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Automorphisms of Countable
Short Recursively Saturated Models of PA

Erez Shochat

Abstract A model of Peano Arithmetic is short recursively saturated if it
realizes all its bounded finitely realized recursive types. Short recursively sat-
urated models of PA are exactly the elementary initial segments of recursively
saturated models of PA. In this paper, we survey and prove results on short
recursively saturated models of PA and their automorphisms. In particular, we
investigate a certain subgroup of the automorphism group of such models. This
subgroup, denoted G|M(a), contains all the automorphisms of a countable short
recursively saturated model of PA which can be extended to an automorphism of
the countable recursively saturated elementary end extension of the model.

1 Introduction

The notion of recursive saturation was introduced in the 1970s by Barwise and
Schlipf [1] and independently by Ressayre [19]. Every complete consistent theory in
a finite language has countable recursively saturated models. Moreover, every the-
ory in a finite language extending PA has continuum many nonisomorphic countable
recursively saturated models. Countable recursively saturated models of arithmetic
have continuum many elementary initial segments. All but countably many are recur-
sively saturated. This paper explores the countably many elementary initial segments
which are not recursively saturated. All these segments have a weaker property than
recursive saturation, namely, short recursive saturation.

A model is short recursively saturated if it realizes all finitely realized bounded re-
cursive types with finitely many parameters. It had been shown (see Smoryński [23])
that, unlike countable recursively saturated models of arithmetic which are uniquely
determined, up to isomorphism, by their complete theory and standard system, there
are countably many nonisomorphic short recursively saturated models that have the
same theory as well as the same standard system.
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Short recursively saturated models of PA were studied in the late 1970s and early
1980s, in particular, in Kossak [10], Kotlarski [14], Kotlarski [15], Lesan [17], and
Smoryński [23]. Since then, short recursively saturated models of PA were only
studied indirectly when initial segments of recursively saturated models (and thus
initial segments of short recursively saturated models) were investigated (see, for
example, Bigorajska et al. [2], Schmerl [21], and Nurkhaidarov [18]).

In this paper, we present some results from the author’s thesis, Shochat [22], re-
garding the automorphism groups of countable short recursively saturated models of
PA. In Section 2, we introduce notation, list definitions, and survey basic results. In
Section 3, we discuss automorphisms of countable short recursively saturated models
of PA. In Section 4, we prove that any automorphism of a countable short recursively
saturated model of PA has continuum many conjugates. In Section 5, we prove the
existence of automorphisms of a countable short recursively saturated model of PA
which do not extend to automorphisms of the countable recursively saturated ele-
mentary end extension of the model. This leads to the investigation of the subgroup
G|M(a) which consists of all the automorphisms of the model which can be extended.
We note that the extensions of the automorphisms in G|M(a) are exactly the automor-
phisms of the recursively saturated extension of the short recursively saturated model
which fix the short recursively saturated model setwise. Subgroups which fix setwise
an initial segment, a gap, or an intersticial gap have been studied in the past, for ex-
ample, in Kossak et al. [12] and in Nurkhaidarov [18]. In Section 5, we show that the
subgroup G|M(a) is dense (with the usual topology) but is neither open nor closed.
Finally, we show that it has an uncountable index and that it is not normal.

2 Background and Notation

We assume that the reader is familiar with the basic model theory of PA. The book
by Kaye [7] is a good reference. For additional advanced material and recent results
related to this paper, see Kossak and Schmerl [13]. Unless otherwise stated, all
models in this paper are models of PA and the language is the language of the theory
of PA, LPA.

Let L∗ be an extension of LPA and M∗ be an expansion of a model M to the
language L∗. Then M∗

|H PA∗ if and only if the induction scheme is true in M∗

for all formulas of L∗. Most of the results in this paper are true for PA∗ when L∗ is
recursively presented and could be proven in exactly the same way. In particular, we
will use this fact when we need to extend the language to include a finite number of
constant symbols.

Let I be a subset of M . If for every x ∈ I and for every y ∈ M , y < x → y ∈ I ,
we shall write I ⊆end M . In this case, I is said to be an initial segment of M , and
M is an end extension of I . An initial segment closed under the successor function
is called a cut.

Let J be a subset of M . If for every x ∈ M there is a y ∈ J with y ≥ x , then we
write J ⊆cof M and say that J is cofinal in M .

Let N be a submodel of M . If N is an elementary submodel of M , we will write
N � M (if, in addition, N is a proper subset, we will write N ≺ M). N �end M
denotes that M is an elementary end extension of N . In this case, N is an elementary
initial segment (or, equivalently, an elementary cut) of M . N �cof M denotes that
M is an elementary cofinal extension of N .
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Let ā = a1, . . . , an where n is a standard number and a1, . . . , an ∈ M (this will
be denoted by ā ∈ M). By tpM (ā) we denote the type of ā in M . If there is no
ambiguity, we shall write tp(ā) instead of tpM (ā).

Let ā ∈ M . A Skolem term tϕ(ā) is a term defined by the formula ϕ(ȳ, x) in the
following manner:

tϕ(ā) =

{
min{x : ϕ(ā, x)} if ∃xϕ(ā, x),

0 otherwise.

By SclM (ā) we denote the Skolem closure of ā in M ; that is, SclM (ā) ={t (ā) : t is
a Skolem term}. If there is no ambiguity, we shall write Scl(ā). Models of this form
are called simple models.

A subset of M is said to be M-finite if it is definable and bounded in M . For every
a ∈ M there is a unique M-finite set A such that

a =

∑
x∈A

2x .

In this case we will say that a codes A. Also, for any M-finite set A, there is an
a ∈ M such that a codes A. If a codes the set A, we will write x ∈ a if and only if
x ∈ A.

Every M-finite sequence of M is also coded by some a ∈ M . The length of the
sequence coded by a is denoted by lh(a), and by (a)i we denote the i + 1 term in the
sequence coded by a. An ω-sequence x0, x1, x2, . . . is said to be ω-coded by c if c
codes a sequence of nonstandard length, and for any i ∈ N, (c)i = xi . In this paper,
we also use Gödel’s pairing function, 〈x, y〉 =

1
2 [(x + y)2

+ 3x + y], as a definable
bijection from M × M into M .

2.1 Recursive and short recursive saturation Many of the definitions and results
(including proofs) in this subsection could be found in [23].

Definition 2.1 A type p(v, ā) = {ϕn(v, ā) : n ∈ N} is recursive if the set
{pϕn(x, ȳ)q : n ∈ N} is recursive, where pϕ(x, ȳ)q denotes the Gödel number of
the formula ϕ(x, ȳ). A model M is recursively saturated if and only if every recur-
sive type p(v, ā), with ā ∈ M , which is finitely realized in M , is realized in M .

Definition 2.2 A type p(v, ā) over a model M is bounded if it contains the formula
v < t (ā) for some Skolem term t . A model M is short recursively saturated if and
only if every bounded recursive type p(v, ā), with ā ∈ M , which is finitely realized
in M , is realized in M .

Clearly, every recursively saturated model is short recursively saturated. Moreover,
it is easy to prove the following.

Proposition 2.3 Let M be a recursively saturated model of PA, and let N �end M.
Then N is short recursively saturated.

Kossak [10] showed that the converse to the above theorem holds as well. That is,
any short recursively saturated model of PA has a recursively saturated elementary
end extension of the same cardinality.
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2.2 Short models Let M be a model of PA and a ∈ M . Let

M(a) = {b ∈ M : b < t (a) for some Skolem term t}.

Proposition 2.4 Let M be a model of PA and a ∈ M. Then

Scl(a) �cof M(a) �end M.

Definition 2.5 If M = M(a) for some a ∈ M , we say that M is short. Otherwise,
we say that M is tall.

Proposition 2.6 ([23]) If M is a short model, then M is not recursively saturated.

Since for any a ∈ M , M(a) is a short model, it follows from Propositions 2.3 and 2.6
that there are short recursively saturated models which are not recursively saturated.
On the other hand, we have the following.

Proposition 2.7 ([23]) Let M be a tall model. If M is short recursively saturated,
then M is recursively saturated.

Notation From this point on, since short recursively saturated models that are tall
are recursively saturated, whenever we refer to a model as short recursively saturated
we mean a short recursively saturated model which is short.

With this convention, Proposition 2.3 and the remark following the proposition imply
the following.

Proposition 2.8 A model N is short recursively saturated if and only if N ∼= M(a)
for some recursively saturated model M and a ∈ M.

It follows from the above results that any countable recursively saturated model of
PA has only countably many short recursively saturated elementary initial segments.

Proposition 2.9 ([14]) Let M be a recursively saturated model of PA. Then the
family of short recursively saturated elementary initial segments of the model forms
a dense linear order with a least element and no last element. In particular, if M is
countable, then the family of short recursively saturated elementary initial segments
of M has the order type 1 + Q.

In contrast to this result, in the same paper, Kotlarski [14] showed that the family of
recursively saturated initial cuts of M has the order type of the Cantor set.

We will say that a model is extremely short if M = M(0). Since Scl(0) is cofinal
in M(0), extremely short models have no proper elementary initial segments. On
the other hand, all short recursively saturated models that are not extremely short
have elementary recursively saturated initial segments. To show this, we introduce
the following notation. Let M be a model which is not extremely short. For any
a ∈ M\M(0), let

M[a] = {b ∈ M : t (b) < a for all Skolem terms t}.

Notice that M[a] is closed under Skolem terms; hence it is an elementary initial
segment of M (and of M(a) as well). In fact, it is the largest elementary initial
segment of M which does not contain a. Moreover, we have the following.

Proposition 2.10 Let M be a recursively saturated model of PA, and a ∈ M\M(0).
Then M[a] is tall; hence it is recursively saturated.

Another notion which is used throughout this paper is that of gaps.
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Definition 2.11 Let a ∈ M |H PA. Then the gap of a is defined as follows:

gap(a) = M(a)\M[a].

We call gap(0) the least gap of M . If M = M(a) for some a ∈ M , we call gap(a)
the last gap of M . Notice that M is short if and only if M has a last gap.

2.3 Standard systems and isomorphism conditions

Definition 2.12 Let M |H PA. The standard system of M , SSy(M), is the fam-
ily of all subsets of N that are coded in M . That is, X ∈ SSy(M) if and only if
X = {x ∈ N : x ∈ a} for some a ∈ M . (Equivalently, X ∈ SSy(M) if and only if
X = Y ∩ N where Y = {x : ϕ(x, a)} for some ϕ ∈ LPA and a ∈ M .)

For any nonstandard M |H PA, if X ∈ SSy(M), then X has arbitrarily small
nonstandard codes. Therefore, whenever N ⊆end M and N is nonstandard,
SSy(N ) = SSy(M).

Definition 2.13 Let M be a model of PA. We say that M is (short) SSy(M)-
saturated if and only if

1. for every (bounded) type p(v, w̄) whose set of Gödel numbers of formulas in
p is in SSy(M), and for every tuple b̄ in M , if p(v, b̄) is finitely realized in
M , then p(v, b̄) is realized in M ; and

2. for every a ∈ M , tp(a) ∈ SSy(M).

Wilmers [25] (and Smoryński in the short case, see proof in [23]) proved that
M |H PA is (short) recursively saturated if and only if it is (short) SSy(M)-saturated.
Using this result we can interchange these notions, and many times when proving
results about (short) recursively saturated models we will use (bounded) coded types
instead of (bounded) recursive types.

Another important observation is that every countable recursively saturated model
of PA is uniquely determined by its complete theory and its standard system. That is,
if M and N are countable recursively saturated models of PA with Th(M) = Th(N )
and SSy(M) = SSy(N ), then M and N are isomorphic. For countable short recur-
sively saturated models we need a third condition (see [23]).

Theorem 2.14 Let M and N be countable short recursively saturated models. Then
M ∼= N if and only if Th(M) = Th(N ), SSy(M) = SSy(N ), and there are isomor-
phic simple models Scl(a) and Scl(b) with Scl(a) ≺cof M and Scl(b) ≺cof N.

From the work of Gaifman [5] and later results on types (see, for example, [12]), it
is known that any countable recursively saturated model of arithmetic has countably
many gaps such that whenever gap(a) 6= gap(b), for any c ∈ gap(a) and d ∈ gap(b),
Scl(c) � Scl(d). It follows from the above theorem that any countable recursively
saturated model of PA has countably many nonisomorphic short recursively saturated
elementary initial segments. In the author’s thesis [22], it was shown that some
of these nonisomorphic models have also nonisomorphic automorphism groups (as
topological groups).

2.4 Automorphisms Let M be a countable first-order structure. Let G = Aut(M);
that is, G is the automorphism group of M . We start with a few definitions.
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Definition 2.15 The pointwise stabilizer of a set X ⊆ M , denoted G(X), is the
subgroup of G containing all automorphisms of M which fix X pointwise; that is,

G(X) = {g ∈ G : g(a) = a for all a ∈ X}.

The setwise stabilizer of a set X ⊆ M , denoted G{X}, is the subgroup of G containing
all automorphisms of M which fix X setwise; that is,

G{X} = {g ∈ G : g(X) = X}.

Remark If X = {ā}, we will denote G(X) and G{X} by G(ā) and G{ā}, respectively.

We define a topology on G the usual way by letting the basic open subgroups of G
be the pointwise stabilizers of tuples of M . That is, H is a basic open subgroup of
G if and only if H = G(ā) for some ā ∈ M . The basic open sets of G are cosets of
the basic open subgroups. Equivalently, the basic open sets are the sets of the form
Sā,b̄ = {g ∈ G : g(ā) = b̄}. This definition makes G a topological group, that is, a
group in which the operations multiplication and inversion are continuous.

Some important facts about this topology are
1. a subgroup is open if and only if it contains a basic open subgroup;
2. if a subgroup is open then it is closed;
3. a subgroup H is closed if and only if whenever g ∈ G has the property that

for any ā ∈ M there is an h ∈ H such that g(ā) = h(ā), then g ∈ H .
For any countable first-order structure M , Aut(M) is metrizable. Moreover, Aut(M)
is a Polish group; that is, Aut(M) with this topology is a complete, separable metric
space.

Remark When M is a model of PA, tuples are coded by single elements. Hence,
the basic open subgroups of Aut(M) are exactly the stabilizers of single elements.

We conclude this section with a well-known result concerning countable recursively
saturated structures. This result (and its modifications) will be used extensively in
this paper.

Proposition 2.16 Let M be a countable recursively saturated structure, and let
ā, b̄ ∈ M. If tp(ā) = tp(b̄), then there is an automorphism f ∈ Aut(M) which
sends ā to b̄.

This property is called ω-homogeneity, and models which have this property are said
to be ω-homogeneous.

For further results on automorphisms of first-order structures see Hodges [6] and
Kaye and Macpherson [9]. For results on the automorphisms of models of PA,
see [13].

3 Automorphisms of Countable Short Recursively Saturated Models of PA

In this section, we discuss automorphisms of countable short recursively saturated
models of PA. We show that, unlike recursively saturated models, whenever a short
recursively saturated model is not extremely short, the model is not ω-homogeneous.
We then discuss alternative ways of proving the existence of automorphisms of
countable short recursively saturated models of PA and show that any automorphism
of any short recursively saturated model of PA fixes elements cofinally high in the
model. We conclude this section by stating an important lemma of Kueker and Reyes
(Kueker [16]) concerning automorphic images of subsets of countable models.
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For the rest of the paper, we fix a countable recursively saturated model M of PA.
Let a be an element of M . Let G = Aut(M) and G(a) = Aut(M(a)).

It is easy to see that for any model of PA and any automorphism f of the model,
f (gap(a)) = gap( f (a)). Since a is in the last gap of M(a), we get the following.

Lemma 3.1 If f ∈ G(a) then f (gap(a)) = gap(a).

This gives us a necessary condition for a restriction of an automorphism of M to be
an automorphism of M(a). It must fix gap(a) setwise. Moreover, this is a sufficient
condition, because any automorphism of M which fixes gap(a) setwise must fix
M(a) setwise. Hence, it is a bijection which preserves all definable properties of
M(a). Thus, we have the following.

Proposition 3.2 Let f ∈ G. The restriction of f to the domain of M(a), f |M(a), is
in G(a) if and only if f (gap(a)) = gap(a).

Since M is ω-homogenous, for every ā, b̄ ∈ M(0) with tp(ā) = tp(b̄), there is
an automorphism f of M which sends ā to b̄. But since any automorphism sends
gaps to gaps and preserves order, f (gap(0)) = gap(0). Thus, by the above propo-
sition, f |M(0) ∈ G(0), so it is an automorphism of M(0) sending ā to b̄. Thus,
countable short recursively saturated models of PA which are extremely short are
ω-homogeneous. When a countable short recursively saturated model of PA is not
extremely short, this is not the case.

Lemma 3.3 Let a > M(0). Then, for every b ∈ gap(a), there exists an element
c < gap(a) with tp(b) = tp(c).

Proof Let p(v, b) be the following recursive type,

{ϕ(v) ↔ ϕ(b) : ϕ ∈ LPA} ∪ {t (v) < a : t is a Skolem term}.

An element c realizing this type will have the same type as b and will be below
gap(a).

Since p(v, b) is bounded and recursive, to finish the proof we need to show that
it is finitely realized. Suppose for a contradiction that it is not finitely realized. Then
there must be a finite conjunction of formulas 8(x) such that M(a) |H 8(b), but for
all elements v < gap(a), M(a) 2 8(v). But then x = min{v : 8(v)} defines an
element in gap(a), which is impossible since gap(a) contains no definable elements.

�

Proposition 3.4 Let a > M(0). Then M(a) is not ω-homogeneous.

Proof Let b and c be as in Lemma 3.3. Since by Lemma 3.1, gap(a) is fixed setwise
by G(a), there is no automorphism of M(a) which sends b to c. Since tp(b) = tp(c),
M(a) is not ω-homogeneous. �

Since countable short recursively saturated models that are not extremely short are
not ω-homogeneous, we need a stronger condition to establish the existence of auto-
morphisms.

Proposition 3.5 Let b, c ∈ M(a). If there are d, e ∈ gap(a) (not necessarily
distinct) with tp(b, d) = tp(c, e), then there is an automorphism of M(a) sending b
to c. In particular, if b, c ∈ gap(a) and tp(b) = tp(c) then there is f ∈ G(a) with
f (b) = c.
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Proof Suppose that there are such d and e. Since M is ω-homogeneous and
tp(b, d) = tp(c, e), there is an automorphism f ∈ G with f (b) = c and
f (d) = e. Since d and e are in gap(a) and automorphisms send gaps to gaps,
f (gap(a)) = gap(a). Hence, by Proposition 3.2, f |M(a) is an automorphism of
M(a), and f |M(a)(b) = c. �

This proposition gives us a way of showing existence of automorphisms of M(a)
with a given property without explicitly constructing the automorphisms.

Another way of showing existence of automorphisms of M(a) is the following:
we can extend the language of PA to have a constant symbol for a (or any other
element in gap(a)). Then the expansion (M, a) is still recursively saturated. Clearly,
gap(a) is fixed setwise by all automorphisms of (M, a). Hence, by Proposition 3.2,
the restriction of any automorphism of (M, a) to M(a) is an automorphism of M(a)
(which, in addition, fixes a).

We now turn our attention to proving a property shared by all automorphisms of
countable short recursively saturated models of PA. This result is not true in the
recursively saturated case. We prove this result using a well-known lemma of Blass
[3] and Gaifman [5].

Lemma 3.6 (Blass-Gaifman Lemma) Let K be a model of PA. Let a < b ∈ K . If
b ∈ gap(a) then there is a Skolem term t (x) such that K |H a < b ≤ t (a) = t (b).

The above lemma implies the following proposition, which can also be found in [13].

Proposition 3.7 Let K be a model of PA. Let f ∈ Aut(K ) and let a > Scl(0) be
such that f (a) ∈ gap(a). Then there is c ∈ gap(a) such that f (c) = c.

Proof Let b = f (a). Since b ∈ gap(a), by the Blass-Gaifman lemma, there
is a Skolem term t such that t (a) = t (b). Let c = t (a) = t (b). Then,
f (c) = f (t (a)) = t ( f (a)) = t (b) = c. Hence, c is fixed. �

Let N be a model of PA. Let f ∈ Aut(N ). By fix( f ) we denote the set of elements
in N fixed by f . Since fix( f ) is closed under Skolem functions, fix( f ) � N .

Corollary 3.8 Let N be a short recursively saturated model of PA. Then for every
f ∈ Aut(N ), fix( f ) �cof N.

Proof Let a be in the last gap of N . Thus, for all f ∈ Aut N , f (a) ∈ gap(a).
Therefore, by the above result, there is c ∈ gap(a) such that f (c) = c. But
then Scl(c) ⊆ fix( f ). Notice that the Blass-Gaifman lemma implies that for any
b ∈ gap(a), Scl(b) ⊂cof N . Thus, Scl(c) ⊂cof N , so fix( f ) ⊆cof N . Since
fix( f ) � N , fix( f ) �cof N . �

In the subsequent sections, we prove various results concerning automorphisms and
automorphism groups of countable short recursively saturated models of PA by ap-
plying a famous lemma of Kueker and Reyes.

Let K be a model and X a subset of K . By AAut(K )(X) we denote the set of all
automorphic images of X under Aut(K ). That is,

AAut(K )(X) = {g(X) : g ∈ Aut(K )}.

Lemma 3.9 (Kueker-Reyes Lemma [16]) Let K be a countable structure. Let
X ⊆ K . Suppose that for all ā ∈ K there are x ∈ X, y /∈ X such that
(K , ā, x) ∼= (K , ā, y). Then |AAut(K )(X)| = 2ℵ0 .
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Remark If K |H PA is a countable model and X ⊆ K , to show that X has con-
tinuum many automorphic images it is enough to show that for all a ∈ K there are
x ∈ X and y /∈ X such that (K , a, x) ∼= (K , a, y) (since all finite sequences are
coded). If, in addition, K is recursively saturated, then, by the ω-homogeneity of
K , it is enough to show that for any a ∈ K there are x ∈ X and y /∈ X such that
tp(a, x) = tp(a, y). When K is a countable short recursively saturated model of PA,
it is enough to show that in the expanded model (K , b), where b is an element in the
last gap of K , for any a ∈ K there are x ∈ X and y /∈ X with tp(a, x) = tp(a, y)
(this follows from Proposition 3.5).

4 Conjugates

Tzouvaras [24] proved that any automorphism of a countable recursively saturated
model of PA has continuum many conjugates. In this section, we prove that the same
is true for automorphisms of countable short recursively saturated models. We start
with the following observation.

Lemma 4.1 Let N be a short recursively saturated model of PA. Then, for every
b, c ∈ N, if c /∈ Scl(b), there is d < c ∈ N such that tp(b, c) = tp(b, d).

To prove the next proposition, we will use the above lemma and a result proven
independently by Ehrenfeucht [4] and by Gaifman [5].

Lemma 4.2 (Ehrenfeucht-Gaifman Lemma) Let K be a model of PA. Let a, b ∈ K
and let t (x) be a Skolem term such that K |H a 6= b = t (a). Then, tp(a) 6= tp(b).

We now apply the above results to our countable short recursively saturated model
M(a) and its automorphism group G(a).

Proposition 4.3 Let g ∈ G(a) be a nontrivial automorphism. Then, for any
b ∈ M(a), there exist c ∈ M(a) and h ∈ G(a)(b) such that hg(c) 6= gh(c) = g(c).

Proof Since g ∈ G(a), by Corollary 3.8, there is an element r ∈ gap(a) such that
g(r) = r . We will consider two cases.

Case 1 Suppose that g(b) = b. Since g is nontrivial, let c ∈ M(a) be such that
g(c) = d 6= c. Thus,

tp(r, b, c) = tp(g(r), g(b), g(c)) = tp(r, b, d).

Therefore, by the Ehrenfeuch-Gaifman lemma, d /∈ Scl(r, b, c). So, by Lemma 4.1,
∃e < d ∈ M(a) such that tp(r, b, c, d) = tp(r, b, c, e). Now, since r ∈ gap(a), by
Corollary 3.5, there is an automorphism h ∈ G(a) sending (r, b, c, d) to (r, b, c, e).
Thus, h(b) = b and gh(c) = g(c) = d 6= e = h(d) = hg(c).

Case 2 Suppose that g(b) = d 6= b. Then tp(r, b) = tp(r, d). Then again, by the
Ehrenfeucht-Gaifman lemma, d /∈ Scl(r, b). Hence, by Lemma 4.1, ∃e < d ∈ M(a)
such that tp(r, b, d) = tp(r, b, e). For this case we let c = b. Since tp(r, b, d) =

tp(r, b, e), we get that tp(r, b, c, d) = tp(r, b, c, e). Hence there is an h ∈ G(a)
with the same properties as in Case 1. That is, h maps (r, b, c, d) to (r, b, c, e), so
h(b) = b and gh(c) = g(c) = d 6= e = h(d) = hg(c). �

Since there is a definable bijection from M(a) × M(a) into M(a), the graph
of g, 0(g), can be regarded as a subset of M(a). In particular, let 0(g) =

{〈x, g(x)〉 : x ∈ M(a)}.
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Proposition 4.4 Let g ∈ G(a) be nontrivial. Then the graph of g, 0(g), has
continuum many images under the action of G(a).

Proof Let r be as in the proof of the proposition above; that is, r ∈ gap(a) and
g(r) = r . We will use the Kueker-Reyes lemma (Lemma 3.9). By the remark
after the lemma, it is enough to show that for any b ∈ M(a), there are x ∈ 0(g)
and y /∈ 0(g) such that in the expanded structure (M(a), r), tp(b, x) = tp(b, y).
But in the proof of Proposition 4.3, we showed that for any b ∈ M(a), there are
c ∈ M(a), d = g(c) 6= c, and e 6= d such that tp(r, b, c, d) = tp(r, b, c, e). Thus, in
(M(a), r), tp(b, c, d) = tp(b, c, e). In particular, tp(b, 〈c, d〉) = tp(b, 〈c, e〉). But
〈c, d〉 ∈ 0(g) and 〈c, e〉 /∈ 0(g). Hence, by the Kueker-Reyes lemma, 0(g) has
continuum many images under G(a). �

Now, since for any g ∈ G(a) the image of 0(g) under any f ∈ G(a) is the graph of
f g f −1, we get the following corollary.

Corollary 4.5 Let g ∈ G(a) be nontrivial. Then g has continuum many conjugates
in G(a).

5 The Subgroup G|M(a)

Let
G|M(a) = {g|M(a) : g ∈ G{gap(a)}};

that is, G|M(a) is the set of restrictions to M(a) of those automorphisms of M
which fix gap(a) setwise. Clearly, G|M(a) is a subgroup of G(a). Notice also that
G|M(a)

∼= G{M(a)}/G(M(a)). In this section we show that G|M(a) is in fact a proper
subgroup of G(a). This will be done by showing that there are automorphisms of
M(a) that do not extend to automorphisms of M . Later in the section we discuss
other properties of G|M(a).

Lemma 5.1 Let M, M(a), G, and G(a) be as above. Then there exists X ⊆ M(a)
such that X is ω-coded in M and |AG(a)(X)| = 2ℵ0 . That is, X has continuum many
automorphic images under the action of G(a).

Proof We will start by defining in M(a) a cofinal sequence {(b)n : n ∈ N}. Let
q(w, a) be the type

q(w, a) = {(w)0 = a} ∪ {(w)n+1 = max(((w)n)2, tn(a)) : n ∈ N},

where 〈tn : n ∈ ω〉 is some recursive enumeration of all Skolem terms. Since
this type is recursive, we only need to show that the type is finitely realized.
Any finite collection of formulas from q(w, a) involves only finitely many terms
(w)n1 , (w)n2 , . . . , (w)nk , with k ∈ N and n1 < n2 < · · · < nk ∈ N. This collection
can be realized by an element c coding the finite sequence (w)0, (w)1, . . . , (w)nk ,
with (w)0 = a and for i < nk (w)i+1 = max((w)2

n, tn(a)) (since any finite sequence
is coded in the model). Therefore, this type is realized in M . Let b realize this type.
Now define the following recursive type,

p(v, b) = {(b)n < (v)n < (b)n+1 : n ∈ N}∪

{∀x < (b)n (v)n 6= t (x, (b)n) : n ∈ N, t is a Skolem term}.

Again, since the type is recursive, we only need to show that it is finitely realized.
Take a finite set of formulas from p(v, b). Let k be a natural number larger than



Short Recursively Saturated Models of PA 355

the largest n used in this finite set of formulas and also larger than the number of
Skolem terms used. Since for every i < k between (b)i and (b)i+1 there are at least
((b)i )

2
− (b)i elements and there are no more than (b)i · k many elements of the

form t (x, (b)i ) with x < (b)i and some Skolem term t from this finite collection,
there exists a ci between (b)i and (b)i+1 which is not definable from this finite set
of formulas. Since c0, . . . , ck−1 is a finite sequence it can be coded by some c ∈ M
with (c)i = ci , for all i < k; hence, the type p(v, b) is finitely realized so it is
realized by some c ∈ M .

Let X = {(c)n : n ∈ N}. By our construction, X ⊆ M(a) and X is ω-coded in
M by c. To finish the proof, by the Kueker-Reyes lemma (working in (M(a), a)),
we need to show that for every d ∈ M(a) there are x ∈ X , y /∈ X such that
tp(d, x) = tp(d, y). We argue by contradiction. Suppose that for some d ∈ M(a)
there are no such x and y. Because b codes a cofinal ω-sequence in M(a), we can
find i ∈ N such that (b)i > d. Since between (b)i and (b)i+1 there is only one x ∈ X ,
by our assumption, for all y 6= x between (b)i and (b)i+1, tp(d, x) 6= tp(d, y). Thus,
the recursive type

r(u, x, b, d) = {(b)i < u < (b)i+1}∪

{u 6= x} ∪ {ϕ(d, x) ↔ ϕ(d, u) : ϕ ∈ LPA}

is not realized by any y so it is not finitely realized. Hence, there is formula 8 such
that M |H 8(d, x) and for any y 6= x between (b)i and (b)i+1 M |H ¬8(d, y).
But then the term t (d, (b)i ) = min{v : M |H 8(d, v) ∧ v > (b)i } defines x from
(b)i and d which contradicts the fact that x cannot be defined by (b)i and an element
less than (b)i . Hence, for any d ∈ M(a) there are x ∈ X and y /∈ X such that
tp(d, x) = tp(d, y). Thus, |AG(a)(X)}| = 2ℵ0 . �

Proposition 5.2 There are continuum many automorphisms of M(a) which are not
extendible to M.

Proof We will use the set X from Lemma 5.1. Since X is ω-coded in M by an ele-
ment c ∈ M and since c has only countably many automorphic images, X has at most
countably many automorphic images in M . However, by Lemma 5.1, X has contin-
uum many automorphic images in M(a). Thus, continuum many automorphisms of
M(a) do not extend to M . �

It follows from this proposition that G|M(a) is a proper subgroup of G(a).
We will now investigate other properties of the subgroup G|M(a). We will refer to

the construction of X from Lemma 5.1 frequently throughout this section.

Corollary 5.3 G|M(a) is not open in G(a).

Proof To show that G|M(a) is not open in G(a), we need to show that it does not
contain any basic open subgroup of G(a). Let d ∈ M(a). We will show that there
is an automorphism g ∈ G(a)(d) such that g /∈ G|M(a). Since d ∈ M(a), (M(a), d)
is a short recursively saturated initial segment of (M, d). Hence, we can repeat the
construction of X from Lemma 5.1 in this expanded structure. Thus, we get an
X ⊆ M(a) coded in (M, d) (and hence also in M) with continuum many automor-
phic images in (M(a), d). But since X has at most countably many automorphic
images in M (since it is ω-coded), continuum many automorphisms of (M(a), d) do
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not extend to M . Hence, G|M(a) does not contain any basic open subgroup, so it is
not open in G(a). �

Since any closed subgroup in this topology is also open, and G|M(a) is not open, it is
not closed. Moreover, we have the following.

Proposition 5.4 G|M(a) is dense in G(a).

Proof Let g ∈ G(a). We will show that g is in the closure of G|M(a). That is, we
need to show that for any c, d ∈ M(a) such that g(c) = d , there is h ∈ G|M(a) with
h(c) = d .

Suppose g(c) = d. Let b = g(a). Then tp(a, c) = tp(b, d). Now, since M is ω-
homogeneous, there is an automorphism f ∈ G such that f (a) = b and f (c) = d .
But since g(a) = b and g ∈ G(a), by Lemma 3.1, b ∈ gap(a). Thus, f fixes gap(a)
setwise. Let h = f |M(a). Since h ∈ G|M(a) and h(c) = d, g is in the closure of
G|M(a). �

The next proposition shows that the index of G|M(a) in G(a) is not small. That is,
there are uncountably many cosets of G|M(a).

Proposition 5.5
[
G(a) : G|M(a)

]
= 2ℵ0 .

Proof Since |G(a)| = 2ℵ0 ,
[
G(a) : G|M(a)

]
≤ 2ℵ0 . It remains to show that[

G(a) : G|M(a)

]
≥ 2ℵ0 . Suppose for a contradiction that

[
G(a) : G|M(a)

]
= λ < 2ℵ0 .

Let X be as in Lemma 5.1. Recall that |AG|M(a)(X)| = ℵ0 and |AG(a)(X)| = 2ℵ0 .
Now, for any g ∈ G(a) and all h1, h2 ∈ G|M(a),

h1(X) = h2(X) ⇐⇒ gh1(X) = gh2(X).

Hence,

|{gh(X) : h ∈ G|M(a)}| = |{h(X) : h ∈ G|M(a)}| = |AG|M(a)(X)| = ℵ0;

that is, X has countably many automorphic images under the action of any coset of
G|M(a). Now,

|AG(a)(X)| ≤ |AG|M(a)(X)| ·
[
G(a) : G|M(a)

]
= ℵ0 · λ < 2ℵ0 .

But this contradicts the fact that |AG(a)(X)| = 2ℵ0 . Therefore,
[
G(a) : G|M(a)

]
≥ 2ℵ0 , and so

[
G(a) : G|M(a)

]
= 2ℵ0 . �

We will now proceed to show that G|M(a) is not a normal subgroup.

Lemma 5.6 With the set X as above, there is an automorphism f ∈ G(a) such that
|AG|M(a)( f (X))| = 2ℵ0 .

Proof We will construct an automorphism f which fixes a, using “back-and-forth”
inside M(a). Let b, c, X be as in Lemma 5.1; that is, X is coded by c ∈ M with the
property that (b)n < (c)n < (b)n+1 for all n ∈ N, and {(b)n : n ∈ N} is a cofinal
sequence in M(a), (b)0 = a, and (b)n+1 = max((b)2

n, tn(a)). Notice that each (b)n
is defined from a; hence, f will fix it as well. Another important fact to recall from
the construction is that (c)n /∈ Scl(x, (b)n) for all x < (b)n .

We are now ready to construct f . Enumerate M(a) = {a0, a1, . . . }, and also
enumerate M = {m0, m1, . . .}. Let d̄0 = a and ē0 = a. Suppose that 2n steps have
been done in the construction of f and that tp(d̄n) = tp(ēn).
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Step 2n+1 We will do both a “forth” and a “back.” For an find u ∈ M(a) such that
tp(d̄n, an) = tp(ēn, u) and then find v ∈ M(a) such that tp(d̄n, an, v) = tp(ēn, u, an).
Such u and v exist because tp(d̄n) = tp(ēn) implies that there is an automorphism
of M sending d̄n to ēn , fixing a (and also gap(a) and M(a) setwise). This auto-
morphism will send an to some u ∈ M(a) and some v ∈ M(a) to an . Hence,
tp(d̄n, an, v) = tp(ēn, u, an).

Step 2n + 2 In this step we will only do a “forth.” Let d =
〈
d̄n, an, v

〉 (
that is,〈〈

d̄n, an
〉
, v

〉 )
and e = 〈ēn, u, an〉. Since {(b)n : n ∈ N} is cofinal in M(a), we

can find k ∈ N such that (b)k > d . For this k we will use (c)k , the k + 1
element of X , and find an x such that tp(d, (c)k) = tp(e, x) (this ensures that
tp(d̄n, an, v, (c)k) = tp(ēn, u, an, x)), with the additional condition on x that there is
a y 6= x with tp(mn, a, x) = tp(mn, a, y). Consider the following recursive type

p(w, z) = {w 6= z} ∪ {ϕ(d, (c)k) ↔ ϕ(e, w) : ϕ ∈ LPA}∪

{ϕ(mn, a, w) ↔ ϕ(mn, a, z) : ϕ ∈ LPA}.

First, notice that tp(d) = tp(e), so there exists an x such that tp(d, (c)k) = tp(e, x).
Also, because (c)k is between (b)k and (b)k+1, x is also between these elements.
Moreover, by the way the set X was constructed, (c)k is not defined from d and (b)k ,
so x is not defined from e and (b)k . Therefore, since the interval ((b)k, (b)k+1) is
of nonstandard length, by recursive saturation there are infinitely many wi ∈ M(a)
such that tp(e, x) = tp(e, wi ) (since otherwise we would have been able to de-
fine x from e and (b)k). Thus, there are countably many wi ∈ M(a) such that
tp(d, (c)k) = tp(e, wi ). Now let 8(w, z) be a finite conjunction of (say, r many)
formulas of the form ϕ(mn, a, w) ↔ ϕ(mn, a, z), where ϕ ∈ LPA. That is,

8(w, z) =

r∧
j=1

(ϕ j (mn, a, w) ↔ ϕ j (mn, a, z)),

for some enumeration of the formulas of LPA. Since there are only finitely (2r )
many possible truth values to r many formulas, and since there are infinitely many
wi satisfying tp(d, (c)k) = tp(e, wi ), we can pick from this set wi1 6= wi2 satisfying
8(wi1 , wi2). Hence, p(w, z) is finitely realized, so it is realized by some x and y, re-
spectively. Therefore, we found an x such that tp(d̄n, an, v, (c)k) = tp(ēn, u, an, x)
and also a y 6= x such that tp(mn, a, x) = tp(mn, a, y). Now set d̄n+1 =

(d̄n, an, v, (c)k) and ēn+1 = (ēn, u, an, x) and continue to the next odd step.
After ω steps we will get the automorphism f ∈ G(a).

To see that |AG|M(a)( f (X))| = 2ℵ0 we will use the Kueker-Reyes lemma.
Consider the recursively saturated structure (M, a). By our construction, for any
mn ∈ (M, a), there are x ∈ f (X) and y /∈ f (X) such that tp(mn, x) = tp(mn, y).
Hence, by the Kueker-Reyes lemma, f (X) has continuum many automorphic im-
ages in (M, a) (all in gap(a)). But since every automorphism of (M, a) is also an
automorphism of M which fixes a, Aut(M, a)|(M(a),a) ≤ G|M(a). Hence, there are
continuum many images of f (X) under G|M(a). �

Corollary 5.7 G|M(a) is not a normal subgroup of G(a).

Proof We will use the set X and the automorphism f as above to prove the corol-
lary. By Lemma 5.1, since X is coded in M , X has only countably many images
under the action of G|M(a). We will show that X has continuum many images under
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the action of { f −1g f : g ∈ G|M(a)}. Thus, showing that there are gi ∈ G|M(a) with
f −1gi f 6= h for any h ∈ G|M(a), which implies that G|M(a) is not normal in G(a).

Notice that since f −1 is an automorphism of M(a), for any Y, Z ⊆ M(a),

Y = Z ⇐⇒ f −1(Y ) = f −1(Z).

Hence, |{g f (X) : g ∈ G|M(a)}| = |{ f −1g f (X) : g ∈ G|M(a)}|. But, by Lemma 5.6,
|{g f (X) : g ∈ G|M(a)}| = 2ℵ0 ; thus |{ f −1g f (X) : g ∈ G|M(a)}| = 2ℵ0 , which
completes the proof. �

We conclude this section with an open problem.

Question 5.8 Is the subgroup G|M(a) maximal in G(a)?

Remark Recall from Section 2 that the elementary initial segments of M are ei-
ther recursively saturated or short recursively saturated. By results of Kossak and
Bamber [11] and Schmerl [20], there is a recursively saturated K ≺end M such that
G{K }/G(K ) is isomorphic to the trivial group. This implies that the restriction of
G{K } to K , G{K }|K (which we denote for short G|K ) contains one element, the iden-
tity on K . It follows that G|K is not maximal in Aut(K ).

When K is short recursively saturated this result is not true. That is, G{K }/G(K )

is not isomorphic to the trivial group. Otherwise, this would imply that G|K contains
only the identity. But this is impossible since we have shown in this section that
when K is short recursively saturated G|K is dense (Proposition 5.4) in Aut(K ) and
has continuum many automorphisms (as follows from Lemma 5.6). Thus, this result
cannot be used for showing that G|M(a) is not maximal.

6 Concluding Remarks

Since automorphisms of countable short recursively saturated models of PA were
never studied directly, in Section 3 we developed methods of showing existence of
automorphisms of such models. We then used these methods in Sections 4 and 5 to
prove various properties of automorphisms and automorphism groups of countable
short recursively saturated models of PA.

When investigating the subgroup G|M(a), we were especially interested in the
index of the subgroup and whether it is normal or not. A model has the Small Index
Property if the only subgroups of its automorphism group with a countable index are
the open subgroups. Since G|M(a) is not open, a countable index for G|M(a) would
imply that countable short recursively saturated models of PA do not have the Small
Index Property. Since we have shown that the index of G|M(a) is uncountable, the
question of whether (some or all) countable short recursively saturated models of PA
have the Small Index Property remains open.

In [22], the author had proved that Kaye’s characterization of the closed normal
subgroups of countable recursively saturated models of PA [8] is true for countable
short recursively saturated models as well. That is, for any closed normal subgroup
N of the automorphism group of a countable short recursively saturated model of PA,
there is an invariant initial segment I ⊆end M(a) closed under exponentiation such
that

N = G(a)(I ) = { f ∈ G(a) : f (x) = x for all x ∈ I }.
A question that remains open is the analog to Kaye’s conjecture for normal subgroups
in general: Does any normal subgroup N of the automorphism group of a countable
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short recursively saturated model of PA have either the form G(a)(I ) or the form

G(a)(>I ) = { f ∈ G(a) : f ∈ G(a)(J ) for some J )end I },

for some invariant initial segment I closed under exponentiation? Had G|M(a) been
normal, it would have given us a counterexample to this question. Since G|M(a) is
not normal, this question remains open as well.
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