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George Boole’s Deductive System

Frank Markham Brown

Abstract The deductive system in Boole’s Laws of Thought (LT) involves both
an algebra, which we call proto-Boolean, and a “general method in Logic” mak-
ing use of that algebra. Our object is to elucidate these two components of
Boole’s system, to prove his principal results, and to draw some conclusions
not explicit in LT. We also discuss some examples of incoherence in LT; these
mask the genius of Boole’s design and account for much of the puzzled and dis-
paraging commentary LT has received. Our evaluation of Boole’s logical system
does not differ substantially from that advanced in Hailperin’s exhaustive study,
Boole’s Logic and Probability. Unlike the latter work, however, we make direct
use of the polynomials native to LT rather than appealing to formalisms such as
multisets and rings.

1 Introduction

The system of inference developed in Chapters V–X of Boole’s Laws of Thought
(LT)1 is an achievement of surpassing genius. It has virtually no antecedent in logic.
As Heath [24] observes, “Few major innovators in any science can have had so little
to learn from their predecessors as Boole.”2 Franklin summarizes Boole’s “great
advance” thus:

The task which Boole accomplished was the complete solution of the
problem:—given any number of statements, involving any number of terms,
mixed up indiscriminately in the subjects and the predicates, to eliminate
certain of those terms, that is, to see exactly what the statements amount
to irrespective of them, and then to manipulate the remaining statements so
that they shall read as a description of a certain other chosen term (or terms)
standing by itself in a subject or a predicate. . . . This problem of Logic was
completely solved by Boole. ([31, p. 543])

Not all commentators, however, have been so benign. Jevons [26, p. 65] speaks of
Boole’s “dark and symbolic processes.” Lotze [34] calls Boole’s system a “rash and
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misty analogy from the province of mathematics” (p. 278) which involves “working
in the dark” (p. 277); he is consoled, however, that “these chimeras have not found
their way to Germany” (p. 283). The Kneales [29, p. 421] shrink from his “fear-
some apparatus of numerical coefficients.” Corcoran [13] writes that “Boole has a
semi-formal method of derivation that is neither sound nor complete” (p. 261) and
that his work “is marred by what appear to be confusions, incoherencies, fallacies,
and glaring omissions” (p. 279). Dummett [17, p. 205] warns that “anyone unac-
quainted with Boole’s works will receive an unpleasant surprise when he discovers
how ill-constructed his theory actually was and how confused his explanations of it.”
Wood [56] agrees, declaring that Boole was a “hack mathematician” (p. 145) whose
“treatment of his own logic is so trivial and so incompetent that it constitutes a step
backward from Aristotle” (p. 67).

Undoubtedly the most comprehensive analysis of LT is that offered by
Hailperin [21] who writes, “Boole was a thorough and careful worker and the
mathematical system which he elaborated for doing logic was not shown to be
wrong by the historical simplification to Boolean algebra but merely replaced by it”
(p. 2). Seeking in his monograph to provide “an intensive and extensive study of
Boole’s mathematical theories” (p. 3), Hailperin examines Boole’s system through
the lens of modern algebra and mathematical logic: “We show not only how to
justify Boole’s procedure here but to make sense of it in all respects. We do this by
going over to rings of quotients of Boolean elements, elements not from the original
Boolean algebra but from a certain factor algebra” (p. 4).3 A chapter entitled “Req-
uisites from Algebra, Logic and Probability” touches, for example, on the Gödel
Incompleteness Theorem, McKinsey theories, and Lindenbaum algebras.

The key to understanding Boole, in Hailperin’s view, is the signed multiset—a
set in which multiple occurrences of elements, including negative occurrences, are
allowed: “Our basic contention is: To obtain a meaningful interpretation of Boole’s
system we have to use not the notion of a class (class = set) but that of a multiset”
(emphasis in the original) [21, p. 136].

1.1 Objectives and approach Hailperin’s exhaustive monograph treats LT in its
entirety, including Boole’s chapters on probability. We focus, however, on the de-
ductive system developed in Chapters V–X of LT. That system comprises two com-
ponents: a polynomial algebra, which we call proto-Boolean, and a “general method
in Logic.” Our objects are to elucidate both components and to prove Boole’s princi-
pal results. Doing so requires that we introduce some elements (notation, definitions,
and propositions) not explicit in LT but nevertheless within his algebraic system.

The multiplicities in a Hailperin multiset, as applied to LT, are the coefficients of
a developed polynomial in Boole’s algebra (cf. Section 2.12); thus a signed multi-
set is equivalent to such a polynomial. We believe the polynomials native to LT to
be simpler and more flexible than their corresponding multisets and that an abstrac-
tion from Boole’s algebra such as multiset-theory diverts attention from that algebra
without providing a compensating advantage.

Boole’s algebra can be explicated without multisets in terms of congruences with
respect to a polynomial ideal (cf. Beth [1, Section 25]). We attempt a less formal and
more self-contained treatment, however, assuming only common algebra and basic
logic, justifying Boole’s algebra on its own terms.
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1.2 Boole’s general method Boole’s general method in Logic4 is the first
formulation—amazingly complete, if less than coherently stated—of the concepts
underlying the modern theory of Boolean equations.5 The central features of that
theory—development, reduction, elimination, and the construction of parametric and
inclusive general solutions—are those developed in Chapters V–X of LT. Having
the later theory in view enables the parts of Boole’s system to emerge in a clear and
familiar pattern.

The general method determines the consequents of a set of universal premises by
solving an equation in a numerical algebra. In particular, Boole solves the

General Problem.

Given any equation connecting the symbols x, y..w, z..
Required to determine the logical expression of any class expressed

in any way by the symbols x, y.. in terms of the remaining symbols,
w, x,&c. (LT, p. 140)

Given a symbol, x , of interest and a set of premises, Boole reduces the premises to a
single equivalent proto-Boolean equation,

f (x) = 0 . (1)

The general method eventuates in an inclusive general solution (cf. Section 3.3.2) of
(1), representing the set of consequents of that equation that involve x .

The general method is generative, local, sound, and complete. It is generative in
that it produces a representation of all consequents of the premises rather than verify-
ing a given consequent, that is, proving a theorem. It is local, in that it seeks to relate
a selected symbol (Boole’s term for a variable) to the remaining symbols. All of the
principal nineteenth-century writers on the algebra of logic propound local systems.
The method is also sound because the general solution specifies nothing but conse-
quents of (1) involving x , and complete because it specifies all such consequents.
(Among the principal systems in the algebra of logic, only that of Jevons [26] is not
complete.)

We discuss the general method in Section 4, using Example 5 in Chapter IX
of LT for illustration. Example 5 was used as their acid test by Frege6 [19, p. 40],
Ladd [30, p. 57], Lotze [34, p. 356], Macfarlane [37], McColl [39, p. 23], Peirce [43,
p. 39], Schröder [47, p. 522], Venn [54, p. 351], and Wundt7 [57, p. 356]. Schröder
called Example 5 his “touchstone.” (Jevons avoided Example 5, wisely choosing
simpler examples from LT to assert the superiority of his own methods.)

1.3 The two algebras Boole’s general method (LT, Chapters V–X) involves op-
erations in a polynomial algebra. He chooses in Chapters II–IV, however, to base
his definitions on an incomplete “Algebra of Logic.” Each symbol in that algebra
represents a class, that is, “a collection of individuals. . . extended so as to include
the case in which but a single individual exists. . . as well as the cases denoted by the
terms ‘nothing’ and ‘universe’ ” (LT, p. 28). The universal class is denoted by 1, the
empty class by 0. The product, xy, of two classes represents their intersection. The
sum, x + y, is defined only if x and y are disjoint, in which case it represents their
union. At the end of Chapter II, Boole announces a companion-algebra, employing
the same notation, which is numerical rather than logical:

Let us conceive, then, of an Algebra in which the symbols, x, y, z, &c. admit
indifferently of the values 0 and 1, and these values alone. The laws, the
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axioms, and the processes, of such an Algebra will be identical in their whole
extent with the laws, the axioms, and the processes of an Algebra of Logic.
Differences of interpretation alone will divide them. Upon this principle the
method of the following work is established. (LT, p. 37)

Boole’s alternative algebra, which we call proto-Boolean and discuss in Section 2,
is the basis for his deductive system. It consists of polynomials, of the first degree
in each symbol, having integer coefficients. Polynomials are combined using the
rules of common algebra, save that the rule x2

= x (called the fundamental law of
thought on p. 49 of LT) is applied to symbols as needed to reduce their degree to
unity. In Boole’s class-algebra the sum x + x does not exist (i.e., is not a class); its
proto-Boolean value, however, is 2x .

If a proto-Boolean polynomial f has the property that f 2
= f (thus extending

the fundamental law of thought from symbols to a polynomial), Boole calls f in-
terpretable. The connection between interpretable polynomials and Boole’s logical
algebra of classes is discussed in Section 2.8.4.

1.4 Translation Boole summarizes the translation of premises into corresponding
proto-Boolean equations (LT, p. 124) by the following

Rule.—The equations being so expressed as that the terms X and Y in
the following typical forms obey the law of duality [i.e., are interpretable],
change the equations

X = vY into X (1 − Y ) = 0.
X = Y into X (1 − Y )+ Y (1 − X) = 0.
vX = vY into vX (1 − Y )+ vY (1 − X) = 0.

(2)

The equations on the left of (2) are “the great leading types of propositions symbol-
ically expressed” (LT, p. 64). X and Y are premise-terms; v is an “indefinite class
symbol” (LT, p. 62), that is, an arbitrary parameter; all three are interpretable. The
first and third equations represent, respectively, the propositions “All Xs are Y s” and
“Some Xs are Y s.”

Boole here makes the Aristotelian assumption (abandoned in his general method)
that a term may not denote an empty class. Thus Boole “quantifies the predicate,”
reading the first equation in (2) as “All Xs are some Y s” and the third as “Some
Xs are some Y s.” To enforce his prohibition of empty classes, Boole requires that
v be “the symbol of a class indefinite in all respects but this, that it contains some
individuals of the class to whose expression it is prefixed” (LT, p. 63). For “v is
the representative of some, which, though it may include in its meaning all, does not
include none” (LT, p. 124).

None of Boole’s strictures concerning v is enforced, however, in his general
method. For equations of the first type, Rule (2) removes v and with it Aristotle’s re-
striction on the size of classes. (Equation X (1−Y ) = 0 includes the non-Aristotelian
value X = 0 among its solutions.) Equations of the third type do not appear in any
of the examples in Chapters V–X; Boole excludes them without comment. Particular
propositions cannot, in fact, be represented in Boole’s equational system.8

The parameter v, removed at the outset of Boole’s general method, reappears
(without Aristotelian trammels and written sometimes as 0

0 ) in his parametric general
solution, discussed below.
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1.5 Deduction via solution Boole infers the consequents of (1) involving x by
solving (1) for x in terms of the remaining symbols. This approach is “vitiated,” ac-
cording to Corcoran and Wood [14], “by the fallacy of supposing that a solution to an
equation is necessarily a logical consequence of the equation.” This Solutions Fal-
lacy is discussed subsequently by Carnielli [12], Corcoran [13], and Nambiar [41].
As Corcoran observes, a solution—by which he means a particular solution, de-
fined in Section 3.2—is not necessarily one of the consequents of an equation. (A
particular solution of an equation is, in fact, one of its antecedents.) Boole does
not, however, construct particular solutions of (1). Instead, he constructs a general
solution—a representation of all particular solutions—in two forms.

1.5.1 Parametric form A parametric general solution of (1),

x = r + vs (3)
0 = t, (4)

involves interpretable functions, r, s, and t (rs = 0), and an arbitrary interpretable
parameter, v. Equation (4) expresses the most general “independent relation” (LT,
p. 108) deducible from (1); it is also the necessary and sufficient condition that (1)
be consistent, that is, that it possess a solution.

1.5.2 Inclusive form Boole augments the parametric general solution (3, 4) with
“modes of expression more agreeable to those of common discourse” (LT, p. 112),
using the ingredients r and s of (3) to form an alternative general solution comprising
two consequents of (1), namely,

“all r is x” and “all x is r + s.” (5)

These consequents, stated various ways in LT, are called by Boole the “reverse in-
terpretation” and “direct interpretation,” respectively. The system (5, 4) constitutes
an inclusive general solution of (1), for whose attainment the parametric form is a
way station (Boole seems unable to construct the inclusive form directly). System
(5, 4) is equivalent to (1), and is therefore both a consequent and an antecedent of
(1). Hence Boole’s general method is not afflicted with the Solutions Fallacy.

1.6 Sources of misunderstanding Commentators typically assume one or more
of the following concerning Boole’s general method:

1. It includes and extends traditional Aristotelian logic.
2. Addition is defined only for disjoint summands.
3. Division is one of its operations.
4. Because the only copula in Boole’s system is =, he does not express an in-

clusive consequent.
5. Intermediate equations cannot be interpreted logically.
6. The parameter v is part of particular propositions and cannot be zero.

None of these statements is true of Boole’s general method. Every one of them, how-
ever, is found—explicitly or by implication—in LT. This conundrum results because
the parts of LT do not cohere. Boole seems, in the early chapters of LT, to accept
the canons of Aristotelian logic and to lay the groundwork for a system of inference
based on an algebra of logic. However, the deductive system that emerges, beginning
in Chapter V, is not Aristotelian and relies on a numerical algebra.
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There is serious disagreement between the logical calculus of Chapters II–IV of
LT and the algebra employed in Chapters V–X (the chapters of interest for this pa-
per). There are also contradictions within these parts of LT. Among the more contra-
dictory are his treatments of logical “or,” Aristotelian logic, and the uninterpretable
intermediate steps in his general method.
1.6.1 Logical “or” In Chapter II of LT (p. 32), Boole states that a phrase aggre-
gating two or more classes implies that the classes are disjoint:

In strictness, the words “and,” “or,” interposed between the terms descriptive
of two or more classes of objects, imply that those classes are quite distinct,
so that no member of one is found in another.

He revokes this linguistic constraint, however, in Chapter IV. His “rule of expression”
specifies interpretable formulas for the term, “Either x’s or y’s” in both its exclusive
and nonexclusive senses (LT, p. 57).
1.6.2 Aristotelian logic Although Aristotelian logic per se is exiled in LT to
Chapter XV (the last chapter on logic), Boole implies in the preceding chapters
that he is treating particular as well as universal propositions in traditional logic.
Particular propositions and Aristotle’s restrictions on class-extent are abandoned,
however, in Boole’s general method.
1.6.3 Uninterpretable equations The intermediate steps in Boole’s general
method have evoked particular censure. Typical comments are the following:

It is entirely paradoxical to say that. . . we can start from equations having a
meaning and arrive at equations having a meaning by passing through equa-
tions having no meaning. ([36], p. 352)

It is thus, properly speaking, only the premises and the final results of treat-
ment which with [sic] Boole directly represent[s] logical facts, whereas the
road by which he proceeds from premises to results, is, logically speaking,
meaningless nonsense. ([27], p. 115)

The first five pages of Chapter V of LT constitute an extended apology for his un-
interpretable intermediate equations, including an appeal to the analogous “uninter-
pretable symbol

√
−1, in the intermediate processes of trigonometry” (LT, p. 69).

This appeal is puzzling because, fewer than ten pages after invoking
√

−1, Boole
states that “equations are always reducible. . . to interpretable forms” (LT, p. 78). In
Chapter X, Boole shows how to make every step of a solution interpretable, remark-
ing that doing so “would involve in some instances no slight labour of preliminary
reduction. But it is still interesting to know that this can be done” (LT, p. 151).

2 Proto-Boolean Algebras

2.1 Proto-Boolean Polynomials and Forms Let x1, . . . , xn be indeterminates, that
is, abstract signs or tokens that commute with integers. Following Boole (LT, p. 27),
we call these signs symbols and assume that they satisfy his “fundamental law,”
x2

i = xi (LT, p. 49).
Setting x−1

i = 1 and x1
i = xi (i = 1, 2, . . . , n), we define a proto-Boolean

polynomial (henceforth simply polynomial) on x1, . . . , xn to be an expression,∑
k1,...,kn∈{−1,1}

ak1,...,kn xk1
1 · · · xkn

n , (6)

in which the ak1,...,kn are integers. Examples are 5 and −2 + 3x1 − 4x1x3.
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Let f and g be polynomials, and let f + g, f − g, and f ×̇g be the common (high
school) sum, difference, and product of polynomials—except that a computed prod-
uct is made linear in each symbol, xi , by applications of Boole’s law, xi ×̇xi = xi . (In
most of what follows, we write f g for f ×̇g.) A polynomial or a formula comprising
sums, differences, and products of polynomials will be called a proto-Boolean form
(or simply p-form).

Let Pn be the set of n-symbol p-forms (P if n is not specified). It is clear that
P0 ⊂ P1 ⊂ P2 · · · . We call the system (Pn,+, ×̇, 0, 1) an n-symbol proto-Boolean
algebra. Every element of P is equivalent to a unique polynomial; thus the p-form
(x − 2y)(x + xy)+ 3x is equivalent to 4x − 3xy.

The linkage between logic and polynomials of this type was remarked in 1933
by Whitney [55]. Ten years later, Hoff-Hansen [25] showed that expressions in
the propositional calculus may be interpreted as such polynomials. Skolem [49]
pointed out that Hoff-Hansen’s system is the polynomial ideal generated by the basis
x2

1 −x1, x2
2 −x2, . . ..9 Laita et al. [32, p. 426] write that Boole was working implicitly

in the same polynomial ring but seem unaware of the earlier work of Hoff-Hansen
and Skolem. Polynomials of this kind have also been applied in operations research
and engineering.10

2.2 Interpretability Boole’s concept of interpretability extends his fundamental
law from symbols to certain p-forms. Thus Boole calls f ∈ P interpretable if
f 2

= f (LT, p. 93) and calls an equation interpretable if both its members are
interpretable. We denote the set of n-symbol interpretable p-forms by In (by I , if n
is not specified). Clearly, In ⊂ Pn .

2.3 Development A polynomial, f (x), in P1 has the form a + bx , where a and
b are integers. Thus f (x) = a(1 − x)+ (a + b)x ; that is,

f (x) = f (0)(1 − x)+ f (1)x . (7)

Generalizing to P2,

f (x1, x2) = f (0, 0)x̄1 x̄2 + f (0, 1)x̄1x2 + f (1, 0)x1 x̄2 + f (1, 1)x1x2 , (8)

where x̄ i is Boole’s shorthand for 1 − xi (LT, p. 119). We extend this shorthand to
elements of P , that is, (∀ f ∈ P)[ f̄ = 1 − f ].

Boole appeals (MAL, p. 60; LT, p. 72) to the Taylor-Maclaurin theorem to justify
the extension of this development to any number of symbols.

Example 2.1 Let f be expressed by the polynomial form

f (x1, x2) = 3 − 8x1 − 3x2 + 9x1x2 . (9)

Computing f (0, 0) = 3, f (0, 1) = 0, f (1, 0) = −5, and f (1, 1) = 1, we arrive at
the development

f (x1, x2) = 3x̄1 x̄2 − 5x1 x̄2 + x1x2 . (10)
An alternative form for f is a polynomial in x̄1, x̄2, . . .. Thus,

f (x1, x2) = 1 − x̄1 − 6x̄2 + 9x̄1 x̄2 . (11)

Expressions (9), (10), and (11) are Whitney’s three normal forms for f [55]. Each is
a unique representation of f , up to the order of sums and products.

Boole calls f (0, 0), f (0, 1), . . . the coefficients of the development (8), and
x̄1 x̄2, x̄1x2, . . . its constituents. Some additional terminology will be useful. We
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represent n-tuples by uppercase letters; thus A = (a1, a2, . . . ), X = (x1, x2, . . . ),
and (a, X) = (a, x1, x2, . . . ). We adopt Boole’s convention (LT, p. 100) of writing
f (x) in place of f (x, Y ), if Y is understood. For i ∈ {0, 1}, we write fi (Y ) and fi
in place of f (i, Y ) and f (i), respectively.

To each A = (a1, . . . , an) ∈ {0, 1}
n and X = (x1, . . . , xn) there corresponds

an n-symbol constituent, X A
=

∏n
i=1 xai

i , where x0
i = 1 − xi and x1

i = xi . Thus
(x1, x2, x3)

(0,1,0)
= x0

1 x1
2 x0

3 = (1 − x1)x2(1 − x3) = x̄1x2 x̄3.
Computations involving constituents are facilitated by the following readily-

verified properties, where A, B ∈ {0, 1}
n and X = (x1, x2, . . . , xn):

AA
= 1 (12)

AB
= 0 if A 6= B (13)

X A
· X A

= X A (14)

X A
· X B

= 0 if A 6= B (15)∑
A∈{0,1}n

X A
= 1 . (16)

Proposition 2.1 If f ∈ Pn , then

f (X) =

∑
A∈{0,1}n

f (A)X A . (17)

Proof To any polynomial, f , in P1 there correspond integers a and b such that
f (x) = a + bx = a(1 − x) + (a + b)x . Hence f (x) = f (0)x̄ + f (1)x . Suppose
the proposition to be true for n = k > 0. Then to any polynomial, f , in Pk+1
there correspond polynomials g and h in Pk such that f (x, Y ) = g(Y ) + xh(Y ) =

(1 − x)g(Y )+ x(g(Y )+ h(Y )). Thus,

f (x, Y ) = x0
∑

B∈{0,1}k

g(B)Y B
+ x1

∑
B∈{0,1}k

(g(B)+ h(B))Y B

=

∑
B∈{0,1}k

f (0, B)x0Y B
+

∑
B∈{0,1}k

f (1, B)x1Y B

=

∑
A∈{0,1}k+1

f (A)(x, Y )A ,

verifying (17). �

Given f, g ∈ Pn and X = (x1, . . . , xn), the following properties derive directly from
Proposition 2.1 and the combining properties (14), (15), and (16) of constituents:

f (X) =

∑
A∈{0,1}n

f (A)X A (18)

f (X)g(X) =

∑
A∈{0,1}n

f (A)g(A)X A (19)

f (X)+ g(X) =

∑
A∈{0,1}n

( f (A)+ g(A))X A (20)

f (X)− g(X) =

∑
A∈{0,1}n

( f (A)− g(A))X A . (21)
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2.4 P-Functions The symbols x1, x2, . . . xn in a p-form f ∈ Pn are indetermi-
nates satisfying Boole’s law, x2

i = xi . If, however, we view these symbols as vari-
ables, then f generates a proto-Boolean polynomial function (or simply p-function)
f̂ , mapping n p-forms into a p-form.11 Specifically, f̂ : Pn

→ P is defined as
follows:

1. For integer a and for p1, . . . , pn ∈ P ,

â(p1, . . . , pn) = a .

2. For i = 1, 2, . . . , and for p1, . . . , pn ∈ P ,

x̂i (p1, . . . , pn) = pi .

3. For f, g ∈ Pn and p1, . . . , pn ∈ P ,

f̂ + g(p1, . . . , pn) = f̂ (p1, . . . , pn)+ ĝ(p1, . . . , pn)

f̂ − g(p1, . . . , pn) = f̂ (p1, . . . , pn)− ĝ(p1, . . . , pn)

f̂ g(p1, . . . , pn) = f̂ (p1, . . . , pn) ×̇ ĝ(p1, . . . , pn) .

Every p-form specifies a unique p-function; every p-function is specified by any one
of an equivalence-class of p-forms. We denote by P̂n ( În) the set of p-functions
generated by p-forms in Pn (In). If stated to be in P̂n or În , a letter f , g, h, . . . will
denote a p-function; otherwise, f̂ , ĝ, ĥ, . . . will denote the p-functions generated by
p-forms f , g, h, . . ..

2.5 Development of p-functions Development (17), which holds for a p-form
f (x1, . . . , xn) ∈ Pn (x1, . . . , xn indeterminate), may be extended to a p-function
f : Pn

→ P , where f ∈ P̂n .

Proposition 2.2

(∀ f ∈ P̂n)(∀X ∈ Pn)
[

f (X) =

∑
A∈{0,1}n

f (A)X A ]
. (22)

Proof Consider first the development of f ∈ P̂ with respect to a single vari-
able, x . Let g ∈ P . Then f (x) = px + q and g = r x + s, where p, q ∈ P̂
and r, s ∈ P , none of p, q, r, s involving x . Thus f (g) = p×̇(r x + s) + q
= (1 − (r x + s))q + (r x + s)(p + q) = g f (0) + g f (1). Suppose (22) to hold
for n = k ≥ 1. Let (x, Y ) = (x, y1, . . . , yk) ∈ Pk+1 and consider f ∈ P̂k+1:
f (x, Y ) = x̄ f (0, Y )+ x f (1, Y ) = x̄

∑
B∈{0,1}k f (0, B)Y B + x

∑
B∈{0,1}k f (1, B)Y B

=
∑
(i,B)∈{0,1}k+1 f (i, B)x i Y B . Thus f (x, Y ) =

∑
A∈{0,1}k+1 f (A)(x, Y )A. �

Development (22) should be applied with caution if X /∈ I n , in which case the
products X A in (22) satisfy neither of properties (14) and (15) of constituents.12

Boole develops the system in Chapters V–X of LT in terms of functions in P̂n whose
domains comprise only p-forms in I . Accordingly, we consider functions only of the
form f : I n

→ P henceforth, where f ∈ P̂n .

2.6 Equations For f ∈ P̂n , we say the equation

f (X) = 0, (23)

is consistent if ∃(p1, . . . , pn) ∈ I n such that f (p1, . . . , pn) = 0 is an identity.
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Proposition 2.3 For all f ∈ P̂n and X ∈ I n , the following are equivalent:

f (X) = 0 (24)

(∀A ∈ {0, 1}
n) [ f (A) = 0 or X A

= 0 ] . (25)

Proof (25) H⇒ (24) (Proposition 2.1). Conversely, (24) H⇒
∑

B∈{0,1}n f (B)X B

= 0. Multiplying the latter by X A, for arbitrary A ∈ {0, 1}
n and recalling (14) and

(15), we infer f (A)X A
= 0. If f (A) = 0, then (25) follows. If f (A) 6= 0, then

f (A)X A
= 0 H⇒ X A

= 0 H⇒ (25). �

Proposition 2.4 (∀ f ∈ P̂, x ∈ I )
[
[ f (x) = 0]⇐⇒[x̄ f (0) = 0 and x f (1) = 0]

]
.

Proof f (x) = 0 ⇐⇒ x̄ f (0)+ x f (1) = 0 (Proposition 2.1). Multiplying by x̄ (x),
we infer x̄ f (0) = 0 (x f (1) = 0). The converse follows from Proposition 2.1. �

2.7 Verification A proto-Boolean identity on I may be verified by considering
only 0 and 1 as symbol-values.

Proposition 2.5 The following are equivalent for all f, g ∈ P̂n:

(∀X ∈ I n)
[

f (X) = 0 H⇒ g(X) = 0
]

(26)

(∀A ∈ {0, 1}
n)

[
f (A) = 0 H⇒ g(A) = 0

]
. (27)

Proof Suppose (24) to be consistent. Clearly (26) H⇒ (27). If (27) holds, on the
other hand, then applying Proposition 2.3 twice,

(∀X ∈ I n)

 f (X) = 0 H⇒ (∀A ∈ {0, 1}
n)[ f (A) = 0 or X A

= 0]

H⇒ (∀A ∈ {0, 1}
n)[g(A) = 0 or X A

= 0]

H⇒ g(X) = 0.

 .

Thus (27) H⇒ (26). If (24) is inconsistent, both (26) and (27) are true. �

Proposition 2.6 The following are equivalent for all f, g ∈ P̂n:

(∀X ∈ I n)
[

f (X) = 0 ⇐⇒ g(X) = 0
]

(∀A ∈ {0, 1}
n)

[
f (A) = 0 ⇐⇒ g(A) = 0

]
.

Proof Follows from Proposition 2.5. �

In Boolean algebra, Propositions 2.5 and 2.6 are forms of the verification theorem.13

2.8 Interpretable forms and functions

2.8.1 Characterization of In

Proposition 2.7 (LT, Chap. V, Prop. IV, p. 79)

f ∈ In ⇐⇒ (∀A ∈ {0, 1}
n)[ f (A) ∈ {0, 1}].

Proof f ∈ In ⇐⇒ (∀X ∈ I n) [ f (X)2 = f (X)] ⇐⇒ (∀A ∈ {0, 1}
n)

[ f (A)2 = f (A)] (Proposition 2.6) ⇐⇒ (∀A ∈ {0, 1}
n)[ f (A) ∈ {0, 1}]. �
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2.8.2 Formally interpretable p-forms We define the set of formally interpretable
p-forms as follows:

1. 0 is formally interpretable.
2. 1 is formally interpretable.
3. If x is a symbol, then x is formally interpretable.
4. If f and g are formally interpretable, then so are

(a) ( f )(g)
(b) 1 − ( f )
(c) f + g if ( f )(g) = 0.

(A parenthesis-pair may be removed if doing so does not introduce ambiguity.) Boole
consistently expresses interpretable p-forms so they are formally interpretable. Thus
he writes x + y − xy as x + (1 − x)y.
2.8.3 Interpretable p-forms as classes We define operator +̇ on P by

f +̇g = f + g − f ×̇g,

where f ×̇g, which we normally write as f g, is defined in Section 2.1. (Whitney [55]
writes +̇ for the same operation.)

If f ∈ In , each of the 2n coefficients, f (A), in development (17) has value 0
or 1 (Proposition 2.7); thus In comprises 22n

elements. In = (In, +̇, ×̇, ¯ , 0, 1)
is a Boolean algebra [21, Theorem 2.32] and is thus isomorphic to an algebra of
classes [51]. Let ξ1, . . . , ξn denote distinct subsets of a set, U , and let Sn be the
22n

-element field built up from these subsets, using the operators ∪,∩, and ′. Then
Sn = (Sn,∪,∩,

′,∅,U ) is a Boolean algebra of classes (sets).
Let x1, x2, . . . , xn be proto-Boolean symbols, let f and g be elements of In , and

let ϕ : In → Sn be defined by

1. ϕ(0) = ∅
2. ϕ(1) = U
3. ϕ(xi ) = ξi
4. ϕ( f g) = ϕ( f ) ∩ ϕ(g)
5. ϕ( f̄ ) = (ϕ( f ))′.

Then ϕ is an isomorphism of In onto Sn.14

2.8.4 Boole’s algebra of logic and In Boole’s “rule of expression” (LT, Chap. IV,
p. 57) states,

Let the expression, “Either x’s or y’s,” be expressed by x(1 − y)+ y(1 − x),
when the classes denoted by x and y are exclusive, by x + y(1− x) when they
are not exclusive [Emphasis in the original].

In terms of +̇, however,

x(1 − y)+ y(1 − x) = x ȳ +̇ yx̄
x + y(1 − x) = x +̇ y

x + y = x +̇ y if xy = 0.

Terms aggregating classes are thus translated by Boole to elements of In , albeit ex-
pressed using +, −, and ×̇. (Boole’s copious examples bear this out.) The intersec-
tion of classes x and y is translated as xy, and the “contrary class” (LT, p. 48) of x
is translated as 1 − x : both xy and 1 − x are members of In . Thus the “algebra of
Logic” of LT, Chapters II–IV, is In, which may be interpreted as the class-algebra,
Sn.
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2.9 The arithmetic order-relation We define the relation ≤ on In as follows: If
f, g ∈ În , then f ≤ g provided f (A) ≤ g(A) for all A ∈ {0, 1}

n . This relation
does not appear in LT.15 Its use, however, is natural in proto-Boolean algebra and
clarifies the discussion in Section 3.3.2 of inclusive general solutions.

Proposition 2.8 If f, g ∈ În , then the following are equivalent:

(∀X ∈ I n) [ f (X) = 0 H⇒ g(X) = 0 ]

(∀X ∈ I n) [ (1 − f (X)) g(X) = 0 ]

(∀X ∈ I n) [ g(X) ≤ f (X) ].

Proof It suffices for each of the three statements to replace X by A and I n by
{0, 1}

n (Proposition 2.6), in which case f (A), g(A) ∈ {0, 1} (Proposition 2.7). Thus
all three statements are false if f (A) = 0 and g(A) = 1, and all three are true if
f (A) = 1 or g(A) = 0. �

2.10 Composability and reduction A p-function, f ∈ P̂n , as well as the equation
f (X) = 0, will be called composable if (∀A ∈ {0, 1}

n) [ f (A) ≥ 0 ].

Proposition 2.9 If f ∈ P̂n , then f 2 is composable.

Proof (∀X ∈ I n)
[

f 2(X) =
∑

B∈{0,1}n f (B)2 X B ]
, whence (∀A ∈ {0, 1}

n)[
f 2(A) =

∑
B∈{0,1}n f (B)2 AB

= f (A)2 ≥ 0
]

(cf. (14) and (15)). �

Proposition 2.10 (LT, Chap. VIII, Prop. II, p. 120) Let f1, f2, . . . , fm be compos-
able p-functions. Then

(∀X ∈ I n)
[
(∀ i ∈ {1, . . . ,m}) [ fi (X) = 0 ] ⇐⇒

m∑
i=1

fi (X) = 0. (28)

Proof By Proposition 2.6, (28) ⇐⇒ (∀A ∈ {0, 1}
n)

[
(∀i ∈ {1, . . . ,m})[ fi (A) = 0]

⇐⇒
∑m

i=1 fi (A) = 0
]
, which clearly holds for composable f1, f2, . . . , fm . �

Proposition 2.11 If f ∈ P̂n , then

(∀X ∈ I n) [ ( f (X))2 = 0 ⇐⇒ f (X) = 0 ]. (29)

Proof (29) ⇐⇒ (∀A ∈ {0, 1}
n)[ ( f (A))2 = 0 ⇐⇒ f (A) = 0 ] (Proposition 2.6).

�

Proposition 2.12 (LT, Chap. VIII, Prop. III, p. 121) If f1, f2, . . . , fm ∈ P̂n , then
for all X ∈ I n the system f1(X) = 0, f2(X) = 0, . . . , fm(X) = 0 is equivalent to
the single composable equation

∑m
i=1 f 2

i (X) = 0.

Proof Follows from Propositions 2.9, 2.10, and 2.11. �

2.11 Elimination

Proposition 2.13 (LT, Chap. VII, Prop. I)

(∀ f ∈ P̂n)(∀x ∈ I ) [ f (x) = 0 H⇒ f (0) f (1) = 0 ].

Proof f (x) = 0 H⇒ x̄ f (0)+x f (1) = 0 H⇒ [x̄ f (0) f (1) = 0 and x f (0) f (1) = 0]

H⇒ (x̄ + x) f (0) f (1) = 0 H⇒ f (0) f (1) = 0. �
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Boole calls f (0) f (1) = 0 “the complete result of the elimination of x” from
f (x) = 0 (LT, p. 101).16 Hailperin questions the term “complete,” noting that Boole
“has only shown that f (1) f (0) = 0 is an algebraic consequence of f (x) = 0” [21,
p. 100]. We think it likely, however, that Boole means the following: among the
consequents of f (x) = 0 not involving x , f (1) f (0) = 0 is the most general in the
sense that it implies every other such consequent.

Proposition 2.14 (∀ f ∈ P̂n, g ∈ P̂n−1, n ≥ 1), the following are equivalent:

(i) (∀(x, Y ) ∈ I n) [ f (x, Y ) = 0 H⇒ g(Y ) = 0 ]

(ii) (∀Y ∈ I n−1) [ f (0, Y ) f (1, Y ) = 0 H⇒ g(Y ) = 0 ].

Proof Invoking Proposition 2.6 twice,

(i) ⇐⇒ (∀(i, A) ∈ {0, 1}
n)

[
f (i, A) = 0 H⇒ g(A) = 0

]
⇐⇒ (∀A ∈ {0, 1}

n−1)
[

[ f (0, A) = 0 or f (1, A) = 0] H⇒ g(A) = 0
]

⇐⇒ (∀A ∈ {0, 1}
n−1)

[
f (0, A) f (1, A) = 0 H⇒ g(A) = 0

]
⇐⇒ (ii ).

See [8] for a proof that (i) ⇐⇒ (ii) in standard Boolean algebra. �

Proposition 2.15 (LT, Chap. IX, Prop. III, p. 133) Let f (x, y, z, . . .) ∈ P be ex-
pressed in the partially developed form,

f (x, y, z, . . .) = g(y, z, . . .)(1 − x)+ h(y, z, . . .)x .

Then the resultant of elimination of y from f (x, y, z, . . .) = 0 is

g(0, z, . . .)g(1, z, . . .)(1 − x)+ h(0, z, . . .)h(1, z, . . .)x = 0 . (30)

Proof Form (30) is achieved if each factor of f (x, 0, y, . . .) f (x, 1, z, . . .) = 0 (the
desired resultant) is developed with respect to x . �

2.12 An alternative formulation: Multisets Hailperin [21] presents a model of
Boole’s algebra, equivalent to the polynomial formulation, based on signed multi-
sets. A multiset representing an element f in Boole’s algebra displays the same
objects (constituents and their coefficients) as the development (17). To each con-
stituent, X A, having coefficient f (A), there corresponds an element, ( f (A))X A, in
the associated multiset. Thus the multiset-version of the function in Example 2.1
repackages (10) as {(3)x̄1 x̄2, (0)x̄1x2, (−5)x1 x̄2, (1)x1x2}.

A multiset-formulation equivalent to Hailperin’s was proposed by Whitney [55]
in 1933. Whitney associates with each element of his generalized sets “any integer,
positive, negative or zero, instead of merely one or zero.” Whitney represents a subset
F of a set U by its characteristic function, call it ϕ, mapping each element of U to
its multiplicity in F . If generalized set F represents function f having development
(17) (Whitney’s first normal form for f ), then ϕ maps the constituents in (17) to their
coefficients. In the case of Example 2.1, ϕ(x̄1 x̄2) = 3, ϕ(x̄1x2) = 0, ϕ(x1 x̄2) = −5,
and ϕ(x1x2) = 1.

Although Hailperin’s multisets and Whitney’s generalized sets are equivalent,
their applications are essentially opposite: Whitney uses polynomials to represent
sets; Hailperin uses multisets to represent Boole’s polynomials.
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3 Solution of Proto-Boolean Equations

Boole carries out logical inference by solving equations of the form

f (x, Y ) = 0 (31)

for x in terms of Y = (y1, . . . , yn−1). As before, we follow Boole in writing (31)
as f (x) = 0 if Y is not specified. Unless otherwise noted, f is a function in P̂n
mapping I n to P .

3.1 The interpretable image We associate with f ∈ P̂n an interpretable image,
f ∗

∈ În , as follows:

f ∗(X) =

∑
A∈{0,1}

n

f (A)6=0

X A.

Thus (∀A ∈ {0, 1}
n)[ f ∗(A) = 0 ⇐⇒ f (A) = 0 and f ∗(A) = 1 ⇐⇒ f (A) 6= 0 ].

3.2 Particular solutions A particular solution of (31) is an equation, x = g(Y ),
where g ∈ Pn−1 such that f (g(Y ), Y ) = 0 is an identity.

Proposition 3.1 (LT, Chap. X, Prop. I; [21], Theorem 2.35) f (x) = 0 and
f ∗(x) = 0 possess the same set of interpretable solutions; that is,

(∀ f ∈ P̂n)(∀x ∈ In−1) [ f (x) = 0 ⇐⇒ f ∗(x) = 0 ].

Proof For f ∈ P̂n and g ∈ In−1,

(∀Y ∈ I n−1)[ f (g(Y ), Y ) = 0 ]

⇐⇒ (∀A ∈ {0, 1}
n−1)[ ḡ(A) f (0, A) = 0 and g(A) f (1, A) = 0 ]

⇐⇒ (∀A ∈ {0, 1}
n−1)[ ḡ(A) f ∗(0, A) = 0 and g(A) f ∗(1, A) = 0 ]

⇐⇒ (∀Y ∈ I n−1)[ f ∗(g(Y ), Y ) = 0 ] ,

where we apply Propositions 2.4 and 2.6 twice and note that g(A) ∈ {0, 1}. �

Proposition 3.2 (∀ f ∈ P̂n)
[
(∃ x ∈ I )[ f (x) = 0 ] ⇐⇒ f (0) f (1) = 0

]
.

Proof Let g ∈ I . Then [ f (g) = 0] H⇒ [ḡ f0 + g f1 = 0] H⇒ [ḡ f0 f1 = 0
and g f0 f1 = 0 ] H⇒ [ (ḡ + g) f0 f1 = 0 ] H⇒ [ f0 f1 = 0 ]. Conversely,
(∀Y ∈ I n−1) [ f (0, Y ) f (1, Y ) = 0] H⇒ (∀A ∈ {0, 1}

n−1)[ f (0, A) f (1, A) = 0].
Choosing x = f ∗(0, Y ),

f ( f ∗(0, Y ), Y ) =

∑
A∈{0,1}n−1

[ f ∗(0, A) f (0, A)+ f ∗(0, A) f (1, A)] Y A. (32)

If f (0, A) = 0, then f ∗(0, A) = 0. If f (0, A) 6= 0, then f (1, A) = 0 and
f ∗(0, A) = 0. Thus each term of (32) vanishes; that is, x = f ∗(0, Y ) is an inter-
pretable solution of f (x, Y ) = 0. (cf. [21, Theorem 2.34] for a different proof.) �

The condition f (0) f (1) = 0 is thus not only “the complete result of the elimina-
tion of x from [ f (x) = 0]” (LT, p. 101), but it is also the necessary and sufficient
condition for the existence of solutions in I of that equation.
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3.3 General solutions A general solution of the proto-Boolean equation f (x) = 0
is a representation of all, and nothing but, its particular solutions. Boole considers
only interpretable solutions; therefore it suffices, in view of Proposition 3.1, to solve
f ∗(x) = 0.

There are two methods, other than by enumeration, to express a general solution
of a proto-Boolean equation: (a) by an equation involving an arbitrary parameter
or (b) by a pair of inclusions. These correspond to the two basic forms in the the-
ory of standard Boolean equations [7; 45] differing only in the underlying algebra
and Boole’s focus on a single dependent variable. Boole includes both forms in his
“general method in Logic” (cf. Section 4).

3.3.1 Parametric form Löwenheim [35, p. 190] defines a general solution, in para-
metric form, of a standard Boolean equation as follows:

[The system]

x = ϕ(u, v, . . .) ,
y = ψ(u, v, . . .) ,
. . . . . . . . . . . . . . . .

is a “general solution” of [a Boolean equation] if
1) it is a solution for any values of the arbitrary parameters u, v, . . ., and
2) it is capable of representing any solution of [that equation]; that is, if a

certain solution x0, y0, . . . of the equation is given, then it must be possible
to find certain values of u, v, . . . for which

x0 = ϕ(u, v, . . .) ,
y0 = ψ(u, v, . . .) ,
. . . . . . . . . . . . . . . . .

We formalize this definition in proto-Boolean terms, following the approach of De-
schamps [16] and Rudeanu [45, p. 56]: a parametric general solution of f ∗(x) = 0
is a system

x = ϕ(v) (33)

0 = f ∗(0) f ∗(1) (34)

such that

(∀x ∈ I ) (∀v ∈ I )
[

x = ϕ(v) H⇒ f ∗(x) = 0
]

(35)

(∀x ∈ I )
[

f ∗(x) = 0 H⇒ (∃v ∈ I ) [ x = ϕ(v) ]
]
. (36)

We believe that Löwenheim’s definition, formalized in (35) and 36), expresses
Boole’s intent; namely, that as v is assigned values on I , (33) generates (a) all solu-
tions (condition (36)) and (b) nothing but solutions (condition (35)) of f ∗(x) = 0.
A seemingly different interpretation is advanced by Hailperin: “We take Boole’s
w = A + vC to be ∃v(w = A + vC)” [21, p. 156]. This purely existential view
has been expressed by other commentators, for example, [6, p. 92], [14, p. 623], and
[56, p. 130]. In this view, a parametric general solution of f ∗(x) = 0 is a system,
(33, 34), satisfying the single condition

(∀x ∈ I )
[

f ∗(x) = 0 ⇐⇒ (∃v ∈ I ) [ x = ϕ(v) ]
]
. (37)

The two definitions, as we now show, are equivalent.

Proposition 3.3 (37) ⇐⇒ (35, 36).
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Proof (37) is equivalent to the system

(∀x ∈ I )
[

f ∗(x) = 0 H⇒ (∃v ∈ I ) [ x = ϕ(v) ]
]

(38)

(∀x ∈ I )
[
(∃v ∈ I ) [ x = ϕ(v) ] H⇒ f ∗(x) = 0

]
. (39)

(38) is identical to (36). Further,

(39) ⇐⇒ (∀x ∈ I )
[
∼ [ (∃v ∈ I ) [ x = ϕ(v) ] ] ∨ [ f ∗(x) = 0 ]

]
⇐⇒ (∀x ∈ I )

[
[ (∀v ∈ I ) ∼ [ x = ϕ(v) ] ] ∨ [ f ∗(x) = 0 ]

]
⇐⇒ (∀x ∈ I ) (∀v ∈ I )

[
∼ [ x = ϕ(v) ] ∨ [ f ∗(x) = 0 ]

]
⇐⇒ (35).

�

3.3.2 Inclusive form An inclusive general solution17 of f ∗(x) = 0 is a system,

g ≤ x ≤ h (40)

f ∗(0) f ∗(1) = 0, (41)

where g, h ∈ I , such that (40) ⇐⇒ f ∗(x) = 0.

Proposition 3.4 The system

f ∗(0) ≤ x ≤ f ∗(1) (42)

f ∗(0) f ∗(1) = 0 (43)

is an inclusive general solution of f ∗(x) = 0.

Proof (42) ⇐⇒ [ f ∗(0)x̄ = 0 and f ∗(1)x = 0] (Proposition 2.8) ⇐⇒ f ∗(x) = 0.
�

Proposition 3.5 If g, h ∈ I , then g ≤ x ≤ h is related to f ∗(x) = 0 as follows:

(∀x ∈ I )
[

f ∗(x) = 0 H⇒ g ≤ x ≤ h
]

⇐⇒
[
g ≤ f ∗(0) and f ∗(1) ≤ h

]
(44)

(∀x ∈ I )
[
g ≤ x ≤ h H⇒ f ∗(x) = 0

]
⇐⇒

[
f ∗(0) ≤ g and h ≤ f ∗(1)

]
. (45)

Proof Applying Proposition 2.8, (44) becomes

(∀x ∈ I )
[

f ∗(0)gx̄ + f ∗(1)h̄x = 0
]

⇐⇒

[
f ∗(0)g = 0 and f ∗(1) h = 0

]
.

The two statements are clearly equivalent. (45) is proved analogously. �

The set of antecedents (consequents) of f ∗(x) = 0 is thus the set of subintervals (su-
perintervals) of (42). Hence, given f ∗(0) f ∗(1) = 0 (equivalently, f ∗(0) ≤ f ∗(1)),
(42) is both an antecedent and a consequent of f ∗(x) = 0.

The completeness (and soundness) of the inclusive general solution (42, 43) of
f ∗(x) = 0 follows from the fact that the superintervals of (42) comprise all of (and
nothing but) the consequents of that equation.
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3.4 Boole’s general solutions

3.4.1 Parametric form Boole’s parameter-based solution of (31) has the form

x = r(Y )+ v(Y )s(Y ) (46)
0 = t (Y ). (47)

(Boole writes (46) as w = A + vC and (47) as D = 0 (LT, p. 92) and calls (47) the
“independent relation.”) The functions r , s, t , and v are defined by

r(Y ) =
∑

(Y -constituents mandatory in the solution)
s(Y ) =

∑
(Y -constituents optional in the solution)

t (Y ) =
∑

(Y -constituents to be set to zero)
v(Y ) =

∑
(arbitrary subset of the Y -constituents).

 (48)

Each of these sums is interpretable, and the sums defining r(Y ) and s(Y ) are disjoint;
hence (46) is formally interpretable. To determine the allocation of each constituent,
Y A, to one of the sums (48), Boole expresses (31) as (1 − x) f0(Y ) + x f1(Y ) = 0
and assumes a solution, x = g(Y ). Thus

( f0(Y )− f1(Y )) g(Y ) = f0(Y ) , (49)

whence

g(Y ) =
f0(Y )

f0(Y )− f1(Y )
=

∑
A∈{0,1}n

f0(A)
f0(A)− f1(A)

Y A . (50)

Boole’s use of such indicated quotients has exercised his critics more, probably, than
any other of his apparent faults. He does not intend f0(Y )

f0(Y )− f1(Y )
, however, to signify

an algebraic fraction. Rather, “the operation of division cannot be performed with
the symbols with which we are now engaged. Our resource, then, is to express the
operation, and develop the result” (LT, p. 89). It is more convenient, that is, to
develop an ordered pair, expressed as a quotient as shown in (50), than to develop
the two sides of (49) separately.

Boole bases the allocation of constituents on four “canons” (LT, p. 92), shown
below. These assign each constituent, Y A, to one of the summations in (48), or to
none, based on the value of f0(A)

f0(A)− f1(A)
.

1st. The symbol 1 [i.e., n
n , n 6= 0], as the coefficient of a term in a develop-

ment, indicates that the whole of the class which that constituent represents, is
to be taken.

2nd. The coefficient 0 [i.e., 0
n , n 6= 0], indicates that none of the class are to

be taken.

3rd. The symbol 0
0 indicates that a perfectly indefinite portion of the class, that

is, some, none, or all of its members are to be taken.

4th. Any other symbol as a coefficient indicates that the constituent to which
it is prefixed must be equated to 0.18

Table 1 shows the dependence of f0(A)
f0(A)− f1(A)

on f0 and f1 for Boole’s four cases
(m and n in the table are distinct nonzero integers). The case numbers correspond to
Boole’s, except that the table lists two possibilities for Case 4. Boole seeks only
interpretable solutions; thus, noting Proposition 3.2, only constituents for which
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f0(A) f1(A) = 0 (i.e., Cases 1, 2, or 3) may contribute to (46) in the general so-
lution. Case 2 constituents, however, are discarded. Case 4 constituents are assigned
to (47), the consistency-condition.

Case 4b shows that solutions of f (x, Y ) = 0 may exist if f0(A) f1(A)
6= 0 for one or more A ∈ {0, 1}

n . By Proposition 3.2, such solutions are not
interpretable.19

Case f0(A) f1(A) ( f0(A)− f1(A)) g(A) = f0(A) g(A)
1. n 0 ng(A) = n 1
2. 0 n −ng(A) = 0 0
3. 0 0 0 = 0 arbitrary

4a. n n 0 = n impossible
4b. n m (n − m)g(A) = n n/(n − m)

Table 1 Dependence of g(A) =
f0(A)

f0(A)− f1(A)
on f0(A) and f1(A).

Proposition 3.6 Boole’s parameter-based solution, (46, 47), of (31) is expressed
in terms of f ∗ (the interpretable image of f ) as follows:20

x = f ∗(0, Y ) f ∗(1, Y )+ v(Y ) f ∗(0, Y ) f ∗(1, Y ) (51)

0 = f ∗(0, Y ) f ∗(1, Y ). (52)

Proof Comparing Boole’s canons with Table 1,

Case 1: r(Y ) =
∑

A∈{0,1}
n

f0(A)6=0
f1(A)=0

Y A
=

∑
A∈{0,1}

n

f0(A) 6=0
Y A ∑

B∈{0,1}
n

f1(B)=0
Y B

Case 3: s(Y ) =
∑

A∈{0,1}
n

f0(A)=0
f1(A)=0

Y A
=

∑
A∈{0,1}

n

f0(A)=0
Y A ∑

B∈{0,1}
n

f1(B)=0
Y B

Case 4: t (Y ) =
∑

A∈{0,1}
n

f0(A)6=0
f1(A)6=0

Y A
=

∑
A∈{0,1}

n

f0(A) 6=0
Y A ∑

B∈{0,1}
n

f1(B)6=0
Y B

Thus r(Y ) = f ∗(0, Y ) f ∗(1, Y )

s(Y ) = f ∗(0, Y ) f ∗(1, Y )

t (Y ) = f ∗(0, Y ) f ∗(1, Y ).

�

It remains to show that Boole’s solution, (51, 52), of f (x) = 0 is a general solution
of that equation, that is, that it satisfies condition (37).

Proposition 3.7 (51, 52) is a parametric general solution of f ∗(x) = 0.

Proof (∃v ∈ I )[x = ϕ(v)] ⇐⇒ (ϕ(0)x̄ + ϕ(0)x)(ϕ(1)x̄ + ϕ(1)x) = 0 (Proposi-
tion 3.2) ⇐⇒ ϕ(0)ϕ(1)x̄ + ϕ(0)ϕ(1)x = 0. Let ϕ(v) = f ∗

0 f ∗

1 + v f ∗

0 f ∗

1 . Then
ϕ(0) = f ∗

0 (1 − f ∗

1 ) = f ∗

0 − f ∗

0 f ∗

1 = f ∗

0 (invoking (52)) and ϕ(1) = f ∗

0 (1 − f ∗

1 ) +
(1 − f ∗

0 )(1 − f ∗

1 ) = ( f ∗

0 + 1 − f ∗

0 )(1 − f ∗

1 ) = (1 − f ∗

1 ). Thus (∃v)[x = ϕ(v)] ⇐⇒

f ∗

0 (1 − f ∗

1 )x̄ + (1 − f ∗

0 ) f ∗

1 x = 0 ⇐⇒ f ∗

0 x̄ + f ∗

1 x = 0 ⇐⇒ f ∗(x) = 0. �



Boole’s Deductive System 321

3.4.2 Inclusive form The final step of Boole’s inferential process is to transform
his parametric general solution to inclusive form. To gain insight into Boole’s ap-
proach, we consider two instances in LT of such transformation. The first concerns
class- (primary) logic:

The equation [w = stp + 0
0 st (1 − p), where 0

0 is an arbitrary in-
terpretable parameter] may be interpreted in the following manner:
Wealth is either limited in supply, transferrable, and productive of
pleasure, or limited in supply, transferrable, and not productive of
pleasure. And reversely, whatever is limited in supply, transferrable,
and productive of pleasure is wealth. Reverse interpretations, similar
to the above, are always furnished when the final development intro-
duces terms having unity as a coefficient. (LT, p. 112)

Thus w = stp + 0
0 st p is transformed into stp ⊆ w ⊆ (stp ∪ st p).

The second instance concerns propositional (secondary) logic:
Principle.—Any constituent term or terms in a particular member of an equa-
tion which have for their coefficient unity, may be taken as the antecedent of a
proposition, of which all the terms in the other member form the consequent.

Thus the equation

y = xz + vx(1 − z)+ (1 − x)(1 − z)

would have the following interpretations:

Direct Interpretation.—If the proposition Y is true, then either X and Z are
true, or X is true and Z false, or X and Z are both false.

Reverse Interpretation.—If either X and Z are true, or X and Z are false, Y
is true.

The aggregate of these partial interpretations will express the whole sig-
nificance of the equation given. (LT, p. 173)

Thus y = xz + x̄ z̄ + vx z̄ is transformed into xz ∨ x̄ z̄ → y → xz ∨ x̄ z̄ ∨ x z̄. We
conclude from the foregoing illustrations that Boole transforms (51, 52) into verbal
statements corresponding to the inclusive form,

f ∗(0) f ∗(1) ≤ x ≤ f ∗(0) f ∗(1)+ f ∗(0) f ∗(1) (53)

f ∗(0) f ∗(1) = 0 . (54)

Boole does not include a symbol for the arithmetic order-relation in LT. That omis-
sion, together with his being unaware, apparently, of the closed form (51, 52), forces
Boole to express (53, 54) verbally, and by means of examples.

Proposition 3.8 System (53, 54) is an inclusive general solution of f ∗(x) = 0.

Proof (54) H⇒
[
[ f ∗(0) f ∗(1) = f ∗(0) ] and [ f ∗(0) f ∗(1) + f ∗(0) f ∗(1) =

f ∗(1) ]
]
. Thus (53) ⇐⇒ [ f ∗(0) ≤ x ≤ f ∗(1) ] ⇐⇒

[
[ x̄ f ∗(0) = 0 ] and

[ x f ∗(1) = 0 ]
]
⇐⇒ [ f ∗(x) = 0 ] (Propositions 2.4 and 2.8). �

4 The General Method

The steps in Boole’s general method are summarized in Figure 1. To illustrate the
method, we follow Boole’s solution of one part of Example 5, Chapter IX (LT,
p. 146). As noted in Section 1.2, this example was used by nineteenth-century logi-
cians as the acid test for their methods.
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1. Translation Express the premises, involving logical symbols
x, y1, . . . , ym, z1, . . . , zn , by a system

g1(x, y1, . . . , ym, z1, . . . , zn) = 0
...

gp(x, y1, . . . , ym, z1, . . . , zn) = 0
of proto-Boolean equations.

2. Reduction Condense to a single equivalent equation:
g(x, Y, Z) = 0

3. Elimination Deduce a general consequent not involving Z:
f (x, Y ) = 0

4. Parametric Construct a formally-interpretable parametric
General general solution for x ,
Solution x = r(Y )+ v(Y ) s(Y )

0 = t (Y ),
of the equation in Step 3, where v is an arbi-
trary interpretable p-function and rs = 0.

5. Inclusive Using the functions r, s, and t derived in Step
General 4, express the general solution as
Solution r(Y ) ≤ x ≤ r(Y )+ s(Y )

t (Y ) = 0
(Boole states this result verbally.)

Figure 1 Steps in Boole’s general method.

Example 5 (Venn’s statement [54], p. 351, of Boole’s Example 5, changing Venn’s u
to Boole’s v) Let the observation of a class of natural productions be supposed to
have led to the following general results.

1. Wherever x and z are missing, v is found, with one (but not both)
of y and w.

2. Wherever x and w are found while v is missing, y and z will both
be present or both absent.

3. Wherever x is found with either or both of y and v there will z or
w (but not both) be found, and conversely.

Boole specifies that v (an ordinary symbol, not a parameter, in this example) is to be
eliminated and poses two problems based on the result: first, that x be concluded in
terms of w, y, and z; second, that y be concluded in terms of w, x , and z. We study
the second problem.

Boole expresses the premises by

x̄ z̄ = qv(w̄y + w ȳ)
v̄wx = q(yz + ȳ z̄)

xy + vx ȳ = wz̄ + w̄z
(55)

where q is an arbitrary parameter and v̄, w̄, . . . , stand for 1 − v, 1 − w, . . . .
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4.1 Translation Following Rule (2), Boole translates (55) to the system

x̄ z̄(1 − v(w̄y + w ȳ)) = 0
v̄wx(ȳz + yz̄) = 0

(xy + vx ȳ)(w̄z̄ + wz)+ (1 − xy − vx ȳ)(wz̄ + w̄z) = 0 .
(56)

(Boole writes x ȳ + x̄ y and x̄ ȳ + xy, rather than 1 − (x̄ ȳ + xy) and 1 − (x ȳ + x̄ y),
respectively, assuming the simpler forms to be familiar to the reader.)

4.2 Reduction The equations in (56) are formally interpretable; hence they are
composable. They may therefore be combined into an equivalent single equation by
simple addition (Proposition 2.10). (Noncomposable equations can be made com-
posable using Boole’s method of squaring, cf. Proposition 2.12.) System (56) is
therefore equivalent to g = 0, where

g = x̄ z̄(1 − v(w̄y + w ȳ))+ v̄wx(ȳz + yz̄)+ (xy + vx ȳ)(w̄z̄ + wz)

+ (1 − xy − vx ȳ)(wz̄ + w̄z). (57)

4.3 Elimination The resultant of elimination of v from g(v,w, x, y, z) = 0 is
the most general consequent of that equation not involving v (Proposition 2.14).
Boole develops (57) partially with respect to y; namely, g = (1 − y)g0(v,w, . . .) +

yg1(v,w, . . .), where g0 = g(v,w, x, 0, z) and g1 = g(v,w, x, 1, z); that is,

g0(v,w, . . .) = x̄ z̄(1 − vw)+ v̄wxz + vx(w̄z̄ + wz)+ (1 − vx)(wz̄ + w̄z)

g1(v,w, . . .) = x̄ z̄(1 − vw̄)+ v̄wx z̄ + x(w̄z̄ + wz)+ x̄(wz̄ + w̄z) .

Applying Proposition 2.15 (LT, Chap. IX, Prop. III), Boole expresses the resultant
of elimination of v from g = 0 as f = 0, where f is given by

f = (1 − y)g0(0, w, . . .)g0(1, w, . . .)+ yg1(0, w, . . .)g1(1, w, . . .)

= (1 − y) [(x̄ z̄ + wxz + wz̄ + w̄z)(w̄x̄ z̄ + x(w̄z̄ + wz)+ x̄(wz̄ + w̄z))]

+ y [(x̄ z̄ + wx z̄ + x(w̄z̄ + wz)+ x̄(wz̄ + w̄z))

(wx̄ z̄ + x(w̄z̄ + wz)+ x̄(wz̄ + w̄z))] .

Thus the simplified resultant is

(1 − y)(w̄x̄ z̄ + w̄x̄ z + 2wx̄ z̄ +wxz)+ y(w̄x̄ z + w̄x z̄ + 4wx̄ z̄ +wxz) = 0. (58)

4.4 Solutions

4.4.1 Boole’s parametric general solution Boole converts coefficients 2 and 4 in
(58) to unity (cf. Prop. 3.1) and solves the resulting equation for y:

y =
w̄x̄ z̄ + wx̄ z̄ + w̄x̄ z + wxz

w̄x̄ z̄ − w̄x z̄
.

In developed form,

y = w̄x̄ z̄
[

1
1

]
+ w̄x̄ z

[
1
0

]
+ w̄x z̄

[
0

−1

]
+ w̄xz

[
0
0

]
+

wx̄ z̄
[

1
0

]
+ wx̄ z

[
0
0

]
+ wx z̄

[
0
0

]
+ wxz

[
1
0

]
.

From Boole’s four canons (Section 3.4.1), he derives the solution
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y = w̄x̄ z̄ +
0
0 (wx̄ z + wx z̄ + w̄xz) (7)

wxz = 0 (8)
wx̄ z̄ = 0 (9)
w̄x̄ z = 0 (10)

(LT, p. 148, Boole’s numbering); 0
0 is an arbitrary interpretable parameter.

4.4.2 Boole’s inclusive general solution (In quoting Boole’s inclusive solution,
we omit his translation of w, x, y, and z into D, A, B, and C , respectively.) Boole
first analyzes his condition (10): “If property x is absent and z is present, w is
present.” He then accounts for the remainder of the solution:

1st. If the property y be present in one of the productions, either the prop-
erties w, x, and z are all absent, or some one alone of them is absent. And
conversely, if they are all absent it may be concluded that the property y is
present (7).

2nd. If x and z are both present or both absent, w will be absent, quite
independently of the presence or absence of y (8) and (9).

(LT, p. 149)

Expressed symbolically:

w̄x̄ z̄ ≤ y ≤ w̄x̄ z̄ + w̄xz + wx̄ z + wx z̄ (7)
x̄ z̄ + xz ≤ w̄ (8), (9)

x̄ z ≤ w (10)

The inclusive general solution is the final step in Boole’s general method. It is dis-
cussed in a variety of Boole’s examples (LT, pp. 112, 120, 129, 149, 173, 222),
including the widely cited Example 5, and is the form used exclusively by the suc-
cessors of Boole cited earlier, beginning with Jevons [26] (who states only the direct
interpretation). It is also more prominent than the parametric form in the contempo-
rary theory of Boolean equations [7; 45]. Nevertheless, it has been little noticed by
critics of LT, who discuss the parametric form almost exclusively—perhaps because
of Boole’s verbal, rather than symbolic, expression of the inclusive form.21

Notes

1. George Boole’s published works on logic are The Mathematical Analysis of Logic
(MAL) [2] in 1847, “The calculus of logic” [3] in 1848, and An Investigation of the
Laws of Thought (LT) [4] in 1854. The first fifteen chapters of LT are devoted to
logic: Chapters I–X treat class (“primary”) logic; Chapters XI–XIV treat propositional
(“secondary”) logic, and Chapter XV discusses the syllogistic logic of Aristotle. The
remaining seven chapters concern probability.

2. Cited by Wood [56, p. 67].

3. See Burris [11, p. 105] for further analysis of Boole’s work in a presentation “quite close
to that of Hailperin.” Burris notes, “We do not know of any such scholarly evaluation of
Boole’s work that was available before Hailperin’s book.”

4. The term “general method in Logic” appears several times in LT (pp. 7–10, 70) but is
not given a definite meaning. We follow van Evra [53, p. 366] in taking it to mean the
deductive procedure presented in Chapters V ff. of LT.
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5. Boolean-equation theory, in the modern sense, originates with McColl [38; 39] and
Peirce [43] and is treated at length in Schröder [47, Vol. 1]. Later works include Coutu-
rat [15], Löwenheim [35], Lewis [33], Jørgensen [27], Rudeanu [45], and Brown [7].

6. See Schroeder-Heister [48] concerning Frege’s analysis of Boole’s Example 5.

7. Cited by Ladd [30, p. 58].

8. Burris [10] demonstrates that a slight modification of Boole’s algebra allows particular
categorical statements to be handled in an equational system.

9. It is not clear in the sources available to us (a summary by Beth [1, pp. 65 and 66],
and a brief review [28]) whether Hoff-Hansen or Skolem related his system to Boole’s
calculus.

10. Applications in operations research are based on pseudo-Boolean functions [23; 22]
(see [5] for a survey). Engineering applications are discussed by Papaioannou and Bar-
rett [42] (who call a proto-Boolean polynomial the “real transform” of a Boolean func-
tion) and by Schneeweiss [46] (“the (true) polynomial form”). The latter text restricts
variable-values (but not coefficients) to the integers 0 and 1, noting that such variables
“allow for the use of standard algebra to write Boolean functions; George Boole did this”
(p. v).

11. Hailperin’s formalization of Boole’s logic [21, Chap. 2] is solely in terms of functions.
Thus x , y, and so on, are defined on p. 142 as variables ranging over I .

12. Hailperin’s form of Prop. 2.2 [21, Theorem 2.33]) restricts X to I n .

13. See Rudeanu [45, pp. 99 and 100] for the Boolean version of the verification theo-
rem, first stated in 1901 as Müller’s “Verifikationstheorem” [40] and discussed later in
Müller’s “Abriss” to Schröder [47, Vol. 3, Section 126]. Löwenheim [35] quotes it as
his Proposition 14b: “We can discover whether an equation or subsumption in which
x1, x2, . . . xn appear is valid in general by whether it is valid for any system of values 0,
1 of the domains x1, x2, . . . , xn .”

14. The members of (In, +̇, ×̇, ¯, 0, 1) and (Sn,∪,∩,
′,∅,U ) are examples of what

Rudeanu [45, pp. 17 and 23] calls simple Boolean functions. The defining property
of a simple Boolean function, f : Bn

→ B , is that f (A) ∈ {0, 1} for all A ∈ {0, 1}
n .

Thus f is expressed by a development not involving constants, other than 0 and 1, from
B. The distinction between Boolean and simple Boolean functions seems to have been
made first in [44], where the latter are called “Boolean functions in the restricted sense.”

15. Boole rejected a suggestion in 1848 to include > in his system [50, p. 32].

16. In accord with modern usage [45, p. 62], we call f (0) f (1) = 0 the resultant (rather than
Boole’s “result”) of elimination of x from f (x) = 0.

17. Called a subsumptive general solution in [9] in the context of Boolean algebra.

18. Styazhkin [52, p. 184] takes canon 4 to mean the constituent is “discarded.”
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19. Taking note of the cases listed in Table 1, it can be shown that for all f ∈ P̂n ,
f (x, Y ) = 0 possesses a solution in Pn , not just in I n , if and only if the condition

(∀A ∈ {0, 1}
n−1)

 f0(A) f1(A) = 0 (Cases 1,2,3)
or

f0(A) f1(A) 6= 0 and
∣∣∣ f0(A)− f1(A)

d(A)

∣∣∣ = 1 (Case 4b)


is satisfied, where d(A) = gcd( f0(A), f1(A)).

Consider f (x, y) = 2−2x+xy, for which f0(y) = 2 and f1(y) = y. Proposition 3.2
does not apply, because f0(y) f1(y) 6= 0; however, the foregoing condition is satisfied;
that is, f0(0) f1(0) = 0 and f0(1)− f1(1)

d(1) =
2−1

1 = 1. Thus a solution of f (x, y) = 0 is

x = g(y) = (1 − y)[ f0(0)
f0(0)− f1(0)

] + y[
f0(1)

f0(1)− f1(1)
] = (1 − y)[ 2

2−0 ] + y[
2

2−1 ] = 1 + y.

20. The representation x = f ∗
0 f ∗

1 + v f ∗
0 f ∗

1 for Boole’s parameter-based solution has been
given (without proof and without requiring f to be interpretable) by Feys [18, p. 110].
It is surprising that Boole, who employs f0 and f1 extensively and with extraordinary
insight, does not mention this representation.

21. In a note added to Chapter 2 of [21], Hailperin cites inclusive interpretations in an ex-
ample on p. 222 of LT.
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