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Times in Tense Logic

Ulrich Meyer

Abstract Tense logic is often said to possess insufficient expressive resources
to serve as a theory of the nature of time. This paper counters this objection
by showing how to obtain quantification over times in a tense logic in which all
temporal distinctions are ultimately spelled out in terms of the two simple tense
operators “it was the case that” and “it will be the case that.” This account of
times is similar to what is known as “linguistic ersatzism” about possible worlds,
but there are noteworthy differences between these two cases. In particular, while
linguistic ersatzism would support actualism, the view of times defended here
does not support presentism.

1 Introduction

I am interested in the question of whether a simple tense logic with two conceptually
primitive tense operators ‘P’ (“it was the case that”) and ‘F’ (“it will be the case that”)
can serve as a metaphysical theory of the nature of time.1 Unlike rival accounts,
such a tense primitivism has no ontological commitments of a specifically temporal
nature; all its commitments are “ideological” in the sense of Quine [23].

One might wonder how such an account of time could be reconciled with the
theory of relativity, and one might also have worries about intensional theories more
generally. What I am concerned with here, though, is a purely logical objection to
tense primitivism. Just as there is more to modality than can be expressed in terms
of the possibility operator ‘♦’ alone, it is often said that tense logic has insufficient
expressive resources to serve as a theory of time ([1], [3]). There are temporal claims
that resist regimentation in terms of tense operators, but which are easily accounted
for by rival theories that make use of explicit quantification over times, such as the
temporal substantivalism endorsed by Mellor [16].

In this paper, I show how the tense primitivist can overcome these problems by
acquiring the ability to talk about times himself. Of course, without abandoning his
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project of spelling out all temporal distinctions in terms of his primitive tense oper-
ators, the tense primitivist cannot regard times as metaphysically basic entities. He
must take times to be certain abstractions. In this regard, he is in a similar position
as temporal relationists like Russell [27], who take times to be maximal sets of si-
multaneous events. But since the basic building blocks of tense primitivism are tense
operators rather than temporal relations, it needs a different type of abstraction. The
method I want to advocate takes times to be maximal consistent sets of sentences.

2 A Simple Tense Logic

Take a standard language of propositional logic with logical constants ‘¬’ and ‘→’,
and reserve its sentences for making claims about what is presently the case. To
report what is true at other times, add the tense operators ‘P’ and ‘F’. It is also con-
venient to introduce ‘H’ (“it has always been the case that”) as an abbreviation for
‘¬P¬’ and ‘G’ (“it will always be the case that”) as shorthand for ‘¬F¬’. Then the
simple system of tense logic Z (Zeitlogik) consists of a standard system of proposi-
tional logic plus the following axioms and rules of temporal generalization:

H(ϕ → ψ) → (Hϕ → Hψ) G(ϕ → ψ) → (Gϕ → Gψ)
If ` ϕ then ` Hϕ If ` ϕ then ` Gϕ.

One can think of Z as consisting of two copies of the simple modal system K. The
tense operators ‘H’ and ‘G’ play the role of the necessity operator, and ‘P’ and ‘F’
that of the possibility operator.

The model theory for Z is a doubled-up version of the model theory for modal
logic. A model for tense logic is a quintuple M = 〈T, p, <,>,@〉 that consists of a
set T of objects called “times,” an element p of T chosen as “present time,” and an
“earlier than” relation< and a “later than” relation> on T . The latter can be thought
of as “accessibility relations” for ‘P’ and ‘F’, respectively. There is also a “true at”
relation @ between sentences and times that is required to satisfy

@(p¬ϕq, t) iff it is not the case that @(ϕ, t);
@(pϕ → ψq, t) iff either @(p¬ϕq, t) or @(ψ, t);
@(pPϕq, t) iff @(ϕ, t ′) for some t ′ ∈ T such that t ′ < t;
@(pFϕq, t) iff @(ϕ, t ′) for some t ′ ∈ T such that t ′ > t.

(1)

A sentence ϕ is true in the model M if and only if it is true at its present time,
@(ϕ, p), and it is valid just in case it is true in all models.

By plagiarizing the proof of the soundness and completeness theorem for K, one
can then show that the theorems of tense logic coincide with the valid sentences.

Proposition 2.1 (Model Completeness) A sentence is a theorem of Z if and only if
it is true in all models.

Just as the completeness theorem for K does not require the accessibility relation in
models of modal logic to possess any special properties, Z does not put any restric-
tions on the earlier-than and later-than relations. It does not even require that one is
the converse of the other, or that both are transitive. It also tells us nothing about the
denseness, completeness, and comparability of these relations, but there are exten-
sions of Z that impose more stringent conditions. For example, let Z+ be the system
of tense logic obtained by adding the following axioms to Z :

PPϕ → Pϕ FFϕ → Fϕ.
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This requires the earlier-than and later-than relations to be transitive.

Proposition 2.2 (Model Completeness) A sentence is a theorem of Z+ if and only
if it is true in all models in which < and > are transitive.

Similarly, one can ensure that < and > are converses of each other by adopting

ϕ → HFϕ ϕ → GPϕ.

There is a whole range of results of this type, which identify structural properties of
< and > with characteristic axiom schemata for tense logic ([7], [2]):

Denseness Pϕ → PPϕ Fϕ → FFϕ
Discreteness (ϕ ∧ Hϕ) → FHϕ (ϕ ∧ Gϕ) → PGϕ
Comparability (Pϕ ∧ Pψ) → (P(ϕ ∧ ψ) ∨ P(ϕ ∧ Pψ) ∨ P(Pϕ ∧ ψ))

(Fϕ ∧ Fψ) → (F(ϕ ∧ ψ) ∨ F(ϕ ∧ Fψ) ∨ F(Fϕ ∧ ψ))

Completeness (Fϕ ∧ FG¬ϕ) → F(HFϕ ∧ G¬ϕ)

(Pϕ ∧ PH¬ϕ) → P(GPϕ ∧ H¬ϕ)

Endpoints H⊥ ∨ PH⊥ G⊥ ∨ FG⊥

No Endpoints ϕ → PFϕ ϕ → FPϕ

These are promising results, but in other respects the expressive capacity of
tense logic appears to be lacking. In propositional logic, there are choices of truth-
functional connectives, such as ‘¬’ and ‘→’, that are definitionally complete in that
all other connectives of the same type can be expressed in terms of them. There is
no comparable result in tense logic, where the tense operators ‘P’ and ‘F’ are easily
seen to be definitionally incomplete.

One cluster of problems is given by binary tense operators like “since” and “until.”
In the model theory, these operators can be characterized via

@(pSψϕq, t) iff @(ϕ, t ′) for some t ′ < t and
@(ψ, t ′′) for all t ′ < t ′′ < t;

@(pUψϕq, t) iff @(ϕ, t ′) for some t ′ > t and
@(ψ, t ′′) for all t ′ > t ′′ > t.

(2)

Kamp [12] proves that one cannot define these operators in terms of ‘P’ and ‘F’
alone. These two monadic operators only care about whether a time is past or future
at all, and to account for ‘S’ and ‘U’ one needs to be able to tell whether one time is
more future or past than another.2

Similar problems arise for tense operators that are two-dimensional in the sense
of Segerberg [28]. One example is the “now” operator, which permits one to evaluate
sentences at the present time of a model even if they occur within the scope of other
tense operators:

@(pNϕq, t) iff @(ϕ, p).

Kamp [13] shows that this operator is redundant in propositional tense logic, where
its work is already done by the convention that untensed sentences make claims about
what is presently the case. But the following example is said to show that the case of
a quantified tense logic is different:

A child was born that will become ruler of the world.
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With the help ‘N’, this is easily formalized as ‘P∃x (Bx ∧ NFRx)’. Kamp argues
that it cannot be rendered without it.

Both problems have modal counterparts. There are binary modal operators, such
as the counterfactual conditional ([15], sec. 5.2), that cannot be analyzed in terms
of the simple possibility operator ‘♦’ alone because they require a notion of com-
parative possibility. The modal analogue of “now” is the two-dimensional actuality
operator. This operator is known to be redundant in propositional modal logic [9],
but is said to be ineliminable in quantified modal logic ([8], [4], [11]).

It is tempting to brush off these problems by replying that ‘P’ and ‘F’ are just
a poor choice of primitive tense operators. This may be true, but it does not go to
the heart of the matter. Similar problems keep cropping up. Vlach [29] presents a
sentence that requires the introduction of yet another operator, the two-dimensional
“then” operator ‘T’:

One day, all persons alive then would be dead.

Van Benthem [1] takes it one step further by giving an example of a sentence that
cannot even be formalized in terms of all of ‘P’, ‘F’, ‘N’, and ‘T’. There appears
to be no finite set of tense operators that is definitionally complete. If that is right
then tense logic suffers from a principled limitation in its expressive capacity. The
problem is not that tense primitivism says anything false about time but that it says
too little. There is a wide range of temporal claims that the tense primitivist cannot
pass judgment on because he is unable to formulate them in his tense logic.

However, the interpretation of these inexpressibility results is not quite as straight-
forward as is sometimes suggested. When considering the definitional completeness
of truth-functional connectives, one is asking whether any such connective can be
expressed in term of certain other connectives of the same type. Nobody would ex-
pect all tense operators to be expressible in terms of the monadic operators ‘P’ and
‘F’ alone. Strings of these operators are again monadic operators, and it is trivially
true that one cannot define operators of higher adicity in this way. The interesting
question is whether one can express all other tense operators in terms of ‘P’ and ‘F’
plus the resources of a suitably chosen background logic. This means that expres-
sive shortcomings might be due to the background logic rather than to the choice of
primitive tense operators.3

I want to show that ‘P’ and ‘F’ are indeed sufficient to express everything a tense
primitivist would want to say about time, provided he is given the resources neces-
sary to abstract times from them. Just as a temporal relationist needs some set theory
to construct times as classes of simultaneous events, the tense primitivist needs a
stronger background logic to develop an account of times that suits his needs. As
long as this additional structure does not expand the temporal ideology and ontology
of the account, this does not undermine his central thesis that tense operators can
capture everything there is to be said about time.

I shall first present a suitable abstraction method for the weak tense logic Z and
then extend it to stronger systems.

3 Times as Abstractions

The model theory for Z talks about “times,” but this is of little use to the tense
primitivist. The aim of model theory is to characterize the set of theorems, and
for that purpose the precise nature of the elements of the models is quite irrelevant.
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All the logical work is being done by the restrictions that (1) imposes on the true-at
relation @. It does not matter what one chooses as elements of T , as long as there
are enough of them. Of course, one would also expect there to be an intended model
of tense logic that is made up of genuine times (whatever that amounts to), but even
in that case (1) would at best allow one to spell out the tense operators in terms of
the times in the intended model. What is at issue here is the exact converse. The task
for the tense primitivist is to explain what times are in terms of his tense operators.

The account I want to propose is similar to the modal view of linguistic ersatzism,
which regards possible worlds as maximal consistent sets of sentences of modal
logic [26]. A set of sentences s is maximal if and only if, for every sentence ϕ,
either ϕ ∈ s or p¬ϕq ∈ s. Given a logical system S, such a set is S-consistent if and
only if there are no α1, . . . , αk ∈ s such that ` ¬(α1 ∧ · · · ∧ αk), where ‘`’ denotes
derivability in S. It is easy to show that maximal S-consistent sets are closed under
derivability in S:

If 3 ⊆ s and 3 ` ϕ then ϕ ∈ s. (3)

Any sentence that follows from a subset of a maximal consistent set s is therefore
contained in s as well. Say that a sentence ϕ is true in s if and only if ϕ ∈ s. Then a
maximal S-consistent set is just a way of assigning truth-values to sentences that is
compatible with the S-logical relations between them. The linguistic ersatzer takes S
to be a suitable system of modal logic and then proposes maximal S-consistent sets
as candidates for possible worlds.

In the temporal case, a tense primitivist could try to treat times as possible
presents, which are maximal Z-consistent sets of sentences of tense logic. The
technical details of this abstraction are largely the same as for linguistic ersatzism
about possible worlds, but there is one crucial difference. While every maximal
consistent set of sentences of modal logic qualifies as a possible world, not every
maximal consistent set of sentences of tense logic counts as a time. At best, times
are those possible presents that did, do, or will happen, and some of them never
do. Since it is a contingent fact which possible presents are times, their abstraction
requires an additional step. After the construction of possible presents, one still
needs to determine which of them are times.

Here is how this can be done. Let an interpretation of tense logic be a fixed but
arbitrary choice of possible present p that is being put forward as the actual present.
(The way I am using these terms here, the “interpretations” and “models” of tense
logic are different types of entities; Section 4 explains how the two are related.) Since
p itself is meant to describe how things presently are, it will serve as the present time
of the time-series. But since p is maximal consistent, it also specifies what all the
other times are like. Hidden within the scope of the tense operators in the sentences in
p, one can find a description of the rest of the time-series. To extract this information,
let me define earlier-than and later-than relations ‘C’ and ‘B’ on sets of sentences.

t C t′ iff pPϕq ∈ t′ for all ϕ ∈ t; t B t′ iff pFϕq ∈ t′ for all ϕ ∈ t.

The sets that enter into these relations may be Z-consistent and maximal, but the
definition does not assume that they are. The relations ‘C’ and ‘B’ must not be
confused with the ‘<’ and ‘>’ of the model theory.

Since there are maximal Z-consistent sets of sentences that contain neither pPϕq
nor pFϕq for all ϕ, there is no guarantee that there are any sets that are earlier or later
than a given interpretation, let alone maximal consistent ones. But one can prove
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the following important result, which ensures that the tense primitivist always gets
as many times as he needs. If a possible present p contains a past (or future) tense
claim then there is a possible present that is earlier (or later) than p.

Proposition 3.1 Let p be a possible present and ϕ a sentence.
1. pPϕq ∈ p iff there is a possible present t such that t C p and ϕ ∈ t.
2. pFϕq ∈ p iff there is a possible present t such that t B p and ϕ ∈ t.

Proof Before starting with the proof itself, let me note two useful facts that can be
established by copying the corresponding proofs for the modal system K. The first is
that the tense operators are propositional connectives that always take the same truth
values on logically equivalent sentences:

If ` ϕ → ψ then ` Pϕ → Pψ and ` Fϕ → Fψ. (4)

The second useful fact is that both ‘P’ and ‘F’ distribute over disjunctions:

` P(ϕ ∨ ψ) ↔ (Pϕ ∨ Pψ) ` F(ϕ ∨ ψ) ↔ (Fϕ ∨ Fψ). (5)

One would get an even weaker system than Z by using (4) in place of the temporal
generalization rules, but that system turns out to be too weak for current purposes.

Turning now to the proof of the proposition, it clearly suffices to prove the first
claim. The second one could then be shown in an exactly parallel manner, by replac-
ing ‘P’ and ‘C’ with ‘F’ and ‘B’, respectively. Moreover, the right-to-left direction
of the first biconditional is trivial. Suppose that there is a maximal Z-consistent t
such that t C p and ϕ ∈ t. By definition of ‘C’, it follows that pPϕq ∈ p.

The nontrivial part of the proof is the left-to-right direction. Suppose that
pPϕq ∈ p. It needs to be shown that there is a set t that is maximal, consistent,
earlier than p, and contains ϕ. To prove this, let ψ1, ψ2, . . . be an enumeration of the
sentences of the language. (It is important for the proof that the language of tense
logic be countable.) Given any finite set of sentences s, let p

∧
sq be the conjunction

of the elements of s. Since conjunctions commute and since the tense operators
satisfy (4), the order in which one conjoins the elements of s does not matter for the
proof. Now consider the following sequence of sets:

t0 = {ϕ} tn+1 =

{
tn ∪ {ψn} if pP(

∧
tn ∧ ψn)q ∈ p

tn ∪ {p¬ψnq} otherwise.

The union t =
⋃

i∈N ti is then a possible present with the desired properties. By
construction, t is maximal and it contains ϕ. It remains to be shown that it is Z-
consistent and that it is earlier than p.

Let me first show that t is earlier than p. Given any λ ∈ t, it needs to be shown that
pPλq ∈ p. By construction of t, there is some n such that λ ∈ tn . Since `

∧
tn → λ

by truth-functional logic, (4) yields

` P
∧

tn → Pλ.

In light of (3), it would suffice to show that p contains the antecedent of this con-
ditional. In that case, p would also have to contain the consequent. There is no
general method for determining the value of n for an arbitrary λ, but that does
not matter. By induction on n, one can show that pP

∧
tnq ∈ p for all n. The

base case of n = 0 is trivial because t0 = {ϕ} and pPϕq ∈ p by assumption.
For the inductive step, assume that pP

∧
tnq ∈ p. Then either pP(

∧
tn ∧ ψn)q
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is contained in p, or it is not. If it is, then tn+1 = tn ∪ {ψn} and it trivially fol-
lows that pP

∧
tn+1q ∈ p. Otherwise, tn+1 = tn ∪ {p¬ψnq} and it needs to be

shown that pP(
∧

tn ∧ ¬ψn)q ∈ p. One can prove this by contradiction. Sup-
pose that both pP(

∧
tn ∧ ψn)q 6∈ p and pP(

∧
tn ∧ ¬ψn)q 6∈ p. By maximality

of p, this means that both p¬P(
∧

tn ∧ ¬ψn)q ∈ p and p¬P(
∧

tn ∧ ψn)q ∈ p
must be the case, and hence p¬(P(

∧
tn ∧ ¬ψn) ∨ P(

∧
tn ∧ ψn))q ∈ p by

(3). With (5), this yields p¬P((
∧

tn ∧ ¬ψn) ∨ (
∧

tn ∧ ψn))q ∈ p. Since
`

∧
tn → ((

∧
tn ∧ ¬ψn) ∨ (

∧
tn ∧ ψn)) by truth-functional logic, this yields

p¬P
∧

tnq ∈ p by (4) and (3). Given that p is Z-consistent, this contradicts the
inductive assumption that pP

∧
tnq ∈ p, and it follows that pP

∧
tn+1q ∈ p. Hence

pPλq ∈ p and thus t C p.
To prove that t is also Z-consistent, suppose that it is not. Then there are sentences

α1, . . . , αk ∈ t such that ` ¬(α1 ∧ · · · ∧ αk), which entails ` H¬(α1 ∧ · · · ∧ αk)
by temporal generalization. (This is where one needs the temporal generaliza-
tion rules rather than the weaker principle (4).) The definition of ‘H’ then yields
` ¬P(α1 ∧ · · · ∧ αk) and thus p¬P(α1 ∧ · · · ∧ αk)q ∈ p by (3). But that cannot be
the case. By construction of t, there must be some tn that contains all the αi , and for
which `

∧
tn → (α1 ∧ · · · ∧ αk). Hence ` P

∧
tn → P(α1 ∧ · · · ∧ αk) by (4). In

establishing the pastness of t, it was shown that pP
∧

tnq ∈ p for all n, which entails
pP(α1 ∧ · · · ∧ αk)q ∈ p by (3), which means that p is not Z-consistent. Since it was
assumed that it is, t must be Z-consistent as well. �

I have defined what it is for a set of sentences to be earlier or later than p, but I have
not yet said what it is for such a set to be a time. A seemingly obvious proposal
would be to say that a set of sentences is a time if and only if it is maximal, Z-
consistent, and either earlier than or later than or identical with the choice of present
time p. But this would needlessly prejudge the controversial question of whether it
is possible for the time-series to branch. If branches are possible then there can be
a time that is future relative to some past time, but is itself neither past, present, or
future relative to the present time because it is located in some other branch of time.
There are stronger systems of tense logic that prohibit branching times, but Z does
not. Consider the following partial interpretation:

p = {¬ϕ,¬ψ,F(ϕ ∧ H¬ψ ∧ ¬ψ ∧ G¬ψ),F(ψ ∧ H¬ϕ ∧ ¬ϕ ∧ G¬ϕ), . . .}.

In this case, there is one future time in which ϕ is true, another one in which ψ
is true, but neither of them is future or past relative to the other. Let me therefore
admit branches for now and define the time-series Tp to be the minimal closure of
the interpretation p under the earlier-than and later-than relations.

Definition 3.2 The time-series Tp derived from the interpretation p is the set of all
possible presents t for which there is a sequence s0, s1, . . . , sn of possible presents
such that s0 = p, sn = t, and either si+1 C si or si+1 B si for all 0 ≤ i < n.

Since Tp need not be linearly ordered by either C or B, it is perhaps a bit misleading
to call it a time-series, but there is no need to worry about this here. Section 6
discusses various ways of ruling out branching times.

4 Models and Interpretations

The models and interpretations of Z are different entities, but they are intimately
related. If one constructs the time-series as in Definition 3.2 then one can use set
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membership as the true-at relation by saying that a sentence ϕ is true at a time t in
Tp if and only if ϕ ∈ t. In this way, every time-series defines a model.

Proposition 4.1 Mp = 〈Tp, p,C,B,∈〉 is a model.

Proof It needs to be shown that, when restricted to Tp, set-membership ∈ satisfies
(1). The first two conditions easily follow from the maximality and Z-consistency of
the elements of Tp. For the third clause, consider the claim that pPϕq ∈ t. Since t
itself is a maximal Z-consistent set, Proposition 3.1 entails that there is a maximal Z-
consistent set t′ such that t′ C t and ϕ ∈ t′. Moreover, since t ∈ Tp, and since Tp is
closed under C, it follows that t′ ∈ Tp. The proof of the fourth clause is similar. �

While every time-series gives rise to a model of tense logic, not every model can
be obtained in this way. The times in Mp are always sets of sentences and there
is no such restriction on what one can take as the “times” in a model. There are
more models than time-series, but this extra structure is irrelevant as far as the model
theory for Z is concerned. Say that two models M and M ′ are equivalent, M ≈ M ′,
if and only if the same sentences are true in the two models. Given a model M , let
[M] be the class of all models to which M bears the relation ≈.

Proposition 4.2 The map p 7→ [Mp] is a bijection from interpretations to equiva-
lence classes of models.

Proof Suppose that p and q are two different interpretations. Since p and q are
maximal consistent sets of sentences, one can only have p 6= q if there is a ϕ such
that ϕ ∈ p but ϕ 6∈ q. So ϕ is true in Mp and false in Mq, which entails Mp 6≈ Mq

and thus [Mp] 6= [Mq]. This shows that the map is injective and that different in-
terpretations always get assigned different classes. To prove that the map is also
surjective, it needs to be shown that every equivalence class of models is the im-
age of some interpretation. Suppose that M = 〈T, p, <,>,@〉 is a model and
let r = {ϕ : @(ϕ, p)}. Since @ satisfies the first condition of (1), r is maximal. To
prove that it is also Z-consistent, suppose that it is not. Then there are α1, . . . , αk ∈ r
such that ` ¬(α1 ∧ · · · ∧ αk). By the left-to-right direction of Proposition 2.1, this
means that @(p¬(α1 ∧ · · · ∧ αk)q, p) must be true and thus @(pα1 ∧ · · · ∧ αkq, p)
false by (1). Since all the αi are in r, @(αi , p) is true for all 1 ≤ i ≤ k. Hence
@(pα1 ∧ · · · ∧ αkq, p) is true by (1), which is a contradiction. Since r is a maximal
Z-consistent set, it qualifies as an interpretation. By construction of r, ϕ ∈ r if and
only if @(ϕ, p) for all sentences ϕ, which yields Mr ≈ M and [Mr] = [M]. �

With these two propositions at hand, one can now prove a variant of the soundness
and completeness theorem that is only concerned with time-series, rather than with
all models of tense logic.

Proposition 4.3 (Time-Series Completeness) A sentence is a theorem of Z if and
only if it is true in all time-series.

Proof Suppose ϕ is a theorem of Z. According to Proposition 2.1, ϕ is then true in
all models. Since all time-series are models by Proposition 4.1, it follows that ϕ is
true in all time-series. To prove the right-to-left direction, suppose that ϕ is true in all
time-series. Then it must also be true in all models, since Proposition 4.2 shows that
every model is ≈-equivalent to some time-series. So there are enough time-series to
do the logical work of all the models. �
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5 Is There Enough Time?

What kind of time-series one obtains by this method partially depends on the expres-
sive resources of the underlying language. By choosing a language that possesses
more fine-grained predicates, and thus describes the world in more detail, one could
get more times than one might obtain otherwise. This much was to be expected from
a view that takes times to be sets of sentences. For the tense primitivist, there is no
language-independent question of getting the “right” number of times. However, it
is important for the plausibility of tense primitivism that the number of times is not
unduly limited by their construction.

In the modal case, Quine [24] objects that linguistic ersatzism cannot deliver
enough possible worlds to give an acceptable account of possibility. If the sentences
of the underlying language are finite sequences of symbols from a countable vocabu-
lary, then there are at most i1 many sets of such sentences, and it is easy to show that
there are at least i2 many different possibilities. Consider a continuum of i1 many
spatial points. All of these points could be either occupied by matter or not, which
yields i2 = 2i1 many possible distributions of matter in a continuous space. Hence
there are far fewer maximal consistent sets of sentences than there are possibilities.
(See [15], p. 90 for further discussion of this argument.)

Since nobody believes there to be more than i1 many times, this objection does
not carry over to the tense case, but nothing said so far guarantees the existence of
time-series of cardinality equal to i1 either. Proposition 4.2 only guarantees that
each model of size i1 has an equivalent model Mp, but it does not ensure that there
is such a model with cardinality i1. It requires an independent argument to establish
that one can get a time-series of that size.

Proposition 5.1 There are time-series with continuum many time points.

Proof Suppose an object a moves along a smooth curve C on a continuous spatial
manifold without moving twice through the same point. The idea of the proof is
to adopt a language that can describe this motion and then to distinguish times by
the location of a. Since there are i1 many points on C, this yields i1 many times.
Naïvely, one might try to execute this strategy by adding names for all the points on
C. But this would require continuum many individual constants, and the construction
of times explicitly assumes that the language of tense logic has only countably many
sentences. (See, e.g., the construction of the tn in the proof of Proposition 3.1.) As it
turns out, though, one does not need names for all the points on C; it suffices to have
names for a countable dense subset.

Let ‘<’ stand for the less-than relation on the set of real numbers R, and let f
be an order preserving bijection from the real numbers to C such that the reference
object a gets to the point f (r) on C before it gets to f (r ′) whenever r < r ′. If i is
the natural injection of the rational numbers Q into R then the composite map f ◦ i
densely injects the rational numbers into C:

Q
i

−→ R
f

−→ C.

Call the image of this map the “rational” points in C (relative to the choice of f ).
Next, add names k0, k1, . . . for the countably many elements of Q and introduce a
location predicate ‘L’ via the following schema:

Lκ iff a is located at f (i(κ)).
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Here κ stands for any of the names of the rational numbers that have just been added
to the language. Similar to Dedekind’s construction of the reals, one can then identify
the points on C with the set of rational points that a needed to pass in order to get
to the point in question. Suppose that c and c′ are two different points on C. Let
t be a time that contains pPLκq if and only if i(κ) ≤ f −1(c), that is, if and only
if f (i(κ)) is one of the rational points on C that a had to pass in order to get to c.
Similarly, let t′ be a time that contains pPLκq if and only if i(κ) ≤ f −1(c′). Since
the rational points are dense in C, there is some rational number κ̃ such that a needs
to pass f (i(κ̃)) to get from c to c′. Since f −1(c) < i(κ̃) < f −1(c′), it follows that
pPL κ̃q ∈ t′ and pPL κ̃q 6∈ t′. Hence t 6= t′, which means that there are at least as
many times as there are points on C, of which there are i1 many. �

6 Stronger Systems of Tense Logic

The construction of times can be extended to stronger systems of tense logic. After
adding another axiom schema E to Z, one could easily repeat the entire construction
of times with the tense logic Z+E in place of Z. But since any maximal Z+E consis-
tent set is also Z consistent, all the Z+E time-series one gets in this way are already
included among the Z time-series.

Proposition 6.1 The following claims are equivalent:

1. Tp is a Z+E time-series;
2. Tp is a Z time-series with Z+E-consistent p;
3. Tp is a Z time-series all of whose times contain all instances of E.

This yields two alternative methods for identifying the Z+E time-series. One can
either regard them as Z time-series with Z+E consistent presents, or as Z time-series
in which all instances of E are always true.

Before I come to the proof of this proposition, let me note that it is not obvious that
(3) entails (2). If every time in Tp contains all instances of E then also p must contain
all instances of E, but that by itself does not guarantee that p is Z+E consistent. Z+E
treats instances of E as axioms to which the rule of temporal generalization can be
applied, and not as simple truths. To establish the equivalence of (2) and (3), one
needs to show that being omnitemporally true is “as good as” being an axiom.

Lemma 6.2 If all the times in a Z time-series Tp contain all instances of E then
they contain all theorems of Z+E.

Proof of Lemma 6.2 Let ‘`E ’ denote derivability in Z+E. It needs to be shown
that, given the assumption that all instances of E are always true, ϕ is contained in an
arbitrary time t whenever `E ϕ. The proof is by induction on the nesting degree of
Z+E proofs. Say that an application of temporal generalization has nesting degree
1 if the subproof of which it forms the last step contains no other applications of this
rule. Otherwise, it has nesting degree n+1, where n is the maximal nesting degree of
all earlier applications of temporal generalization in the subproof. The nesting degree
of a proof is the highest nesting degree of the temporal generalizations occurring
within it, or zero if it does not use these rules at all.

As the base case of the induction on nesting degree, suppose that there is a Z+E
proof of ϕ of nesting degree zero. If the proof does not appeal to the axiom schema
E then this is already a Z proof of ϕ. Otherwise, let E1, . . . , Eh be the instances of E
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used in the proof. Since the proof proceeds without any use of temporal generaliza-
tion, one can convert it into a Z proof of p(E1 ∧· · ·∧ Eh) → ϕq by treating the Ei as
assumptions for conditional introduction rather than as axioms. Since all times are
assumed to contain all instances of E and since t is maximal Z-consistent, (3) entails
pE1 ∧ · · · ∧ Ehq ∈ t and thus ϕ ∈ t with the conditional Z proof of ϕ.

For the inductive step, suppose that a sentence is contained in t whenever its proof
in Z+E has nesting degree ≤ n. Consider a Z+E proof of a sentence ϕ with nesting
degree n + 1. This proof can then be rewritten so that it consists of the following:

(a) m proofs in Z+E with nesting degree n ending with sentences σ1, . . . , σm ,
respectively. By assumption, m > 0.

(b) m applications of the temporal generalization rules appended to the subproofs
in (a), resulting in pO1σ1q, . . . , pOmσmq, where the Oi are either ‘H’ or ‘G’.

(c) k proofs in Z+E with nesting degree ≤ n ending with sentences ψ1, . . . , ψk ,
respectively. The number k may be zero.

(d) One Z proof of the conditional p(O1σ1 ∧· · ·∧Omσm ∧ψ1 ∧· · ·∧ψk) → ϕq.
(e) The conclusion that `E ϕ.

By (a) and the inductive assumption, all times contain all of σ1, . . . , σm . By
Proposition 3.1 and the definitions of Tp, ‘H’, and ‘G’, this means that also
pO1σ1q, . . . , pOmσmq must be contained in all times. Since all times contain
ψ1, . . . , ψk by the inductive assumption, (3) ensures that they also contain

O1σ1 ∧ · · · ∧ Omσm ∧ ψ1 ∧ · · · ∧ ψk .

With (d) and (3), it follows that ϕ is contained in all times, thus completing the
inductive proof that ϕ ∈ t whenever `E ϕ. �

Proof of Proposition 6.1 Tp is a Z+E time series just in case it is the smallest set
of maximal Z+E consistent sets of sentences that contains p and is closed under C
and B. To show the equivalence of (1) and (2), it therefore suffices to show that a
maximal Z consistent set t′ must be Z+E consistent whenever t is Z+E consistent
and either t′ C t or t′ B t. That way, any Z+E time-series is guaranteed to be a Z
time-series, and any Z time-series constructed from a Z+E consistent present must
be a Z+E series. To prove this, suppose that t′ C t but that t′ is not Z+E consistent.
Then there are sentences α1, . . . , αk ∈ t′ such that `E ¬(α1 ∧ · · ·∧αk). This entails
`E H¬(α1∧· · ·∧αk) by temporal generalization, `E ¬P(α1∧· · ·∧αk) by definition
of ‘H’, and thus p¬P(α1 ∧ · · · ∧ αk)q ∈ t and pP(α1 ∧ · · · ∧ αk)q 6∈ t because t is
maximal Z+E consistent. Since all the αi are in the Z consistent set t′, (3) entails
pα1 ∧ · · · ∧ αkq ∈ t′ and thus pP(α1 ∧ · · · ∧ αk)q ∈ t because t′ C t. This is a
contradiction, so t′ must be Z+E consistent. In the same way, one can show that t′

must be Z+E consistent if t′ B t. Hence (1) and (2) are equivalent.
To prove that (2) entails (3), suppose that p is Z+E consistent. Then all times in

the Z time-series Tp are Z+E consistent by the equivalence of (1) and (2) and must
therefore contain all instances of E, which are theorems of Z+E. It remains to be
shown that (3) entails (2). Suppose that the Z time-series Tp contains all instances
of E. To prove that p must then be Z+E consistent, suppose that it is not. Then there
are α1, . . . , αk ∈ p such that `E ¬(α1 ∧ · · · ∧ αk). With Lemma 6.2, this entails
p¬(α1 ∧ · · · ∧αk)q ∈ p. Since the αi are in p, (3) entails pα1 ∧ · · · ∧αkq ∈ p, which
contradicts the assumption that p is Z consistent. Hence p is Z+E consistent if all
times in Tp contain all instances of E. �
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Section 2 listed axioms one could add to Z to ensure that the relations< and> in the
models of tense logic have certain structural properties. With the help of Proposition
6.1, one can replicate these results for time-series. To illustrate how this works, let
me give one representative example, a time-series version of Proposition 2.2.

Proposition 6.3 (Time-Series Completeness) A sentence is a theorem of Z+ if and
only if it is true in all Z time-series in which C and B are transitive.

Proof Suppose that ϕ is a theorem of Z+. By Proposition 2.2, ϕ is then true in
all models with transitive < and >. Since Proposition 4.1 guarantees that the Z
time-series are included among the models, it follows that ϕ is true in all Z time-
series with transitive relations C and B. To prove the right-to-left direction, one
can use a similar strategy as in the proof of Proposition 4.2. Suppose that ϕ is
true in a model M = 〈T, p, <,>,@〉 with transitive < and >. It needs to be
shown that there is a time-series with transitive C and B that is ≈-equivalent to
M . Let r = {ψ : @(ψ, p)}. By construction, r is maximal. To prove that
it is also Z+-consistent, suppose that it is not. Then there are α1, . . . , αk ∈ r
such that ¬(α1 ∧ · · · ∧ αk) is a theorem of Z+. Because < and > are transitive
on M , Proposition 2.2 guarantees that every theorem of Z+ is true in M . Hence
@(p¬(α1∧· · ·∧αk)q, p) and thus @(pα1∧· · ·∧αkq, p) false by (1). Since all the αi
are in r, @(αi , p) is true for all 1 ≤ i ≤ k. With (1), this yields @(pα1∧· · ·∧αkq, p),
which is a contradiction. Hence r is maximal Z+-consistent. Now consider the time-
series Mr obtained from this maximal Z+-consistent set r. By construction, Mr is
equivalent to M . It remains to be shown that C and B are transitive on Mr. Since r
is Z+-consistent, Proposition 6.1 entails that all instances of

PPϕ → Pϕ FFϕ → Fϕ

are true at all times in Tr. Next, suppose that t, t′, t′′ ∈ Tr are such that t′′ C t′ and
t′ C t. Let ϕ be any element of t′′. Then pPϕq ∈ t′ because t′′ C t′ and pPPϕq ∈ t
because t′ C t. Since pPPϕ → Pϕq ∈ t, (3) entails pPϕq ∈ t and thus t′′ C t.
Hence C is transitive. The proof for B is analogous. This shows that every model in
which < and > are transitive has an ≈-equivalent time-series with transitive C and
B. So a sentence ϕ can only be true in all time-series with transitive C and B if it is
true in all models in which < and > are transitive. By Proposition 2.2, this requires
ϕ to be a theorem of Z+. �

We can show similar results for the other axioms and properties listed in Section 2. In
particular, one could rule out branching time-series by adopting axioms that ensure
the comparability of the earlier-than and the later-than relations.

7 Times in the Object Language

So far, all talk about times took place in the metalanguage of tense logic. To bring
this down to the object level, let me extend the vocabulary of the language of tense
logic by adding the following:

a, b, . . . , s dates (singular terms for times)
t,u, . . . , z time variables
∀, ∃ time quantifiers
C,B earlier-than and later-than relations
| true-at operator.
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The true-at operator ‘|’ is due to Myro [20] and [21]. To form a sentence, it needs
to be complemented with a date α on the left and a sentence ϕ on the right, and
expressions of the form pα |ϕq are read as “at time α, ϕ.” The sentences of the
extended language then comprise all and only the following:

1. sentences of the underlying tense logic,
2. expressions of the form pα |ϕq, pα C βq, and pα B βq, where α and β are

dates and ϕ is a sentence of the underlying tense logic,
3. truth-functional compounds of sentences,
4. expressions that can be obtained from a sentence by using time quantifiers

and variables to quantify into a date-position.
A model for this extended language is a pair 〈M, c〉, where M = 〈T, p, <,>,@〉

is a model of ordinary tense logic and c is a calendar map that assigns the maximal
Z consistent set {ϕ : @(ϕ, p)} to the date p (“the present”). To all other dates, the
map assigns an arbitrary element of the time-series T{ϕ:@(ϕ,p)}. A sentence σ of this
extended language is said to be true in the model 〈M, c〉 if and only if

1. σ is a sentence of the original tense logic and @(σ, p);
2. σ is of the form pα |ϕq and ϕ ∈ c(α);
3. σ is of the form pα C βq and pPϕq ∈ c(β) for all ϕ ∈ c(α);
4. σ is of the form pα B βq and pFϕq ∈ c(β) for all ϕ ∈ c(α);
5. σ is of the form p¬ϕq and ϕ is not true in 〈M, c〉;
6. σ is of the form pϕ → ψq and either p¬ϕq or ψ is true in 〈M, c〉;
7. σ is of the form p∀ξϕq and ϕ[α/ξ ] is true in all α-variants of 〈M, c〉.

If α is a date then the model 〈M∗, c∗
〉 is an α-variant of 〈M, c〉 if and only if

M = M∗ and c and c∗ agree everywhere with the possible exception of what they
assign to α.

Valid sentences of the extended language include all the theorems of Z and all
theorems of standard quantificational logic, adopted to time quantifiers and variables.
Since the time variables range over maximal consistent sets, the valid sentences also
include all instances of the schemata

α | (ϕ → ψ) → (α |ϕ → α |ψ) ¬α |ϕ ↔ α | ¬ϕ.

For any date α, pα | q is thus a propositional operator that always takes the
same truth-values on logically equivalent sentences of the underlying tense logic.
Since calendar maps are defined such that they always assign the present time
{ϕ : @(ϕ, p)} of the time-series T{ϕ:@(ϕ,p)} to the date p, any sentence that is true
at that particular time is true simpliciter:

p |ϕ ↔ ϕ.

Finally, Proposition 3.1 yields the valid schemata

α | Pϕ ↔ ∃ξ(ξ C α ∧ ξ |ϕ) α | Fϕ ↔ ∃ξ(ξ B α ∧ ξ |ϕ).

Since the underlying tense logic Z imposes no restrictions on them, there are no valid
schemata for C and B alone, but all of this can easily be extended to stronger systems
of tense logic by using the same strategies as in Section 6.

With this stronger background logic in place, the tense primitivist can now eas-
ily rebut the objection that his account lacks the expressive resources to serve as a
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theory of time. Whenever his opponent uses explicit quantification over times to
explain some temporal notion, the tense primitivist would do exactly the same. The
only difference is that his temporal variables range over his “ersatz” times, rather
than, say, the metaphysically basic time points postulated by a temporal substanti-
valist. In particular, the tense primitivist can give an account of any tense operator
that can be characterized model-theoretically. Since ‘|’ mirrors all relevant features
of the metalinguistic device ‘@’ in the object language, all he needs to do is to
employ pt |ϕq whenever Section 2 used p@(ϕ, t)q. This does not yield a sentence-
by-sentence translation of every temporal claim into his original tense logic, but this
is not something a tense primitivist needs anyway. What is important is only that
the additional structure does not expand the temporal ideology or ontology of his
account. Given that two maximal consistent sets of sentences of tense logic only
differ if they disagree about the truth-value of some sentence of the underlying tense
logic, the tense primitivist would still be entitled to his view that ‘P’ and ‘F’ capture
everything there is about time. Expressive limitations would only be a problem for
the tense primitivist if they concerned recognizably temporal matters.

8 “Since” and “Until” Revisited

By employing this strategy, a tense primitivist could now give the following defini-
tion of the operators “since” and “until” discussed in Section 2:

ξ | Sϕψ iff ∃ξ ′(ξ ′ C ξ ∧ (ξ ′
|ϕ) ∧ ∀ξ ′′(ξ ′ C ξ ′′ C ξ → (ξ ′′

|ψ)));
ξ | Uϕψ iff ∃ξ ′(ξ ′ B ξ ∧ (ξ ′

|ϕ) ∧ ∀ξ ′′(ξ ′ B ξ ′′ B ξ → (ξ ′′
|ψ))).

(6)

To clarify how this is compatible with Kamp’s ([12], Thm. IV.1) result that ‘S’ and
‘U’ cannot be expressed in terms of ‘P’ and ‘F’, let me take a closer look at what
Kamp’s proof actually establishes. Kamp is considering a scenario where ‘S’ and ‘U’
are added as additional primitive tense operators to the underlying tense logic. The
new operators are governed by (2) and the question is whether they can be eliminated
in favor of ‘P’ and ‘P’. What I am proposing here, though, is to leave the underlying
tense logic alone and to define ‘S’ and ‘U’ via (6) in the extended object language.
There are cases where these rival definitions come apart.

Kamp discusses a model MK = 〈R, 0, <,>,@K 〉 of tense logic that is isomor-
phic to the real numbers. In this model, there are two atomic sentences π0 and π1
such that @K (π0, t) holds if and only if t is an even integer and @K (π1, t) if and
only if t is an odd integer.

−3 −2 −1 0 1 2 3

π1 π1 π1 π1π0 π0 π0

Let η be an arbitrary sentence of the P/F tense logic that contains no atomic sen-
tences other than π0 and π1. Kamp proves that any such η has the same truth value
at all times in the model that are not integers. Since pSπ0¬π1q is false at time −1/2
and true at time +1/2, neither of which is integer, it follows that there is no η that is
logically equivalent to this sentence. Similar remarks apply to pUπ0¬π1q, which is
true at −1/2 and false at +1/2. Kamp concludes that ‘S’ and ‘U’, which are defined
via (2), cannot be expressed in terms of ‘P’ and ‘F’ alone.

Kamp’s proof is based on the assumption that whether or not pSπ0¬π1q and
pUπ0¬π1q are true at a given time only depends on the truth-values that are assigned
to π0 and π1 at the various points of the time-series. If one characterizes ‘S’ and ‘U’
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via (6) then this puts the cart before the horse. Until the truth-values of all P/F claims
have been specified, there is no fact of the matter what times there are. In definition
(6), times are maximally consistent sets of sentences rather than whatever objects
play the role of “times” in some model. And for there to be two different times +1/2
and −1/2 in the time-series TK = T{ϕ:@K (ϕ,0)}, there must be some P/F-sentence
that is true at the one time but not at the other. Since Kamp has shown that there
is no sentence containing only π0 and π1 that fits this description, this means that
it depends on sentences with other atomic constituents whether the time-series TK
looks like the real numbers.

If there are sentences that distinguish any two “times” in the model MK , then
the time-series TK is indeed isomorphic to R. In this case, the truth-values of sen-
tences containing ‘S’ and ‘U’ do not depend on whether they are defined via the
model-theoretic clause (2) or via the definition (6) in the extended object language.
Everything that can be said in terms of ‘S’ and ‘U’ can be said in the extended P/F-
language from Section 7. Both pSϕψq and pUϕψq could in principle be spelled
out in terms of the tense operators ‘P’ and ‘F’ alone, but this would involve atomic
sentences other than those occurring in ϕ and ψ .

The matter is different if there are no P/F-sentences that distinguish between, say,
+1/2 and −1/2. Since times inherit their identity conditions from set theory, there
can be no two times in TK at which exactly the same sentences are true. Rather than
being isomorphic to R, the time-series TK would look more like a circle in which
the same sequence of events keeps repeating itself over and over again, and in which
every time bears both C and B to every other time.4

This is a case where the two definitions come apart. If one uses (6) to define the
binary tense operators then pSπ0¬π1q and pUπ0¬π1q are always true in the time-
series TK . But if one defines them via (2) then these sentences have different truth-
values at the “times” of the model MK .

If times are maximal consistent sets of sentences then the tense primitivist must
reject the possibility of noncyclical eternal recurrence.5 Other accounts of time
can make finer distinctions. Take a temporal substantivalist, who postulates a one-
dimensional manifold of metaphysically basic time points that exist independently
of what is happening within time. The substantivalist can distinguish two types of
eternal recurrence: noncyclical recurrence, in which qualitatively indistinguishable
periods of the same type succeed each other in a linear fashion, and cyclical re-
currence, with only one such period looping back onto itself. The tense primitivist
must reject this distinction, but this is not something a temporal substantivalist can
hold against him. The substantivalist can only distinguish cyclical from noncyclical
recurrence because he believes that the number of times is independent of what is
happening within time, and that is precisely what a tense primitivist denies.

The construction of times is meant to address an issue that arises within the tense
primitivist’s project. Its purpose is not to convert the adherents of rival views of
time. What matters is that the account of times entitles the tense primitivist to the
view that ‘P’ and ‘F’ capture everything that he thinks there is to be said about time.
Kamp’s proof that “since” and “until” cannot be expressed in terms of ‘P’ and ‘F’
either concerns unproblematic cases that the tense primitivist can easily account for,
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or it deals with scenarios that he must reject as impossible, anyway, because they
involve noncyclical eternal recurrence.

9 Actualism and Presentism

In closing, let me briefly compare this account of times with linguistic ersatzism
about possible worlds. The aim of this paper was to defend tense primitivism against
the objection that it lacks the expressive resources to serve as a theory of time. In a
similar way, one could use linguistic ersatzism to defend modal primitivism against
the charge that there is more to modality than what can be said in terms of ‘♦’ alone.
This is one employment for this account of possible worlds, but linguistic ersatzism
is more frequently thought of as a way of being an actualist. Unlike the modal
primitivist, who takes modal operators as conceptually primitive, the actualist wants
to eliminate these operators in favor of actually existing abstract possible worlds.

To use linguistic ersatzism in this way, one needs a slightly different version of
the view than the one Roper [26] presents. On Roper’s account, possible worlds are
maximal consistent sets of sentences of modal logic, which means that his worlds
contain sentences that themselves contain modal operators. This simplifies the expo-
sition of the proposal, but it yields larger sets of sentences than the proposal actually
needs. It would have been sufficient to consider sentences of the underlying propo-
sitional logic only. In this case, possible worlds would be more like Carnap’s state
descriptions. One could then say that an unmodalized sentence is true in a world if
and only if it is an element of it, and that p♦ϕq is true if and only if ϕ is true in
some world. This allows one to eliminate ‘♦’ in favor of quantification over sets of
sentences that do not themselves contain occurrences of modal operators.

Whatever one might think of this view of modality,6 the tense case is different.
The view of times developed here does not permit an elimination of tense operators
in favor of quantification over presently existing abstract times. Every maximal con-
sistent set of sentences of tense logic contains a maximal consistent set of sentences
of the underlying propositional logic, but what matters for the construction of the
time-series are the other sentences, those with occurrences of the tense operators.
The information contained in these sentences permits the construction of the time-
series Tp from an interpretation p. One cannot eliminate tense operators in favor
of quantification over times because the times must themselves contain the very op-
erators one is trying to eliminate. While linguistic ersatzism about possible worlds
might support actualism, the construction of times presented here does not support
presentism, the view that only present objects exist. But it does support what it was
meant to support: tense primitivism.7

10 Conclusion

I have shown that a tense logic as simple as Z has sufficient expressive resources to
serve as a theory of time. By treating times as maximal Z consistent sets of sentences,
a tense primitivist can acquire all the expressive resources he needs, while upholding
his central contention that all temporal distinctions are ultimately to be spelled out
in terms of a few conceptually primitive tense operators. By itself, this does not
show that tense primitivism is to be preferred over rival accounts of time, but it does
establish that it cannot be rejected on purely logical grounds, and that is all that I
tried to prove here.
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Notes

1. This question must not be confused with the question of whether tense logic can serve as
a theory of verb tense in natural languages. Nowadays, most authors seem to agree that
tense logic fails as a linguistic theory. See [10] for references and discussion.

2. More details of the logic of “since” and “until” can be found in [6].

3. I show in [18] that the two-dimensional “now” and “then” are eliminable in a P/F tense
logic that has sufficient quantificational resources. What these operators contribute to
tense logic is the ability to rigidify descriptions, and that effect can also be achieved by
different means. The ineliminability of “now” and “then” in the cases considered by
Kamp and Vlach therefore says more about their impoverished background logics than
it does about the ability of ‘P’ and ‘F’ to express all temporal claims.

4. The situation is a little bit more complicated than suggested here. If every time is both
later and earlier than every other one then nothing would distinguish points on one side
of a given time from those on the other side. So there would be no real substance to
the claim that the time-series looks like a circle. As [5], Sec. 3.1, and [22], Sec. 3.2,
note, a cyclical time cannot be described in terms of transitive earlier-than and later-than
relations. A tense logic for cyclical time is developed in [25].

5. Special instances of this are changeless worlds, in which nothing ever changes. Change-
less worlds are worlds of eternal recurrence with a period of zero length. In such worlds,
the primitivist’s time-series would consist of a single point, which is a circle of zero
circumference.

6. Apart from the cardinality worry mentioned earlier, all the objections to linguistic er-
satzism in the philosophical literature are really directed toward linguistic ersatzism as
a way of being an actualist. For instance, Lewis [14], Sec. 3.2, complains that linguistic
ersatzism does not get rid of all modal notions because it still assumes the notion of con-
sistency. He also objects that it lacks the resources to deal with “alien” properties, which
are properties that are only instantiated in worlds other than the actual one.

7. I discuss presentism and actualism in more detail in [17] and [19].
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