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Lattices in Locally Definable Subgroups of (R", +)

Pantelis E. Eleftheriou and Ya’acov Peterzil

Abstract  Let M be an o-minimal expansion of a real closed field R. We define
the notion of a lattice in a locally definable group and then prove that every
connected, definably generated subgroup of (R, +) contains a definable generic
set and therefore admits a lattice.

The goal of this note is to reformulate some problems which appeared in Elefthe-
riou and Peterzil [4], introduce the notion of a lattice in a locally definable group (a
notion which also appeared in that paper, but not under this name), and establish con-
nections between various related concepts. Finally, we return to the main conjecture
from [4].

Every locally definable, connected abelian group which is generated by a defin-
able set contains a definable generic set.

We prove the conjecture for subgroups of (R", +), in the context of an o-minimal
expansion JM of a real closed field R.

1 Locally Definable Groups and Lattices

We first recall some definitions. Let M be an arbitrary «-saturated o-minimal struc-
ture (for « sufficiently large). By a locally definable group we mean a group (U, -),
whose universe U = | J,cy X» is a countable union of definable subsets of M*,
for some fixed k, and whose group operation is definable when restricted to each
Xm % X, (equivalently, to each definable subset of U x U). We say that a function
f U — M?" is locally definable if its restriction to each X; (equivalently, to each
definable subset of U) is definable. We let dim U be the maximum of dim X,,,n € N.
While some notions treated here make sense under the more general “\/-definable
group” (no restriction on the number of X;’s), we mostly work in the context of
a group which is generated, as a group, by a definable subset and hence is locally
definable. Note that another related concept, that of an ind-definable group (see
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Hrushovski, Peterzil, and Pillay [0]), is identical to our definition when one further
assumes that the group is a subset of a fixed M*.

As was shown in Peterzil and Starchenko [7], every locally definable group ad-
mits a group topology. This topology agrees with the M*-topology in neighbor-
hoods of generic points, namely, points g € U such that dim(g/A4) = dim(U).
(We assume here that all the X;’s above are defined over A.) We therefore obtain a
definable family of neighborhoods {U; : t € T} of the identity element, such that
{gU; :t € T,g € U} is a basis for the group topology on U. In Baro and Otero
[2] it was further shown that the topology can be realized by countably many de-
finable open charts, each definably homeomorphic to an open subset of M", where
n = dim(UW).

A subset X C U is called compatible (see Edmundo [?]) if for every Y € U
which is definable, the set X N Y is also definable. It easily follows that X itself
is also locally definable (namely, given as a countable union of definable subsets of
U). As was shown in [3], if U is locally definable and # is a normal compatible
subgroup of U, then there is a locally definable group X and a locally definable
surjective homomorphism f : U — K whose kernel is #. The converse is true as
well; namely, if such a homomorphism exists, then J is necessarily compatible.

A locally definable group is called connected (see Baro and Edmundo []) if it
has no compatible subset which is both closed and open, with respect to the group
topology. As is shown in [, Remark 4.3], a locally definable group U is connected
if and only if it is path-connected; namely, for any two points x, y € U there exists a
definable continuous o : [0, 1] — U such that 0(0) = x and (1) = y.

A typical example of a locally definable group is obtained by taking a definable
subset of a definable group (say, of (R", +)) and letting U be the subgroup generated
by X. When the generating set is definably connected and contains the identity one
obtains a connected locally definable group. We call a locally definable group U
definably generated if it is generated, as a group, by some definable subset.

Definition 1.1 For #/ € U alocally definable normal subgroup, we say that the
quotient U/ H is definable if there exists a definable group G and a locally definable
surjective homomorphism from U onto G, whose kernel is J.

Definition 1.2 A locally definable normal subgroup A € U is called a lattice in
U if dim(A) = 0 and U/ A is definable.

Notice that any countable group can be realized as a locally definable group, and
therefore it is also a lattice in itself.

If U is the subgroup of R” generated by the unit n-cube [—1, 1]”, then Z" is a lat-
tice in U. The quotient is definably isomorphic to the group H”, where H = [0, 1),
with addition modulo 1.

In [4, Lemma 2.1] we prove the following equivalence.

Lemma 1.3 Let U be a locally definable group in an o-minimal expansion of an
ordered group, and let A be a locally definable normal subgroup of dimension zero.
The following are equivalent.

(1) A is a lattice in U.

(2) A is compatible, and there exists a definable set X C G such that A-X = U.

It is easy to see that every lattice in a locally definable group is countable. (The
intersection with every definable set is finite.) We prove a stronger statement.
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Lemma 1.4  If A is a lattice in a locally definable connected group U, then A is
finitely generated as a group.

Proof Let¢ : U — G be a locally definable surjective homomorphism onto a
definable group G, with ker¢ = A. By compactness there exists a definable set
X C U such that ¢(X) = G. Because we have definable choice for subsets of U
(see [, Corollary 8.1]) we can find a definable section s : G — X (i.e., ¢ o s = id),
and so we replace X by the image of this section and call it X again. We may assume
thate € X.

Consider the topological closure (with respect to the group topology), C1(X) € U.

Claim There exists a finite set F C A such that for every g € A, if the intersec-
tion g CI(X) NCI(X) # @, then g € F.

Proof of Claim Let X’ € U be any definable open set containing CI(X). By
saturation, there is a finite ¥ € A, which we may assume is minimal, such that
X' C F-X.Because gX NhX = @forevery g # h € A,if gX N X' # @, then
necessarily g € F. Now, if g CI(X) N CI(X) # @, then necessarily gX N X' # @,
sogeF. O

We now claim that F generates A; namely, every element of A is a finite word in F
and F~L.

Take A € A. Since U is path-connected, there exists a definable path y : [0, 1] —
U, with y(0) = e and y(1) = A. Let ' € U be the image of y. Because I' is
definable it can be covered by finitely many A-translates of X. By taking a minimal
number of translates, we obtain A1, ..., A € A (possibly with repetitions), such that
eeMX,AeAX,andfori =1,...,k— 1, wehave CI(A; X) N Cl(A; 1 X) # @.

By the claim, it follows that )&i_ilki € F,fori =1,...,k—1. Butsincee € X,
we must have A; = e and Ay = A, so Aq,..., A, are all in the group generated by
F, and in particular, A belongs to that group. O

We say that U admits a lattice if there is a lattice in U. Note that not every locally
definable group admits a lattice. For example, if € R is larger than all elements of
N, then the subgroup of (R, +) given by | J[—r", r"] does not admit any lattice.

As we point out in [4], there are many consequences, for a given group U, of the
fact that it admits a lattice. Hence, our main question is the following.

Question 1 Which locally definable groups in M admit a lattice?
We start with some basic observations.

Definition 1.5 A definable subset X of a locally definable group U is called left
generic in U if there exists a bounded set A € U (namely, |A| < «) such that
U = A - X. Equivalently, for every definable Y C U there is a finite set F € U
suchthatY C F - X.

Lemma | .2 immediately gives the following.

Lemma 1.6 If a locally definable group U admits a lattice, then U contains a
definable left generic set.

Lemma 1.7 Let U be a connected locally definable group which contains a left
generic definable set X (e.g., if U admits a lattice). Then U is definably generated.
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Proof Let X C U be a definable, left generic set; namely, there is a bounded set
A C U such that A - X = U. The group generated by X, call it J, is therefore
locally definable, of bounded index in U (since (A)-H = U, where (A) is the group
generated by A). But then, if Y € U is a definable set, then Y N and Y N (U \ #)
are both bounded unions of definable sets. By saturation, this forces Y N J to be
definable; hence # is compatible. It is easy to see that J is both closed and open so
by connectedness of U must equal U. O

It is now natural to ask the following question.

Question 2 Does every connected, definably generated group admit a lattice?

2 Lattices in Abelian Groups

We still work in a sufficiently saturated structure M.

Recall that for a locally definable group U, we say that U0 exists if there is a
smallest type-definable normal subgroup of U of bounded index. (Note that a type-
definable subgroup of U is necessarily contained in a definable subset of U.) We
denote that subgroup by U°.

One of the main results in [4] is the following. (The equivalence of the bottom
three clauses is given in [+, Theorem 3.9]; the addition of clause (1) is obtained using
Lemma |.0.)

Theorem 2.1 Let U be a connected, abelian, definably generated group. Then
there is k so that the following are equivalent.

(1) U admits a lattice.

(2) U admits a lattice, isomorphic to zk.

(3) U contains a definable generic set.

(4) U exists, and U/ U is isomorphic to R¥ x K, for some compact Lie
group K.

In particular, we see that a connected, abelian, locally definable U admits a lattice
if and only if it contains a definable generic set. Note that by (4), the above k is
determined by U,/ U and thus unique.

In [+] we made the conjecture that the conclusions of the above theorem are always
true.

Conjecture A Let U be an abelian, connected, definably generated group. Then
U contains a definable generic set (so in particular admits a lattice).

The number k in Theorem .| can be viewed as a measure of how “nondefinable” the
group U is. Namely, if k& = 0, then U is outright definable, while if k = dim U > 0,
then U will not contain any infinite definable subgroup. We prove the latter statement
in Corollary 2.6 below.

In fact, we can define an invariant for every locally definable group U (not neces-
sarily satisfying Conjecture A) which gives some indication as to how “nondefinable”
U is.

Definition 2.2 The \/-dimension of U, denoted by vdim(U), is the maximum k
such that U contains a compatible subgroup isomorphic to Z¥, if such k exists, and
00, otherwise.

We prove in Theorem 2.5 below that Conjecture A is equivalent to the following.
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Conjecture B Let U be a connected, abelian, definably generated group. Then,
(1) vdim(U) < dim(U), in particular, vdim(WU) is finite;
(2) if U is not definable, then vdim(U) > 0.

In Section 3 we will prove Conjecture A for definably generated subgroups of
(R"™, +), where R is a real closed field and M is an o-minimal expansion of R.
Unless otherwise stated, U denotes a connected, abelian, definably generated
group.
We first prove the following.

Lemma 2.3 Assume that U contains a definable group H. Then U admits a
lattice T isomorphic to 7% if and only if U/H (which is also definably generated)
contains a lattice A isomorphic to 7.

Proof Lety : U — U/H be alocally definable surjective homomorphism.

Assume that U contains a lattice I' ~ Z¥. Because H is definable the intersection
I' N H is finite and so must equal {0}. Let A = ¢ (I") ~ Z*. To see that A is com-
patible in U/H, take a definable Y € U/H, and find a definable X € U such that
¥(X) =Y. Our goal is to show that Y N'A is finite. But Y NA = ¢ (X + H)NT),
and since I is compatible its intersection with X + H is finite. Thus ¥ N A is finite,
and so A is compatible in U/H.

Let ¢ : U — G be a locally definable surjective homomorphism onto a definable
group, with I' = ker ¢. Notice that ¢(H) is a definable subgroup of G. To see that
A is alattice in U/H , we note that

(U/H)/A ~U/(H +T) >~ G/o(H),

and therefore (U/H)/A is definable.

Assume now that U/H admits a lattice A ~ ZF. We can find uq,...,ux € U
with @(u1), ..., p(ug) generators of A. Let ' € U be the group generated by the
u;’s.

We first show that I" is compatible. Because A is torsion-free, ¢ is injective
on I'. Therefore, if X € U is definable the intersection X N I' must be finite, or
else ¢(X) N A is infinite, contradicting the compatibility of A. To see that I is a
lattice it is sufficient, by Lemma | .7, to see that U contains a definable set X with
X + T = U. We first find a definable Y € U/H such that Y + A = U/H, then
a definable X’ € U with ¥ (X’) = Y, and finally take X = X' + H. Itis easy to
verify that X + T = U. O

Lemma 2.4 Assume that U contains a definable generic set. Then U is definable
if and only if vdim(U) = 0.

Proof  One direction is obvious, for if U is definable, then it cannot contain any
infinite zero-dimensional compatible subgroup. For the converse, assume that U is
not definable.

By Theorem ”. |, the group U exists, and for some k € N, we have U/U%" ~
Rk x K, fora compact Lie group K. We claim that k > 0. Indeed, if k = 0, then
U/ U = K is compact. But then, by [, Lemma 3.3], the preimage of K would be
contained in a definable subset of U, and thus U would be definable, a contradiction.

If we now apply Theorem (4) = (2), we see that U admits a lattice isomor-
phic to 7k so vdim(U) > k > 0. O
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Proposition 2.5  Assume that U admits a lattice.
(i) If A is a zero-dimensional, compatible subgroup of U, then A ~ 7! + F,
with | < vdim(U) and F a finite subgroup of U.
(ii) vdim(U) < dim(U).
(iii) If A is a lattice in U, then A ~ Z! + F, with | = vdim(WU) and F a finite
subgroup of U.
(iv) If U is torsion-free and generated by a definably compact set, then every
lattice in U is isomorphic to ZF, with | = dim(U) = vdim(U).
Proof By [4, Claim 3.4], there exists a definable torsion-free subgroup H < U
such that the group U/H is generated by a definably compact set.

By [4, Theorem 3.9], there exists a unique k such that U/H admits a lattice
isomorphic to Z¥, and, moreover, because U/H is generated by a definably compact
set, we have k < dim(U/H) and hence k < dim(U). Also, by Lemma 2.3, the
group U also admits a lattice isomorphic to Z¥, so k < vdim(U). Our proof below
implies that k = vdim(U).

Again, by [, Theorem 3.9], the group U/U® is isomorphic to R¥ x K, where
K is a compact Lie group. The rest of the argument is extracted from the proof of [+,
Lemma 3.7].

(i) Assume that A € U is a zero-dimensional compatible subgroup. Consider
¢ U — U/A. We claim that ker(¢) N U’® = {0}. Indeed, take any defin-
able set X € U containing U°®. Then, since ¢ | X is definable, the intersection
ker(¢) N U C ker(¢) N X is finite. However, by [, Proposition 3.5], the group
U is torsion-free, so ker(p) N U = {0}.

Consider the map 7y, : U — R¥ x K, and let T" be the image of ker(¢) under 7.
We just showed that I" is isomorphic to A = ker(¢). We claim that I" is discrete.
Indeed, using X as above we can find another definable set X’ whose image 7q;(X")
contains an open neighborhood of zero and no other elements of I', so I" is discrete.

Now, since K is compact, the projection I'" of I' into R¥ has a finite kernel
F C K. Furthermore, I'” is a discrete subgroup of (Rk, +), and hence T/ ~ Zl, for
some | < k. Therefore, T ~ Z! + F,soA ~Z! + F. In particular, if A ~ 7!,
then / < k, which implies vdim(U) < k. Since U does contain a compatible copy
of Zk, it follows that k = vdim(U), so [ < vdim(U), as required.

(>ii) Since k < dim(U), we have vdim(U) < dim(U).

(iii) Assume now that A ~ Z! + F is a lattice in U. Namely, U/ A is a definable
group G. We proceed to show that | = k. Let X € U be a definable set so that
¢(X) = G. Then X +ker(¢) = U. Thus, 7 (X)+T = REx K. Let Y, F/,and T
be the projections of o (X ), F, and T, respectively, into RX. We have ¥ + T = R¥
Since X is definable, the set w9y (X ) is compact and so Y is also compact.

We let Aq,...,A; be the generators of ker(¢) and let vy,...,v; € R¥ be their
images in I". If H C R* is the real subspace generated by vi,...,v;, then
Y+HA+F = Rk, and therefore, since Y is compact and F’ finite, we must have
H = R¥. This implies that [ = k.

(iv) By [4, Proposition 3.8], if U is generated by a definably compact set and is
torsion-free, then U/ U ~ RIMUW 5o by Theorem 7. | every lattice is isomorphic
to Z3mU By (iii), dim(U) = vdim(U). O

We can now see better why vdim(U) gives an indication as to how “nondefinable”
U is.
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Corollary 2.6  Assume that U admits a lattice and H is a definable subgroup
of U. Then
(i) vdim(U) = vdim(U/H);
(i) if vdim(U) = dim(UWU), then H must be finite;
(iii) if U is torsion-free, and H has maximal dimension among all definable sub-
groups of U, then dim H = dim(U) — vdim(U).

Proof (i) By Theorem 2.1, U admits a lattice isomorphic to 7K, and by Proposi-
tion 2.5(iii), k = vdim(U). By Lemma 2.3, U/H also admits a lattice isomorphic
to Z¥, and so by again by the same proposition, we have vdim(U/H) = k.

(ii) Assume that H is an infinite definable subgroup of U. Then by (i), we have
vdim(U/H) = vdim(U) = dim(U) > dim(U/H), which contradicts Proposi-
tion 2.5(ii) for U/H.

(iii) If dim H has maximal dimension among the definable subgroups of U,
then, as we already noted, U/H is generated by a definably compact set. Because
H is torsion-free, as a subgroup of U, it must be definably connected and there-
fore divisible. It follows that U/H is torsion-free as well. By Proposition 2.5(iv),
vdim(U/H) = dim(U/H). But then, by (i) we have

dim H = dim(U) — dim(U/H) = dim(U) — vdim(U). O

The torsion-free condition in (iii) above is necessary. For example, the group G in
Eleftheriou and Peterzil [5, Example 6.2] does not contain any nontrivial definable
subgroups, yet dim(G) = 2 and vdim(G) = 1. We describe below a general method
to obtain a locally definable group V, generated by a definably compact set, such that
V has no infinite definable subgroups and vdim(V) < dim(V).

Example 2.7 Let G be a k-dimensional definably compact abelian group which
has no proper definable subgroups of positive dimension, and let U be the universal
covering of G, so dim(U) = k. Let ' ~ Z* be the kernel of the covering map,
so I' is compatible in U. Write I' = I'} & [, with I'y >~ Z™, T, ~ Zk—m  and
0 < m < k. Obviously, I'; is still compatible in U, and therefore V = U/ T is a
locally definable group with dim(V) = dim(U). It is not hard to see that the covering
map U — G factors through V and hence V cannot have any proper definable
subgroup of positive dimension. We claim that vdim(V) = k — m.

Let ¢ : U — V be a locally definable projection. The image of I" under ¢ is
a group A ~ ZK~™ which we claim to be compatible in V. We start with ¥ € 'V
definable and claim that ¥ N A is finite.

Let m, : I' — I'; be the projection with respect to the direct sum decomposition.
For every W C T, (W) is in bijection with 7, (W), so it is enough to prove that
m2(e (Y NA)) = ma(p~ 1 (Y) NT) is finite.

If we choose a definable X € U such that (X) = Y, then ¢~ 1(Y) = X + T'y.
But (X +T1) NI =(XNT)+ Iy, and because I' is compatible the set X N T is
finite. It follows that

(e M (Y)NT) = m((X NT) + ) = m2(X NT)
is finite so ¥ N A is finite, showing that A is compatible in V. Hence, vdim(V) >
k —m.
For the opposite inequality, assume V contains a compatible subgroup A isomor-
phic to Z7, and choose u1, . ..,u, € Usothat p(uy), ..., ¢(u,) are generators of A.
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It is not hard to see that I'; +Zu; +- - -+ Zu, is a compatible subgroup of U, isomor-
phic to Z™*7, so necessarily m + r < k. Hence, r < k —m, so vdim(V) = k — m.

Note that 'V has nontrivial torsion since any a € U for which na € T'; will be
mapped to an n-torsion element of V.

We end by noting that the two conjectures mentioned above are equivalent.

Theorem 2.8 Conjecture / is equivalent to Conjecture 5. More precisely,
(i) if U admits a definable generic set, then U satisfies clauses (1), (2) of Con-
Jjecture I3;
(ii) Conjecture 5 implies Conjecture

Proof (i) This is by Proposition 2.5 and Lemma

(i) Let A ~ ZF be a compatible subgroup of U with k = vdim(U). We will
prove that the locally definable group U/ A is actually definable.

Assume that U/A is not definable. By Conjecture 3(2) (applied to U/A), there
exists some a € U/ A such that Za is a compatible subgroup of U/A, and for every
n,na # 0. Let b € U be an element that projects via ¢ : U — U/A to a. Clearly,
Zb N A = {0}. We claim that A + Zb is a compatible subgroup of U, contradicting
k = vdim(U). Let X € U be definable. The image of X N (A + Zb) under ¢ is
contained in ¢(X) N Za. Since ¢ is locally definable, ¢(X) is definable. Therefore
@(X) N Za is finite, by compatibility of Za. The preimage of this finite set under 7
is a union of sets A + x, x € B, for some finite B C Zb. So X N (A + Zb) is equal
to the finite union of the sets X N (A + x), x € B, each of which is finite, because
so is (X — x) N A by compatibility of A. Hence X N (A + Zb) is finite, and thus
A + 7Zb is compatible. O

3 Locally Definable Subgroups of (R", +)

We assume here that M is an o-minimal expansion of a real closed field R.
Our goal is to prove Conjecture A for subgroups of (R", +), but in fact we prove
a stronger result (as was suggested to us by a referee).

Theorem 3.1 Let U be a connected definably generated subgroup of (R",+)
of dimension k. Then there are linearly independent one-dimensional R-subspaces
Ry, ..., Ry and intervals I; = (—a;,a;) € R; (with a; possibly co) such that U is
generated by the set X = I + --- + I. The set X is generic in U.

Proof Recall that for X € R", we write X (m) for the addition of X — X to itself
m times. If 0 € X, then X € X(m).

Definition 3.2 A subset of R”" is called convex with respect to R (or R-convex)
if for all x, y € X, the line segment connecting x and y is also in X.

The R-convex hull of X is the smallest R-convex subset of R” containing X. It
consists of all finite combinations Z;"zl t;x;, where the x;’s are in X, all ; > 0, and

Z ti = 1.
Lemma 3.3 If X € R" is definable, then the R-convex hull of X is also definable.

Proof = More precisely, we claim that the following set equals the R-convex hull

of X:
n+1

X/ = {ZliXi 1 +"‘+tn+l = 1»ti € [O» 1],Xi GX}

i=1
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Indeed, by Carathéodory’s theorem, every convex combination of any number of
points from X can also be realized as a combination of n + 1 of these points; hence
the R-convex hull of X equals X’. (Note that although Carathéodory’s theorem is
usually proved over the reals, the same proof works over any ordered field. Alterna-
tively, the statement over the real numbers implies, by transfer, the same result over
any real closed field.) ]

Lemma 3.4 Assume that X C R" is a definably connected set containing zero.
Then there is m such that X (m) (in the sense of the additive group (R, +)) contains
the R-convex hull of X.

Proof Given f : X — Z, the fiber power of X is defined as

XXfX:{(x,y)eXxX:f(x):f(y)}.

Clearly, the diagonal A is contained in X x 5 X.

Note that for (x1,x2), (y1,y2) € X xs X, there is a continuous definable path
in X x s X, connecting the two points if and only if there are definable continuous
curves y1, ¥2 : [0, 1] — X such that y; (0) = x;, y;(1) = y;, and for every ¢ € [0, 1]
we have f(y1(2)) = f(r2()).

Claim 3.5 For X C R", consider the projection w : R"™ — R onto the first coor-
dinate. Assume that w(x1) = w(x3), 7(y1) = 7w (y2) (in particular, w1(x1 — x3) =
w(y1 — y2) = 0). Assume further that (x1,x,) and (y1, y2) are in the same con-
nected component of X X, X. Then the elements x1 — x, and y1 — y» are in the
same connected component of the set (X — X) N {0} x R"~1,

Proof  Note that the image of X X, X under the binary map (x, y) > x — y is
contained in the set {0} x R"~!. Consider the restriction of this map to the connected
component of X x, X which contains (x1, x5) and (y1, y2). The image is connected
and clearly contains x, — x; and y, — y;. O

Claim 3.6  Assume that x,y € X, w(x) = w(y) and that there is a curve

y=W01....vn) : [0,1] > X
connecting x and y inside X . (Note that y1(0) = y1(1).) Let T be the image of y.

(1) If y1 is constant on [0, 1], then I X, T is definably connected. In particular,
forevery x,y,z € T, {x,y) and (z, z) are in the same definably connected
component of X x5 X.

(2) Iffor somea € (0, 1), y1 is increasing on (0, @) and decreasing on (a, 1), then
y—x and zero are in the same connected component of (X —X)N{0} x R"~1.

(3) If for some ay < a, in (0, 1), v is increasing on (0, ay), constant on (ay, az),
and decreasing on (az, 1), then y — x and zero are in the same connected
component of (X — X) N {0} x R"1L.

Proof (1) By assumption the map r is constant on I', and therefore I'x, I" = I'xT,
which is clearly definably connected.

(2) Let [by, by] be the image of y under m. By assumptions, 7(y;(0)) =
w(y1(1)) = by, w(y1(a)) = by, and the restrictions of 7 to the pieces y([0,a])
and y([a, 1]) are both injective. Let a1, be their inverse maps, respectively
(so these are maps from [by, b,] into I'). We have «1(b1) = x, az(b1) = y,
a1(b2) = az(b2) = y(a). Moreover, for every ¢t € [by, by] we have m(xq(2)) =
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w(aa(t)) = t. It follows that (x,y) and (y(a),y(a)) are in the same compo-
nent of X X, X, so by Claim 3.5, y — x and zero are in the same component of
(X —X)Nn{0} x R*1,

(3) As in (2), let [by, by] be the image of y under . It is easy to see that
y1(t) = by for all t € [ay,az]. Similarly to the proof of (2), (x,y) and
(y(ay), y(az)) are in the same component of X x, X. Using (1), we see that
(y(a1), y(az)) is in the same component as (z,z) for some z € y([ay,az]). Ap-

plying Claim 2.5, we conclude that x — y and zero are in the same component of
(X —X)Nn{0} x R*1, O
We now return to the proof of Lemma 3.. So, X is a definably connected subset of

R™ containing zero, and we want to show that for some m, the convex hull of X is
contained in X (m).

We will use induction on n. If n = 1, then X is already convex. So, we assume
that the result is true for X € R” and prove it for X C R"+1 We take x, y € X and
first want to show that for some m the line segment [x, y] (i.e., the line connecting x
and y in R"™1) is contained in X (m).

Using a linear automorphism of R”, we may assume that 7(x) = n(y) = 0.
Since X is definably connected, there exists a definable curve y : [0,1] — X con-
necting x and y. Let I' € X be the image of y, and again let y; = w o y.

Notation  For f : [0, 1] — R continuous, let k = k(f) be the minimal natural
number so that there are 0 = a9 < a; < --- < ax = 1, and f is either constant or
strictly monotone on [a;, a;+1]-

We consider the map y; : [0, 1] — R and prove the result by subinduction on k(7).

Assume first that k(y;) = 1, namely, that y; is constant on [0, 1]. In this case,
I" is contained in {0} x R", so we can work in R" and use the inductive hypothesis
to conclude that the line segment [x, y] is contained in I'(m) for some m. Clearly,
I'(m) € X(m), so we are done.

Assume then that k(y;) > 1, so y; is not constant. Without loss of generality, y;
takes some positive value on (0, 1), so let @ € (0, 1) be a point where y; takes its
maximum value in [0, 1].

Case 1. Assume first that y; is not locally constant at a.

Then there are a; < a < a, such that y; is increasing on (a1, a), decreasing on
(a,a3), y1(a1) = y1(az), and furthermore, either a; or a, are local minima for y;.
Indeed, we take a] < a to be the minimum of all points ¢ such that y; is increasing
on (¢, a), and we take a’, > a be the maximum of all # > a such that y; is decreasing
on (a,t). (In this case, @} and a} are local minima for y;.) We then compare y; (a})
and y1(a}). If y1(a)) > y1(a}), then we take a1 := a/ and take a; to be the unique
element of the interval (a,aj) such that y;(a2) = y1(a1). Otherwise, we do the
opposite.

Let x; = y(ay) and x, = y(az). Consider now the curve IV which is the image
of [a1,az] under y. By Claim 3.6(2), x, — x; and zero are in the same connected
component of (I'"—=T"")N{0} x R™. But then, we can view this component as living in
R, so by inductive hypothesis there exists m such that the line segment connecting
zero and x, — x; is contained in (I'" — I'")(m). By adding x; to both sides, we
see that the line segment connecting x; and x5 is contained in (X — X)(m + 1).
Hence, after replacing X with X (m), we can also replace the original curve I with
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a new curve I'”, in which the piece y([a;, a2]) was replaced by a linear segment all
of whose points project to the same point 7 (x1). Let y” : [0, 1] — X be the map
whose image is I'” (so y” = y everywhere, except on [ay, az], in which the image
is linear and y{’ is constant). Because a; or a; is a local minimum of yy, it is easy to
see that k(y;) = k(y1) — 1. By subinductive hypothesis, the line connecting x and
y is contained in some X (m’).

Case 2. Assume that y; is locally constant at a.

So, there are aj < a < a) such that y; is constant on [a],a}] and this is a
maximal such interval. As in Case 1, we can find a; < a’1 and a, > a’2 such that y,
is increasing on [a1, a}], decreasing on [a}, a»], y1(a1) = y1(az), and furthermore,
either a; or a, is a local minimum of y;.

Let I'” be the piece of " connecting y(a1) and y(az). Then, by Claim 3.6(3), the
points y(az) — y(a1) and zero are in the same component of (I'" — IT'") N {0} x R".
Again, by inductive hypothesis, the line segment connecting zero and y(a;) — y(a1)
is contained in (I'" — T'")(m) for some m, so the line segment connecting y(a;) and
y(ay) is contained in X(m + 1). As in case (1), we can replace I" by I'”, in which
the piece y([ai,az]) is replaced by the line segment connecting y(a;) and y(a3).
Again, the map y” : [0, 1] — X whose image is I'” now satisfies k(y;) = k(y1) —2
(because we replaced three pieces by one). By subinductive hypothesis, the line
connecting x and y is in some X (m’).

We therefore showed that for every x,y € X, there exists m such that the line
segment [x, y] is contained in X (m). To see that we can find a uniform m for all
x,y € X, we use logical compactness (writing a type p(x, y), which says that the
line segment [x, y] is not contained in any X (m)). This ends the proof of Lemma

O

Question It is interesting to ask what is the required m in the above result. The
argument suggests that it depends on the possible number of “twistings” of the curve
connecting two points in X. But maybe this is just an effect of the proof, and one can
find a uniform such m which depends only on the ambient R".

Next, we show that U € R” can be generated by a sum of intervals in linearly inde-
pendent one-dimensional spaces. By Lemma 2.4 we can assume that it is generated
by a definably connected convex set X > 0. In particular, U is convex. Since U is
closed, we may replace X by its closure, which is still convex, and assume that X is
closed. We may also assume that —X = X. (Otherwise, we replace it with X — X.)

We prove the result by induction on n. When U is a subset of R, then any convex
subset of R is an interval (possibly equaling the whole of R), so we are immediately
done.

We now consider the case U € R**1,

Assume first that X is bounded. Consider all line segments contained in X, and
let Jy be such segment of maximal length. (It exists by o-minimality and the fact that
X is closed.) Since we work in a field we may assume that J is parallel to the x, -
coordinate and furthermore that 0 € Jy divides it exactly into two equal parts. We
can therefore write Jo = (—ag+1,dx+1). Let w(X) be the projection onto the first
n coordinates. By induction, there are linearly independent one-dimensional spaces
Ri,..., Ry € R", and in each R; an interval I; = (—a;,a;) (with a; possibly co)
such that the sum Y = I +-- -+ I generates the same group as 7 (X). In particular,
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thereis anm € Nsuchthat Y € (X )(m). Our goal is to show that Y + J, generates
the group U. It is thus sufficient to prove the following.

Claim We have X C Y + Jo C X(2m).

Proof Consider (X, y) € X, with X € w(X). Note that |y| < ax4+1/2, because if
Yy > ag+1/2, then the length of the line segment connecting (X, y) to zero is then
greater than ayy,/2. Because X is symmetric, the point (—X, —y) is also in X, and
thus the line segment connecting (—x, —y) and (X, y) is longer than a4+, = |Jo|, a
contradiction. We therefore showed that y < ax4;/2 and hence

(.)€ {(x.0)} + Jo S (X)) + Jo S Y + Jo.

For the opposite inclusion, take (x,y) € Y + Jo. Since ¥ C n(X)(m) =
(X (m)), there exists y’ € R such that (X, y’) € X(m). Because max{|y| : (X, y) €
X} = ag41/2, we have |y’| < mag41/2. But then

(X,y) € X(m) + mJo C X(2m).

This ends the proof of the claim and the case where the generating set X is bounded.
O

In the general case, we first find a definable subgroup H such that U/H is generated
by a definably compact set. Since all definable subgroups of R” are R-vector spaces,
the group H is linear. Without loss of generality, H = R¥, for k < n, identified
with the first k coordinates. Let 771 : U — R™ ¥ be the projection onto the last n —k
coordinates, and let V = 71 (U). We claim that U = H + V.

Indeed, assume that (X, y) € U. Since U is convex, the line segments which
connect (¥, 7) to arbitrary large points in R* belong to U. Hence we can approach
every point on the affine space R¥ x {j} by points inside U. Since U is closed, we
have that H + {(0, )} is contained in U. This shows that H + 'V is contained in
U. The converse is immediate. This ends the proof that U is generated by a sum of
intervals in linearly independent one-dimensional spaces.

Our final goal is to show that Yo = I7 + --- + Ix + Jo is generic in U. We
have I; = (—a;,a;) and Jy = (—ag+1,ar+1)- If we let V; be the one-dimensional
group generated by (—a;, a;), then we have U = V; + --- 4+ V1. Each (—aq;, a;)
is generic in V;, so it is easy to verify that Y, is generic in U. This ends the proof of
Theorem 3.1. O

As noted in the above proof, U is convex in R". This immediately implies that U
is divisible. In [4], we prove more generally that Conjecture A implies that every
connected definably generated abelian group is divisible.
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