with homeomorphisms
c � .�1; 1/! Tc sending c � ¹0º onto c. Then † can be seen as a graph of spaces,
with edge spaces the curves in C , and vertex spaces the connected components of
† �

S
c2C Tc . This gives a graph of groups decomposition for S , in which edge

groups are infinite cyclic and boundary subgroups are elliptic. Such a decomposition
is called the decomposition of S dual to C . The following lemma gives a useful
converse; it is essentially in Morgan and Shalen [2, Theorem III.2.6].

Lemma 3.2 Let S be the fundamental group of a surface with boundary †. Sup-
pose S admits a graph of groups decomposition � in which edge groups are cyclic
and boundary subgroups are elliptic. Then there exists a set of disjoint simple closed
curves on † such that � is the graph of groups decomposition dual to C .

The idea of the proof of this lemma is to build an S -equivariant map f between a
universal cover Q† of † and the tree T associated to � , and to consider the preimage
by f of midpoints of edges of T . If f is suitably chosen, this preimage will be the
lift of a collection of simple closed curves C we are looking for.
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3.3 Hyperbolic floors and towers Wewill be interested in graphs of groups in which
some of the vertex groups are surface groups, that is, fundamental groups of surfaces.
(All surfaces will be compact and with possibly nonempty boundary.) Equivalently,
this means that the corresponding graph of spaces will have subspaces Xv which are
surfaces.

Definition 3.3 A graph of groups with surfaces is a graph of groups � together
with a subset VS of the set of vertices V.�/ of � , such that any vertex v in VS satisfies
the following.
� There exists a compact connected surface † with nonempty boundary, such
that the vertex group Gv is the fundamental group �1.†/ of †.
� For each edge e, and v an endpoint of e, the injection Ge ,! Gv maps Ge

onto a maximal boundary subgroup of �1.†/.
� This induces a bijection between the set of edges adjacent to v and the set of
conjugacy classes in �1.†/ of maximal boundary subgroups of �1.†/.

The vertices of VS are called surface-type vertices. The surfaces associated to the
vertices of VS are called the surfaces of � .

Figure 2 gives an example of a graph of groups with surfaces. Each surface-type ver-
tex v of � has been replaced by a picture of the corresponding surface with boundary
†v . Note how we represent pictorially the property that each edge groupGe adjacent
to a surface type vertex group Gv embeds in a maximal boundary subgroup of Gv .

Definition 3.4 ((Extended) hyperbolic floor) Consider a triple .G;G0; r/ where
G is a group, G0 is a subgroup of G, and r is a retraction from G onto G0 (i.e., r is a
morphism G ! G0 which restricts to the identity on G0).

We say that .G;G0; r/ is an extended hyperbolic floor if there exists a nontrivial
decomposition � of G as a graph of groups with surfaces, and a Bass–Serre presen-
tation .T 1; T 0/ of � such that
� the surfaces of � which are not once punctured tori have Euler characteristic

at most �2;
� G0 is the free product of the stabilizers of the non-surface-type vertices of T 0;
� every edge of � joins a surface-type vertex to a non-surface-type vertex (bi-
partism);

Figure 2 A graph of groups with surfaces.
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� either the retraction r sends surface-type vertex groups of � to nonabelian
images, or G0 is cyclic and there exists a retraction r 0 W G � Z ! G0 � Z
which sends surface-type vertex groups of � to nonabelian images.

If the first alternative holds in this last condition, we say that .G;G0; r/ is a hyper-
bolic floor.

Definition 3.5 ((Extended) hyperbolic tower) Let G be a noncyclic group, let H
be a subgroup of G. We say that G is an (extended) hyperbolic tower overH if there
exists a finite sequence G D G0 � G1 � � � � � Gm � H of subgroups of G where
m � 0 and
� for each k in Œ0;m�1�, there exists a retraction rk W Gk ! GkC1 such that the
triple .Gk ; GkC1; rk/ is an (extended) hyperbolic floor, and H is contained
in one of the non-surface-type vertex groups of the corresponding hyperbolic
floor decomposition;
� Gm D H �F �S1�� � ��Sp where F is a (possibly trivial) free group, p � 0,
and each Si is the fundamental group of a closed surface without boundary
of Euler characteristic at most �2.

Note that all the floors .Gk ; GkC1; rk/ are in fact (nonextended) hyperbolic floors
except possibly for .Gm�1; Gm; rm�1/, and in this caseGm is infinite cyclic, soH is
cyclic or trivial. In particular, extended hyperbolic towers over nonabelian subgroups
are in fact hyperbolic towers.

To understand them better, let us consider hyperbolic towers in a graph of space
perspective. If G is an extended hyperbolic tower over H , it means we can build a
space XG with fundamental group G from a space XH with fundamental group H
as follows. Start with the disjoint union Xm of XH with closed surfaces†1; : : : ; †p
of Euler characteristic at most �2, together with a graph XF . When Xk is built,
glue surfaces with boundary to Xk along their boundary components (gluing each
boundary component to a nonnull homotopic curve ofXk) to obtain the spaceXk�1.

This is represented in Figure 3: here, Xm is the union of the spaces in the four
small boxes, and Xm�1 the union of those in the two big square boxes. Finally, G
is the fundamental group of the whole space. (An edge between a surface and a box

Figure 3 A hyperbolic tower overH .
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indicates that the corresponding boundary component is glued to a curve in the space
contained in the box.) In addition, one should think that each surface retracts onto
the lower floor, in a nonabelian way in the case of hyperbolic floors.

Though hyperbolic towers were introduced by Sela, their definition was slightly
too restrictive, and some of the results concerning them were misstated in [12] and
[3] (see Perin [5]), which is why extended hyperbolic floors and towers had to be
introduced.

Theorem 6 of [12] characterizes finitely generated models of the free group as
hyperbolic towers. The following is a corrected statement.

Theorem 3.6 Let G be a finitely generated group. Then G ˆ Tfg if and only if
G is an extended hyperbolic tower over the trivial subgroup.

Remark 3.7 One of the key steps in the proof of the “only if” direction of this
result is to prove that from a map G ! G preserving some of the structure of the
group G, one can build a retraction r W G ! G0 to a proper subgroup which makes
.G;G0; r/ into a hyperbolic floor.

However, in a few low-complexity cases for G, this does not hold and the best we
can get is a retraction making .G;G0; r/ into an extended hyperbolic floor (see [5]).

This key step was made explicit in [3], where it is stated as Proposition 5.11 and
given a more detailed proof. However, in this paper too these counterexamples were
overlooked. A corrected version of the proof of this proposition can be found in Perin
[4]. The “if” direction of Theorem 3.6 in these the exceptional cases is not dealt with
in [12], but the proof can be extended in a straightforward way according to Sela
[14].

Sela also uses the notion of hyperbolic towers in [13] to classify torsion-free hy-
perbolic groups up to elementary equivalence. He shows that to every torsion-free
hyperbolic group � can be associated a subgroup C.�/ which he calls its elementary
core, over which � admits a structure of hyperbolic tower, which is well defined up
to isomorphism, and such that two torsion-free hyperbolic groups are elementarily
equivalent if and only if they have isomorphic elementary cores. He also shows that
if � is not elementarily equivalent to the free group, then C.�/ is an elementary
subgroup of � . According to Sela [14], the proof of this last result can be adapted to
give, in fact, the following.

Theorem 3.8 Suppose that � is a torsion-free hyperbolic group which admits a
structure of hyperbolic tower over a nonabelian subgroupH . ThenH is an elemen-
tary subgroup of G.

The converse of this result is given by [3, Theorem 1.2] so we get the following.

Theorem 3.9 Let � be a torsion-free hyperbolic group, and letH be a nonabelian
subgroup of � . Then H is an elementary subgroup of � if and only if � admits a
structure of hyperbolic tower overH .

The following result is Perin and Sklinos [6, Theorem 7.1]. Before stating it we
recall that the connectedness of Tfg implies that p0 is stationary (as any nonforking
extension of p0 is also a generic type). Thus, following our discussion in Section 2,
we denote by p.k/0 the type of k-independent realizations of p0.
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Theorem 3.10 Let G be a nonabelian finitely generated group. Let .u1; : : : ; uk/
be a k-tuple of elements of G for k � 1.

Then .u1; : : : ; uk/ realizes p.k/0 if and only if Hu D hu1; : : : ; uki is free of rank
k and G admits a structure of extended hyperbolic tower overHu.

3.4 Hyperbolic tower structures of the connected sum of four projective planes Ad-
mitting a structure of hyperbolic tower is quite a restrictive condition. For example,
we have the following.

Lemma 3.11 If F is a free group, it does not admit any structure of extended
hyperbolic floor over a subgroup.

Proof Lemma 5.19 in [3] states that free groups do not admit structures of hyper-
bolic floors. The argument given for the proof does not use the fact that surface-type
vertex groups have nonabelian images by the retraction r , and thus it can be applied
to extended hyperbolic floors as well.

Let S4 denote the fundamental group of the surface †4 which is the connected sum
of four projective planes (i.e., the nonorientable closed surface of characteristic �2).
It has a trivial structure of hyperbolic tower over ¹1º.

But this is not the only extended hyperbolic tower structure it admits. The follow-
ing lemma gives some structures of extended hyperbolic floor for S4.

Lemma 3.12 Suppose thatH is a nontrivial subgroup of S4, over which S4 admits
a structure of extended hyperbolic floor. Then H is cyclic, and S4 admits one of the
following presentations:
� hh; a; b; c j h2 D a2b2c2i,
� hh; a; b; t j htht�1 D a2b2i,

where h generates H . Conversely, given such a presentation, S4 admits a structure
of extended hyperbolic floor over the subgroupH generated by h.

These two structures are illustrated by Figure 4. In both pictures, the fundamental
group of the space inside the box is H D hhi. The fundamental group of the upper
surface in the picture on the left is the subgroup generated by a; b; c in S4. In the

Figure 4 Hyperbolic floor structures of the connected sum of four projective planes.
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picture on the right, the fundamental group of the upper surface is the subgroup of
S4 generated by a and b.

Proof Suppose that S4 admits a structure of hyperbolic floor over a proper sub-
group H , and denote by � the associated graph of groups decomposition. By
Lemma 3.2, � is dual to a set of simple closed curves on †4. In particular, the sur-
faces of � correspond to �1-injected subsurfaces of †4. Denote by † the (possibly
disconnected) subsurface of †4 formed by all these subsurfaces, and denote by †0
the closure of its complement in †4. We have �.†/C �.†0/ D �.†4/ D �2. Since
the connected components of † are surfaces of a hyperbolic floor decomposition,
they are punctured tori or have characteristic at most �2. This implies in particular
that † can have at most two connected components. If it has exactly two, they must
be punctured tori, and †0 has characteristic 0 with two boundary components. Thus
†0 must be a cylinder, but this contradicts the nonorientability of †4. So in fact,
† is connected, and there are only two possibilities: either �.†/ D �1 and † is a
punctured torus, or �.†/ D �2.

In the first case,†0 has one boundary component, characteristic�1, and is nonori-
entable: it must be a punctured Klein bottle. However, there cannot be a retraction
of S4 on the fundamental group of S 0 of this punctured Klein bottle. Indeed, S4
then admits a presentation of the form ha; b; d1; d2 j Œa; b� D d21 d22 i where S 0 is the
free subgroup of rank 2 of S4 generated by d1 and d2. If there exists a retraction
r W S4 ! S 0, it fixes d1 and d2, and thus d21 d22 D r.Œa; b�/ is a commutator; this is a
contradiction.

Thus the second alternative holds. This implies that �.†0/ D 0. In particular,
each connected component of †0 has characteristic 0 and hence must be a cylin-
der or a Möbius band. Since H is contained in a subgroup of S4 corresponding to
one of these connected components, it must be cyclic, say, H D hhi. If H is con-
tained in a connected component of †0 which is a Möbius band, its complement is
a punctured connected sum of three projective planes, so S4 admits a presentation
as hh; a; b; c j h2 D a2b2c2i. If H is contained in a connected component of †0
which is a cylinder, its complement is a twice-punctured Klein bottle, so S4 admits a
presentation as hh; a; b; t j htht�1 D a2b2i.

Let us now prove the converse. Let � be the graph of groups decomposition for
S4 which consists of a single non–surface-type vertex with corresponding vertex
group hhi, let a single surface-type vertex with corresponding group be the subgroup
generated by ¹a; b; cº (resp., ¹a; b; h; tht�1º), and let the corresponding surface be a
punctured connected sum of three projective planes (resp., a twice-punctured Klein
bottle). Consider the retraction r 0 W S4 � hxi ! hhi � hxi defined by r 0.a/ D h

and r 0.b/ D r 0.c�1/ D x (resp., r 0.a/ D r 0.b�1/ D x and r 0.t/ D 1), and
r 0.x/ D x. The conditions of Definition 3.4 are satisfied by � and r 0, which proves
the result.

Noting that S4 is freely indecomposable, one gets the following.

Corollary 3.13 If S4 admits a structure of hyperbolic tower over a subgroup H ,
then either H is trivial or H D hhi is cyclic and S4 admits one of the two presenta-
tions in terms of h given in Lemma 3.12.
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4 Omitting, Realizing, and Isolating Types in the Theory of Free Groups

We observe that Theorem 1.1 implies that for n � 2, the free group Fn on n genera-
tors realizes p.n/0 but omits p.nC1/0 . Thus, it is natural to ask whether this holds also
for n D 1: is there a group G which realizes p0 yet omits p.2/0 ?

Pillay answered the above question in the affirmative in a nonconstructive way,
using purely model-theoretic methods. He then naturally asked whether an explicit
model realizing p0, but omitting p.2/0 , exists. Such a group is exhibited in Proposi-
tion 4.6; however, we first give Pillay’s elegant, but nonconstructive, argument.

His proof is based on the notion of semi-isolation, which we recall below, together
with the following result (see Sklinos [18, Theorem 2.1]).

Theorem 4.1 The generic type p0 is not isolated in Tfg .

Definition 4.2 Let M be a big saturated model of a stable theory T , and let Na; Nb
be tuples in M. The type tp. Na= Nb/ is semi-isolated if there is a formula '. Nx; Ny/ (over
the empty set) such that

(i) M ˆ '. Na; Nb/;
(ii) M ˆ '. Nx; Nb/! tp. Na/.

The following lemma connecting the notions of semi-isolation and forking will be
useful (see Pillay [8, Lemma 9.53(ii)]).

Lemma 4.3 Suppose that tp. Na= Nb/ is semi-isolated and tp. Na/ is not isolated. Then
tp. Na= Nb/ forks over ;.

We are now ready to give Pillay’s proof.

Theorem 4.4 (Pillay [10]) There exists a group G such that G ˆ p0 and
G 6ˆ p

.2/
0 .

Proof By the omitting types theorem (see [1, Theorem 4.2.3, p. 125]), it is
enough to prove that p.2/0 is not isolated in p0.c/, that is, the complete theory in
L D ¹�;�1 ; 1; cº axiomatized by p0.c/. Note that if F2 D he1; e2i, then .F2; e1/ is a
model of p0.c/.

Suppose, for the sake of contradiction, that '.x; y; c/ isolates p.2/0 in p0.c/.
Let .a; b/ be a realization of '.x; y; e1/ in F2. As F2 ˆ '.x; y; e1/ ! p

.2/
0

we have by Theorem 1.1 that a; b form a basis of F2. In particular, there is a
word w.x; y/, such that w.a; b/ D e2. Now it is easy to see that the formula
 .z; u/ WD 9x; y.'.x; y; u/ ^ z D w.x; y// semi-isolates tp.e2=e1/. But as tp.e2/
is not isolated, Lemma 4.3 gives that tp.e2=e1/ forks over ;, contradicting Theo-
rem 1.1.

We note that the above proof does not give much information about the group G,
apart from the fact that it is countable.

Theorem 4.1 implies that there exists a model of Tfg omitting the generic type.
Using the results above, we can show that this model cannot be finitely generated.

Proposition 4.5 Suppose that G is a finitely generated model of the theory Tfg of
nonabelian free groups. Then G realizes p0.
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Proof By Theorem 3.6, G admits a structure of extended hyperbolic tower over
¹1º. The ground floor Gm of this tower is a nontrivial free product of a (possibly
trivial) free group F with fundamental groups S1; : : : ; Sq of closed hyperbolic sur-
faces. By Theorem 3.10, it is enough to show that G has a structure of extended
hyperbolic tower over a cyclic group Z.

We may assume that F is trivial, since otherwise any cyclic free factor of F will
do.

If q is nonzero, S1 admits a presentation as˝
a1; : : : ; ag ; b1; : : : ; bg

ˇ̌
Œa1; b1� � � � Œag ; bg � D 1

˛
if it is orientable, and

hd1; : : : ; dp j d
2
1 � � � d

2
p D 1i

if not. Let H be the subgroup generated by a1; b1 in the first case and by d1; d2 in
the second.

The map r fixing a1; b1, sending a2 to b1, b2 to a1, and aj ; bj to 1 for j > 2

(resp., fixing d1; d2, sending d3 to d�12 , d4 to d�11 , and dj to 1 for j > 4) is a
retraction of S1 onto the subgroup H ' F2, which we can extend into a retraction
of Gm onto H � S2 � � � � � Sp . However, this retraction makes .Gm; r.Gm/; r/
an extended hyperbolic floor only if the surface corresponding to a2; b2; : : : ; ag ; bg
(resp., d3; : : : ; dp) is a punctured torus or has characteristic at most �2. This fails to
be true only in the nonorientable case and if p D 4, that is, if S1 is the connected
sum of four projective planes. In all the other cases, we can take Z to be any cyclic
free factor ofH , and the result is proved.

If S1 is the fundamental group of the connected sum of four projective planes,
choose a presentation of S1 as hh; a; b; c j h2 D a2b2c2i. If q � 2, we define a
retraction r W S1 � � � � � Sq ! hhi � S2 � � � � � Sq by r.a/ D h, r.b/ D r.c�1/ D s
for some nontrivial element s of S2. Then .Gm; r.Gm/; r/ is a hyperbolic floor.
If q D 1, we have seen in Lemma 3.12 that Gm admits a structure of extended
hyperbolic floor over hhi, so G is an extended hyperbolic tower over hhi.

On the other hand, the following proposition gives an alternative proof of Theo-
rem 4.4.

Proposition 4.6 Let S4 be the fundamental group of the connected sum of four
projective planes. Then S4 omits p.2/0 .

Proof Suppose, for the sake of contradiction, that S4 ˆ p.2/0 .u; v/. Then by The-
orem 3.10, u; v generate a free group H of rank 2 over which S4 admits a structure
of hyperbolic tower. By Corollary 3.13 we know that no such structure exists.

We conclude this section by giving another application of Corollary 3.13.
The following result is easily deduced from [6, Propositions 5.9, 6.2].

Proposition 4.7 Let G and G0 be torsion-free hyperbolic groups. Let Nu and Nv
be nontrivial tuples of elements of G and G0, respectively, and let U be a finitely
presented subgroup ofG which contains Nu and is freely indecomposable with respect
to it.

If tpG. Nu/ D tpG0

. Nv/, then either there exists an embedding U ,! G0 which sends
Nu to Nv, or U admits the structure of hyperbolic floor over h Nui.

We can now prove the following.
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Theorem 4.8 Let Nv be a nontrivial tuple of elements in a nonabelian free group F.
Then tpF. Nv/ is not isolated.

Proof Suppose that tpF. Nv/ is isolated; then there exists a tuple Nu in S4 such
that tpS4. Nu/ D tpF. Nv/. As S4 does not embed in F, Proposition 4.7 applied to
U D S4 gives that S4 is a hyperbolic floor over a subgroup H containing h Nui.
Lemma 3.12 implies that H is a cyclic group, whose generator h realizes p0 by
Theorem 3.10. The tuple Nu is thus of the form .hk1 ; : : : ; hkn/, and since its type is
isolated, the type of hk1 is isolated: by a formula �.x/, say. Let  .x/ be a formula
in p0. By uniqueness of roots in S4, the only k1th root of hk1 is h, so the formula
F.u/ W 8z.zk1 D u!  .z// is in the type of hk1 . In particular,

S4 ˆ 8z
�
�.zk1/!  .z/

�
:

Thus �.zk1/ isolates p0.z/, which contradicts Theorem 4.1.

5 Maximal Independent Sequences

The following result gives an example witnessing that p0 has weight greater than 1.

Proposition 5.1 Let S be the fundamental group of the orientable closed surface
of characteristic �2, and let G be the free product Z � S . Then G admits maximal
independent sets of realizations of p0 of cardinality 2 and 3.

Proof We choose the following presentation for G:˝
a; a0; b; b0; z

ˇ̌
Œa; b�Œa0; b0� D 1

˛
:

The group G admits at least three distinct hyperbolic tower structures (see Fig-
ure 5).

1. The trivial structure: We have m D 0, and G D G0 D hzi � S is a free
product of a free group and a closed surface group.

2. The structure over the subgroup H1 D ha; b; z ji ' F3. There is a hyper-
bolic floor .G;H1; r/ described as follows.

The hyperbolic floor decomposition ƒ1 consists of
� one vertex with vertex groupH1,
� one surface vertex with vertex group generated by a0; b0 (the correspond-
ing surface being a punctured torus).

The edge group is generated by Œa; b�. The retraction r W G ! H1 is given
by r.a/ D a, r.b/ D b, r.z/ D z, and r.a0/ D b, r.b0/ D a.

3. The structure over the subgroup H2 D ha; za0z�1i ' F2. There is a
hyperbolic floor .G;H2; r/ described as follows.

The hyperbolic floor decomposition ƒ2 consists of
� one vertex with vertex groupH2,
� one surface vertex corresponding to a four times punctured sphere,
whose maximal boundary subgroups are generated by a, ba�1b�1, a0,
and b0a0�1b0�1, respectively.

The embeddings of the corresponding edge groups intoH2 send them on the
subgroups generated by a, a�1, za0z�1, and za0�1z�1, respectively (so the
Bass–Serre elements are b, z�1, and b0z�1).

The retraction r W G ! H2 is given by r.a/ D a, r.b/ D 1,
r.a0/ D za0z�1, r.b0/ D 1, and r.z/ D 1.
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Figure 5 The tower structures of G overH1 andH2.

We claim that G does not admit a tower structure over any rank 4 subgroup K1
in which H1 is a free factor, nor over any rank 3 subgroup K2 in which H2 is a free
factor.

Indeed, suppose that such a subgroup Ki exists for i D 1 or i D 2. In the associ-
ated graph of group decomposition �i , the subgroup Hi is elliptic, so the boundary
subgroups of the surface group S of ƒi are all elliptic. By Lemma 3.2, the induced
graph of group decomposition for S is dual to a set of nonparallel simple closed
curves on the punctured torus if i D 1, or on the four times punctured sphere if
i D 2. In other words, the surfaces of �i are proper subsurfaces of the punctured
torus or the four-punctured sphere. But the only proper �1-embedded subsurfaces
that these surfaces admit are thrice-punctured spheres or cylinders, and these are not
permitted in tower structures.

Thus any basis for H1 realizes p.3/0 in G, but cannot be extended to a realization
of p.4/0 ; hence it is maximal. Similarly, any basis for H2 is a maximal realization of
p
.2/
0 .

Remark 5.2 A similar proof would show that S �Fn admits maximal independent
sets of realizations of p0 of size both nC 1 and nC 2.

In this low complexity case, it is easy to compute all the different possible tower
structures that a given group may admit. In a more general setting, this becomes
trickier. In particular, it would be interesting to find examples of finitely generated
models of Tfg (i.e., extended hyperbolic towers over the trivial subgroup) which ad-
mit maximal independent sets of realizations of p0 of sizes whose ratio is arbitrarily
large, thus witnessing directly infinite weight.

6 Homogeneity and Free Products

We mention one last application of the notion of hyperbolic towers: the free product
of two homogeneous groups is not necessarily homogeneous.

For this we show the following.
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Lemma 6.1 Let † denote the closed orientable surface of characteristic �2. The
fundamental group S of † is homogeneous.

Note that [6, Corollary 8.5] states that the fundamental group of a surface of charac-
teristic at most �3 is not homogeneous.

Proof Suppose that Nu and Nv are tuples which have the same type in S .
Suppose first that there exist embeddings i W S ,! S and j W S ,! S such that

i. Nu/ D Nv and j. Nv/ D Nu. Then since S is freely indecomposable, the relative co-Hopf
property of torsion-free hyperbolic groups (see [3, Corollary 4.19]) implies that j ı i
is an isomorphism; hence so are i and j .

We can now assume without loss of generality that there does not exist any em-
bedding i W S ,! S such that i. Nu/ D Nv. By Proposition 4.7 applied to U D S , this
implies that S admits a structure of extended hyperbolic floor over a proper subgroup
U containing Nu.

By Lemma 3.2, the hyperbolic floor decomposition � is dual to a set C of disjoint
simple closed curves on †. This decomposes † into two (possibly disconnected)
subsurfaces †0 and †1, corresponding, respectively, to non-surface-type vertices
and surface-type vertices. Now †0 and †1 satisfy �.†0/C�.†1/ D �2, and either
†1 is a punctured torus, or it has characteristic at most �2.

In the first case, †0 is also a punctured torus and U D �1.†0/ ' F2. In the
second case, we get that �.†0/ D 0, so †0 must be a cylinder and Nu lies in �1.†0/.
Let†00 be a punctured torus containing†0. Since S admits a structure of hyperbolic
floor over �1.†00/ which contains Nu, we may assume that we are also in the first case.
Thus S admits the following presentation:˝

˛0; ˛1; ˇ0; ˇ1
ˇ̌
Œ˛0; ˇ0� D Œ˛1; ˇ1�

˛
with U D h˛0; ˇ0i and �1.†1/ D h˛1; ˇ1i.
Case 1. If there does not exist any embedding j W S ,! S such that j. Nv/ D Nu,
we can deduce similarly that S has a structure of hyperbolic floor over a subgroup
V ' F2 which contains Nv, and that S admits a presentation as h˛00; ˛01; ˇ00; ˇ01 j
Œ˛00; ˇ

0
0� D Œ˛

0
1; ˇ
0
1�i with V D h˛00; ˇ00i.

Note that if there exists an isomorphism f W U ! V sending Nu to Nv, we must
have f .Œ˛0; ˇ0�/ D gŒ˛00; ˇ

0
0�g
�1 for some g in V . (In F2, all the commutators of

two elements forming a basis are conjugate.) Thus f can be extended to an automor-
phism of S by letting f .˛1/ D g˛01g

�1 and f .ˇ1/ D gˇ01g
�1. We will now show

that such an isomorphism U ! V always exists.
If U is freely indecomposable with respect to Nu, by Lemma 3.11 and by Proposi-

tion 4.7, there is an embedding f W U ,! V sending Nu to Nv. The smallest free factor
of V containing Nv contains f .U /; thus it cannot be cyclic. In particular, we have
that V is freely indecomposable with respect to Nv. This implies in a similar way that
there is an embedding h W V ,! U sending Nv to Nu. Considering h ı f and using
the relative co-Hopf property for torsion-free hyperbolic groups shows f is in fact
an isomorphism, again proving the claim.

If Nu is contained in a cyclic free factor hu0i of U , then Nv is contained in a cyclic
free factor hv0i of V . Then Nu D .u

k1

0 ; : : : ; u
kl

0 /, but since Nu and Nv have the same
type, we have Nv D .v

k1

0 ; : : : ; v
kl

0 /. Thus we can easily find an isomorphism f as
required.



Hyperbolic Towers and Independent Generic Sets 537

Case 2. Suppose now that there exists an embedding j W S ,! S such that j. Nv/ D Nu.
The hyperbolic floor decomposition � of S over U (namely, the amalgamated prod-
uct U �hci S1) induces via j a splitting of S as a graph of groups with cyclic edge
groups. By Lemma 3.2, this splitting is dual to a set C of simple closed curves on†.
Since Nu is elliptic in the splitting U �hci S1, the tuple Nv is elliptic in this induced
splitting. Thus Nv is contained in the fundamental group S 00 of one of the connected
components †00 of the complement in † of C , and j.S 00/ is contained in U .

We claim that†00 is a punctured torus and that j sends S 00 isomorphically onto U
(as a surface group with boundary). This is enough to finish the proof, since we can
then easily extend j jS 0

0
to an isomorphism S ! S .

Let us thus prove the claim. The morphism j is injective and sends elements cor-
responding to curves of C (in particular, boundary subgroups of S 00) to edge groups
of � , that is, to conjugates of hŒ˛0; ˇ0�i. By [3, Lemmas 3.10, 3.12] we deduce
that the complexity of †00 is at least that of †0 and that if we have equality, then
j jS 0

0
is an isomorphism of surface groups. In particular, if �.†00/ D �1, †00 must

have exactly one boundary component; hence it is a punctured torus, and the claim
is proved. If �.†00/ D �2, the surface †00 is a twice-punctured torus. This implies
that S is generated by S 00 together with an element t which conjugates two maximal
boundary subgroups hd1i and hd2i of S 00 which are not conjugate in S 00. Now j.d1/
and j.d2/ are conjugate in S , and both contained in U : they must be conjugate by
an element t 0 of U since U is a retract of S . Now j.t/�1t 0 commutes to j.d1/, so
j.t/�1t 0, and thus j.t/, is contained in U . Finally, j.S/ D hj.S 00/; j.t/i � U , but
this is a contradiction since U is free and j is injective.

On the other hand, the following result is an immediate consequence of Proposi-
tion 5.1.

Lemma 6.2 Let G D Z � S . Then G is not homogeneous.

SinceZ is homogeneous, this gives an example of a free product of two homogeneous
groups which fails to be homogeneous.

Proof By Proposition 5.1, there exist maximal realizations .u1; u2/ of p.2/0 and
.v1; v2; v3/ of p.3/0 in G. If G were homogeneous, there would be an automor-
phism � of G sending .v1; v2/ to .u1; u2/ since they both realize p.2/0 . But then
.u1; u2; �.v3// would realize p.3/0 , contradicting maximality of .u1; u2/.
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