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Lattices in Locally Definable Subgroups of hRn; Ci

Pantelis E. Eleftheriou and Ya’acov Peterzil

Abstract Let M be an o-minimal expansion of a real closed fieldR. We define
the notion of a lattice in a locally definable group and then prove that every
connected, definably generated subgroup of hRn;Ci contains a definable generic
set and therefore admits a lattice.

The goal of this note is to reformulate some problems which appeared in Elefthe-
riou and Peterzil [4], introduce the notion of a lattice in a locally definable group (a
notion which also appeared in that paper, but not under this name), and establish con-
nections between various related concepts. Finally, we return to the main conjecture
from [4].

Every locally definable, connected abelian group which is generated by a defin-
able set contains a definable generic set.

We prove the conjecture for subgroups of hRn;Ci, in the context of an o-minimal
expansion M of a real closed field R.

1 Locally Definable Groups and Lattices

We first recall some definitions. Let M be an arbitrary �-saturated o-minimal struc-
ture (for � sufficiently large). By a locally definable group we mean a group hU; �i,
whose universe U D

S
n2NXn is a countable union of definable subsets of M k ,

for some fixed k, and whose group operation is definable when restricted to each
Xm � Xn (equivalently, to each definable subset of U �U). We say that a function
f W U ! M n is locally definable if its restriction to each Xi (equivalently, to each
definable subset ofU) is definable. We let dimU be the maximum of dimXn, n 2 N.
While some notions treated here make sense under the more general “

W
-definable

group” (no restriction on the number of Xi ’s), we mostly work in the context of
a group which is generated, as a group, by a definable subset and hence is locally
definable. Note that another related concept, that of an ind-definable group (see
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Hrushovski, Peterzil, and Pillay [6]), is identical to our definition when one further
assumes that the group is a subset of a fixedM k .

As was shown in Peterzil and Starchenko [7], every locally definable group ad-
mits a group topology. This topology agrees with the M k-topology in neighbor-
hoods of generic points, namely, points g 2 U such that dim.g=A/ D dim.U/.
(We assume here that all the Xi ’s above are defined over A.) We therefore obtain a
definable family of neighborhoods ¹Ut W t 2 T º of the identity element, such that
¹gUt W t 2 T; g 2 Uº is a basis for the group topology on U. In Baro and Otero
[2] it was further shown that the topology can be realized by countably many de-
finable open charts, each definably homeomorphic to an open subset ofM n, where
n D dim.U/.

A subset X � U is called compatible (see Edmundo [3]) if for every Y � U

which is definable, the set X \ Y is also definable. It easily follows that X itself
is also locally definable (namely, given as a countable union of definable subsets of
U). As was shown in [3], if U is locally definable and H is a normal compatible
subgroup of U, then there is a locally definable group K and a locally definable
surjective homomorphism f W U! K whose kernel is H . The converse is true as
well; namely, if such a homomorphism exists, then H is necessarily compatible.

A locally definable group is called connected (see Baro and Edmundo [1]) if it
has no compatible subset which is both closed and open, with respect to the group
topology. As is shown in [2, Remark 4.3], a locally definable group U is connected
if and only if it is path-connected; namely, for any two points x; y 2 U there exists a
definable continuous � W Œ0; 1�! U such that �.0/ D x and �.1/ D y.

A typical example of a locally definable group is obtained by taking a definable
subset of a definable group (say, of hRn;Ci) and letting U be the subgroup generated
by X . When the generating set is definably connected and contains the identity one
obtains a connected locally definable group. We call a locally definable group U

definably generated if it is generated, as a group, by some definable subset.

Definition 1.1 For H � U a locally definable normal subgroup, we say that the
quotient U=H is definable if there exists a definable group G and a locally definable
surjective homomorphism from U onto G, whose kernel is H .

Definition 1.2 A locally definable normal subgroup ƒ � U is called a lattice in
U if dim.ƒ/ D 0 and U=ƒ is definable.

Notice that any countable group can be realized as a locally definable group, and
therefore it is also a lattice in itself.

If U is the subgroup of Rn generated by the unit n-cube Œ�1; 1�n, then Zn is a lat-
tice in U. The quotient is definably isomorphic to the groupHn, whereH D Œ0; 1/,
with addition modulo 1.

In [4, Lemma 2.1] we prove the following equivalence.

Lemma 1.3 Let U be a locally definable group in an o-minimal expansion of an
ordered group, and let ƒ be a locally definable normal subgroup of dimension zero.
The following are equivalent.

(1) ƒ is a lattice in U.
(2) ƒ is compatible, and there exists a definable setX � G such thatƒ �X D U.

It is easy to see that every lattice in a locally definable group is countable. (The
intersection with every definable set is finite.) We prove a stronger statement.
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Lemma 1.4 If ƒ is a lattice in a locally definable connected group U, then ƒ is
finitely generated as a group.

Proof Let ' W U ! G be a locally definable surjective homomorphism onto a
definable group G, with ker ' D ƒ. By compactness there exists a definable set
X � U such that '.X/ D G. Because we have definable choice for subsets of U

(see [3, Corollary 8.1]) we can find a definable section s W G ! X (i.e., ' ı s D id),
and so we replaceX by the image of this section and call itX again. We may assume
that e 2 X .

Consider the topological closure (with respect to the group topology), Cl.X/ � U.

Claim There exists a finite set F � ƒ such that for every g 2 ƒ, if the intersec-
tion g Cl.X/ \ Cl.X/ ¤ ;, then g 2 F .

Proof of Claim Let X 0 � U be any definable open set containing Cl.X/. By
saturation, there is a finite F � ƒ, which we may assume is minimal, such that
X 0 � F � X . Because gX \ hX D ; for every g ¤ h 2 ƒ, if gX \ X 0 ¤ ;, then
necessarily g 2 F . Now, if g Cl.X/ \ Cl.X/ ¤ ;, then necessarily gX \ X 0 ¤ ;,
so g 2 F .

We now claim that F generates ƒ; namely, every element of ƒ is a finite word in F
and F �1.

Take � 2 ƒ. Since U is path-connected, there exists a definable path  W Œ0; 1�!
U, with .0/ D e and .1/ D �. Let � � U be the image of  . Because � is
definable it can be covered by finitely many ƒ-translates of X . By taking a minimal
number of translates, we obtain �1; : : : ; �k 2 ƒ (possibly with repetitions), such that
e 2 �1X , � 2 �kX , and for i D 1; : : : ; k � 1, we have Cl.�iX/ \ Cl.�iC1X/ ¤ ;.

By the claim, it follows that ��1iC1�i 2 F , for i D 1; : : : ; k � 1. But since e 2 X ,
we must have �1 D e and �k D �, so �1; : : : ; �k are all in the group generated by
F , and in particular, � belongs to that group.

We say that U admits a lattice if there is a lattice in U. Note that not every locally
definable group admits a lattice. For example, if r 2 R is larger than all elements of
N, then the subgroup of hR;Ci given by

S
Œ�rn; rn� does not admit any lattice.

As we point out in [4], there are many consequences, for a given group U, of the
fact that it admits a lattice. Hence, our main question is the following.

Question 1 Which locally definable groups in M admit a lattice?

We start with some basic observations.

Definition 1.5 A definable subset X of a locally definable group U is called left
generic in U if there exists a bounded set � � U (namely, j�j < �) such that
U D � � X . Equivalently, for every definable Y � U there is a finite set F � U

such that Y � F �X .

Lemma 1.3 immediately gives the following.

Lemma 1.6 If a locally definable group U admits a lattice, then U contains a
definable left generic set.

Lemma 1.7 Let U be a connected locally definable group which contains a left
generic definable set X (e.g., if U admits a lattice). Then U is definably generated.
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Proof Let X � U be a definable, left generic set; namely, there is a bounded set
� � U such that � � X D U. The group generated by X , call it H , is therefore
locally definable, of bounded index in U (since h�i�H D U, where h�i is the group
generated by�). But then, if Y � U is a definable set, then Y \H and Y \ .UnH /

are both bounded unions of definable sets. By saturation, this forces Y \ H to be
definable; hence H is compatible. It is easy to see that H is both closed and open so
by connectedness of U must equal U.

It is now natural to ask the following question.

Question 2 Does every connected, definably generated group admit a lattice?

2 Lattices in Abelian Groups

We still work in a sufficiently saturated structure M.
Recall that for a locally definable group U, we say that U00 exists if there is a

smallest type-definable normal subgroup of U of bounded index. (Note that a type-
definable subgroup of U is necessarily contained in a definable subset of U.) We
denote that subgroup by U00.

One of the main results in [4] is the following. (The equivalence of the bottom
three clauses is given in [4, Theorem 3.9]; the addition of clause (1) is obtained using
Lemma 1.6.)

Theorem 2.1 Let U be a connected, abelian, definably generated group. Then
there is k so that the following are equivalent.

(1) U admits a lattice.
(2) U admits a lattice, isomorphic to Zk .
(3) U contains a definable generic set.
(4) U00 exists, and U=U00 is isomorphic to Rk � K, for some compact Lie

group K.

In particular, we see that a connected, abelian, locally definable U admits a lattice
if and only if it contains a definable generic set. Note that by (4), the above k is
determined by U=U00 and thus unique.

In [4] we made the conjecture that the conclusions of the above theorem are always
true.

Conjecture A Let U be an abelian, connected, definably generated group. Then
U contains a definable generic set (so in particular admits a lattice).

The number k in Theorem 2.1 can be viewed as a measure of how “nondefinable” the
group U is. Namely, if k D 0, then U is outright definable, while if k D dimU > 0,
then U will not contain any infinite definable subgroup. We prove the latter statement
in Corollary 2.6 below.

In fact, we can define an invariant for every locally definable group U (not neces-
sarily satisfying Conjecture A) which gives some indication as to how “nondefinable”
U is.

Definition 2.2 The
W
-dimension of U, denoted by vdim.U/, is the maximum k

such that U contains a compatible subgroup isomorphic to Zk , if such k exists, and
1, otherwise.

We prove in Theorem 2.8 below that Conjecture A is equivalent to the following.
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Conjecture B Let U be a connected, abelian, definably generated group. Then,
(1) vdim.U/ � dim.U/; in particular, vdim.U/ is finite;
(2) if U is not definable, then vdim.U/ > 0.

In Section 3 we will prove Conjecture A for definably generated subgroups of
hRn;Ci, where R is a real closed field and M is an o-minimal expansion of R.

Unless otherwise stated, U denotes a connected, abelian, definably generated
group.

We first prove the following.

Lemma 2.3 Assume that U contains a definable group H . Then U admits a
lattice � isomorphic to Zk if and only if U=H (which is also definably generated)
contains a lattice � isomorphic to Zk .

Proof Let  W U! U=H be a locally definable surjective homomorphism.
Assume that U contains a lattice � ' Zk . BecauseH is definable the intersection

� \H is finite and so must equal ¹0º. Let � D  .�/ ' Zk . To see that � is com-
patible in U=H , take a definable Y � U=H , and find a definable X � U such that
 .X/ D Y . Our goal is to show that Y \� is finite. But Y \� D  ..XCH/\�/,
and since � is compatible its intersection with X CH is finite. Thus Y \� is finite,
and so � is compatible in U=H .

Let ' W U! G be a locally definable surjective homomorphism onto a definable
group, with � D ker '. Notice that '.H/ is a definable subgroup of G. To see that
� is a lattice in U=H , we note that

.U=H/=� ' U=.H C �/ ' G='.H/;

and therefore .U=H/=� is definable.
Assume now that U=H admits a lattice � ' Zk . We can find u1; : : : ; uk 2 U

with '.u1/; : : : ; '.uk/ generators of �. Let � � U be the group generated by the
ui ’s.

We first show that � is compatible. Because � is torsion-free, ' is injective
on � . Therefore, if X � U is definable the intersection X \ � must be finite, or
else '.X/ \ � is infinite, contradicting the compatibility of �. To see that � is a
lattice it is sufficient, by Lemma 1.3, to see that U contains a definable set X with
X C � D U. We first find a definable Y � U=H such that Y C � D U=H , then
a definable X 0 � U with  .X 0/ D Y , and finally take X D X 0 CH . It is easy to
verify that X C � D U.

Lemma 2.4 Assume that U contains a definable generic set. Then U is definable
if and only if vdim.U/ D 0.

Proof One direction is obvious, for if U is definable, then it cannot contain any
infinite zero-dimensional compatible subgroup. For the converse, assume that U is
not definable.

By Theorem 2.1, the group U00 exists, and for some k 2 N, we have U=U00 '

Rk � K, for a compact Lie group K. We claim that k > 0. Indeed, if k D 0, then
U=U00 D K is compact. But then, by [4, Lemma 3.3], the preimage of K would be
contained in a definable subset of U, and thus U would be definable, a contradiction.

If we now apply Theorem 2.1 .4/ ) .2/, we see that U admits a lattice isomor-
phic to Zk , so vdim.U/ � k > 0.
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Proposition 2.5 Assume that U admits a lattice.
(i) If ƒ is a zero-dimensional, compatible subgroup of U, then ƒ ' Zl C F ,

with l � vdim.U/ and F a finite subgroup of U.
(ii) vdim.U/ � dim.U/.
(iii) If ƒ is a lattice in U, then ƒ ' Zl C F , with l D vdim.U/ and F a finite

subgroup of U.
(iv) If U is torsion-free and generated by a definably compact set, then every

lattice in U is isomorphic to Zl , with l D dim.U/ D vdim.U/.
Proof By [4, Claim 3.4], there exists a definable torsion-free subgroup H � U

such that the group U=H is generated by a definably compact set.
By [4, Theorem 3.9], there exists a unique k such that U=H admits a lattice

isomorphic to Zk , and, moreover, because U=H is generated by a definably compact
set, we have k � dim.U=H/ and hence k � dim.U/. Also, by Lemma 2.3, the
group U also admits a lattice isomorphic to Zk , so k � vdim.U/. Our proof below
implies that k D vdim.U/.

Again, by [4, Theorem 3.9], the group U=U00 is isomorphic to Rk � K, where
K is a compact Lie group. The rest of the argument is extracted from the proof of [4,
Lemma 3.7].

(i) Assume that ƒ � U is a zero-dimensional compatible subgroup. Consider
' W U ! U=ƒ. We claim that ker.'/ \ U00 D ¹0º. Indeed, take any defin-
able set X � U containing U00. Then, since ' � X is definable, the intersection
ker.'/ \U00 � ker.'/ \ X is finite. However, by [4, Proposition 3.5], the group
U00 is torsion-free, so ker.'/ \U00 D ¹0º.

Consider the map �U W U! Rk�K, and let � be the image of ker.'/ under �U .
We just showed that � is isomorphic to ƒ D ker.'/. We claim that � is discrete.
Indeed, using X as above we can find another definable set X 0 whose image �U.X

0/

contains an open neighborhood of zero and no other elements of � , so � is discrete.
Now, since K is compact, the projection � 0 of � into Rk has a finite kernel

F � K. Furthermore, � 0 is a discrete subgroup of hRk ;Ci, and hence � 0 ' Zl , for
some l � k. Therefore, � ' Zl C F , so ƒ ' Zl C F . In particular, if ƒ ' Zl ,
then l � k, which implies vdim.U/ � k. Since U does contain a compatible copy
of Zk , it follows that k D vdim.U/, so l � vdim.U/, as required.

(ii) Since k � dim.U/, we have vdim.U/ � dim.U /.
(iii) Assume now that ƒ ' Zl CF is a lattice in U. Namely, U=ƒ is a definable

group G. We proceed to show that l D k. Let X � U be a definable set so that
'.X/ D G. ThenXCker.'/ D U. Thus, �U.X/C� D Rk�K. Let Y , F 0, and � 0
be the projections of �U.X/, F , and � , respectively, intoRk . We have YC� 0 D Rk .
Since X is definable, the set �U.X/ is compact and so Y is also compact.

We let �1; : : : ; �l be the generators of ker.'/ and let v1; : : : ; vl 2 Rk be their
images in � 0. If H � Rk is the real subspace generated by v1; : : : ; vl , then
Y CH C F 0 D Rk , and therefore, since Y is compact and F 0 finite, we must have
H D Rk . This implies that l D k.

(iv) By [4, Proposition 3.8], if U is generated by a definably compact set and is
torsion-free, then U=U00 ' Rdim.U/, so by Theorem 2.1 every lattice is isomorphic
to ZdimU . By (iii), dim.U/ D vdim.U/.

We can now see better why vdim.U/ gives an indication as to how “nondefinable”
U is.
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Corollary 2.6 Assume that U admits a lattice and H is a definable subgroup
of U. Then

(i) vdim.U/ D vdim.U=H/;
(ii) if vdim.U/ D dim.U/, thenH must be finite;
(iii) if U is torsion-free, andH has maximal dimension among all definable sub-

groups of U, then dimH D dim.U/ � vdim.U/.

Proof (i) By Theorem 2.1, U admits a lattice isomorphic to Zk , and by Proposi-
tion 2.5(iii), k D vdim.U/. By Lemma 2.3, U=H also admits a lattice isomorphic
to Zk , and so by again by the same proposition, we have vdim.U=H/ D k.

(ii) Assume that H is an infinite definable subgroup of U. Then by (i), we have
vdim.U=H/ D vdim.U/ D dim.U/ > dim.U=H/, which contradicts Proposi-
tion 2.5(ii) for U=H .

(iii) If dimH has maximal dimension among the definable subgroups of U,
then, as we already noted, U=H is generated by a definably compact set. Because
H is torsion-free, as a subgroup of U, it must be definably connected and there-
fore divisible. It follows that U=H is torsion-free as well. By Proposition 2.5(iv),
vdim.U=H/ D dim.U=H/. But then, by (i) we have

dimH D dim.U/ � dim.U=H/ D dim.U/ � vdim.U/:

The torsion-free condition in (iii) above is necessary. For example, the group NG in
Eleftheriou and Peterzil [5, Example 6.2] does not contain any nontrivial definable
subgroups, yet dim.G/ D 2 and vdim.G/ D 1. We describe below a general method
to obtain a locally definable group V , generated by a definably compact set, such that
V has no infinite definable subgroups and vdim.V/ < dim.V/.

Example 2.7 Let G be a k-dimensional definably compact abelian group which
has no proper definable subgroups of positive dimension, and let U be the universal
covering of G, so dim.U/ D k. Let � ' Zk be the kernel of the covering map,
so � is compatible in U. Write � D �1 ˚ �2 with �1 ' Zm, �2 ' Zk�m, and
0 < m < k. Obviously, �1 is still compatible in U, and therefore V D U=�1 is a
locally definable group with dim.V/ D dim.U/. It is not hard to see that the covering
map U ! G factors through V and hence V cannot have any proper definable
subgroup of positive dimension. We claim that vdim.V/ D k �m.

Let ' W U ! V be a locally definable projection. The image of � under ' is
a group � ' Zk�m which we claim to be compatible in V . We start with Y � V

definable and claim that Y \� is finite.
Let �2 W � ! �2 be the projection with respect to the direct sum decomposition.

For every W � � , '.W / is in bijection with �2.W /, so it is enough to prove that
�2.'

�1.Y \�// D �2.'
�1.Y / \ �/ is finite.

If we choose a definable X � U such that '.X/ D Y , then '�1.Y / D X C �1.
But .X C �1/ \ � D .X \ �/C �1, and because � is compatible the set X \ � is
finite. It follows that

�2
�
'�1.Y / \ �

�
D �2

�
.X \ �/C �1

�
D �2.X \ �/

is finite so Y \ � is finite, showing that � is compatible in V . Hence, vdim.V/ �
k �m.

For the opposite inequality, assume V contains a compatible subgroup � isomor-
phic to Zr , and choose u1; : : : ; ur 2 U so that '.u1/; : : : ; '.ur / are generators of�.
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It is not hard to see that �1CZu1C� � �CZur is a compatible subgroup of U, isomor-
phic to ZmCr , so necessarily mC r � k. Hence, r � k �m, so vdim.V/ D k �m.

Note that V has nontrivial torsion since any a 2 U for which na 2 �1 will be
mapped to an n-torsion element of V .

We end by noting that the two conjectures mentioned above are equivalent.

Theorem 2.8 Conjecture A is equivalent to Conjecture B. More precisely,
(i) if U admits a definable generic set, then U satisfies clauses (1), (2) of Con-

jecture B;
(ii) Conjecture B implies Conjecture A.

Proof (i) This is by Proposition 2.5 and Lemma 2.4.
(ii) Let ƒ ' Zk be a compatible subgroup of U with k D vdim.U/. We will

prove that the locally definable group U=ƒ is actually definable.
Assume that U=ƒ is not definable. By Conjecture B(2) (applied to U=ƒ), there

exists some a 2 U=ƒ such that Za is a compatible subgroup of U=ƒ, and for every
n, na ¤ 0. Let b 2 U be an element that projects via ' W U! U=ƒ to a. Clearly,
Zb \ƒ D ¹0º. We claim that ƒCZb is a compatible subgroup of U, contradicting
k D vdim.U/. Let X � U be definable. The image of X \ .ƒ C Zb/ under ' is
contained in '.X/ \ Za. Since ' is locally definable, '.X/ is definable. Therefore
'.X/ \ Za is finite, by compatibility of Za. The preimage of this finite set under �
is a union of sets ƒC x, x 2 B , for some finite B � Zb. So X \ .ƒCZb/ is equal
to the finite union of the sets X \ .ƒC x/, x 2 B , each of which is finite, because
so is .X � x/ \ ƒ by compatibility of ƒ. Hence X \ .ƒC Zb/ is finite, and thus
ƒC Zb is compatible.

3 Locally Definable Subgroups of hRn; Ci

We assume here that M is an o-minimal expansion of a real closed field R.
Our goal is to prove Conjecture A for subgroups of hRn;Ci, but in fact we prove

a stronger result (as was suggested to us by a referee).

Theorem 3.1 Let U be a connected definably generated subgroup of hRn;Ci
of dimension k. Then there are linearly independent one-dimensional R-subspaces
R1; : : : ; Rk and intervals Ii D .�ai ; ai / � Ri (with ai possibly1) such that U is
generated by the set X D I1 C � � � C Ik . The set X is generic in U.

Proof Recall that for X � Rn, we write X.m/ for the addition of X � X to itself
m times. If 0 2 X , then X � X.m/.

Definition 3.2 A subset of Rn is called convex with respect to R (or R-convex)
if for all x; y 2 X , the line segment connecting x and y is also in X .

The R-convex hull of X is the smallest R-convex subset of Rn containing X . It
consists of all finite combinations

Pm
iD1 tixi , where the xi ’s are inX , all t1 � 0, andP

ti D 1.

Lemma 3.3 IfX � Rn is definable, then theR-convex hull ofX is also definable.

Proof More precisely, we claim that the following set equals the R-convex hull
of X :

X 0 D
°nC1X
iD1

tixi W t1 C � � � C tnC1 D 1; ti 2 Œ0; 1�; xi 2 X
±
:
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Indeed, by Carathéodory’s theorem, every convex combination of any number of
points from X can also be realized as a combination of nC 1 of these points; hence
the R-convex hull of X equals X 0. (Note that although Carathéodory’s theorem is
usually proved over the reals, the same proof works over any ordered field. Alterna-
tively, the statement over the real numbers implies, by transfer, the same result over
any real closed field.)

Lemma 3.4 Assume that X � Rn is a definably connected set containing zero.
Then there is m such that X.m/ (in the sense of the additive group hR;Ci) contains
the R-convex hull of X .

Proof Given f W X ! Z, the fiber power of X is defined as

X �f X D
®
hx; yi 2 X �X W f .x/ D f .y/

¯
:

Clearly, the diagonal � is contained in X �f X .
Note that for hx1; x2i; hy1; y2i 2 X �f X , there is a continuous definable path

in X �f X , connecting the two points if and only if there are definable continuous
curves 1; 2 W Œ0; 1�! X such that i .0/ D xi , i .1/ D yi , and for every t 2 Œ0; 1�
we have f .1.t// D f .2.t//.

Claim 3.5 For X � Rn, consider the projection � W Rn ! R onto the first coor-
dinate. Assume that �.x1/ D �.x2/, �.y1/ D �.y2/ (in particular, �1.x1 � x2/ D
�.y1 � y2/ D 0). Assume further that hx1; x2i and hy1; y2i are in the same con-
nected component of X �� X . Then the elements x1 � x2 and y1 � y2 are in the
same connected component of the set .X �X/ \ ¹0º �Rn�1.

Proof Note that the image of X �� X under the binary map hx; yi 7! x � y is
contained in the set ¹0º�Rn�1. Consider the restriction of this map to the connected
component ofX ��X which contains hx1; x2i and hy1; y2i. The image is connected
and clearly contains x2 � x1 and y2 � y1.

Claim 3.6 Assume that x; y 2 X , �.x/ D �.y/ and that there is a curve

 D .1; : : : ; n/ W Œ0; 1�! X

connecting x and y inside X . (Note that 1.0/ D 1.1/.) Let � be the image of  .
(1) If 1 is constant on Œ0; 1�, then � �� � is definably connected. In particular,

for every x; y; z 2 � , hx; yi and hz; zi are in the same definably connected
component of X �� X .

(2) If for some a 2 .0; 1/, 1 is increasing on .0; a/ and decreasing on .a; 1/, then
y�x and zero are in the same connected component of .X�X/\¹0º�Rn�1.

(3) If for some a1 < a2 in .0; 1/, 1 is increasing on .0; a1/, constant on .a1; a2/,
and decreasing on .a2; 1/, then y � x and zero are in the same connected
component of .X �X/ \ ¹0º �Rn�1.

Proof (1) By assumption themap� is constant on� , and therefore���� D ��� ,
which is clearly definably connected.

(2) Let Œb1; b2� be the image of  under � . By assumptions, �.1.0// D
�.1.1// D b1, �.1.a// D b2, and the restrictions of � to the pieces .Œ0; a�/
and .Œa; 1�/ are both injective. Let ˛1; ˛2 be their inverse maps, respectively
(so these are maps from Œb1; b2� into �). We have ˛1.b1/ D x, ˛2.b1/ D y,
˛1.b2/ D ˛2.b2/ D .a/. Moreover, for every t 2 Œb1; b2� we have �.˛1.t// D
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�.˛2.t// D t . It follows that hx; yi and h.a/; .a/i are in the same compo-
nent of X �� X , so by Claim 3.5, y � x and zero are in the same component of
.X �X/ \ ¹0º �Rn�1.

(3) As in (2), let Œb1; b2� be the image of  under � . It is easy to see that
1.t/ D b2 for all t 2 Œa1; a2�. Similarly to the proof of (2), hx; yi and
h.a1/; .a2/i are in the same component of X �� X . Using (1), we see that
h.a1/; .a2/i is in the same component as hz; zi for some z 2 .Œa1; a2�/. Ap-
plying Claim 3.5, we conclude that x � y and zero are in the same component of
.X �X/ \ ¹0º �Rn�1.

We now return to the proof of Lemma 3.4. So, X is a definably connected subset of
Rn containing zero, and we want to show that for some m, the convex hull of X is
contained in X.m/.

We will use induction on n. If n D 1, then X is already convex. So, we assume
that the result is true for X � Rn and prove it for X � RnC1. We take x; y 2 X and
first want to show that for some m the line segment Œx; y� (i.e., the line connecting x
and y in RnC1) is contained in X.m/.

Using a linear automorphism of Rn, we may assume that �.x/ D �.y/ D 0.
Since X is definably connected, there exists a definable curve  W Œ0; 1� ! X con-
necting x and y. Let � � X be the image of  , and again let 1 D � ı  .

Notation For f W Œ0; 1� ! R continuous, let k D k.f / be the minimal natural
number so that there are 0 D a0 < a1 < � � � < ak D 1, and f is either constant or
strictly monotone on Œai ; aiC1�.

We consider the map 1 W Œ0; 1�! R and prove the result by subinduction on k.1/.
Assume first that k.1/ D 1, namely, that 1 is constant on Œ0; 1�. In this case,

� is contained in ¹0º � Rn, so we can work in Rn and use the inductive hypothesis
to conclude that the line segment Œx; y� is contained in �.m/ for some m. Clearly,
�.m/ � X.m/, so we are done.

Assume then that k.1/ > 1, so 1 is not constant. Without loss of generality, 1
takes some positive value on .0; 1/, so let a 2 .0; 1/ be a point where 1 takes its
maximum value in Œ0; 1�.
Case 1. Assume first that 1 is not locally constant at a.

Then there are a1 < a < a2 such that 1 is increasing on .a1; a/, decreasing on
.a; a2/, 1.a1/ D 1.a2/, and furthermore, either a1 or a2 are local minima for 1.
Indeed, we take a01 < a to be the minimum of all points t such that 1 is increasing
on .t; a/, and we take a02 > a be the maximum of all t > a such that 1 is decreasing
on .a; t/. (In this case, a01 and a02 are local minima for 1.) We then compare 1.a01/
and 1.a02/. If 1.a01/ > 1.a02/, then we take a1 WD a01 and take a2 to be the unique
element of the interval .a; a02/ such that 1.a2/ D 1.a1/. Otherwise, we do the
opposite.

Let x1 D .a1/ and x2 D .a2/. Consider now the curve � 0 which is the image
of Œa1; a2� under  . By Claim 3.6(2), x2 � x1 and zero are in the same connected
component of .� 0�� 0/\¹0º�Rn. But then, we can view this component as living in
Rn, so by inductive hypothesis there exists m such that the line segment connecting
zero and x2 � x1 is contained in .� 0 � � 0/.m/. By adding x1 to both sides, we
see that the line segment connecting x1 and x2 is contained in .X � X/.m C 1/.
Hence, after replacing X with X.m/, we can also replace the original curve � with
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a new curve � 00, in which the piece .Œa1; a2�/ was replaced by a linear segment all
of whose points project to the same point �.x1/. Let  00 W Œ0; 1� ! X be the map
whose image is � 00 (so  00 D  everywhere, except on Œa1; a2�, in which the image
is linear and  001 is constant). Because a1 or a2 is a local minimum of 1, it is easy to
see that k. 001 / D k.1/ � 1. By subinductive hypothesis, the line connecting x and
y is contained in some X.m0/.

Case 2. Assume that 1 is locally constant at a.
So, there are a01 � a � a02 such that 1 is constant on Œa01; a02� and this is a

maximal such interval. As in Case 1, we can find a1 < a01 and a2 > a02 such that 1
is increasing on Œa1; a01�, decreasing on Œa02; a2�, 1.a1/ D 1.a2/, and furthermore,
either a1 or a2 is a local minimum of 1.

Let � 0 be the piece of � connecting .a1/ and .a2/. Then, by Claim 3.6(3), the
points .a2/ � .a1/ and zero are in the same component of .� 0 � � 0/ \ ¹0º � Rn.
Again, by inductive hypothesis, the line segment connecting zero and .a2/� .a1/
is contained in .� 0 � � 0/.m/ for some m, so the line segment connecting .a1/ and
.a2/ is contained in X.m C 1/. As in case (1), we can replace � by � 00, in which
the piece .Œa1; a2�/ is replaced by the line segment connecting .a1/ and .a2/.
Again, the map  00 W Œ0; 1�! X whose image is � 00 now satisfies k. 001 / D k.1/� 2
(because we replaced three pieces by one). By subinductive hypothesis, the line
connecting x and y is in some X.m0/.

We therefore showed that for every x; y 2 X , there exists m such that the line
segment Œx; y� is contained in X.m/. To see that we can find a uniform m for all
x; y 2 X , we use logical compactness (writing a type p.x; y/, which says that the
line segment Œx; y� is not contained in anyX.m/). This ends the proof of Lemma 3.4.

Question It is interesting to ask what is the required m in the above result. The
argument suggests that it depends on the possible number of “twistings” of the curve
connecting two points inX . But maybe this is just an effect of the proof, and one can
find a uniform such m which depends only on the ambient Rn.

Next, we show that U � Rn can be generated by a sum of intervals in linearly inde-
pendent one-dimensional spaces. By Lemma 3.4 we can assume that it is generated
by a definably connected convex set X 3 0. In particular, U is convex. Since U is
closed, we may replace X by its closure, which is still convex, and assume that X is
closed. We may also assume that �X D X . (Otherwise, we replace it with X �X .)

We prove the result by induction on n. When U is a subset of R, then any convex
subset of R is an interval (possibly equaling the whole of R), so we are immediately
done.

We now consider the case U � RnC1.
Assume first that X is bounded. Consider all line segments contained in X , and

let J0 be such segment of maximal length. (It exists by o-minimality and the fact that
X is closed.) Since we work in a field we may assume that J0 is parallel to the xnC1-
coordinate and furthermore that 0 2 J0 divides it exactly into two equal parts. We
can therefore write J0 D .�akC1; akC1/. Let �.X/ be the projection onto the first
n coordinates. By induction, there are linearly independent one-dimensional spaces
R1; : : : ; Rk � R

n, and in each Ri an interval Ii D .�ai ; ai / (with ai possibly1)
such that the sum Y D I1C� � �CIk generates the same group as �.X/. In particular,
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there is anm 2 N such that Y � �.X/.m/. Our goal is to show that Y CJ0 generates
the group U. It is thus sufficient to prove the following.

Claim We have X � Y C J0 � X.2m/.

Proof Consider h Nx; yi 2 X , with Nx 2 �.X/. Note that jyj � akC1=2, because if
y > akC1=2, then the length of the line segment connecting h Nx; yi to zero is then
greater than akC1=2. Because X is symmetric, the point h� Nx;�yi is also in X , and
thus the line segment connecting h� Nx;�yi and h Nx; yi is longer than akC1 D jJ0j, a
contradiction. We therefore showed that y � akC1=2 and hence

h Nx; yi 2
®
h Nx; 0i

¯
C J0 � �.X/C J0 � Y C J0:

For the opposite inclusion, take h Nx; yi 2 Y C J0. Since Y � �.X/.m/ D

�.X.m//, there exists y0 2 R such that h Nx; y0i 2 X.m/. Because max¹jyj W h Nx; yi 2
Xº D akC1=2, we have jy0j � makC1=2. But then

h Nx; yi 2 X.m/CmJ0 � X.2m/:

This ends the proof of the claim and the case where the generating set X is bounded.

In the general case, we first find a definable subgroupH such that U=H is generated
by a definably compact set. Since all definable subgroups of Rn are R-vector spaces,
the group H is linear. Without loss of generality, H D Rk , for k � n, identified
with the first k coordinates. Let �1 W U! Rn�k be the projection onto the last n�k
coordinates, and let V D �1.U/. We claim that U D H C V .

Indeed, assume that h Nx; Nyi 2 U. Since U is convex, the line segments which
connect h Nx; Nyi to arbitrary large points in Rk belong to U. Hence we can approach
every point on the affine space Rk � ¹ Nyº by points inside U. Since U is closed, we
have that H C ¹.N0; Nyiº is contained in U. This shows that H C V is contained in
U. The converse is immediate. This ends the proof that U is generated by a sum of
intervals in linearly independent one-dimensional spaces.

Our final goal is to show that Y0 D I1 C � � � C Ik C J0 is generic in U. We
have Ii D .�ai ; ai / and J0 D .�akC1; akC1/. If we let Vi be the one-dimensional
group generated by .�ai ; ai /, then we have U D V1 C � � � C VkC1. Each .�ai ; ai /
is generic in Vi , so it is easy to verify that Y0 is generic in U. This ends the proof of
Theorem 3.1.

As noted in the above proof, U is convex in Rn. This immediately implies that U

is divisible. In [4], we prove more generally that Conjecture A implies that every
connected definably generated abelian group is divisible.

References

[1] Baro, E., and M. J. Edmundo, “Corrigendum to ‘Locally definable groups in o-minimal
structures,”’ by M. J. Edmundo, Journal of Algebra, vol. 320 (2008), pp. 3079–80.
MR 2441985. DOI 10.1016/j.jalgebra.2008.07.010. 450

[2] Baro, E., and M. Otero, “Locally definable homotopy,” Annals of Pure and
Applied Logic, vol. 161 (2010), pp. 488–503. Zbl 1225.03043. MR 2584729.
DOI 10.1016/j.apal.2009.03.003. 450

http://www.ams.org/mathscinet-getitem?mr=2441985
http://dx.doi.org/10.1016/j.jalgebra.2008.07.010
http://www.emis.de/cgi-bin/MATH-item?1225.03043
http://www.ams.org/mathscinet-getitem?mr=2584729
http://dx.doi.org/10.1016/j.apal.2009.03.003


Lattices in Locally Definable Subgroups of hRn;Ci 461

[3] Edmundo, M. J., “Locally definable groups in o-minimal structures,” Journal
of Algebra, vol. 301 (2006), pp. 194–223. Zbl 1104.03032. MR 2230327.
DOI 10.1016/j.jalgebra.2005.04.016. 450, 451

[4] Eleftheriou, P. E., and Y. Peterzil, “Definable quotients of locally definable
groups,” Selecta Mathematica (N.S.), vol. 18 (2012), pp. 885–903. MR 3000473.
DOI 10.1007/s00029-012-0091-5. 449, 450, 451, 452, 453, 454, 460

[5] Eleftheriou, P. E., and Y. Peterzil, “Definable groups as homomorphic images of semilin-
ear and field-definable groups,” Selecta Mathematica (N.S.), vol. 18 (2012), pp. 905–40.
MR 3000474. 455

[6] Hrushovski, E., Y. Peterzil, and A. Pillay, “Groups, measures, and the NIP,” Journal
of the American Mathematical Society, vol. 21 (2008), pp. 563–96. MR 2373360.
DOI 10.1090/S0894-0347-07-00558-9. 450

[7] Peterzil, Y., and S. Starchenko, “Definable homomorphisms of abelian groups in o-
minimal structures,” Annals of Pure and Applied Logic, vol. 101 (2000), pp. 1–27.
MR 1729742. DOI 10.1016/S0168-0072(99)00016-0. 450

Eleftheriou
Department of Pure Mathematics
University of Waterloo
Waterloo
Canada
pelefthe@uwaterloo.ca

Peterzil
Department of Mathematics
University of Haifa
Haifa
Israel
kobi@math.haifa.ac.il

http://www.emis.de/cgi-bin/MATH-item?1104.03032
http://www.ams.org/mathscinet-getitem?mr=2230327
http://dx.doi.org/10.1016/j.jalgebra.2005.04.016
http://www.ams.org/mathscinet-getitem?mr=3000473
http://dx.doi.org/10.1007/s00029-012-0091-5
http://www.ams.org/mathscinet-getitem?mr=3000474
http://www.ams.org/mathscinet-getitem?mr=2373360
http://dx.doi.org/10.1090/S0894-0347-07-00558-9
http://www.ams.org/mathscinet-getitem?mr=1729742
http://dx.doi.org/10.1016/S0168-0072(99)00016-0
mailto:pelefthe@uwaterloo.ca
mailto:kobi@math.haifa.ac.il

	1 Locally Definable Groups and Lattices
	2 Lattices in Abelian Groups
	3 Locally Definable Subgroups of <Rn,+>
	References
	Author's addresses

