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Lascar Types and Lascar Automorphisms
in Abstract Elementary Classes

Tapani Hyttinen and Meeri Kesälä

Abstract We study Lascar strong types and Galois types and especially their
relation to notions of type which have finite character. We define a notion of a
strong type with finite character, the so-called Lascar type. We show that this
notion is stronger than Galois type over countable sets in simple and superstable
finitary AECs. Furthermore, we give an example where the Galois type itself
does not have finite character in such a class.

1 Introduction

Shelah defined abstract elementary classes (AECs) in [21] as a platform to study
model theory in a very general framework. In particular, this framework unified and
generalized the study of infinitary languages previously done by Shelah and others.
Since the appearance of [21], many important tools of model theory have been gen-
eralized to AECs, such as Ehrenfeucht-Mostowski-model techniques and studying
categoricity using saturation with respect to Galois types. For more, see the books
by Baldwin [1] or Shelah [22]. One generalization of an important first-order tool,
development of a well-behaved independence calculus, has turned out to be one of
the most difficult tasks. Actually, it is not possible to develop a notion of indepen-
dence in the most general framework which has all the properties forking does in
stable elementary classes. It is not necessarily possible even if the class is categor-
ical in all uncountable cardinals and homogeneous; see an example in Hyttinen and
Kesälä [8].

Buechler and Lessmann [6] introduced an independence calculus under the as-
sumption of simplicity in a homogeneous framework. Hyttinen and Lessmann [13]
gave another definition for simplicity, which is closer to the one used here, for an
ℵ0-stable excellent class of atomic models of a first-order theory. There, as in this
paper, the notion of independence has a built-in extension property. Hyttinen and
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Shelah [15] introduced this kind of a notion of independence first for a stable ho-
mogeneous framework. Each of these papers uses Lascar strong type as a notion
comparable to strong type in elementary classes. Lascar strong type was introduced
by Lascar [20; 19] and it is equivalent to strong type in stable elementary classes.

The notion of a finitary abstract elementary class was defined in the second au-
thor’s Ph.D. thesis [17]. The idea was to study which kind of properties are needed
for an AEC to admit the construction of the model-theoretic tools needed for geo-
metric stability theory. To start with, we wanted to assume that the AEC (K, 4K)
has the amalgamation property (AP), the joint embedding property (JEP), and arbi-
trarily large models (ALM). The amalgamation property gives us Galois type over a
model as a useful notion of type. Furthermore, with these assumptions we are able to
work inside a monster model. This greatly simplifies the notation and also makes a
notion of a type over a set unambiguous, since we can restrict to types realized in the
monster model. Then we have to assume simplicity to be able to have an indepen-
dence calculus over finite sets. Furthermore, since we wanted to study independence
and especially dependencies of finite sets, we assumed also that LS(K) = ℵ0 and a
property called finite character: for any two models N , M ∈ K with N ⊆ M , we
have that

N 4K M if and only if
for every finite sequence ā ∈ N there is a K-embedding f : N → M fixing ā.

These assumptions enable us to build models out of chains of finite subsets of the
monster model and give us control on types over countable models. More concretely,
the authors show in [17] that if a finitary AEC is ℵ0-stable, Galois types over count-
able models have finite character:

tpg(ā/M) = tpg(b̄/M) if and only if

tpg(ā/A) = tpg(b̄/A) for each finite A ⊂ M.

This is almost the case also in the simple and superstable case studied in this paper,
but we find that if we know all Lascar strong types over finite subsets of a countable
set A, then the Galois type over A is determined; see Theorem 5.2. This result
heavily uses the stability-theoretic machinery developed in [17], especially the fact
that Lascar types are stationary. We define Lascar type, written Lt, to denote a weak
version of Lascar strong type, written Lstp, namely,

Lt(ā/A) = Lt(b̄/A) if and only if

Lstp(ā/A0) = Lstp(b̄/A0) for each finite A0 ⊂ A.

Our framework generalizes the excellent and homogeneous frameworks, but in con-
trast to general finitary AECs, in those frameworks Galois type over a model is al-
ways determined by a syntactic type and hence Galois type has finite character, not
only over countable models but models of arbitrary size.

The motivation for this paper arose when we started to take advantage of the
developed machinery and proved a result [10] of geometric stability theory about
interpreting groups and fields on a geometry existing on the realizations of a regular
type, generalizing Hrushovski [7]. The motivation is twofold: first, we needed to
improve the results in the thesis [17] and second, we wanted to collect a “toolbox” in
one paper, where we would list the results in an easily accessible form and specify
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the assumptions used for any specific part of the theory. In [17] and the subsequent
papers [9], [11], and [8], the assumptions differ, maybe a bit confusingly, but at
least it is always assumed that (K, 4K) is a finitary AEC. However, not even this
is needed for the very basic properties of independence or the basic properties of
Lascar types. We want to emphasize this since these results might be applicable
also in some nonfinitary frameworks, say classes definable in Lω1ω(Q). Abstract
elementary classes definable in Lω1ω(Q) in general do not satisfy the finite character
property, although classes definable in any fragment of L∞ω do, when 4K is taken
as elementary substructure with respect to that fragment.

The assumptions of AP, JEP, and ALM, however, do not necessarily hold in a class
definable with an arbitrary sentence of L∞ω. These assumptions can be criticized
since they do not follow from some natural assumption (for example, categoricity)
or form any known “dividing lines” among abstract elementary classes. The possi-
ble amalgamation spectra for an AEC has been studied, for example, in Baldwin,
Kolesnikov, and Shelah [4]. We make the assumptions AP, JEP, and ALM mainly
for practical reasons. These assumptions hold for elementary classes, homogenous
classes, and excellent classes which are known to admit a plausible model theory.
Examples of such classes are listed, for example, in the introduction of Hyttinen,
Lessmann, and Shelah [14].

Simplicity is another strong assumption, which is not necessarily assumed in the
study of homogeneous or excellent classes. However, in elementary classes it fol-
lows from stability, and also nonelementary examples of superstable but nonsimple
AECs are hard to construct; the authors only know the examples in Hyttinen and
Lessmann [12] and Baldwin and Kolesnikov [3]. For simple finitary AECs, super-
stability follows from categoricity.

Model-theoretic examples studying the relations between some of these assump-
tions can be found in [8]. A model-theoretic example of a simple and superstable
finitary AEC, which is not excellent or homogeneous, is found in Section 5 of this
paper. Some finitary AECs arising from “general mathematics” have been studied.
Baldwin, Eklof, and Trlifaj study abstract elementary classes induced by tilting and
cotilting modules [2; 23]. These are finitary and although most of them appear to be
simple, none of them are superstable. Another interesting example of an excellent
class is given by covers of multiplicative groups of algebraically closed fields; see
Bays and Zilber [5].

The paper is constructed as follows. Sections 2 and 3 define finitary AECs and
Lascar types and recall some of their properties. In Section 4 we introduce our
definition for a notion of independence, simplicity, and the stability assumptions.
We first list the properties of the notion of independence in a simple, weakly stable
abstract elementary class with amalgamation, joint embedding, and arbitrarily large
models; see Proposition 4.3. The properties are usual such as extension, symmetry,
stationarity for certain types, and so on, but we mostly have to restrict to types over
finite sets. We give another list assuming that (K, 4K) is one of the following:

1. a simple superstable finitary AEC or
2. a class as in Proposition 4.3 but assuming also that the notion of independence

has local character.

Then we get all the usual properties over arbitrary sets, where stationarity is for
Lascar types over sets; see Theorem 4.8 and Remark 4.9. Section 5 studies the
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simple and superstable finitary framework. We show that Lascar type determines
Galois type over countable sets but also give an example of a class where weak type
does not determine Galois type even over a countable model in K.

Some of the results improve those given in [17], and the proofs are genuinely
new. Those proofs which are strongly similar to those in [17] are left out, but clear
references are given. Since the first part of the thesis (and the consequent papers
[9] and [8]) deals with the ℵ0-stable case, most of the results refer to the paper [11]
which is in the superstable context.

2 Finitary AECs

A finitary abstract elementary class was introduced in Hyttinen and Kesälä [9], but
there the definition was slightly less general than in the consequent papers Hyttinen
and Kesälä [11; 8]. A finitary AEC is an abstract elementary class (K, 4K) with a
countable Löwenheim-Skolem number, amalgamation, joint embedding, arbitrarily
large models, and finite character:1 for any two models N , M ∈ K with N ⊆ M , we
have that

N 4K M if and only if
for every finite sequence ā ∈ N there is a K-embedding f : N → M fixing ā.

In this paper we always assume that (K, 4K) is an abstract elementary class of struc-
tures in a vocabulary τ with |τ | ≤ LS(K) and that (K, 4K) satisfies the properties
amalgamation, joint embedding, and arbitrarily large models. The finite character
property and LS(K) = ℵ0 are not needed until Section 4.2. We mention specifically
where they are used.

We work inside M, which is the κ-universal and κ-model homogeneous monster
model of the class (K, 4K). We say that a subset A ⊂ M is bounded, if |A| < κ . We
assume that κ is sufficiently large.

We use the notion of Galois type over (bounded) subsets of the monster model:
for tuples ā, b̄ ∈ M and A ⊂ M,

tpg(ā/A) = tpg(b̄/A)

if there is f ∈ Aut(M/A) mapping ā to b̄, where Aut(M/A) denotes the automor-
phisms of M fixing A pointwise. Furthermore, we use a weaker notion of a weak
type,

tpw(ā/A) = tpw(b̄/A),

if for each finite subset A0 ⊂ A we have that tpg(ā/A0) = tpg(b̄/A0).
Clearly, these two notions agree over finite subsets of the monster model. They

agree over all bounded subsets if M is homogeneous. Furthermore, they agree over
models in K if the class is ℵ0-stable and ℵ0-tame (see [9]), hence especially if
(K, 4K) is an excellent class of atomic models of a first-order theory. Weak type
often corresponds to some notion of a syntactic type; see Kueker [18]. We note that
when we talk about types over sets, it is important that we restrict to types of ele-
ments in a given monster model M. There might be, for example, some syntactic
notion of type over a set A which agrees with, say, weak type on elements of M but
not all types can be simultaneously realized in one model of K; see example 18.9
of Baldwin [1]. However, if we restrict to types over the empty set or over models
A 4K M, all such types are realized in M if and only if they are realized in some
4K-extension of A.2
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For any bounded ordinal α, we say that a sequence (āi )i<α , of tuples is strongly
A-indiscernible in M, if for any other bounded ordinal β ≥ α we can extend the
sequence to (āi )i<β such that for any partial order-preserving f : β → β we can
find F ∈ Aut(M/A) mapping āi to ā f (i) for each i ∈ dom( f ).

The following lemma is important, since most of the proofs needed for this paper
work with the interplay between the concept of boundedness and, on the other hand,
indiscernible sequences, which represent “unboundedness.” This replaces the role of
compactness and the interplay between finite and infinite in elementary classes. A
similar technique for nonelementary classes was used already by Keisler [16].

The proof of this lemma is based on Shelah’s Representation Theorem and
Ehrenfeucht-Mostowski-model techniques that are available in Abstract Elementary
Classes. The proof is skipped and also all those proofs where it is used. However,
we want to state it here since it is the major reason for why the concepts of Lascar
type and Lascar splitting work in this framework. Especially, finite character is
not needed, but we only need to assume that (K, 4K) is an AEC with amalga-
mation, joint embedding, and arbitrary large models. For the details in the case
LS(K) = ℵ0, see Hyttinen and Kesälä [11] or [8]. To see how the same is done for
larger Löwenheim-Skolem numbers, see, for example, Baldwin [1].

Lemma 2.1 (Shelah) For every bounded cardinal κ there exists a cardinal H(κ)
such that the following holds. Whenever A is a set of size κ and (āi )i<H(κ) ⊂ M are
distinct tuples, there exists a strongly A-indiscernible sequence (b̄i )i<ω in M such
that for each n < ω there are i0 < · · · < in < H(κ) such that

tpg(b̄0, . . . , b̄n/A) = tpg(āi0 , . . . , āin /A).

Furthermore, if I is any (bounded) linear ordering, there exists a (āi )i∈I in M such
that for any n < ω and j0 < · · · < jn ∈ I there are i0 < · · · < in < H(κ) such that

tpg(b̄0, . . . , b̄n/A) = tpg(āi0 , . . . , āin /A).

We know that when LS(K) = λ, then H(ℵ0) = i(2λ)+ , which is often referred to as
the Hanf number of abstract elementary classes with LS(K) = λ. We will always
assume that the concept of boundedness related to the monster model is closed under
the operation H(·); that is, when a set A is bounded in M, also the cardinal H(|A|) is
bounded in M.

3 Lascar Types

We use the following definition for Lascar strong type.

Definition 3.1 (Lascar strong type) We say that ā and b̄ have the same Lascar
strong type over A, written

Lstp(ā/A) = Lstp(b̄/A),

if `(ā) = `(b̄) and E(ā, b̄) holds for any A-invariant equivalence relation E of `(ā)-
tuples with a bounded number of classes.

Since weak type was a notion derived from Galois type adding finite character, we
first called the finite character version of Lascar strong type with the name weak
Lascar strong type, written Lstpw. Since this name is quite awkward, we will rename
the notion as just Lascar type. The name should still indicate that the notion of type is
weaker than Lascar strong type. Also an automorphism of M preserving Lascar types
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is called a Lascar-automorphism as opposed to the notion of strong automorphism
f ∈ Saut(M) preserving Lascar strong types. We denote the Lascar type of an
element a over a set A as Lt(a/A) and give the following definitions.

Definition 3.2 (Lascar type) For finite tuples ā, b̄ and A a subset of M, we write

Lt(ā/A) = Lt(b̄/A)

if Lstp(ā/A0) = Lstp(b̄/A0) for each finite A0 ⊂ A.
We write f ∈ Laut(M/A) if f is an automorphism of M and for each finite tuple

ā in the monster model,
Lt(ā/A) = Lt( f (ā)/A).

Remark 3.3 If A is a finite set, Lt(ā/A) equals Lstp(ā/A) and Laut(M/A) equals
Saut(M/A).

The following facts are shown in Hyttinen and Kesälä [11]. They follow from the
definition of Lascar strong type and Lemma 2.1.

Remark 3.4 There is only a bounded number of Lascar strong types over a bounded
set. Let SLstp(A) denote the set of Lascar strong types over A. For finite sets, the
following equation holds:

sup{| SLstp(A)| : A finite} < i(2LS(K))+ .

Lemma 3.5 Let ā, b̄ be finite tuples and A be bounded. The following are equiva-
lent.

1. Lstp(ā/A) = Lstp(b̄/A).
2. There exists 0 ≤ n < ω, strongly A-indiscernible sequences Ji , for

0 ≤ i ≤ n, and finite tuples āi , for 0 ≤ i ≤ n + 1, such that ā = ā0,
b̄ = ān+1, and ān, ān+1 ∈ Jn .

3. There exists a strong automorphism f ∈ Saut(M/A) with f (ā) = b̄.

4 Independence

We say that a weak type tpw(ā/B) Lascar splits over a subset A ⊆ B if there is a
strongly A-indiscernible sequence (b̄i )i<ω such that b̄0, b̄1 ∈ B and tpw(b̄0/A∪ā) 6=

tpw(b̄1/A ∪ ā). Then we define a notion of independence based on Lascar-splitting
and with a built-in extension property as follows: we say that ā is independent of C
over B, written

ā ↓B C,

if there is a finite subset A ⊆ B such that for each D ⊇ C there is b̄ realizing
tpw(ā/B ∪ C) such that tpw(b̄/D) does not Lascar-split over A.

4.1 Simplicity and weak stability We say that (K, 4K) is weakly stable in a car-
dinal λ, if whenever |A| ≤ λ and (āi )i<λ+ are finite tuples, there are i < j < λ+

such that tpw(āi/A) = tpw(ā j/A). We note that here it is possible to talk about
types over sets since (āi )i<λ+ are chosen to exist in the monster model. If we want a
definition independent of the monster model, we should talk about weak types over
models in K realized in some 4K-extension of the particular model.

Definition 4.1 (Weak stability) We say that (K, 4K) is weakly stable if there is a
cardinal λ such that (K, 4K) is weakly stable in λ.
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Definition 4.2 (Simplicity) We say that (K, 4K) is simple if ā ↓A A for each tuple
ā and finite set A.

The following theorem is proved in Section 2.2 of Hyttinen and Kesälä [11]. Al-
though [11] assumes that (K, 4K) is a finitary AEC, the proofs do not use finite
character of 4K or the countable Löwenheim-Skolem number. Invariance, mono-
tonicity, and restricted local character follow from the definition. Finite reflexivity is
Lemma 2.9 and finite extension is Corollary 2.12 of [11], where the proofs only use
the definitions. Symmetry is proved using simplicity, weak stability, and Lemma 2.1
and then the further properties are proved using the previous ones and the definitions.
However, not all of the proofs are straightforward, but we first prove some lemmas,
a finite version of the Pairs Lemma, for example, and get the properties in several
stages.

Proposition 4.3 Assume that (K, 4K) is simple and weakly stable in some infinite
cardinal. Then the relation ↓ has the following properties, where ā and b̄ are finite
tuples and A, B, C, D (bounded) subsets of the monster model.
Invariance If A ↓C B and f is an automorphism of the monster model, then
f (A) ↓ f (C) f (B).
Monotonicity If A ↓B D and B ⊆ C ⊆ D, then A ↓C D and A ↓B C.
Restricted Local Character Assume that ā ↓A C. Then there is finite A′

⊆ A such
that ā ↓A′ C.
Finite Reflexivity Assume that A is finite. The type tpw(ā/A) is unbounded if and
only if ā 6↓A ā.
Finite Extension Assume that A and B are finite and that ā ↓A B. Then for any D
there is b̄ realizing Lt(ā/A ∪ B) such that b̄ ↓A D.
Simplicity Assume that A is finite. Then ā ↓A A.
Finite Symmetry Let A be finite. Then ā ↓A b̄ if and only if b̄ ↓A ā.
Restricted Finite Character Let A be finite. Then ā ↓A B if and only if ā ↓A b̄ for
all finite tuples b̄ ∈ B.
Transitivity Assume that B ⊆ C ⊆ D. Then A ↓B D if and only if A ↓B C and
A ↓C D.
Stationarity of Finite Lascar Types Let A be finite. Assume that Lt(ā/A) = Lt(b̄/A),
ā ↓A B and b̄ ↓A B. Then Lt(ā/B) = Lt(b̄/B).

4.2 Superstability In this section we assume that (K, 4K) is a finitary AEC; that
is, also LS(K) = ℵ0 and 4K has the finite character property. The following defi-
nition of superstability is used in Hyttinen and Kesälä [11] and clearly it makes no
sense if LS(K) is uncountable.

Definition 4.4 (Superstability) We say that the class (K, 4K) is superstable if it is
weakly stable in at least one cardinal and the following holds.

Let (An)n<ω be an increasing sequence of finite sets such that
⋃

n<ω An is a
model, and let ā be a tuple. Then there is n < ω such that ā ↓An An+1.

In Hyttinen and Kesälä [11] the authors find some equivalent definitions of supersta-
bility, show that this definition implies that (K, 4K) is weakly stable starting from
a cardinal, and show that superstability is implied by ℵ0-stability in simple finitary
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AECs. Those proofs use also the so-called Tarski-Vaught property, but the use of
that can be replaced by the results of this paper.

We want to prove that superstability implies local character for ↓. For that, we
prove a stronger version of superstability in Proposition 4.6, which is proved using
the Tarski-Vaught property as Proposition 3.11 of [11]. Before that we recall a lemma
(Lemma 3.4 of [9]) which uses the finite character of (K, 4K).

Lemma 4.5 Assume that (K, 4K) is a finitary AEC. Let (An : n < ω) be an
increasing sequence of sets such that

⋃
n<ω An is a model in K. Let (b̄n)n<ω be a

sequence of finite tuples of the same length such that

tpg(b̄m/An) = tpg(b̄n/An), for each n < m < ω.

Then there exists a tuple ā such that

tpg(ā/An) = tpg(b̄n/An), for each n < ω.

Proposition 4.6 Assume that (K, 4K) is a simple, superstable, finitary AEC. Let
Ai , i < ω be an increasing sequence of finite sets and let āi , i < ω be finite tuples
such that Lstp(āi+1/Ai ) = Lstp(āi/Ai ) for each i < ω. Then there exists n < ω
such that ān+1 ↓An An+1.

Proof We assume toward a contradiction that Ai and āi are as in the proposition,
but āi+1 6↓Ai

Ai+1 for each i < ω. We write A =
⋃

j<ω A j .
We fix a bijection π : ω → ω × ω and denote by π0 and π1 the projections such

that π ◦ πi = Id. Furthermore, we choose such a bijection that π(0) = (0, 0), the
maps π0 and π1 are increasing, and π1(i) ≤ i for all i < ω.

Then we will define countable models Ai , with enumerations {ai
j : j < ω},

elements bi , i < ω and automorphisms fi ∈ Aut(M/Ai ), i < ω such that

1. An ∪ fn(An) ⊂ An+1,
2. b0, . . . , bn ↓An A ∪

⋃
i<ω āi ,

3. fn ◦ · · · ◦ fπ1(n)(a
π1(n)
π0(n)) = bn , and

4. fn fixes An and the elements bi = fi ◦ · · · ◦ fπ1(i)(a
π1(i)
π0(i)

) for i < n.

For n = 0, choose A0 a countable model containing A0 with an enumeration
{a0

i : i < ω}, and b0 by simplicity and extension, realizing tpw(a0
0/A0) with

b0 ↓A0 A ∪
⋃

i<ω āi . Then let f0 ∈ Aut(M/A0) map a0
0 to b0.

Assume we have defined Ai and bi for i ≤ n. Let An+1 be a countable model
containing An+1 and fn(An) and choose an enumeration of An+1 as above. Now
fn ◦ · · · ◦ fπ1(n+1)(a

π1(n+1)
π0(n+1)) is an element in fn ◦ · · · ◦ fπ1(n+1)(Aπ1(n+1)), where

we extend this impression to denote an+1
π0(n+1) and An+1 if π1(n + 1) = n + 1. Then

by simplicity,

fn ◦ · · · ◦ fπ1(n+1)(a
π1(n+1)
π0(n+1)) ↓(An+1∪b0,...,bn) An+1 ∪ b0, . . . , bn,

and hence by extension, there is bn+1 realizing tpw( fn ◦ · · · ◦ fπ1(n+1)(a
π1(n+1)
π0(n+1))/

An+1 ∪ b0, . . . , bn) such that

bn+1 ↓(An+1∪b0,...,bn) A ∪

⋃
i<ω

āi .
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Then item 2 follows by symmetry and transitivity. Furthermore, let fn+1 be an auto-
morphism mapping fn◦· · ·◦ fπ1(n+1)(a

π1(n+1)
π0(n+1)) to bn+1 and fixing b0, . . . , bn∪An+1.

Now we are done with the construction.
We claim that the set B =

⋃
i<ω bi is a model. For each n < ω the set

Bn =

⋃
π1(i)=n

bi =

⋃
π1(i)=n

fi ◦ fi−1 ◦ · · · ◦ fn+1 ◦ fn(an
π0(i))

is a model, since by the finite character property of K, the increasing partial maps

fi ◦ fi−1 ◦ · · · ◦ fn+1 ◦ fn � (an
0 , . . . , an

π0(i)), π1(i) = n,

extend to an automorphism mapping An to Bn . Furthermore, since fn(An) ⊆ An+1,
we have that each fn(an

i ) is an+1
j for some j and hence Bn ⊆ Bn+1 for each n < ω.

Then B =
⋃

i<ω Bi is a model as a union of an increasing chain of models.
Secondly, we claim that B contains A. It is enough to show that it contains

each Ai . For a given n < ω, An is included in An as some an
i0
, . . . , an

ik
. But

for all m ≥ n, fm fixes An pointwise, and hence bm = an
i p

for m such that
π(m) = (i p, n). Then we define Bn = An ∪ b0, . . . , bn for each n < ω.
Now since Lstp(ān+1/An) = Lstp(ān/An) and ān, ān+1 ↓An Bn by (2), mono-
tonicity, and finite symmetry, stationarity of finite Lascar types implies that
Lstp(ān+1/Bn) = Lstp(ān/Bn) for each n < ω. Since

⋃
n<ω Bn = B is a

model, by Lemma 4.5 there exists ā realizing each Lstp(ān/Bn).
Finally, we show that ā 6↓Bn Bn+1 for each n < ω. This will contradict supersta-

bility, and then we are done with the proof.
Let n < ω. By the construction and monotonicity,

Bn ↓An ān+1.

However, since ān+1 6↓An An+1, we get that ān+1 6↓An Bn+1 by monotonicity. Since
ān+1 ↓An Bn by symmetry, transitivity implies that ān+1 6↓Bn∪An Bn+1. But now
since An ⊆ Bn ⊆ Bn+1 and ā |H Lstp(ān+1/Bn+1), it follows that ā 6↓Bn Bn+1.
This proves the claim and hence we are done with the proof. �

Now local character of ↓ is a straightforward corollary using finite character of ↓.

Corollary 4.7 (Local character) Assume that (K, 4K) is a simple, superstable, fini-
tary AEC. Let A be any set and ā a finite tuple. There is a finite subset D ⊂ A such
that ā ↓D A.

Proof Assume that ā and A are a counterexample. Then using finite character of ↓

we can define an increasing sequence of finite subsets Ai such that A0 = ∅ and
ā 6↓Ai

Ai+1 for each i < ω. This contradicts the previous proposition. �

Then as in [11], we get the full list of properties of independence. This theorem
improves Theorem 3.13 of [11], since we can omit the assumption “Tarski-Vaught
property.” The proof is identical, using the restricted properties and local charac-
ter. We list also a stronger version of superstability here to note that under the other
assumptions (especially weak stability), this stronger version is equivalent with Def-
inition 4.4.

Theorem 4.8 Assume that (K, 4K) is simple and superstable finitary AEC. Let
A, B, C, and D be bounded subsets of the monster model. Then the relation ↓ has
the following properties.
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Invariance If A ↓C B and f is an automorphism of the monster model, then
f (A) ↓ f (C) f (B).
Monotonicity If A ↓B D and B ⊂ C ⊆ D, then A ↓C D and A ↓B C.
Transitivity Let B ⊆ C ⊆ D. If A ↓B C and A ↓C D, then A ↓B D.
Symmetry A ↓C B if and only if B ↓C A.

Extension For any ā and C ⊆ B there is b̄ such that Lt(b̄/C) = Lt(ā/C) and
b̄ ↓C B.
Finite character A ↓C B if and only if ā ↓C b̄ for every finite ā ∈ A and b̄ ∈ B.
Local character For any finite ā and any B there exists a finite E ⊆ B such that
ā ↓E B.
Reflexivity The weak type tpw(ā/A) is not bounded if and only if ā 6↓A ā.

Stationarity If Lt(ā/C) = Lt(b̄/C), ā ↓C B and b̄ ↓C B, then Lt(ā/B) = Lt(b̄/B).
Superstability For any increasing sequence of finite sets Ai , i < ω, and any finite
sequence ā, there is n < ω with ā ↓An An+1.

The proof of local character is the first place where we use the finite character prop-
erty of 4K and it is not needed elsewhere in the proof of Theorem 4.8. Hence if
we would strengthen the assumption “simplicity” or “superstability” to imply local
character for arbitrary sets (not only for finite sets and models), we would get the
analogue of Theorem 4.8 without using the property finite character of 4K. How-
ever, we use finite character of 4K again to prove Theorem 5.2. We formulate the
following remark.

Remark 4.9 Assume that (K, 4K) is an AEC with amalgamation, joint embedding,
and arbitrarily large models. Furthermore, assume that (K, 4K) is weakly stable and
that for every tuple ā and every set A, there is finite E ⊂ A such that ā ↓E A. Then
the notion ↓ satisfies all the properties listed in Theorem 4.8.

But we note that local character is a strong property; for example, it is not implied by
categoricity alone. However, it does follow from categoricity in any uncountable car-
dinal if we assume also simplicity, LS(K) = ℵ0 and finite character of 4K. Actually
then weak ℵ0-stability implies superstability; see Hyttinen and Kesälä [11].

5 Lascar Types and Galois Types

In this section (K, 4K) is a simple, superstable, finitary AEC. We show that equality
of Lascar types over a countable set implies the equality of Galois types. The proof
uses the independence calculus provided by Theorem 4.8, but it also uses heavily
the assumptions that LS(K) = ℵ0 and that 4K has finite character. This theorem
improves Theorem 3.19 of Hyttinen and Kesälä [11], since we do not need the Tarski-
Vaught property. First we prove a lemma.

Lemma 5.1 Let A be any set and ā, b̄, c̄ finite tuples such that Lt(ā/A) = Lt(b̄/A),
āc̄ ↓A0 A, and b̄ ↓A0 A for some finite set A0 ⊆ A. Then there exists d̄ such that
b̄d̄ |H Lt(ā, c̄/A) and b̄, d̄ ↓A0 A.

Proof By extension, there are ā′, c̄′ realizing Lt(ā, c̄/A0) such that

ā′, c̄′
↓A0 ā, c̄, b̄, A.
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By restricted symmetry and monotonicity, b̄ ↓A0∪A ā′, c̄′ and then by transitivity,
b̄ ↓A0 ā′, c̄′, A.

By simplicity, c̄ ↓A0∪ā′,c̄′,b̄ A0 ∪ ā′, c̄′, b̄. Again, by extension, there is d̄ realizing
Lt(c̄/A0 ∪ ā′, c̄′, b̄) such that d̄ ↓A0∪ā′,c̄′,b̄ A. Then by invariance, monotonicity, and
symmetry d̄ ↓A0∪b̄ ā′, c̄′ and, furthermore, by transitivity, d̄ ↓A0∪b̄ ā′, c̄′, A. By
restricted symmetry and transitivity,

d̄, b̄ ↓A0 ā′, c̄′, A.

Since b̄, d̄ |H Lt(ā′, c̄′/A0) = Lt(ā, c̄/A0), we get that b̄, d̄ |H Lt(ā, c̄/A) by sta-
tionarity. �

Theorem 5.2 Assume that (K, 4K) is a simple, superstable, finitary AEC. Let A be
a countable set and let ā, b̄ be finite tuples such that Lt(ā/A) = Lt(b̄/A). Then there
is f ∈ Aut(M/A) such that f (ā) = b̄. Furthermore, if pi , i < ω, are countably
many Lascar types over subsets Di ⊆ A, we can choose f such that f (pi ) = pi for
all i < ω.

Proof We prove the second claim. We construct A j j < ω, an increasing sequence
of finite subsets of A and for each j < ω we choose finite tuples ā j ,b̄ j and two
increasing sequences of countable models B j ,C j containing A as follows.

1. ā = ā0, b̄ = b̄0 and B0 = C0 is some countable model containing A.
2.

⋃
j<ω ā j =

⋃
j<ω B j ,

⋃
j<ω b̄ j =

⋃
j<ω C j and A =

⋃
j<ω A j .

3. For each j < ω, ā0, . . . , ā j ↓A j A and b̄0, . . . , b̄ j ↓A j A.
4. The types pi , i < ω are realized in each B j for j > 0.
5. For each finite A j ⊂ A and j < ω there is a Lascar automorphism

f ∈ Laut(M/A j ) such that f (ā0, . . . , ā j ) = b̄0, . . . , b̄ j .
First we show how this construction implies the claim. By (5) we have Lascar au-
tomorphisms f j ∈ Laut(M/A j ) mapping ā0, . . . , ā j to b̄0, . . . , b̄ j for each j < ω.
The union

f j � (A j ∪ ā0, . . . , ā j ) → A j ∪ b̄0, . . . , b̄ j

defines an isomorphism between
⋃

j<ω B j and
⋃

j<ω C j fixing A pointwise and
mapping ā to b̄. Furthermore, this map is an 4K-embedding by finite character of K

and hence it extends to an automorphism f ∈ Aut(M/A).
We need to show that it preserves the types pi . For this, let d̄ in M realize pi for

some i < ω, where pi is a type over a subset Di ⊂ A. By local character, there is
A′

⊂ Di such that d̄, f (d̄) ↓A′ Di . By (4) the type pi is realized in the union of the
models B j . Let n < ω be an index such that A′

⊂ An and ē ⊂ ā0, . . . , ān realizes
pi . But now Lt(d̄/An) = Lt(ē/An) implies that Lt( f (d̄)/A′) = Lt( f (ē)/A′), and
since f extends the Lascar automorphism fn on ē ∪ A′,

Lt( f (d̄)/A′) = Lt( fn(ē)/A′) = Lt(ē/A′) = Lt(d̄/A′).

Then by stationarity we get that Lt( f (d̄)/Di ) = Lt(d̄/Di ) = pi , and hence we have
shown that f preserves pi .

Then we show how to construct the required sets. We choose an enumeration a′

j
with {a′

j : j < ω} = A and will require that a′

j ∈ A j for each j < ω. Furthermore,
we will construct enumerations bi

j , ci
j for j > 0 such that {bi

j : i < ω} = B j \B j−i

and {ci
j : i < ω} = C j \ C j−i if these sets are nonempty.
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By local character, we can choose A0 containing a′

0 such that (1) and (3) hold.
Now assume we have constructed the required sets and enumerations for j < 2n.

Let B2n+1 = B2n . Let ā2n+1 be a finite tuple containing bi
j for i, j ≤ 2n + 1. By

local character, there is a finite A2n+1 ⊂ A containing a′

2n+1 and A2n such that

ā0, . . . , ā2n+1 ↓A2n+1 A and b̄0, . . . , b̄2n ↓A2n+1 A.

Then by Lemma 5.1, there is b̄2n+1 such that b̄0, . . . , b̄2n, b̄2n+1 realizes

Lt(ā0, . . . , ā2n, ā2n+1/A)

and (3) holds. Then we choose C2n+1 to be some countable model containing
C2n ∪b̄0, . . . , b̄2n+1 and choose some enumeration of C2n+1\C2n as {ci

2n+1 : i < ω}.
For 2n + 1 we do vice versa; let C2n+2 = C2n+1 and let b̄2n+2 contain ci

j for
i, j ≤ 2n + 2. Then A2n+2 and ā2n+2 are given by local character and Lemma 5.1.
Finally, we let B2n+2 be some countable model realizing each pi and containing
B2n+1 ∪ ā0, . . . , ā2n+1 and choose the enumeration of B2n+2 \ B2n+1. We are done
with the construction. �

The following corollary applies if (K, 4K) is “ℵ0-Lascar-stable.” However, we do
not know if ℵ0-stability with respect to weak types or Galois types implies ℵ0-
stability with respect to Lascar types in general. It does follow from weak ℵ0-
stability if (K, 4K) is in addition categorical in some uncountable cardinal, tame
or has the extension property for splitting; see Hyttinen and Kesälä [8].

Corollary 5.3 Assume that (K, 4K) is a simple, superstable, finitary AEC. Let A
be a countable set and assume there are only countably many Lascar types over A.
Let ā, b̄ be finite tuples such that Lt(ā/A) = Lt(b̄/A). Then there is f ∈ Laut(M/A)
such that f (ā) = b̄.

With only the results in this paper we cannot replace the Tarski-Vaught property
in the results of Section 4 of Hyttinen and Kesälä [11], since the property is there
used to construct a-primary models. We can construct sets which are a-saturated
and constructible with respect to the given notion of a-isolation, but without the
Tarski-Vaught property we don’t know if those sets are actually 4K-elementary sub-
models of the monster model. Especially we still need the property to show the
“a-categoricity transfer theorem,” Theorem 4.15. However, we could replace the
Tarski-Vaught property with an assumption that all a-saturated subsets of the mon-
ster are actually 4K-elementary submodels of the monster. We state this as a remark.

Remark 5.4 Assume that (K, 4K) is a simple, superstable finitary AEC. Assume
that any a-saturated subset of M is an 4K-elementary substructure of M. Then all
results of Hyttinen and Kesälä [11] are true in (K, 4K) even if (K, 4K) does not
have the Tarski-Vaught property.

5.1 Example We present an example of a simple, superstable, finitary AEC where
weak type over a countable model is different from Galois type over a countable
model. This shows that Theorem 5.2 is in a sense “best possible,” since we cannot
determine Galois type from weak type alone, not even over countable models. We
use ideas from Baldwin and Kolesnikov [3], where there are examples of classes
where weak type does not determine Galois type, especially over bigger models even
when the class is ℵ0-stable. However, those examples are not simple.
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Example 5.5 Let G be ⊕i<ω(Z/2Z); that is, the group of finite support functions
from ω to {0, 1} with addition. We choose the vocabulary L to consist of unary
predicate symbols S, T , and Pn for n < ω, unary function symbols fa for each
a ∈ G, and binary function symbols Rn , n < ω. We define the function to be partial,
but they can also be defined total functions by requiring that they are identities or
projections elsewhere.

We describe the following properties of an L-structure M .
1. Each unary predicate is disjoint and each P M

n consists of exactly two ele-
ments.

2. If T M is nonempty, then SM is nonempty.
3. If SM is nonempty, the functions f M

a : SM
→ SM determine a regular action

of G on SM .
4. The functions RM

n : T M
× SM

→ P M
n are such that

(a) for all x ∈ T M , y ∈ SM , and a ∈ G,

RM
n (x, y) = RM

n (x, f M
a (y)) if and only if a(n) = 0,

(b) for all x ∈ T M and y ∈ SM and X ⊆ ω there is at most one z ∈ T M

such that

{n ∈ ω : RM
n (z, y) = RM

n (x, y)} = X.

Also elements outside the predicates are allowed. We define (K, 4K) to be the class
of structures M satisfying the properties above and where 4K is the substructure
relation.

We note that the previous properties can be written as axioms in Lω1ω. We show that
this is an abstract elementary class by describing the models of K up to isomorphism.
First let us consider the following structure M:

1. PM
n = {n} × {0, 1},

2. SM
= {0} × {µ : ω → {0, 1} : µ has finite support},

3. T M
= {1} × {η : ω → {0, 1}},

4. for each a ∈ G, f M
a (µ)(i) = µ(i) + a(i) and

5. for each n < ω, RM
n (µ, η) = (n, µ(n) + η(n));

6. furthermore, there are κ many elements outside the predicates, where κ is
some cardinal ≥ 2ℵ0 .

When referring to T M and SM, we leave out the first coordinate, since it is in the
definition only to make the two sets disjoint. We claim that this structure is in the
class K and, furthermore, that each structure of size ≤ κ in K is isomorphic to a
substructure of M.

Clearly, the structure M satisfies the given properties. We let M be a structure in
K of size ≤ κ and claim that there is an isomorphism f from M to a substructure of
M. If T M and SM are empty, this is clearly the case. We fix a bijection between the
unions ⋃

n<ω

P M and
⋃
n<ω

({n} × {0, 1})

and may assume that it is the identity. If SM is nonempty and µ0 ∈ SM , the functions
fa generate an isomorphism between SM and SM mapping µ0 to 0̂, the function
identically zero. Then we map each η in T M to a function η′

∈ T M such that

RM
n (η, µ0) = RM

n (η′, 0̂) for each n < ω.
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By (4b), f is injective on T M . Furthermore, the elements in M outside the predi-
cates are mapped injectively to some subset of elements of M outside the predicates.
Clearly, the resulting function is an embedding.

Now we can describe the models M in K up to isomorphism. The smallest model
consists of only the predicates P M

n , n < ω. Then we can have that T M is empty,
but SM is isomorphic to SM. If T M is nonempty, it is isomorphic to some substruc-
ture of T M. In addition, there can be none or arbitrarily many elements outside the
predicates. Furthermore, the model M is a monster model for the class (K, 4K).

Clearly, the class has joint embedding, arbitrarily large models, L S(K) = ℵ0 and
4K has finite character. Amalgamation is immediate by the proof that every member
of K embeds to M.

We show that the class (K, 4K) is simple. Clearly, the weak type in Sw
M(∅) of an

element in any of the predicates is bounded. Hence,

bcl(∅) = {ā ∈ M : tpw(ā/∅) is bounded}

consists of all the elements in the predicates. By the definition of independence,
always ā ↓∅ bcl(∅). Thus we can describe the independence relation as follows:

ā ↓A B if and only if ā ∩ (B \ (A ∪ bcl(∅))) = ∅.

Hence the class is simple.
For the same reason, there are no infinite sequences (An)n<ω such that ā 6↓An An+1

would hold for each n < ω. Furthermore, the class is clearly weakly stable in
cardinals λ ≥ 2ℵ0 . Hence the class is superstable. We can also use Theorem 3.38
of Hyttinen and Kesälä [11]: if the class is a-categorical in big enough cardinals
it is superstable. There a-categoricity in κ means that any two a-saturated models,
that is, models realizing all Lascar strong types over finite subsets, of size κ are
isomorphic. Clearly, if κ > 2ℵ0 , an a-saturated model in K must contain the “full”
T M and κ many elements outside the predicates; hence the class is a-categorical in
each κ > 2ℵ0 .

Then we study the Lascar strong types of elements in the predicate T M. We
choose a model N to be the union of the predicates PM

n . We notice that if η2
realizes the strong type Lstp(η1/∅), we must have that η2 = η1 and hence also
tpg(η2/N ) = tpg(η1/N ).

However, the weak type tpw(η1/N ) does not determine tpg(η1/N ). If η2 dif-
fers from η1 in infinitely many i < ω, it is not possible to find an automorphism
f ∈ Aut(M/N ) mapping η2 to η1. This is because when µ0 denotes the identically
zero function in SM, we cannot find µ ∈ SM such that Rn(η1, µ) would get the same
values as Rn(η2, µ0) for every n < ω. However, for every finite subset of N we can
find such an automorphism: let A be contained in PM

0 , . . . , PM
p . There is a ∈ G

such that

RM
n (η1, µ0) = RM

n (η2, f M
a (µ0)) for each n ≤ p.

Now the conditions

(i) η1 7→ η2,
(ii) µ0 7→ f M

a (µ0), and
(iii) RM

n (η1, µ0) 7→ RM
n (η2, f M

a (µ0)) for each n < ω

determine an automorphism of M fixing PM
0 , . . . , PM

p . Hence, tpw(η2/N ) =

tpw(η1/N ) does not imply that tpg(η2/N ) = tpg(η1/N ).
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Notes

1. This formulation of finite character is due to Kueker [18].

2. It is possible to define Galois type not referring to automorphisms of M but referring to
4K-embeddings between elements of K; see, for example, Baldwin [1].
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