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Growing Commas.
A Study of Sequentiality and Concatenation

Albert Visser

Abstract In his paper “Undecidability without arithmetization,” Andrzej
Grzegorczyk introduces a theory of concatenation TC. We show that pairing
is not definable in TC. We determine a reasonable extension of TC that is
sequential, that is, has a good sequence coding.

1 Introduction

The supervenience of structured objects on strings of symbols is one of the central
facts of human life. It underlies writing and speech. The possibility of this superve-
nience is based on mathematical facts.

One way to study these mathematical facts is to focus on the true theory of the
free monoid in two or more generators. However, such a study does not give us much
insight into what principles are precisely essential in deriving certain facts. To do a
more refined study, we consider weak systems for strings and concatenation. This
allows us to study the fine-structure of reasoning about this supervenience. Weak
systems have more models, so we obtain greater generality. In fact, the results of this
paper are also valid for certain systems of decorated linear order types. The most
salient of these is the system of all decorated linear order types with at least two
elements in the class of decorations.

The focus of this paper is the question How do finite sets emerge out of strings?

1.1 The editor axiom and its consequences The central principle of string rea-
soning we will study is the editor axiom, a.k.a. Tarski’s law. This axiom tells us that
if a given string s is partitioned into (x, y), that is, x ∗ y = s, and into (u, v), that is,
u ∗ v = s, then there is a common refinement partition (t, w, z), that is, either t = u,
t ∗ w = x , w ∗ z = v, z = y, or t = x , t ∗ w = u, w ∗ z = y, z = v.
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The editor axiom was introduced by Tarski in 1935. The basic theory of the editor
axiom considered here is TC, a theory introduced by Grzegorczyk.1 We can think of
this theory as having two classes of “standard models,” to wit: the finite strings of at
least two letters and the decorated linear order types for classes of letters or colors of
at least two elements.2

Remark 1.1 In TC we do not have a good notion of occurrence. We would like
to define an occurrence of v in w as a pair (u, v), where w = u ∗ v ∗ z, for some
z. However, since TC does not exclude that u is a proper initial segment of itself,
we cannot pin down a uniquely determined place in w in this way. A secondary
target of this paper is to understand how to reason in the absence of a good notion of
occurrence. We will see that it is possible to simulate some of the usual reasoning
involving occurrences.

We will show that TC is sufficient for verifying, for an appropriate coding of finite
sets, that new elements can be added in a nonambiguous way (adjunction), that is, in
such a way that if we form a set x ∪ {y} no extra unwanted elements slip in. This is
done in Section 4. However, these principles are not enough to guarantee the totality
of adjunction. We will give a model theoretic argument to show that we cannot even
produce a total pairing operation from these principles. See Section 5. We show that
addition of a suitable collection principle is sufficient to give us the desired existence
axiom.

Let us call a string of as a tally number. The collection principle, needed to guar-
antee that the operation of adjunction is total, says that, for any string x , there is a
tally number y such that for any tally number z that is a substring of x , z is strictly
contained in y; that is, z is a substring of y, but not vice versa. This collection princi-
ple is valid in our “standard models.” We show that TC plus the collection principle
is interpretable in TC. As a corollary we obtain yet another proof that Robinson’s
Arithmetic Q is interpretable in TC.

1.2 Sequentiality As outlined in Subsection 1.1, we will show that we can code
finite sets in such a way that TC plus a collection principle is able to verify the basic
properties of adjunction or “adding an element.” One can rephrase this property
by saying that there is a direct interpretation of Adjunctive Set Theory in TC plus
collection. A direct interpretation is an interpretation without domain relativization,
where identity is translated as identity. Adjunctive Set Theory is the theory stating
the properties of adjunction.

Theories directly interpreting Adjunctive Set Theory are sequential theories.
Such theories satisfy many important metamathematical properties such as inter-
preting all their own restricted consistency statements. We refer the reader to the
detailed discussion in Subsection 4.1.

1.3 Sets from strings We briefly consider the problem to define arbitrary finite
sets of strings from strings. How can we do it? Consider the set {w0, . . . , wn−1},
where the wi are arbitrary strings. A first attempt would be to consider the string
w0 . . . wn−1, but clearly we cannot retrieve the wi unambiguously from this string.
A second attempt is to choose a separator string or “comma” w∗ and represent our
set as w0w

∗w1 . . . wn−2w
∗wn−1. However, this won’t work either, since the wi are

arbitrary and nothing prevents w∗ from occurring as a substring of some of the wi .
Fortunately, we have one more degree of freedom: we may choose our comma after



Sequentiality and Concatenation 63

the wi are given. This is what Quine does in his classical paper [23].3 Quine’s
commas are of the form bw∗b, where w∗ is a string of as longer than any string of
as occurring in the wi .

The context of Quine’s study, however, is the true theory of (at least) binary
strings. From the computational point of view, adjunction is somewhat awkward
for Quine’s coding. Suppose s codes a set and we want to adjoin w. Suppose w
contains a string of as longer than the comma of s. In that case we have to update
all the commas in s before we can adjoin w in the obvious way. In the context of
weak theories this is a complex operation. For this reason we will employ a variant
of Quine’s basic idea. We will allow the commas to grow during the construction of
the set in such a way that we need not update s in adjoining w. We discuss the ins
and outs of the construction in more detail in Subsection 4.2.

We show that TC itself is not sequential: it does not even have a pairing function.

1.4 A brief history In this subsection, we give an admittedly incomplete sketch
of the history of research on string theory or theory of concatenation. The story
starts around 1935 with Tarski’s famous paper [28]. Here he gives a second-order
axiomatization of the theory of syntax based on concatenation. See pages 173 and
174 of [30]. Tarski’s axiomatization is in a style appropriate for the theory of the free
monoid. The editor axiom is the left-to-right direction of Tarski’s Axiom 4. (The
right-to-left direction is equivalent to associativity of concatenation.) Independently
of Tarski, a second-order axiomatization of string theory was given by Hermes in
[16]. The axiomatization by Hermes is in the style appropriate for the axiomatization
of the free algebra of a number of unary operations (multiple successor arithmetic),
over which concatenation is defined by recursion. Corcoran, Frank, and Maloney in
their paper [4] show that these two systems are definitionally equivalent (or synony-
mous).4 They also show that, for any finite number of generators, these systems are
definitionally equivalent with second-order arithmetic.

In 1946, Quine studies, in [23], the true first-order theory of concatenation for a
finite alphabet with at least two letters. In this context we do not have the convenient
automatic coding of sequences using pregiven sets. Quine shows that true first-order
arithmetic can be interpreted in the true first-order theory of concatenation for a fi-
nite alphabet with at least two letters in two ways. The first way is to represent the
numbers as tally numbers, that is, to represent them as strings of as for a chosen gen-
erator a. This interpretation does not use the whole domain, and thus, is not direct.
Quine calls it unilateral. Quine also provides a direct interpretation. He speaks of a
bilateral interpretation.5 Here the strings are given an ω-ordering using the familiar
length-first ordering.6 Via this ordering we identify strings with numbers.

To define multiplication on tally numbers one only needs to code sequences of
tally numbers. This is comparatively easy. However, to define addition and multipli-
cation on length-first numbers, you need sequences of arbitrary strings.7

Quine specifies an inverse for his direct interpretation of arithmetic in the length-
first numbers. Thus, he shows that the true first-order theory of concatenation (for a
fixed number of generators larger or equal than two) is synonymous or definitionally
equivalent to true first-order arithmetic.8

Quine’s basic vocabulary consisted of atoms and concatenation. Variations of this
basic repertoire are studied in [31].
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Our story goes on in 1953. The focus of interest shifts to the study of weak
undecidable theories. According to [29], pp. 86 and 87, Szmielew and Tarski proved
that Robinson’s Arithmetic Q is interpretable in a weak theory of concatenation F.
One consequence of this is the essential undecidability of F. The theory F consists
roughly of the semigroup axioms plus axioms telling us that there are two atoms plus
the cancellation laws. See Appendix D for the precise axioms. Regrettably no proof
was published of the result and it is a bit of a mystery how they did it. The problem is
not that we cannot find a proof of the result: in fact, stronger results are known now.
The problem is that the known proofs use a method invented by Solovay in 1976.
See [25]. This method is so rich in consequences that it is hard to see why Szmielew
and Tarski would not have proved much more if they indeed had found this method.

Not really part of our story, but worth mentioning, is the work of Büchi and Sen-
ger [1] on existentially definable relations in the true theory of concatenation.

Tarski’s program of studying weak theories of concatenation was taken up again
by Grzegorczyk around 2005. In his paper [13], he shows that the weak theory of
concatenation TC is undecidable. The axioms of TC are given in Section 2. This
result is improved in the paper [14] by Grzegorczyk and Zdanowski.

Grzegorczyk’s work inspired further research into the interpretability of Q in weak
theories of concatenation. Sterken proves in her master’s thesis that a weak theory
Qbin is mutually interpretable with Q.9 For a definition of Qbin see Section 2. Both
Ganea (in [12]) and Švejdar (in [26]) prove independently the interpretability of Q in
TCε, a variant of TC.

Finally, I want to mention a related line of research. In 1986, Buss published [2].
In this book, among other things, a weak theory of arithmetic S1

2 is developed that is
designed for representing the p-time definable functions. In many respects S1

2 is the
natural theory to develop the arithmetization needed for the Second Incompleteness
Theorem.10 Later, two beautiful alternative versions of S1

2 were given. One is a
theory of sets and numbers provided by Zambella. See [40]. The other is a theory
of strings developed by Ferreira. See [8] and [9]. We know that Buss’s, Zambella’s,
and Ferreira’s theories are mutually interpretable. I am convinced that these three
theories are definitionally equivalent. However, this never has been verified in detail.
For a careful description of an interpretation of S1

2 in Ferreira’s theory, see [10].

1.5 On pitfalls Errors are everywhere dense in this business. It is very easy to
make mistakes in reasoning in the very weak theories. A good example is the fol-
lowing. In the Szmielew & Tarski system F consider the tally numbers. These are
the strings of as.11 Surely the tally numbers are closed under concatenation?12 One
can show that this need not be so by producing a model where you can concatenate a
certain string β0 of as with itself, creating ex nihilo a rogue b in the resulting string.
The example is described in Appendix D.

2 Theories of Concatenation

In his paper [13], Grzegorczyk introduces a theory of concatenation TC. Grzegor-
czyk’s theory is in essence an earlier theory due to Tarski plus axioms guaranteeing
the existence of at least two letters or atoms. We will call Tarski’s theory TC0.

The theory TC has a binary function symbol ∗ for concatenation and two constants
a and b. The theory is axiomatized as follows.
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TC1 ` (x ∗ y) ∗ z = x ∗ (y ∗ z)

TC2 ` x ∗ y = u ∗ v → ((x = u ∧ y = v) ∨

∃w ((x ∗w = u ∧ y = w ∗v)∨ (x = u ∗w∧ y ∗w = v)))

TC3 ` x ∗ y 6= a

TC4 ` x ∗ y 6= b

TC5 ` a 6= b

Grzegorczyk calls axiom TC2 “the editor axiom.” Tarski’s theory TC0 has only con-
catenation in its signature and is axiomatized by TC1 and TC2.

Grzegorczyk and Zdanowski have shown that TC is essentially undecidable. See
[14]. This result can be strengthened by showing that Robinson’s Arithmetic Q is
mutually interpretable with TC. See below. Note that TC0 is undecidable—since it
has an extension that parametrically interprets TC—but that TC0 is not essentially
undecidable: it is satisfied by a one-point model. It also has an extension that is a
definitional extension of the theory of pure identity.

The theories TC and TC0 are theories for concatenation without the empty string,
in other words, without the unit element ε. We find it more convenient to work in a
theory with unit. Our variant TCε of TC with empty string added looks as follows.

TCε1 ` ε ∗ x = x ∧ x ∗ ε = x

TCε2 ` (x ∗ y) ∗ z = x ∗ (y ∗ z)

TCε3 ` x ∗ y = u ∗v → ∃w ((x ∗w = u ∧ y = w∗v)∨(x = u ∗w∧ y ∗w = v))

TCε4 ` a 6= ε

TCε5 ` x ∗ y = a → (x = ε ∨ y = ε)

TCε6 ` b 6= ε

TCε7 ` x ∗ y = b → (x = ε ∨ y = ε)

TCε8 ` a 6= b

The theories TC and TCε are bi-interpretable. See Appendix A.13 We will also
consider the theory TCε

0, axiomatized by TCε1, 2, 3.
There is a somewhat different salient theory of concatenation which is in many

respects a direct analogue of Robinson’s Arithmetic Q. We call this theory Qbin. The
axioms of this theory are as follows.

Qbin1 ` Sax 6= ε,
Qbin2 ` Sbx 6= ε,
Qbin3 ` Sax 6= Sby,
Qbin4 ` Sax = Say → x = y,
Qbin5 ` Sbx = Sby → x = y,
Qbin6 ` x ∗ ε = x ,
Qbin7 ` x ∗ Say = Sa(x ∗ y),
Qbin8 ` x ∗ Sby = Sb(x ∗ y),
Qbin9 ` x = ε ∨ ∃y (x = Say ∨ x = Sby).

In Appendix B, we show that Qbin and TCε are mutually interpretable.
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3 Basics of TCε

In this section we provide some basic facts concerning TCε. We define

atom(x) :↔ x 6= ε ∧ ∀y, z (y ∗ z = x → (x = ε ∨ y = ε)),

x ⊆ y :↔ ∃u, v y = u ∗ x ∗ v,

x ⊂ y :↔ ∃u, v (y = u ∗ x ∗ v ∧ (u 6= ε ∨ v 6= ε)),

x ⊂
+ y :↔ x ⊆ y ∧ ¬ y ⊆ x,

x ⊆ini y :↔ ∃v x ∗ v = y,

x ⊆end y :↔ ∃u u ∗ x = y,

y : Nx :↔ ∀z⊆y (x ⊆ z ∨ z = ε).

We will call a y in Nx an x-string. If ≺ is one of our preorderings, then we define

y ≺x z :↔ ∀u : Nx (u ⊆ y → ∃v⊆z u ≺ v).

Fact 3.1 The theory TCε proves the following facts.
1. (a) (atom(x) ∧ atom(y) ∧ u ∗ x = v ∗ y) → (u = v ∧ x = y).

(b) (atom(x) ∧ atom(y) ∧ x ∗ u = y ∗ v) → (u = v ∧ x = y).
2. Suppose atom(x) and u ∗ v = x ∗ w. Then, either u = ε or there is a u0 such

that u = x ∗ u0 and u0 ∗ v = w. Similarly for u ∗ v = w ∗ x .

Proof We reason in TCε. Suppose x is an atom.

Ad 1: We treat (a). Suppose atom(y) and u ∗ x = v ∗ y. Then, by the editor axiom,
we have a w such that (i) u ∗ w = v and x = w ∗ y or (ii) u = v ∗ w and w ∗ x = y.
In case (i), we have w = ε and hence u = v and x = y. Case (ii) is similar. Item (b)
is similar.

Ad 2: Suppose u ∗v = x ∗w. By the editor axiom, there is a z such that (i) (u ∗ z = x
and v = z ∗ w) or (ii) (u = x ∗ z and z ∗ v = w).

In case (i), either (i1) u = ε—and we are done—or (i2) z = ε and u = x . In case
(i2), we have u = x and v = w. So we can take u0 := ε. In case (ii), we can take
u0 := z. �

Fact 3.2 We have in TCε the following facts.
1. The relation ⊆ini is a weak partial preordering with minimal element ε. The

atoms in our sense are also atoms of this preordering.14 Our preordering is
linear when restricted to the initial substrings of an element x .

2. The relation ⊆end is a weak partial preordering with minimal element ε. The
atoms in our sense are also atoms of this weak preordering. Our preordering
is linear when restricted to the final substrings of x .

3. The relation ⊆ is a partial preordering on the substrings of x with minimal
element ε. The atoms in our sense are precisely the atoms of the preordering.

4. x ⊆ y ∗ z → (x ⊆ y ∨x ⊆ z ∨∃x0, x1 (x = x0 ∗x1 ∧x0 ⊆end y ∧x1 ⊆ini z)).
5. The relation ⊂ is a partial preordering. The relation ⊂

+ is a strong ordering.
We have x ⊂

+ y → x ⊂ y.15

Proof We reason in TCε. We only treat (4). Suppose x ⊆ y ∗ z. So, for some u, v,
we have u ∗ x ∗ v = y ∗ z. By the editor axiom, there is a w such that (a) u ∗ w = y
and x ∗ v = w ∗ z or (b) u = y ∗ w and w ∗ x ∗ v = z. In case (b), we have x ⊆ z
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and we are done. We treat case (a). By the editor axiom, we have an r such that
(a1) x ∗ r = w and v = r ∗ z or (a2) x = w ∗ r and r ∗ v = z. In case (a1) we
have x ⊆ w ⊆ y, so x ⊆ y, and we are done. In case (a2), we take x0 := w and
x1 := r . �

Definition Let I (x) be a formula. We treat {x | I (x)} as a virtual class. Par abus
de langage, we write I for {x | I (x)}. We take DC(I )(x) :↔ ∀y⊆x I (y).

Fact 3.3 In TCε, we have the following. Suppose (the virtual class) I is closed
under concatenation. Let J := DC(I ). Then, J is closed under concatenation and
downward closed under ⊆.

Proof Reason in TCε. Suppose I is closed under concatenation. Let J := DC(I ).
Clearly, J is downward closed under ⊆. Suppose x0 and x1 are in J . To show x0 ∗ x1
is in J , suppose y ⊆ x0 ∗ x1. By Fact 3.2(4), we have that either (a) y ⊆ x0 or (b)
y ⊆ x1 or (c) for some y0, y1, y = y0 ∗ y1 and y0 ⊆end x0 and y1 ⊆ini x1. In cases
(a) and (b), we immediately have that y is in I . In case (c), we find that y0 is in I
and y1 is in I . Hence, by the closure of I under concatenation, y is in I . �

Fact 3.4 We have in TCε the following facts.
1. Nx is closed under ε and concatenation. Moreover, it is downward closed

under taking substrings.
2. Nx is nontrivial, that is, not equal to {ε}, if and only if it contains x . If x is

an atom, then Nx is nontrivial. (In case x = ε, then Nx consists of all strings,
and is, ipso facto, nontrivial.)

Proof We only treat the case that Nx is closed under concatenation. Let

Ix (y) :↔ y = ε ∨ x ⊆ y.

Clearly, Ix is closed under concatenation and Nx = DC(Ix ). The desired result now
follows from Fact 3.3. �

Our final fact follows an idea of Pudlák. Consider any model of TCε
0. Fix an

element w. We call a sequence (w0, . . . , wk) a partition of w if we have that
w0 ∗ · · · ∗ wk = w. The partitions of w form a category with the following mor-
phisms. f : (u0, . . . , un) → (w0, . . . , wk) if and only if f is a surjective and weakly
monotonic function from n + 1 to k + 1 such that, for any i ≤ k, wi = us ∗ · · · ∗ u`,
where { j | f ( j) = i} = { j | s ≤ j ≤ `}. We write (u0, . . . , un) ≤ (w0, . . . , wk)
for ∃ f f : (u0, . . . , un) → (w0, . . . , wk). In this case, we say that (u0, . . . , un) is a
refinement of (w0, . . . , wk).

Fact 3.5 We work in any model of TCε
0. Consider a w in the model. Then any two

partitions of w have a common refinement.

Proof Fix any model of TCε
0. We first prove that, for all w, all pairs of partitions

(u0, . . . , un) and (w0, . . . , wk) of w have a common refinement, by induction of
n + k.

If either n or k is zero, this is trivial. Suppose that (u0, . . . , un+1) and
(w0, . . . , wk+1) are partitions of w. We have, by the editor axiom, that there is
a v such that (a) u0 ∗ · · · ∗ un ∗ v = w0 ∗ · · · ∗ wk and un+1 = v ∗ wk+1 or (b)
u0 ∗· · ·∗un = w0 ∗· · ·∗wk ∗v and v ∗un+1 = wk+1. By symmetry, we only need to
treat case (a). By the induction hypothesis, there is a common refinement (x0, . . . xm)
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of (u0, . . . , un, v) and (w0, . . . , wk). Let this be witnessed by f , respectively, g.
It is easily seen that (x0, . . . xm, wk+1) is the desired refinement with witnessing
functions f ′ and g′, where f ′

:= f [m + 1 : n + 1], g′
:= g[m + 1 : k + 1]. �

Note that the length of the common refinement produced by our proof is the sum of
the lengths of our original partitions minus one.

We will use refinements to simulate the presence of occurrences. Instead of work-
ing with occurrences in an absolute sense, we will treat them as places in a suffi-
ciently fine refinement.

4 TCε and Sequentiality

In this section, we introduce the notion of sequentiality and give an extension of TCε

that is extensional.

4.1 What is sequentiality? Adjunctive Set Theory AS is the theory in the lan-
guage with ∈ and =, which is axiomatized as follows.

AS1 ` ∃x ∀y y 6∈ x (empty set axiom)
AS2 ` ∀u, v ∃x ∀y (y ∈ x ↔ (y ∈ u ∨ y = v)) (adjunction axiom)

A theory is sequential if and only if it directly interprets adjunctive set theory AS.
Direct interpretability means interpretability without relativization of quantifiers, that
sends identity to identity. Said differently, a theory is sequential if we can define a
predicate ∈ provably satisfying the axioms of AS.

Remark 4.1 The notion of sequential theory was introduced by Pudlák in his
paper [21]. Pudlák uses his notion for the study of the degrees of local multi-
dimensional parametric interpretability. He proves that sequential theories are prime
in this degree structure. In [22], sequential theories provide the right level of gener-
ality for theorems about consistency statements.

The notion of sequential theory was independently invented by Friedman who
called it adequate theory. See Smoryński’s survey [24].16 Friedman uses the no-
tion to provide the Friedman characterization of interpretability among finitely ax-
iomatized sequential theories. (See also [33] and [34].) Moreover, he shows that
ordinary interpretability and faithful interpretability among finitely axiomatized se-
quential theories coincide. (See also [35] and [37].)

Adjunctive Set Theory is mutually interpretable with Q. For the interpretability of
AS in Q, see, for example, [20] or [15]. Here is the story of the interpretability of Q
in AS in a nutshell.

1. In [27], Szmielew and Tarski announce the interpretability of Q in AS plus
extensionality. See also [29], p. 34.

2. A new proof of the Szmielew-Tarski result is given by Collins and Halpern
in [3].

3. Montagna and Mancini, in [18], give an improvement of the Szmielew-Tarski
result. They prove that Q can be interpreted in an extension of AS in which
we stipulate the functionality of empty set and adjunction of singletons.

4. In Appendix III of [19], Mycielski, Pudlák, and Stern provide the ingredients
of the interpretation of Q in AS.
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In a forthcoming paper we will provide another proof of the interpretability of Q in
AS. For further work concerning sequential theories, see, for example, [22], [24],
[19], [15], [35], [36], [17], [37], [39].

4.2 Sequentiality from concatenation We pick up the discussion of Subsec-
tion 1.3 and, in part, repeat it in more detail. Our problem is to define appropriate
commas to code finite sets. If we had a fresh letter, we would be done. However, our
rules dictate that we must be able to make sets of all possible strings—so we have no
extra letter available. One idea to create commas would be to employ a tally length
function.

Remark 4.2 Consider the following list of properties: 3aε := ε, 3ax := a, if x
is an atom, 3a(x ∗ y) := 3ax ∗ 3ay. A function that satisfies these properties is
called a tally length function.17

In the model of finite strings, the tally length function is uniquely determined and
has a very efficient computation on the two tape Turing machine. In the model of
decorated linear order types, we also have a tally length function. (I don’t know
whether it is necessarily unique.) Thus, it seems to me a very reasonable function to
add as a primitive.18

If we extend our language with a tally length function, there are several possibili-
ties to define sets. For example, we could create room for a comma by replacing the
wi by the result of doubling each atom in wi . Define

(i) u ≡a v :↔ 3au = 3av,
(ii) dubb(w, w̃) :↔ ∀u, x, v ((w = u ∗ x ∗ v ∧ atom(x)) →

∃ũ, ṽ (ũ ≡a u∗u∧ṽ ≡a v∗v∧w̃ = ũ∗x∗x∗ṽ)).
Now we can represent {w0, . . . , wn−1} by

w̃0 ∗ a ∗ b ∗ w̃1 ∗ · · · ∗ a ∗ b ∗ w̃n−1,

where dubb(wi , w̃i ), for each i . A second idea is to represent the set {w0, . . . , wn−1}

by
w0 ∗ a ∗ w1 ∗ · · ·a ∗ wn−1 ∗ w0 ∗ b ∗ w1 ∗ · · · ∗ b ∗ wn−1.

To retrieve the wi , we clearly need a relation like ≡a. A third idea is to represent
{w0, . . . , wn−1} by

3aw0 ∗ a ∗ b ∗ 3aw1 ∗ · · · ∗ a ∗ b ∗ 3awn−1 ∗ a ∗ b ∗ b∗

w0 ∗ a ∗ b ∗ w1 ∗ · · · ∗ a ∗ b ∗ wn−1.

To make any of these ideas work we will need additional axioms over TCε plus the
tally axioms.

In our treatment we will not use a tally length function. For one thing, it is nicer,
of course, to avoid expanding the signature. More seriously, it seems to me that
each of the ideas involving the tally length function involve the notion of occurrence
of a substring, which we do not have in TCε. Can we avoid this presupposition?
We remind the reader of Quine’s way of representing sets. See [23]. He represents
{w0, . . . , wn−1} by

w0 ∗ b ∗ u ∗ b ∗ w1 ∗ · · · ∗ b ∗ u ∗ b ∗ wn−1.

Here u is an a-string strictly longer than all a-strings that are substrings of the wi .
This idea works perfectly in the context of a sufficiently strong theory, but it has the
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following disadvantage. If we want to adjoin an element to a set, we may have to
update all commas in the given representation. This is a complex operation. It is
also a costly operation in terms of growth. Suppose we have only a and b in our
alphabet. Consider the Quine representation of the set of all strings of length n. This
will have as length approximately 2n . Now we adjoin a string of as of length 2n .
The result of adjunction will have length approximately 22n . So adjunction will give
rise to multiplication of lengths and thus grow faster than concatenation. We employ
a variant of Quine’s idea. We represent {w0, . . . , wn−1} by

b ∗ u0 ∗ b ∗ w0 ∗ b ∗ u1 ∗ b ∗ w1 ∗ · · ·b ∗ un−1 ∗ b ∗ wn−1,

where the ui are a-strings and ui ⊆ u j , if i ≤ j . We demand that wi ⊂
+
a ui . This

idea is derived from some lecture notes by Visser, de Moor, and Walsteijn of 1986,
to wit [32]. Here is the formal realization. We define the following.

1. (u′, u) is a comma, if u is an a-string and u′
⊆a u.

2. x ∈ y if (i) there are commas (u′, u) and (v′, v) such that (u′,b, u,b, x) is a
partition of v′ and (v′,b, v,b, w) is a partition of y, for some w, and x ⊂

+
a u

or (ii) there is a comma (u′, u) such that (u′,b, u,b, x) is a partition of y and
x ⊂

+
a u.

3. ∅ := ε.
4. adj(x, y, z) if and only if, for some c, (x, c) is a comma and (x,b, c,b, y) is

a partition of z, and y ⊂
+
a c.

adj(x, y, z) stands for adjunction; that is, ‘x ∪ {y} = z’, without commit-
ment to either the existence or the uniqueness of z.

4.3 Correctness of the definitions In this subsection, we show the correctness of
the joint definitions of ∈ and adj, in TCε.19

Theorem 4.3 We have TCε
` adj(x, y, z) → ∀w (w ∈ z ↔ (w ∈ x ∨ w = y)).

Proof We reason in any model of TCε. Suppose adj(x, y, z). This means that
σ := (x,b, c,b, y) is a partition of z, where (x, c) is a comma and y ⊂

+
a c.

Suppose w ∈ x . If w is in x by the first disjunct of the definition of ∈, then, trivially,
w is in z. Suppose w is in x by the second disjunct. So there is a comma (d ′, d) such
that (d ′,b, d,b, w) is a partition of x and w ⊂

+
a d . Since also (x, c) is a comma, we

find that w ∈ z, by the first clause of the definition of ∈.

Clearly, y ∈ z by the second clause of the definition of ∈.

Suppose that w ∈ z. First, we consider the case that this is true by the first clause of
the definition of ∈. So, we have commas (d ′, d), (e′, e) such that (d ′,b, d,b, w) is
a partition of e′ and τ := (d ′,b, d,b, w,b, e, u) is a partition of z, for some u, and
w ⊂

+
a d.

Let ζ := (z0, . . . , zm) be a common partition of σ = (x,b, c,b, y) and
τ = (d ′,b, d,b, w,b, e, u). Let f and g be the witnessing morphisms.

It will be pleasant to have a name, for example, for b-as-occurring-at-place-3-
in-σ . We will call this item (σ, 3). Similarly, for other strings-as-occuring-at-places-
in-a-partition.

It is easily seen that there is a unique i such that zi = b and f (i) = 3. (There may
be other i ′ with f (i ′) = 3, but, for such i ′, we must have zi ′ = ε.) This i is the place
of (σ, 3) relative to the context (ζ, f, g). Note that the number i is just dependent on
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ζ and f . However, par abus de langage, we will write it as 3σ .20 Similarly, we can
define 5τ as the unique j such that g( j) = 5 and z j = b. We distinguish a number
of cases.

Case 1 Suppose 3σ ≤ 5τ . It follows that e ⊆ y and c ⊆ e′. Hence, e ⊂a y ⊂
+
a c

⊆a e. It follows that e ⊂
+ e. Quod impossibile.

Case 2 Suppose that 1σ < 5τ < 3σ . Since 2σ is an occurrence of the a-string c,
we get a contradiction.

Case 3 Suppose 5τ = 1σ . In this case, we have (d ′,b, d,b, w) is a partition of x ,
and (d ′, d) is a comma and w ⊂

+
a d. So w ∈ x , by the second clause of the definition

of ∈.

Case 4 Suppose 5τ < 1σ . We have f (5τ ) = 0. Clearly, every j such that g( j) = 5
must be < 1σ . But then the j such that g( j) = 6 must also be < 0σ , since τ6 is
the a-string e. It follows that, for some v, (d ′,b, d,b, w,b, e, v) is a partition of x .
Moreover, (d ′, d) and (e′, e) are commas and w ⊂

+
a d . So w ∈ x , by the first clause

of the definition of ∈.
Next we suppose that x ∈ z by the second clause of the definition of ∈. So,

we have, for some comma (d ′, d), that ν := (d ′,b, d,b, w) is a partition of z and
w ⊂a d. Let ζ = (z0, . . . , zm) be a common refinement of σ = (x,b, c,b, y) and
ν = (d ′,b, d,b, w). Let f and g be witnessing functions.

Suppose 3σ < 3τ . In this case we may show, reasoning as in Case 4 above, that
d ⊆ y and c ⊆ d ′. So, c ⊆a d ′

⊆a d ⊆a y ⊂
+
a c. It follows that c ⊂

+ c.
A contradiction. Similarly, we may refute the supposition that 3σ > 3τ . We may
conclude that 3σ = 3τ and, thus, that w = y. �

4.4 Existence of adjuncts What we need to get existence is obviously something
like a suitable collection principle. We define a-collection as follows:

a-coll: ` ∀x ∃y : Na x ⊆a y.
Note however that this not enough. We need our a-string y strictly above the a-
strings of x . So we need strong a-collection.

a-coll+: ` ∀x ∃y : Na x ⊂
+
a y.

It is immediate that TCε
+ a-coll+ proves the existence clause of our adjunction

axiom. Since the empty set axiom is trivial, we find TCε
+ a-coll+ is sequential.

We will now show that TCε interprets TCε
+ a-coll+. We will do this by first

interpreting the strictness axiom (defined below) and then interpreting a-coll. Here
is the strictness axiom.

strict: ` ∀u u 6⊂ u.
It is easily seen that strictness plus a-coll implies a-coll+: if we have x ⊆a y, then
we have x ⊂

+
a y ∗ a. Note that we interpret more than necessary. In the decorated

order types strictness fails, but we do have strong a-collection.

Theorem 4.4 The theory TCε interprets TCε
+ strict on an initial segment.

Proof Consider I (u) :↔ u 6⊂ u. We show that I is closed under concatenation.
Suppose u0 and u1 are in I . Suppose, for some v0, v1, we have v0 ∗ u0 ∗ u1 ∗ v1 =

u0 ∗ u1. By the editor axiom, there is a w such that (1) v0 ∗ u0 ∗ w = u0 and
u1 ∗ v1 = w ∗ u1 or (2) v0 ∗ u0 = u0 ∗ w and w ∗ u1 ∗ v1 = u1. Suppose we are in
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case (1). Since u0 is in I , we find that v0 = w = ε. It follows that u1 ∗ v1 = u1, and,
hence, since u1 is in I , that v1 = ε.

By Fact 3.3, J := DC(I ) is closed under concatenation and downward closed
under substrings. Also clearly, J contains ε, a, and b. Noting that ∀u u 6⊂ u is
universal, we find that relativization to J interprets TCε

+ strict. �

Theorem 4.5 We can interpret TCε
+ a-coll in TCε on an initial segment.

Proof We work in TCε. We first form a predicate N?
a(x) such that (i) N?

a is a sub-
class of Na, (ii) N?

a is closed under ε, a, and concatenation, (iii) N?
a is downward

closed under ⊆, and (iv) N?
a satisfies ‘for any x and y in N?

a, we have x ∗ y = y ∗ x’.
Let I (x) :↔ a ∗ x = x ∗ a. Let J (x) :↔ ∀y:I x ∗ y = y ∗ x . Since a is in I , we

find that J is a subclass of I . It is easily seen that J is closed under concatenation.
It follows that K := DC(J ) is closed under concatenation and is downward closed
under taking substrings. Clearly, K contains ε and a. We take N?

a := Na ∩ K .

Suppose that, for i = 0, 1, we have xi ⊆a yi and yi : N?
a. We show that

x0 ∗ x1 ⊆a y0 ∗ y1. Let z : Na be a substring of x0 ∗ x1. We want to show that z is a
substring of y0 ∗ y1. We have either (1) z ⊆ x0 or (2) z ⊆ x1 or (3) for some z0, z1,
z = z0 ∗ z1, z0 ⊆end x0, and z1 ⊆ini x1. In cases (1) and (2), we are immediately
done. We treat case (3). We find that z0 ⊆ y0 and z1 ⊆ y1. We have, for certain vi j ,
yi = vi0 ∗ zi ∗ vi1. Since vi j ⊆ yi and zi ⊆ yi , we have that vi j and zi are in N?

a.
Hence,

y0 ∗ y1 = v00 ∗ z0 ∗ v01 ∗ v10 ∗ z1 ∗ v11 = v00 ∗ v01 ∗ z0 ∗ z1 ∗ v10 ∗ v11.

So z ⊆ y0 ∗ y1.

Let L(x) :↔ ∃y:N?
a x ⊆a y. Clearly, L is downward closed under substrings.

By the above, L is closed under concatenation. It is easily seen that ε, a, and b
are in L . Finally, trivially, N?

a is contained in L . Thus, restriction to L interprets
TCε

+ a-coll. �

Theorem 4.6 TCε interprets TCε
+ a-coll+.

Proof First interpret TCε
+ strict in TCε. Then relativize to the class L of the

previous theorem to obtain an interpretation of TCε
+ a-coll. Since strict can be

written in purely universal form as ` ∀u, v, w (u = w ∗ u ∗ v → (u = ε ∧ v = ε)),
we find that we will inherit strict in our interpretation. Finally, strict plus a-coll
implies a-coll+. �

We did not explore the tally length representations in the context of TCε and its
extensions. It is very well possible that we can make a tally length representation
work TCε plus axioms that are incomparable to strong a-collection. If that is true,
the tally representations and the growing commas representation would both have
relative advantages and disadvantages.

5 TCε Does Not Have Pairing

We prove that TCε does not prove pairing by producing a model with “too many
automorphisms.” We first define what it is for a theory to have pairing. Let PAIR be
the following theory.
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PAIR 1 ` (pair(x, y, z) ∧ pair(x ′, y′, z)) → (x = x ′
∧ y = y′)

PAIR 2 ` ∀x, y ∃z pair(x, y, z)
A theory has pairing if it directly interprets PAIR. In other words, if there we can
define a predicate pair in the language of the theory that provably satisfies the axioms
of PAIR. We first prove a lazy version of our result. Then we raise our standards and
prove the strongest version I could think of.

5.1 A model construction A concatenation structure is a model of TCε
0.21 There

are many concatenation structures. For example, all groups are concatenation struc-
tures. Also, if (X, ≤) is a linear ordering with a minimal element, then (X, max) is
a concatenation structure. The simplest example is any structure with x ∗ y = y, if
y 6= ε, and x ∗ y = x , if y = ε.

We show that concatenation structures are closed under the operation ~ which
is defined as follows. Consider concatenation structures X and U. We will use
x, y, z, . . . for the elements of X and u, v, w, . . . for the elements of U. We employ
p, q, r ambiguously for both. We use α, β, γ for the elements of X ~ U.

The elements of X ~ U are the elements x of X, and triples (y, u, z), where y
and z are in X and u is in U. We assume that the triples (y, u, z) are disjoint from
the xs. We write ∗ for concatenation in X and U and ? for the new concatenation.
We define

? x ′ (y′, u′, z′)

x x ∗ x ′ (x ∗ y′, u′, z′)

(y, u, z) (y, u, z ∗ x ′) (y, u ∗ u′, z′)

We prove that X ~ U is indeed a concatenation structure. Clearly, the unit of X
functions as the new unit of X ~ U. Here is the verification of associativity.

α β γ (α ? β) ? γ ) α ? (β ? γ )

x x ′ x ′′ (x ∗ x ′) ∗ x ′′ x ∗ (x ′
∗ x ′′)

x x ′ (y′′, u′′, z′′) (x ∗ (x ′
∗ y′′), u′′, z′′) ((x ∗ x ′) ∗ y′′, u′′, z′′)

x (y′, u′, z′) x ′′ (x ∗ y′, u′, z′
∗ x ′′) (x ∗ y′, u′, z′

∗ x ′′)

x (y′, u′, z′) (y′′, u′′, z′′) (x ∗ y′, u′
∗ u′′, z′′) (x ∗ y′, u′

∗ u′′, z′′)

(y, u, z) x ′ x ′′ (y, u, (z ∗ x ′) ∗ x ′′) (y, u, z ∗ (x ′
∗ x ′′))

(y, u, z) x ′ (y′′, u′′, z′′) (y, u ∗ u′′, z′′) (y, u ∗ u′′, z′′)

(y, u, z) (y′, u′, z′) x ′′ (y, u ∗ u′, z′
∗ x ′′) (y, u ∗ u′, z′

∗ x ′′)

(y, u, z) (y′, u′, z′) (y′′, u′′, z′′) (y, (u ∗ u′) ∗ u′′, z′′) (y, u ∗ (u′
∗ u′′), z′′)

Next we verify the editor axiom. Suppose α?β = γ ?δ. We are looking for a witness
of the editor axiom, say θ . We run though the possible cases.

Case 1 All four elements involved are in X. By the editor axiom of X, we are
done.

Case 2 Three elements are in X. This is impossible.

Case 3 Two elements are in X and they are both on the same side of the identity.
This is impossible.

Case 4 Two elements are in X and they are either α and γ, or β and δ. We have, for
example, (y, u, z) ? x = (y′, u′, z′) ? x ′. So (y, u, z ∗ x) = (y′, u′, z′

∗ x ′). Let p be
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provided by the editor axiom for X such that, for example, z ∗ p = z′ and x = p∗ x ′.
We take θ := p. We have

(y, u, z) ? p = (y, u, z′) = (y′, u′, z′) and x = p ? x ′.

Case 5 Two elements are in X and they are either α and δ, or β and γ. We have,
for example, (y, u, z) ? x = x ′ ? (y′, u′, z′). So (y, u, z ∗ x) = (x ′

∗ y′, u′, z′). We
take θ := (y′, u, z). We have

(y, u, z) = x ′ ? (y′, u, z) and (y′, u, z) ? x = (y′, u′, z′).

Case 6 One element is in X. We have, for example,

x ? (y, u, z) = (y′, u′, z′) ? (y′′, u′′, z′′);

that is, (x ∗ y, u, z) = (y′, u′
∗ u′′, z′′). We take η := (y, u′, z′). We have

x ? (y, u′, z′) = (x ∗ y, u′, z′) = (y′, u′, z′),

and
(y, u′, z′) ? (y′′, u′′, z′′) = (y, u′

∗ u′′, z′′) = (y, u, z).

Case 7 No elements are in X. We have

(y, u, z) ? (y′, u′, z′) = (y′′, u′′, z′′) ? (y′′′, u′′′, z′′′).

So (y, u ∗ u′, z′) = (y′′, u′′
∗ u′′′, z′′′). Let p be provided by the editor axiom for U

such that, for example, u ∗ p = u′′ and u′
= p ∗ u′′′. Take θ := (y′, p, z′′). We have

(y, u, z) ? (y′, p, z′′) = (y, u ∗ p, z′′) = (y′′, u′′, z′′),

and
(y′, p, z) ? (y′′′, u′′′, z′′′) = (y′, p ∗ u′′′, z′′′) = (y′, u′, z′).

An important property of the construction ~ is that automorphisms of X and U can
be lifted in the obvious way to automorphisms of X ~ U.

5.2 No pairing We show that PAIR is not directly interpretable in TCε. We con-
sider the case of one-dimensional interpretations with no parameters. In the next
subsection, we will consider parameters, multidimensionality, and more.

Suppose there is a predicate pair in TCε satisfying the axioms of PAIR. Let A2
be the monoid on generators a and b. Let D be a domain with at least four
elements. We extend D to a concatenation structure D† by stipulating that d ∗ e := e
and by adding a unit to the structure. Note that any permutation of D is an automor-
phism of D†.

Consider B := A2 ~ D†. We identify the elements of A2 with their counterparts
in the construction of B and the elements of D† with the triples (ε, d, ε). Note that ε
of A maps to the unit of B and that a and b map to atoms of B. So, B is a model of
TCε (modulo expansion of the signature). (The unit of D† does not map to the unit
of B.)

Let d and e be different elements of D. Suppose pair(d, e, α). Suppose first that
α is not a triple. In this case there is an automorphism of B, mapping d to d ′, e to e,
and α to α, where d ′ is in D \ {d, e}. We get pair(d ′, e, α). A contradiction.

Suppose α = (x, e′, y), where e′
∈ D ∪{ε}. Clearly, one of d , e is not identical to

e′. Suppose it is, for example, d . Let d ′
∈ D \ {d, e, e′

}. There is an automorphism
of B, mapping d to d ′, e to e, and α to α. We get pair(d ′, e, α). A contradiction.
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We may conclude that TCε does not have pairing.

Remark 5.1 Let 30
a be the usual tally length function on binary strings. Let ϕ

be an automorphism of D†. Define 3
ϕ
aα := 30

aα, if α is in A2, and 3
ϕ
aα :=

(30
ax, ϕu, 30

ay), if α is (x, u, y), where x and y are in A2 and u is in D†.
It is easy to see that we have indeed defined a tally length function, since triples

can never be atoms. It follows that even if we add a tally length function we still
cannot define pairing. Note that no (x, u, y) is in Na. So, the range of 3

ϕ
a is not

contained in Na.
If D has at least two elements, our model allows more than one tally length func-

tion. We also see that tally length functions need not be idempotent.

5.3 The pro version of no pairing We adapt the proof of the previous subsection
to prove a stronger result. We borrow some ideas from the proof of Lemma 6.5 of
[11].

Let me explain what we are going to prove. A first step is to widen our concept of
interpretation: we will consider multidimensional interpretations with parameters.22

A second step is that we widen the notion of direct interpretability. In the category
of interpretations where we identify two interpretations whenever the interpreting
theory proves that they are the same, direct interpretability can be defined as follows.
Let ID be the pure theory of identity. Let ιU : ID → U be the interpretation of ID
in U , obtained by just reducing the signature. In other words, ιU is the unique direct
interpretation of ID in U . It is easy to see that K : U → V is direct if and only if
ιV = K ◦ ιU . We now take this characterization and reinterpret it in the category of
interpretations where we count two interpretations as the same when the associated
mappings of models are the same modulo isomorphism. We do not demand that these
isomorphisms are definable in the interpreting theory. The notion that we obtain in
this way is cardinality preserving interpretation. An interpretation K : U → V is
cardinality preserving if, for any model M of V , the internal model K (M) defined
by K has the same cardinality as M.

We will show that there is no cardinality preserving multidimensional inter-
pretation with parameters of PAIR in TCε. It follows that TCε is not weakly
bi-interpretable with a theory that has pairing.

We again work in the the model A2 ~ D† of the previous subsection. However,
now we demand that D is uncountable. We will call the unit of D†, ε† to distinguish
it from the unit ε of A2.

Suppose we have an n-dimensional interpretation K of PAIR in TCε. Let P be
a given finite set of parameters in the model. Let the domain of K be 1 (in the
parameters). We may assume that P is a subset of (the embedded elements of) D
plus ε†, since all other elements are definable from elements of D plus ε†.23 Let E
be the identity of K (given the parameters).

A form is an n-tuple (t0, . . . , tn−1), where each ti is either (i) an a,b-string or
(ii) a term of the form udu′ where u and u′ are a,b-strings and d is a parameter or
(iii) a term of the form uε†u′ where u and u′ are a,b-strings or (iv) a term of the form
u Xu′, where u and u′ are a,b-strings and X is a variable. We identify forms modulo
permutations of variables. An f-assignment σ is an injective mapping from variables
to D \ P . We define σ F , for F a form, in the obvious way. We define σ [F] as the
set of values of the variables of F .
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Clearly, any n-tuple from the domain of B can be obtained as σ F , for some σ
and F . Conversely, every such element A uniquely determines σ and F such that
A = σ F .

We call a permutation of D permissible if it leaves each parameter in place. Two
n-tuples have the same form if and only if they are mapped to each other by an
admissible permutation. It follows that either all elements of a given form are in 1,
or none is. We have the following simple lemma.

Lemma 5.2 Suppose that σ F is in 1 and (σ F)E(τ F), where σ [F] and τ [F] are
disjoint. Then there is only one instantiation of F, modulo E.

Proof Suppose that σ F is in 1 and (σ F)E(τ F), where σ [F] and τ [F] are disjoint.
Let σ ′ and τ ′ be any other pair with σ ′

[F] and τ ′
[F] disjoint. We can find a permissi-

ble permutation ϕ such that ϕ ◦σ = σ ′ and ϕ ◦ τ = τ ′. It follows that (σ ′F)E(τ ′F).
Let ν and ρ be any f-assignments. Let θ be an f-assignment where θ [F] is disjoint
from ν[F] and ρ[F] on the variables of F . We find (νF)E(θ F)E(ρF) and, hence,
(νF)E(ρF). So F contains only one element modulo E . �

We show that any F has at most one instance in 1 modulo E . Suppose F has an
instance in 1. If F has no variables we are immediately done. So suppose F has at
least one variable.

Let A, B, . . . range over 1. We define a nonfunctional sequence coding as follows
(for standard n):

1. seq2(A0, A1, B) :↔ pair(A0, A1, B),
2. seqk+3(A0, . . . , Ak+2, B) :↔ ∃C

(seqk+2(A0, . . . , Ak+1, C) ∧ pair(C, Ak+2, B)).

Let σ0, . . . , σn be a sequence of n + 1 f-assignments such that the σi [F] are pairwise
disjoint. Suppose that seqn+1(σ0 F, . . . , σn F, B), for some B. Say B is of form τG,
for some form G. The number of variables of G is smaller or equal to n. So τ [G] is
smaller or equal to n. It follows that τ [G] is disjoint from one of the σi [F], say for
i0. Let ϕ be any admissible permutation that leaves the elements of τ [G] and of the
σi [F], for i 6= i0, in place but moves the elements of σi0 [F] to a set disjoint from the
σi0 [F]. We find that seqn+1(ϕσ0 F, . . . , ϕσn F, ϕB). It follows that

seqn+1(σ0 F, . . . , σi0−1 F, ϕσi0 F, σi0+1 F, . . . , σn F, B).

So (σi0 F)E(ϕσi0 F). It follows, by the lemma, that F contains, modulo E , only one
object in 1.

Since there are only countable many forms, it follows that 1 is countable (modulo
E). So K is not cardinality preserving. Note that our result still holds when we add
a tally length function.

Appendix A Comparing TC and TCε

We show that TC is bi-interpretable with a corresponding theory TCε.24 This
means that there are interpretations K : TCε

→ TC and M : TC → TCε so that
K ◦ M : TC → TC is isomorphic to the interpretation idTC via a definable isomor-
phism F , and M ◦ K : TCε

→ TCε is isomorphic to the interpretation idTCε via a
definable isomorphism G.25
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We can take K and M one-dimensional interpretations without parameters. We
specify K , M , F , and G. We use C for the relational formulation of concatenation
and E as an alternative way of writing identity.

1. δK (x) :↔ x = a ∨ ∃x0 x = b ∗ x0,
2. xEK y :↔ x = y,
3. CK (x, y, z) :↔ (x = a ∧ y = z) ∨ (y = a ∧ x = z) ∨

∃x0, y0 (x = b ∗ x0 ∧ y = b ∗ y0 ∧ z = b ∗ x0 ∗ y0),
4. εK := a,
5. aK = b ∗ a,
6. bK = b ∗ b,
7. δM (x) :↔ x 6= ε,
8. xEM y :↔ x = y,
9. x ∗M y := x ∗ y,

10. x Fy :↔ x = b ∗ y,
11. xGy :↔ (x = a ∧ y = ε) ∨ x = b ∗ y.

The verification that our definitions work is routine. We note the important fact that
the presence of atoms in TCε implies that x ∗ y = ε → (x = ε ∨ y = ε).

The author thinks that he can prove the even stronger theorem, to wit that TC and
TCε are definitionally equivalent, but the proof still has to be written up.

Appendix B Comparing TCε and Qbin

We first show how to interpret Qbin in TCε. We work in TCε. Define

I (x) :↔ ∀y ⊆ini x (y = ε ∨ ∃z (z = y ∗ a ∨ y = z ∗ b).

It is easy to see that I is closed under ε, a, and b and that it is downward closed
under ⊆ini. We show that it is closed under concatenation. Suppose that x0 and x1
are in I and that y ⊆ini x0 ∗ x1, say y ∗ w = x0 ∗ x1. We want to show (†y) y = ε or
∃z (z = y ∗ a ∨ y = z ∗ b).

By the editor axiom, there is a u such that (1) y ∗ u = x0 and w = u ∗ x1 or
(2) y = x0 ∗ u and u ∗ w = x1. In the first case, y ⊆ini x0 and, hence, we have †y .
In the second case, u ⊆ini x1. So we have †u . If u = ε, we find y = x0. So y ⊆ini x0
and †y . Otherwise, for some z, (2.1) u = z ∗ a or (2.2) u = z ∗ b. In case (1.1) it
follows that y = x0 ∗ u = x0 ∗ (z ∗ a) = (x0 ∗ z) ∗ a. Case (1.2) is similar. We may
conclude †y .

Our interpretation K : Qbin
→ TC is just relativization to I , where we set

Sax := x ∗ a and Sbx := x ∗ b.
We provide the reverse interpretation M : TC → Qbin. We work in Qbin. Let

I (x) :↔ ∀y, z (y ∗ z) ∗ x = y ∗ (z ∗ x). It is easy to see that I is closed under ε, Sa,
Sb, concatenation and under the predecessor functions corresponding to Sa and Sb.

So relativization to I will give us an interpretation of Qbin plus the associativity
of concatenation. We proceed to work in this theory. Let

J (x) :↔ ∀y, u, v (y∗x = u∗v → ∃z ((y∗z = u∧x = z∗v)∨(y = u∗z∨z∗x = v))).

We define a := Saε and b := Sbε. Clearly, J is closed under ε. Suppose x = a,
y ∗ a = u ∗ v. If v = ε, we can take z := a. We have y ∗ z = u and x = z ∗ v. If
v = Sav0, we can take z := v0. We have

Sa(u ∗ z) = u ∗ v0 ∗ a = u ∗ v = y ∗ a = Say.
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So y = u ∗ z. Moreover, z ∗ x = v0 ∗ a = v. It is easily seen that the case that
v = Sbv0 leads to a contradiction. We may conclude that a is in J . By similar
reasoning, we find that b is in J .

We now show that J is closed under concatenation. Suppose x0 and x1 are in J
and y ∗ x0 ∗ x1 = u ∗ v. For some z0, we have (1) y ∗ x0 ∗ z0 = u and x1 = z0 ∗ v or
(2) y ∗ x0 = u ∗ z0 and z0 ∗ x1 = v.

In case (1) we can take the desired z := x0 ∗ z0. We have y ∗ z = y ∗ x0 ∗ z0 = u
and z ∗ v = x0 ∗ z0 ∗ v = x0 ∗ x1.

In case (2), we have a z1 such that (2.1) y ∗ z1 = u and x0 = z1 ∗ z0 or
(2.2) y = u ∗ z1 and z1 ∗ x0 = z0. In case (2.1), we can take z := z1. We have
y ∗ z = y ∗ z1 = u and z ∗ v = z1 ∗ v = z1 ∗ z0 ∗ x1 = x0 ∗ x1. In case (2.2), we can
take z := z1. We have u ∗ z = u ∗ z1 = y and z ∗ x0 ∗ x1 = z1 ∗ x0 ∗ x1 = z0 ∗ x1 = v.

Finally, we define J ?(x) :↔ ∀y ⊆ x J (y). It is easily seen that J ? is closed
under ε, a, b, and downward closed under taking substrings. We show that J ? is
closed under concatenation. Suppose x0 and x1 are in J ? and y ⊆ x0 ∗ x1. We have,
for some w0, w1, that x0 ∗ x1 = w0 ∗ y ∗ w1. Since x1 is in J ? and, a fortiori, in J ,
there is a z0 such that (1) x0 ∗ z0 = w0 and x1 = z0 ∗ y ∗ w1 or (2) x0 = w0 ∗ z0 and
z0 ∗ x1 = y ∗ w1. In case (1), we have that y ⊆ x1; hence y ∈ J .

In case (2), we use again that x1 is in J . We can find a z1 such that (2.1) z0∗z1 = y
and x1 = z1 ∗ w1 or (2.2) z0 = y ∗ z1 and z1 ∗ x1 = w1. In case (2.1), we note that
z0 ⊆ x0 and z1 ⊆ x1. Hence, z0 and z1 are both in J . Thus y = z0 ∗ z1 is also in J .
In case (2.2), we find that y ⊆ z0 ⊆ x0, so y ⊆ x0 and y is in J .

Since we can rewrite the editor axiom with substring-bounded quantifiers, it is
easily seen that relativization to J ? interprets TCε in Qbin plus the associativity of
concatenation.

Appendix C A Model without a Tally

Consider a model M of the true theory of concatenation for the alphabet {a,b} that
contains a nonstandard element. It follows that M contains a nonstandard string of
bs. We consider the class A of the strings of this model that contain only standardly
many as. This class is closed under empty string, atoms, concatenation and is down-
ward closed under substrings. Consider the submodel A of M determined by A. It
is clear that A satisfies TCε and does not have a tally function.

We call a formula 1⊆

0 if it only contains substring bounded quantifiers. A formula
is 5⊆

1 if it is given by a 1⊆

0 -formula preceded by universal quantifiers. We see that
A satisfies all 5⊆

1 -sentences true in M and, hence, true in the standard model of
binary strings. Thus, there is a model of TCε plus all 5⊆

1 -sentences which are true
in the standard model of binary strings, in which there is no tally length function.

Appendix D How to Create a Letter ex Nihilo

The axioms of F are the following.

F1 ` x ∗ (y ∗ z) = (x ∗ y) ∗ z.
F2 ` x ∗ z = y ∗ z → x = y.
F3 ` z ∗ x = z ∗ y → x = y.
F4 ` x ∗ a 6= y ∗ b.
F5 ` x = a ∨ x = b ∨ ∃y (x = y ∗ a ∨ x = y ∗ b).
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Our axiomatization differs slightly from the one of Szmielew and Tarski. They do
not have constants for a and b but have an axiom saying that two objects with the
properties of a and b exist.

To construct a model, we define a rewrite system. Terms are strings of ‘letters’
(except the empty string) of the alphabet a, b, αn , βn . The intuition is that the αn
and the βn stand for strings . . .aaa, but somehow for different ones. We have the
following rewrite rules.

1. αn+1a → αn
2. βn+1a → βn
3. bαn → β0βn

We will assign to each of a, αn , βn weight 1, and to b weight 2. The weight of
a string is the sum of the weights of the occurrences in the string. Our system
strongly terminates because in our reduction steps the weight is strictly decreasing.
It is also Church-Rosser. The only critical pairs have the form bαn+1a and we have
bαn+1a → β0βn+1a → β0βn and bαn+1a → bαn → β0βn . We may conclude that
our system has unique normal forms.

We now define a model where the domain consists of the normal forms of our
rewrite system and x ∗ y is the normal form of xy. Notationally it is essential to
distinguish carefully between xy which is the concatenation of x and y and x ∗ y,
which is the normal form of xy. We verify the axioms.

Associativity F1 follows by the uniqueness of normal forms.

Axiom F4 tells us that x ∗ a 6= y ∗ b. It is easy to prove by induction on reduction
sequences that any reduct of xa is of one of the forms za, zαk , or zβk . Any reduct of
yb is of the form zb. So clearly the normal forms of xa and yb cannot be equal.

We verify axiom F5. In case the normal form x ends with a, or with b, we are
immediately done. If x = αk or x = x ′αk , then x = αk+1 ∗ a or x = x ′αk+1 ∗ a.
Similarly for the case that x ends with βk .

We verify the right cancellation law F2; that is, for all x, y, z, x ∗ z = y ∗ z ⇒ x = y.
We proceed by induction on the weight of xzyz. Suppose x ∗ z = y ∗ z.

Case 1 In case xz and yz are in normal form, we are done.

Case 2 Suppose one of xz or yz is not in normal form. By symmetry, we may
assume that xz is not in normal form. Clearly, z = γ or z = z′γ, where γ is a letter.

Case 2.1 Suppose z = z′γ. We have (x ∗ z′) ∗ γ = (y ∗ z′) ∗ γ.

Case 2.1.1 If one of xz′, yz′ is not in normal form, clearly, the weight of
(x ∗ z′)γ(y ∗ z′)γ is less than the weight of xzyz. So it follows that x ∗ z′

= y ∗ z′.
Again the weight of xz′yz′ is less than the weight of xzyz. Hence x = y.

Case 2.1.2 Now suppose that both xz′ and yz′ are in normal form. Note that both
xz′ and z′γ are normal forms. It follows that xz = xz′γ would be a normal form.
This contradicts our assumption.

Case 2.2 We suppose that z = γ. So x ∗ γ = y ∗ γ.

Case 2.2.1 Suppose γ = a. We have x ∗a = y ∗a. Since xa is not in normal form,
x is either αn+1 or x ′αn+1 or βn+1 or x ′βn+1. In the first case, x ∗ a will be αn . It
follows that y must also be αn+1. In the second case, x ∗ a will be x ′αn . (There can
be no b at the end of x ′ since x is in normal form.) It follows that y must also be of
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the form y′αn+1. We find that x ′αn = y′αn and hence x ′
= y′ and thus x = y. (Note

that this last step does not use the Induction Hypothesis: we are comparing normal
forms.) The reasoning for the remaining cases is similar.

Case 2.2.2 Suppose γ = b. Then xb would be a normal form. Quod non.

Case 2.2.3 Suppose γ = αk . We have x ∗ αk = y ∗ αk . Since xαk is not a normal
form, x = b or x = x ′b. In the second case, x ∗ αk = x ′b ∗ αk = x ′β0βk . To make
x ′β0βk = y ∗ αk possible, we must have y = y′b and hence y ∗ αn = y′β0βn . It
follows that x ′

= y′ and thus x = y. The first case is similar.

Case 2.2.4 Suppose γ = βk . Then xβk would be a normal form. Quod non.

We verify the left cancellation law F3; that is, for all x, y, z, z ∗ x = z ∗ y ⇒ x = y.
We proceed by induction on the weight of zxzy. Suppose z ∗ x = z ∗ y. We
run through an argument that is the mirror image of the argument concerning right
cancellation. The first point where a difference appears is 2.2.1.

Case 2.2.1 Suppose γ = a. Clearly a ∗ x would be in normal form. Quod non.

Case 2.2.2 Suppose γ = b. Then x must be of the form αk or αk x ′. In the second
case, bx = β0βk x ′. (In case k > 0, x ′ cannot begin with a, since x is in normal
form.) It follows that y = αk y′ and β0βk x ′

= β0βk y′, so x ′
= y′ and x = y. The

first case is similar.

Case 2.2.3 Suppose γ = αk . We have αk ∗ x = αk ∗ y. We have either x = an ,
where n 6= 0, or x = an x ′, where x ′ does not begin with a and n may be zero.
Similarly, either y = am , where m 6= 0, or y = am y′, where y′ does not begin with
a and m may be zero. We will only treat the case that x = an x ′ and y = am y′.
The other cases are easier. We have αk ∗ x = αk ∗ an x ′

= αk−̇na
n−̇k x ′. Here −̇

is cut-off subtraction. We find αk ∗ y = αk ∗ am y′
= αk−̇ma

m−̇k y′. It follows that
k−̇n = k−̇m and n−̇k = m−̇k. So n = m. Hence x ′

= y′ and x = y.

Case 2.2.4 Suppose γ = βk . This case is similar to the the previous case.

Consider β0 in the model. It is easily seen that the substrings of β0 are precisely β0
and an , for all n > 0. So β0 is in Na. On the other hand, b is a substring of β0 ∗ β0.
So b appears ex nihilo.

Notes

1. For more detailed historical remarks, see Subsection 1.4.

2. A decorated linear ordering is a linear ordering plus a function from the domain of the
ordering to decorations (i.e., elements from a given class). An isomorphism between two
decorated linear orderings (with decorations from a given class) is an isomorphism of lin-
ear orderings that preserves decorations. A decorated linear order type is the equivalence
class modulo isomorphism of a decorated linear ordering. The definition of concatena-
tion of decorated order types is as expected. For a study of decorated linear order types
as a semantics for theories of concatenation, see [5].

3. In fact Quine defines relations, but the mechanism is the same.

4. The axiomatizations employed in [4] are not precisely the original ones.
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5. The text admits the alternative reading that Quine intends a bilateral interpretation to be
one half of a definitional equivalence. This reading fits better the symmetry suggested
by bilateral.

6. Quine calls this a lexicographic ordering. As far as I can see the majority vote in the
present day literature is to use lexicographic ordering for the ordering employed in or-
dinary dictionaries. In contrast, the length-first ordering is employed in dictionaries for
crossword puzzles.

7. In fact, Quine defines multiplication of length-first numbers by defining the bijection
between tally numbers and length-first numbers. He uses the bijection to induce the
operations on the length-first numbers from those of the tally numbers.

8. The notion of logical synonymy or definitional equivalence was introduced by de Bou-
vère in 1965. See [6] and [7]. Clearly, Quine understood the notion in 1935 without
having an explicit definition of it.

9. Since Qbin is, by Appendix B, interpretable in TCε (see Section 2), we find another
proof of the interpretability of Q in TCε and hence in TC. It is easily seen that Qbin is
interpretable in F, so this also gives a proof of the interpretability of Q in F.

10. The theory S1
2 is mutually interpretable with Q. Thus, the salient property of representing

the p-time definable functions is not preserved modulo mutual interpretability.

11. In F there are two equivalent definitions of a string of as. The first definition is “x is a
string of as if and only if b is not a substring of x .” The second definition is “x is string
of as if and only if, for every substring y of x , a is a substring of y.” (The system F is
semigroup-style, without a unit.)

12. The example is real in the sense that I, for some time, naïvely assumed that the tally
numbers of F were closed under concatenation.

13. Almost all desirable properties of theories are preserved modulo bi-interpretability—
for example, finite axiomatizability, κ-categoricity, sequentiality. Moreover, bi-
interpretability is a bisimulation with respect to theory extension: if U is bi-interpretable
with V and U ⊆ U ′, then there is a V ′

⊇ V which is bi-interpretable with V .

14. It is not difficult to produce a model to show that we cannot prove that the atoms in our
sense are the only atoms of the preordering.

15. It is easy to produce a countermodel to show that the converse does not generally hold.

16. An important difference is that in the definition, as given by Smoryński, Elementary
Arithmetic EA (a.k.a. I10 + EXP) is stipulated to be interpretable in adequate theories.
This demand is evidently much too strong.

17. It is easy to produce a model of TCε that does not admit a tally length function. See
Appendix C. One can also produce a model that admits different tally length functions
and in which the range of these functions is not Na. See Subsection 5.2.
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18. Of course, we can define a tally length function in a sufficiently strong extension of TCε .
However, that is after we coded sequences. We are now precisely considering it as a tool
to define sequences.

19. The fact that correctness can be verified in a weaker theory than the one we need for
existence, by itself, does not give us much information. After all, we could define an
alternative adjunction by

– adj?(x, y, z) :↔ adj(x, y, z) ∧ ∀w (w ∈ z ↔ (w ∈ x ∨ w = y)).
For this definition correctness would be trivial and the whole burden of verification
would be shifted to the existence clause. Of course, such cleverness only shifts the
work to other places.

20. So, note that it is possible that 3σ 6= 3τ , even if σ = τ .

21. Warning: The presence of the unit is essential to make the construction work.

22. There is one further possible widening of our class of interpretations: we could consider
piecewise interpretations, where the new domain is assembled out of possibly overlap-
ping pieces. However, since TCε provides an infinity of closed terms that are pairwise
provably different, one can show that piecewise interpretations, for the case at hand, can
always be replaced by multidimensional ones.

23. In fact, the a,b-strings are definable in the model. It follows that ε† is definable.

24. Gregorczyck and Zdanowski prove that TC interprets TCε in [14]. Our argument is a
variation of their argument.

25. See [38] for detailed definitions.
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