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Generalized Halfspaces
in the Mixed-Integer Realm

Philip Scowcroft

Abstract In the ordered Abelian group of reals with the integers as a
distinguished subgroup, the projection of a finite intersection of generalized
halfspaces is a finite intersection of generalized halfspaces. The result is uni-
form in the integer coefficients and moduli of the initial generalized halfspaces.

1 Introduction

A halfspace in Rn is the solution set of a homogeneous weak linear inequality in
n variables. Fundamental to the study of linear inequalities is the closure under
projection of the class of finite intersections of halfspaces. This result fails when
one turns from R to nondivisible ordered Abelian groups like Z, where congruences
modulo a positive integer become important. But one may recover over Z a version of
this result on projections by exploiting a more liberal notion of generalized halfspace,
which combines weak inequalities with congruences in a special way ([5], Section
4). Postponing to Section 2 the definition of generalized halfspace, one may give an
example:

{(x, y) ∈ Z2
: ∃u, v(x ≤ u ≤ v ≤ y ∧ u ≡3 0 ∧ v ≡2 0)}

is a generalized halfspace of Z2, where u ≡3 0 (v ≡2 0) means that u is divisible by
3 (v is divisible by 2) in Z.

A different notion of congruence plays a role in Weispfenning’s mixed real-
integer quantifier elimination for a language M in which one may describe the
reals as an ordered Abelian group R with the integers as a definable subgroup [8].
M = {+,−, <, 0, 1, b·c} ∪ {≡n : n ≥ 2}

1 contains a language {+,−, <, 0} for
ordered Abelian groups, a constant symbol 1 for the number one, a symbol for the
function obeying

bxc ∈ Z and 0 ≤ x − bxc < 1,
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and binary relation symbols for extensions to the reals of the usual congruence rela-
tions on Z: for integers n ≥ 2 and reals x and y

x ≡n y iff x = y + nz for some integer z.

Thus a real x is an integer just in case x = bxc, that is, just in case 2x ≡2 0.
This note will show that the projection theorem for Z of [5] continues to hold in

the structure studied by Weispfenning if one substitutes his notion of congruence for
the usual one. This claim does not follow immediately from his method of eliminat-
ing quantifiers because it may introduce disjunction (e.g., in case 2 of the proof of
Theorem 3.1 in [8]). However, the effective proof in [6] of the projection result for
Z, with a slight modification at the start, continues to work in this new context, and
as before the theorem is uniform in coefficients and moduli in a manner explained
below.

Yet Section 3 points out a limitation to this uniformity result. It is expressed as
a quantifier-elimination result in a two-sorted theory featuring a sort for scalars and
a sort for elements of the ordered group: Z, in [6], and R here. Once the group
Z is replaced by R, one might hope also to replace integer scalars by real scalars,
together with a means of distinguishing real scalars from integer scalars, since only
the latter seem relevant to the definition of congruences. But an example presented
in Section 3 shows that a natural proposal for a structure of this kind cannot obey the
obvious analogue of the uniform projection theorem established in Section 2.

The Conclusion, finally, suggests possible applications of the results of Section 2.

2 Projections

The formal counterpart of a generalized halfspace is a congruence inequality. If
x = (x1, . . . , xm) and y = (y1, . . . , yn) are disjoint lists of distinct variables, D(x)
is a conjunction of weak inequalities xi ≤ x j for which the graph

{(i, j) : xi ≤ x j is a conjunct of D}

contains no cycles, and H(x; y) is a conjunction of congruences between Z-linear
forms in the variables x, y, let ≤

D,H be a new (n + 2)-place relation symbol and M′

be the expansion of M by all the ≤
D,Hs. R′ is the M′-expansion of R obeying the

axioms

∀u, v, y(u ≤
D,H
y v ↔ ∃x(u ≤ x ≤ v ∧ D(x) ∧ H(x; y))).

If r , s, and t1, . . . , tn are Z-linear forms in the variables w = (w1, . . . , wk), any
formula

r ≤
D,H
t1,...,tn s

is a congruence inequality in w. A generalized halfspace of Rk is the solution set in
R′ of a congruence inequality in k variables.

Note that while x = bxc is in R′ equivalent to 2x ≡2 0, which amounts to a
congruence inequality, y = bxc is not equivalent in R′ to any conjunction of con-
gruence inequalities (even if parameters are allowed). For since weak inequalities
between linear forms and congruences between linear forms define closed sets, and
congruence inequalities result from systems of such weak inequalities and congru-
ences by a form of bounded quantification, a generalized halfspace H in Rk is the
projection of a closed set in Rk+l whose fibers over H are bounded, and so H is
closed. Though the graph of y = bxc may not be defined (with parameters) in R′ by



Generalized Halfspaces 45

a conjunction of congruence inequalities, closely related sets are so definable. For
example, if ψ(x, y) is

∃z(x ≤ z ≤ y ∧ 2z ≡2 0),
ψ(x−1, y)∧ψ(y, x) defines the infinite staircase obtained from the graph of y = bxc

by filling in the missing vertical segments.
That the class of finite intersections of generalized halfspaces is closed under

projection follows from Theorem 2.1.

Theorem 2.1 In R′, the existential quantification of a conjunction of congruence
inequalities is equivalent to a conjunction of congruence inequalities.

Proof Since existential quantifiers may be eliminated one by one, the following
discussion will show that if ϕ(w, v) is a conjunction of congruence inequalities in
(w1, . . . , wk, v) = (w, v), then ∃vϕ is equivalent in R′ to a conjunction of congru-
ence inequalities in w.

Each conjunct of ϕ(w, v) has the form

a + rv ≤
D,H
c1,...,cn

b + sv,

where a, b are Z-linear forms in w, c1, . . . , cn are Z-linear forms in (w, v), and r ,
s are integers. By repeatedly subtracting the same linear form from both sides and
making corresponding changes to the system H of congruences, one may assume
that rs = 0 and that if r 6= 0 (s 6= 0), it is positive and a (b) is identically zero.
Because

x ≡n y ↔ kx ≡nk ky
when n and k are positive integers, one may multiply the arguments of each congru-
ence inequality, and the moduli of the congruences in H , by suitable positive integers
to ensure that for some integer t > 0, every r 6= 0 (s 6= 0) is t and v occurs in any H
only as a multiple of tv. Let θ(w, v) result from ϕ(w, v) through replacement of all
occurrences of tv by v. Because the reals form a divisible group, ∃vϕ is equivalent
in R′ to ∃vθ , and so one may assume that t = 1.

This last step—possible only in a divisible group—allows one to assume that
ϕ(w, v) is a conjunction (]) =∧

l

0 ≤
Dl ,Hl
w,v bl ∧

∧
m

am ≤
Dm ,Hm
w,v v ∧

∧
n

v ≤
Dn ,Hn
w,v en,

where the as, bs, and es are Z-linear forms in w. Yet given such a ϕ, one may
eliminate v from ∃vϕ exactly as in the Appendix to [6]; only the manner of reaching
a formula (]) had to be different. �

To express the uniformity, in coefficients of linear forms and moduli of congru-
ences, of the passage from ∃vϕ(w, v) to a conjunction ψ(w) of congruence inequal-
ities, one may carry out the argument for Theorem 2.1 in a two-sorted theory fea-
turing a new sort for scalars. MII is a two-sorted language with scalar variables
ρ, σ, τ, . . . and module variables x, y, z, . . . . The module sort features a copy of
{+,−, <, 0, 1, b·c}, where the function symbols +,−, b·c take module terms as ar-
guments and yield module terms and the relation symbol < takes module terms as
arguments. The scalar sort features a copy of {+,−, ·, <, 0, 1, g, α, β, γ }, where the
function symbols +,−, ·, g, α, β, γ take scalar terms as arguments and yield scalar
terms and the relation symbol < takes scalar terms as arguments. There is a binary
function symbol · which takes a scalar term δ and a module term a to yield a module
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term δ · a. There is a ternary relation symbol ≡ which takes two module terms a, b
and a scalar term δ as arguments to yield an atomic formula a ≡δ b (called a congru-
ence of modulus δ). And if x = (x1, . . . , xm) and y = (y1, . . . , yn) are disjoint lists
of distinct module variables, σ = (σ1, . . . , σk) is a list of distinct scalar variables,
D(x) is a conjunction of weak inequalities xi ≤ x j for which the graph

{(i, j) : xi ≤ x j is a conjunct of D}

contains no cycles, and H(x; y; σ) is a conjunction of congruences, between linear
forms in x, y, with module variables from σ , then ≤

D,H is a relation symbol of MII

with n + 2 module arguments and k scalar arguments. T II is the MII-theory having
axioms with the following import (initial universal quantifiers may be dropped for
legibility):

(1) axioms for ordered Abelian groups (in the module sort);
(2) axioms for ordered integral domains (in the scalar sort);
(3) 0 < 1 (in the module sort);
(4) 0 < 1 (in the scalar sort);
(5) ρ·(x+y) = (ρ·x)+(ρ·y)∧ (ρ+σ)·x = (ρ·x)+(σ ·x)∧ 1·x = x ∧ (ρσ)·x =

ρ ·(σ ·x) ∧ (ρ ·x = 0 → ρ = 0 ∨ x = 0) ∧ (ρ ≤ σ ∧ 0 ≤ x → ρ ·x ≤ σ ·x)
∧ (0 ≤ ρ ∧ x ≤ y → ρ · x ≤ ρ · y);

(6) g(ρ, σ ) = g(σ, ρ) ∧ ρ = γ (ρ, σ )g(ρ, σ ) ∧ σ = γ (σ, ρ)g(ρ, σ ) ∧ 1 =

α(ρ, σ )γ (ρ, σ )+ β(ρ, σ )γ (σ, ρ);
(7) ρ 6= 0 → ∃y(x = ρ · y);
(8) 0 ≤ x − bxc < 1;
(9) 0 < bxc → 1 ≤ bxc;

(10) 0 = b0c ∧ 1 = b1c ∧ bbxc + bycc =

bxc + byc ∧ b−bxcc = −bxc ∧ bρ · bxcc = ρ · bxc;
(11) 0 < ρ → ∃y(bxc ≤ ρ · byc < bxc + ρ · 1);
(12) x ≡ρ y ↔ ∃z(x = y + ρ · bzc);
(13) u ≤

D,H
y;σ v ↔ ∃x(u ≤ x ≤ v ∧ D(x) ∧ H(x; y; σ)) (for all pairs (D, H) as

above).
A formula a ≤

D,H
c;δ b in which a, b, the terms in c = (c1, . . . , cn), and the terms in

δ = (δ1, . . . , δk) are MII-terms not containing b·c, is a congruence inequality whose
moduli are the moduli of the congruences in H(x; c; δ).

The ordered Z-module of reals yields a model of T II in which the reals form the
module domain and the integers form the scalar domain. Repeating the argument for
Theorem 2.1 within T II, one may prove Theorem 2.2.

Theorem 2.2 Let ψ(v,w, θ) be a conjunction of congruence inequalities with free
variables among the module variables v = (v1, . . . , vp) and w = (w1, . . . , wq)
and the scalar variables θ = (θ1, . . . , θs). There are l ≥ 1, quantifier-free formulas
δi (θ) of scalar sort (for i = 1, . . . , l), scalar terms τi j (θ) (for i = 1, . . . , l and
j = 1, . . . ,mi ), and conjunctions ϕi (w, θ) of congruence inequalities, with moduli
among the τi j (θ)s such that T II implies

∀θ
[( l∨

i=1

δi (θ)
)
∧

∧
i 6= j

¬
(
δi (θ) ∧ δ j (θ)

)
∧

l∧
i=1

{
δi (θ) → ∧

mi
j=1τi j (θ) 6= 0

∧ ∀w(∃vψ(v,w, θ) ↔ ϕi (w, θ))
}]
.
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Note that just as Weispfenning’s quantifier elimination continues to work in an ex-
pansion of M by unary function symbols corresponding to scalar multiplication by
individual rationals ([8], Corollary 3.4),2 so Theorem 2.2 will continue to work in
the expansion of MII by unary function symbols fr (r ∈ Q), of module sort, if one
adjoins to T II the universal closures of

f0(x) = 0 ∧ f1(x) = x
fc+d(x) = fc(x)+ fd(x) ∧ fcd(x) = fc( fd(x)) (for c, d ∈ Q).

3 May the Scalars Form a Field?

One might hope to make Theorem 2.2 more symmetric between module elements
and scalars by allowing the latter to belong to an ordered field in which a discretely
ordered subring is distinguished, relative to whose elements congruences may be
defined. A convenient means toward this end would replace T II by T II,+, a theory in
an expansion MII,+ of MII obtained by adding, to the scalar sort, function symbols
b·c and −1 taking scalar terms as arguments and producing scalar terms. To obtain
T II,+ from T II, adjoin axioms

(14) 0−1
= 0 ∧ (ρ 6= 0 → ρ · ρ−1

= 1),
(15) 0 = b0c∧1 = b1c∧bbρc+bσcc = bρc+bσc∧b−bρcc = −bρc∧bbρc·bσcc =

bρc · bσc ∧ bbρc · bxcc = bρc · bxc,
(16) 0 ≤ ρ − bρc < 1,
(17) 0 < bρc → 1 ≤ bρc,

and replace (6) by
(6)′ g(ρ, σ ) = g(σ, ρ) ∧ bρc = γ (ρ, σ )g(ρ, σ ) ∧ bσc = γ (σ, ρ)g(ρ, σ ) ∧ 1 =

α(ρ, σ )γ (ρ, σ ) + β(ρ, σ )γ (σ, ρ) ∧ bg(ρ, σ )c = g(ρ, σ ) = g(bρc, bσc)
∧bγ (ρ, σ )c = γ (ρ, σ ) = γ (bρc, bσc)∧bα(ρ, σ )c = α(ρ, σ ) = α(bρc, bσc)
∧ bβ(ρ, σ )c = β(ρ, σ ) = β(bρc, bσc),

(10) by
(10)′ 0 = b0c ∧ 1 = b1c ∧ bbxc + bycc = bxc + byc ∧ b−bxcc = −bxc,

(11) by
(11)′ 0 < bρc → ∃y(bxc ≤ bρc · byc < bxc + bρc · 1),

and (12) by
(12)′ x ≡ρ y ↔ ∃z(x = y + bρc · bzc).

The ordered real vector space of reals yields a model R+ of T II,+ in which the
ordered group of reals with an integer-part operation forms the module domain and
the ordered field of reals with an integer-part operation forms the scalar domain.

If one repeats the argument for Theorem 2.2 in this new context one encounters
an obstacle in the reduction to the case of t = 1 and formulas ϕ(w, v) = (]) (see
Section 2). Because

ρ 6= 0 → (x ≡σ y ↔ ρ · x ≡ρσ ρ · y)

no longer holds for arbitrary ρ, σ , and there is no obvious substitute when ρ or σ
is irrational, the manipulations of Section 2 seem insufficient. In fact, an example
inspired by Theorem 7.1 of [8] shows that T II,+ will not obey the analogue of The-
orem 2.2 in which all the relevant formulas are MII,+-formulas and the integer parts
of the moduli of the congruences are to be nonzero. For let ψ(v1, v2, w, θ) be

2v1 ≡2 0 ∧ 2v2 ≡2 0 ∧ w ≤ v2 ∧ θ · v2 = v1.
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Suppose that there are quantifier-free formulas δ1(θ), . . . , δl(θ) of scalar sort, scalar
terms τi j (θ) (for i = 1, . . . , l and j = 1, . . . ,mi ), and conjunctions ϕi (w, θ) of
congruence inequalities, with moduli among the τi j (θ)s,3 such that T II,+ implies

∀θ
[( l∨

i=1

δi (θ)
)
∧

∧
i 6= j

¬
(
δi (θ) ∧ δ j (θ)

)
∧

l∧
i=1

{
δi (θ) → ∧

mi
j=1bτi j (θ)c 6= 0

∧ ∀w(∃v1∃v2ψ(v1, v2, w, θ) ↔ ϕi (w, θ))
}]
.

Then T II,+ also implies (∗) =

∀θ
[( l∨

i=1

δi (θ)
)
∧

∧
i 6= j

¬
(
δi (θ) ∧ δ j (θ)

)
∧

l∧
i=1

{
δi (θ) → ∧

mi
j=1bτi j (θ)c 6= 0

∧ (∃v1∃v2ψ(v1, v2, 1, θ) ↔ ϕi (1, θ))
}]
,

where ∃v1∃v2ψ(v1, v2, 1, θ) =

∃v1∃v2(2v1 ≡2 0 ∧ 2v2 ≡2 0 ∧ 1 ≤ v2 ∧ θ · v2 = v1)

defines, in the scalar domain of R+, the set of rational numbers.
To analyze this example one needs the following lemma.

Lemma 3.1 If τ(θ) is a scalar term of MII,+ in one variable θ , then there is a co-
countable open set U ⊆ R, on every connected component of which τ(θ) defines in
R+ a continuous rational function.

Proof The argument goes by induction on the complexity of τ(θ). The terms of
complexity zero—0, 1, θ—certainly obey the result, and the induction steps for the
ring operations are easy. Suppose τ(θ) obeys the result and C is a connected compo-
nent of U . If τ(θ) is identically zero on C then τ(θ)−1 and bτ(θ)c also are identically
zero on C : so suppose that τ(θ) is not identically zero on C . τ(θ) has only finitely
many zeros a1 < · · · < ak in C , and on each interval C ∩ (−∞, a1), (ai , ai+1)
(i ≤ i < k), and C ∩ (ak,∞) τ (θ)−1 defines a continuous rational function. Thus
τ(θ)−1 obeys the result relative to a co-countable open set obtained from U by re-
moving finitely many points from each connected component of U . Let r : C → R

be the continuous rational function defined by τ(θ) on C . Since r is a rational func-
tion, r−1

{n} is finite for each n ∈ Z; since r is also continuous, r−1(Z) is closed and
isolated in C . Thus V = C − r−1(Z) is open and co-countable in C , and on ev-
ery connected component of V bτ(θ)c defines a continuous, integer-valued rational
function (which therefore is constant). Finally, if δ is any one of g, α, β, γ then since

δ(bρc, bσc) = δ(ρ, σ )

by (6)′, δ(τ1(θ), τ2(θ)) is constant and integer-valued over any set on which bτ1(θ)c
and bτ2(θ)c are constant and integer-valued. �

Applying Lemma 3.1 to the finitely many scalar terms appearing in (∗), one finds
a nonempty open interval J on which all of these terms define continuous rational
functions. Because each δi (θ) is a propositional combination of identities and in-
equalities between these scalar terms, each set {α ∈ J : R+

|H δ j [α]} is a finite
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union of points and open intervals; so since

J =

l∐
i=1

{α ∈ J : R+
|H δ j [α]},

one may without loss of generality assume that δ1(θ) is true at every point of J . Thus
each bτ1 j (θ)c has a fixed value n j ∈ Z − {0}, and for α ∈ J

α is rational iff R+
|H ϕ1(1, α).

ϕ1(1, θ) is equivalent over J to a conjunction ∧kβk(θ) ≤
Dk ,Hk
1;θ γk(θ), where the

moduli of the Hs are among the n j s and each scalar term appearing in the conjunc-
tion defines a continuous rational function on J . Use the definition (13) to replace
βk(θ) ≤

Dk ,Hk
1;θ γk(θ) by the formula

∃x1 . . . ∃xm(βk(θ) ≤ x ≤ γk(θ) ∧ Dk(x) ∧ Hk(x; 1; θ)),

where Hk(x; 1; θ) may be written in the form∧
l

m∑
i=1

ζli (θ)xi + ζl(θ) · 1 ≡ml 0,

each ml being one of the n j s and each ζ defining a continuous rational function on
J . Fix an irrational α ∈ J and let {αi }

∞

i=1 be a sequence of rationals in J with limit
α. Since every α j obeys ϕ1(1, θ), there are corresponding reals z( j)

1 , . . . , z( j)
m for

which

βk(α j ) ≤ z( j)
≤ γk(α j ) ∧ Dk(z( j)) ∧

∧
l

m∑
i=1

ζli (α j )z
( j)
i + ζl(α j ) · 1 ≡ml 0.

Since α j → α ∈ J and βk , γk , and the ζ s are continuous on J , βk(α j ) → βk(α),
γk(α j ) → γk(α), and each ζ(α j ) → ζ(α); so by selecting a subsequence if neces-
sary one may assume that {z( j)

}
∞

j=1 has a limit z. Thus each
{ ∑m

i=1 ζli (α j )z
( j)
i +

ζl(α j ) · 1
}∞

j=1 is a convergent sequence in the closed subset mlZ of R, and one con-
cludes that ∧

l

m∑
i=1

ζli (α)zi + ζl(α) · 1 ≡ml 0.

Because weak inequalities are preserved under limits, α obeys βk(θ) ≤
Dk ,Hk
1;θ γk(θ);

k being arbitrary, one concludes that α is rational, contrary to hypothesis. So T II,+

does not obey the most obvious analogue of Theorem 2.2.
A crucial ingredient in this argument—and in the argument behind Theorem 7.1

of [8]—is that some nonempty open interval of reals is partitioned by the δi (θ)s into
finitely many open intervals and points. Though one might block this conclusion
by weakening (6)′ so that g, α, β, γ are not determined by the integer parts of their
arguments, this requirement seems reasonable in a context where one may assume
that congruences have integer moduli. While one might respond to the example by
suggesting the consideration of formulas δi (θ) that contain quantifiers, the logical
simplicity of ∃vψ(v, 1, θ) complicates the formulation of nontrivial analogues of
Theorem 2.2 that might hold in R+.
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4 Concluding Remarks

The projection result for Z implies analogues of Farkas’s Lemma: see Corollary 4.2
and Corollary 5.2 of [5] and Corollary 7.4 of [4]. The same arguments, using the
results of Section 2, will yield mixed-integer analogues of Farkas’s Lemma.4

Just as one may exploit Fourier-Motzkin elimination to solve linear programs
(see [2], Section 4-4), so one might use Theorem 2.1 to solve mixed-integer linear
programs when the parameters of the problem are rational. This restriction is in-
cluded so that the congruence inequalities to which one reduces the given problem
are decidable: certainly a condition like 2x ≡2 0 (“x is an integer”) is decidable in Q,
but not generally in R, and the decidability in general of congruence inequalities over
the rationals follows from Weispfenning’s proof that the M-theory of the reals is de-
cidable (see his more general Corollary 3.5). Yet the quantifier-elimination method
behind Theorem 2.1 is even less efficient than Fourier-Motzkin elimination: while
the latter may approximately square the number of inequalities whenever a variable
is eliminated ([2], op. cit.), the former exponentiates the number of congruence in-
equalities whenever a variable is eliminated. So if Fourier-Motzkin elimination is
regarded as an inefficient means of solving linear programs ([2], op. cit.), the method
behind Theorem 2.1 will be even less practical.

One might hope to learn more about the structure of feasibility sets for mixed-
integer programs by studying the structure of finite intersections of generalized half-
spaces. The former may be defined, with parameters in R′, by conjunctions of weak
inequalities and congruences, and these are special cases of congruence inequalities.
While Weispfenning’s quantifier-elimination theorem for M-formulas already pro-
vides useful structural information—see his Theorem 6.1—the study of a restricted
class of formulas allowing the definition of feasibility sets, but not of all M-definable
sets, may help to focus attention on properties of feasibility sets not shared by arbi-
trary M-definable sets.

Notes

1. The square brackets of [8] are here replaced by b·c.

2. A model-theoretic proof of a similar result appears in the Appendix to [3]. I am grateful
to the referee for pointing out Exercise III.4.15 in [7], which clearly sketches an earlier
effective quantifier elimination analogous to these results from [3] and [8].

3. As in Section 2 the module-sort symbol b·c is not to occur in the ϕi s, though now the
scalar-sort symbol b·c may occur in them.

4. Aschenbrenner [1] establishes a Farkas-type characterization of the mixed-integer solv-
ability of systems of linear equations over the reals.
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