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Self-implications in BCI

Tomasz Kowalski

Abstract Humberstone asks whether every theorem of BCI provably implies
ϕ → ϕ for some formula ϕ. Meyer conjectures that the axiom B does not
imply any such “self-implication.” We prove a slightly stronger result, thereby
confirming Meyer’s conjecture.

1 Introduction

The logic BCI is one of several pure implication calculi that have acquired fame.
Its name comes from the connection with the combinators B, C , and I (see [3]).
From the perspective of type theory, BCI can be viewed as the set of types of certain
restricted family of λ-terms, via the Curry-Howard isomorphism. Seen in yet another
way, BCI is nothing but the implication fragment of linear logic. From the point
of view of formal language theory, it is natural to present BCI as the implication
fragment of (associative) Lambek Calculus with exchange (see [2]).

Formally, the logic BCI can be defined as a Hilbert system by the following three
axiom schemes:

(B) (ϕ → ψ) → ((χ → ϕ) → (χ → ψ) (prefixing)
(C) (ϕ → (ψ → χ)) → (ψ → (ϕ → χ)) (commutation)
(I) ϕ → ϕ (identity)

and the rule
ϕ ϕ → ψ

ψ

of modus ponens. In presence of C, the axiom B is equivalent to

(B′) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ)) (suffixing).

In [4] Humberstone takes BCI as a base logic for versions of naïve set theory in
which Curry Paradox cannot be proved. An extension of BCI by the axiom
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(?) (ϕ → ϕ) → (ψ → ψ)

is also considered there, and Humberstone conjectures that this logic, called BCI?,
is the smallest extension of BCI in which all theorems are provably equivalent. He
shows that his conjecture follows from a property that can be stated as follows. Let
L be any logic with implication connective. Consider

L ` ϕ implies L ` ϕ → (χ → χ) for some χ. (P)

If (P) holds for L , we say that every theorem implies a self-implication in L . Hum-
berstone shows that if every theorem implies a self-implication in BCI?, then BCI? is
the smallest extension of BCI in which all theorems are provably equivalent. In [5]
it was shown that (P) indeed holds for BCI?, confirming Humberstone’s conjec-
ture. But a harder question, also posed in [4], whether every theorem implies a
self-implication in BCI, remained open. Meyer conjectured (in private communica-
tion) that the BCI axiom B is a counterexample. To be precise, the conjecture states
that ((x → y) → ((z → x) → (z → y))) → (χ → χ), where x , y, z are variables,
is not a theorem of BCI for any BCI formula χ . We will prove that a certain instance
of B′ in only two variables does not imply any self-implication. Meyer’s conjecture
will follow as a corollary.

2 Sequent System

We use a Gentzen-style rendering of BCI. We define sequents to be pairs 0 ⇒ α,
where 0 is a possibly empty multiset of formulas, α a formula, and ⇒ is a separator
(sequent arrow). From now on BCI will stand for the sequent calculus comprising
initial sequents,

α ⇒ α,

and inference rules,

0 ⇒ α 1, β ⇒ γ

0,1, α → β ⇒ γ
(→⇒)

0, α ⇒ β

0 ⇒ α → β
(⇒→) .

Cut, in the form below,
0 ⇒ α 1, α ⇒ β

0,1 ⇒ β
,

will also be at our disposal. The following three lemmas are folklore.

Lemma 2.1 Cut is admissible in BCI. The rule (⇒→) is invertible in BCI. More-
over, → is monotonic in second and antitonic in first argument, with respect to the
sequent arrow.

Lemma 2.2 For any formulas α, β the sequent α ⇒ β is provable in the sequent
system if and only if the formula α → β is provable in the axiomatic system. The
sequent ⇒ α is provable if and only if α is provable.

We use the notation α ⇔ β to denote the pair of sequents α ⇒ β, α ⇒ β. When
the sequents α ⇔ β are provable, we call α and β provably equivalent. Recall that
a logic L is called congruential if replacement of provably equivalent formulas in
longer formulas preserves provability.

Lemma 2.3 BCI is congruential.
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One consequence of Lemma 2.1 is that a sequent 0 ⇒ α is provable if and only if
the sequent 0, αn, . . . , α1 ⇒ α0 is provable, where

α = αn → (αn−1 → · · · → (α1 → α0) . . . )

and α0 is a variable. Clearly, each BCI formula α is of the above form. Wherever
practical, we will use the shorthand notation (α1 · · ·αn) → α0. This notation is also
meant to admit an empty multiset of antecedents, in which case the formula simply
reduces to α0. Any permutation within the parentheses will be tacitly assumed to
result in the same formula and thus we will sometimes use even shorter ⊗A → α0,
with A = {α1, . . . , αn}. Thus 0 ⇒ ⊗A → α0 is provable if and only if 0,A ⇒ α0
is. The following rather straightforward lemma spells out some algebraic properties
of our shorthand notation, which will be used frequently in proofs.

Lemma 2.4 Suppose the sequents 0 ⇒ γ and 1 ⇒ δ are provable. Then the
sequents

(γ δ) → ϕ ⇒ ⊗(0 ∪1) → ϕ

γ → ϕ ⇒ ⊗0 → ϕ

are also provable, for any formula ϕ.

Proof Clearly, (γ δ) → ϕ ⇒ ⊗(0 ∪1) → ϕ is provable if and only if the sequent
0,1, γ → (δ → ϕ) ⇒ ϕ is provable. The following two applications of (→⇒)

0 ⇒ γ

1 → δ ϕ ⇒ ϕ

1, δ → ϕ ⇒ ϕ

0,1, γ → (δ → ϕ) ⇒ ϕ

complete the proof of the first sequent. The second is similar (it would follow from
the first if we allowed sequents with both sides empty as provable). �

The role of Lemma 2.4 is that it enables us to use an unofficial multiplication on the
right-hand side of sequents, with desirable properties of commutativity and mono-
tonicity with respect to the sequent arrow. That is, given provable sequents 0i ⇒ γi ,
for i ∈ {1, . . . , n}, we allow ourselves to write 01, . . . , 0n ⇒ ⊗

n
i=1γi as long as in

the next step we are going to resolve this into ⊗
n
i=1γi → ϕ ⇒ ⊗

n
i=10i → ϕ for

some formula ϕ (typically a variable).
This feature of BCI may be seen as a consequence of the fact that adding fusion

to BCI is conservative or, speaking semantically, that BCI-algebras are subreducts of
certain residuated semigroups. We will not dwell on these issues here, as they have
no bearing on our result beyond what Lemma 2.4 states.

3 Split Formulas

This section exploits two facts about sequent system for BCI. One is that by the
second part of Lemma 2.1 we can bring every provable sequent to the form 0 ⇒ v
for a variable v. The other is that because weakening and contraction are missing,
there always is a formula on the left of the sequent arrow that, so to speak, keeps
track of the proof.

Lemma 3.1 The sequent 0 ⇒ v, with v a variable, is provable if and only if there
exists a formula γ = (γnγn−1 . . . γ1) → γ0 ∈ 0 and a partition {0i }

n
i=1 of 0 \ {γ }

such that
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1. γ0 = v,
2. 0i ⇒ γi is provable for every i ∈ {1, . . . , n}.

Proof Notice that only the forward direction is nontrivial. We proceed by induction
on the length of a (cut-free) proof of 0 ⇒ v. If 0 ⇒ v is an initial sequent, the
lemma holds. If 0 ⇒ v is not an initial sequent, the last rule in the proof must be

5 ⇒ α 1, β ⇒ v

0 ⇒ v

with α → β ∈ 0 and 5 ∪ 1 = 0 \ {α → β}. Then, inductive hypothesis applies
to the sequent 1,β ⇒ v and thus there is a formula δ = δn → (δn−1 → · · ·

→ (δ1 → v) . . . ) and a partition of (1 ∪ {β}) \ {δ} into 11, . . . ,1n such that
sequents 1i ⇒ δi are provable. We have two cases, according to whether β = δ. If
β = δ, then α → β satisfies all requirements of the lemma. If β 6= δ, then β ∈ 1 j
for some j ∈ {1, . . . , n}. In this case, the sequent 5,1 j \ {β}, α → β ⇒ δ j is
provable, by application of

5 ⇒ α 1 j ⇒ δ j

5,1 j \ {β}, α → β ⇒ δ j
.

Then we have

0 = 11, . . . ,1 j−1,5,1 j \ {β}, α → β,1 j+1, . . . ,1n

and the conditions of the lemma are satisfied again, with α → β as split formula.
This ends the proof. �

For a provable sequent 0 ⇒ v, we will call the formula γ from Lemma 3.1 a split
formula. Such a γ may not be unique, so we will also say that 0 ⇒ v is provable
with split formula γ.

4 More about Split Formulas

The general setting is now as follows. We consider a formula ρ → (τ → τ) and look
at various ways it can be a theorem of BCI, with a particular split formula. We show
that the choices for the split formula are rather limited: either τ can be shortened or
the split formula has to be ρ.

Lemma 4.1 Let τ = (τ1 · · · τn) → v. Suppose that for some k ≤ n and
some formula ρ the sequent ρ, τ, τ1, . . . , τk ⇒ v is provable, with split formula
τ1 = (α1 · · ·αm) → v. Then ρ, (τ2 · · · τn) → αi , τ2, . . . , τk ⇒ αi is provable, for
some i ∈ {1, . . . ,m}.

Proof Let 5 = {ρ, τ, τ1, . . . , τk} and {5i }
m
i=1 be the partition of 5 \ {τ1} required

by Lemma 3.1. We then have 5i ⇒ αi for all i ∈ {1, . . . ,m}. We can also assume
(by renumbering) that τ = (((α1 · · ·αm) → v)τ2 · · · τn) → v belongs to partition
class 51. Let 2 = 51 \ {τ }. By Lemma 3.1 the sequent τ,2 ⇒ α1 is provable, and
thus so is τ ⇒ ⊗2 → α1. By monotonicity of → in second argument

(α2 · · ·αm) → τ ⇒ (α2 · · ·αm) → (⊗2 → α1)

is also provable. Now consider

(α2 · · ·αm) → τ = (α2 · · ·αm((α1 · · ·αm) → v)τ2 · · · τn) → v
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and observe that, by antitonicity of → in first argument, the sequent

((α1 → v)τ2 · · · τn) → v ⇒ ((α2 · · ·αm)((α1 · · ·αm) → v)τ2 · · · τn) → v

is provable. Therefore, so is

((α1 → v)τ2 · · · τn) → v ⇒ (α2 · · ·αm) → (⊗2 → α1).

Now the left-hand side of this sequent is (α1 → v) → ((τ2 · · · τn) → v), which is
provably implied by (τ2 · · · τn) → α1. So, by cut we conclude that

(τ2 · · · τn) → α1 ⇒ (α2 · · ·αm) → (⊗2 → α1)

is provable, and unwinding that we obtain

(τ2 · · · τn) → α1, α2, . . . , αm,2 ⇒ α1.

Since 2 ∪
⋃m

i=25i = {ρ, τ2, . . . , τk}, by m − 1 cuts we get

ρ, (τ2 · · · τn) → α1, τ2, . . . , τk ⇒ α1

as claimed. �

Lemma 4.2 Let τ = (τ1 · · · τn) → v. Suppose that for some formula ρ the sequent
ρ, τ, τ1, . . . , τn ⇒ v is provable, with split formula τ . Then ρ, τi ⇒ τi is provable,
for some i ∈ {1, . . . , n}.

Proof Combinatorics on top of induction on the number of antecedents in τ . For
zero antecedents the claim holds vacuously, since a variable v cannot be a split for-
mula (it would require ρ ⇒ to be provable, which it is not). Assume the claim holds
for any τ with number of antecedents smaller than n and let τ = (τ1 · · · τn) → v.
By Lemma 3.1 we get n provable sequents

31 ⇒ τ1

...
...

3n ⇒ τn

where ρ, τ1, . . . , τn are somehow distributed among the 3i . We can assume that
ρ ∈ 31, so in particular 31 is nonempty. Observe that if 3i is empty, that is, ⇒ τi
is provable, then using cut we can eliminate the “variable” τi from the “system of
sequents,” reducing their number by one in the process. For suppose τi ∈ 3 j , then
by cut 3′

j ⇒ τ j is provable with 3′

j = 3 j \ {τi }. Now applying Lemma 3.1 to the
new “system” with n − 1 sequents

31 ⇒ τ1

...
...

3′

j ⇒ τ j

...
...

3n ⇒ τn

from which τi is missing altogether, we get that the sequent

ρ, τ ′, τ1, . . . , τi−1, τi+1, . . . , τn ⇒ v
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is provable, with split formula τ ′
= (τ1 · · · τi−1τi+1 · · · τn) → v, and so the claim

follows by inductive hypothesis. Therefore, we can assume3i is nonempty for every
i . This leaves two cases to consider.

Case 1 31 = {ρ, τπ(1)} and thus 3i = {τπ(i)} for some permutation π of the
indices {1, . . . , n}. If π(1) = 1, the claim holds trivially. If π(i) = i for any
i > 1, we can dispose of the sequent 3i ⇒ τi and reduce the number of se-
quents, getting access to the inductive hypothesis. Thus, we can assume π(i) 6= i
for all i ∈ {1, . . . , n}. Let o be the orbit of 1. Consider the sequents 31 ⇒ τ1
and 3π(1) ⇒ τπ(1). By assumptions they are, respectively, ρ, τπ(1) ⇒ τ1 and
τπ(π(1)) ⇒ τπ(1). Applying cut, we then obtain ρ, τπ(π(1)) ⇒ τ1. Repeating this
successively for k ∈ o we finally obtain ρ, τ1 ⇒ τ1, as required.

Case 2 31 = {ρ} and thus for some index i we have 3i = {τk, τ j }, with i, k not
necessarily distinct. As before, if for any ` ∈ {1, . . . , n} we have 3` = {τ`} (it can
only happen for ` 6= i), the number of sequents gets reduced, so we can assume
3` 6= {τ`}. Consider the map f defined by f (`) = m if τ` ∈ 3m . Thus, f maps
{1, . . . , n} onto {2, . . . , n} and has no fixed points, except possibly f (i). Therefore,
there exists an m such that | f −1( f m(1))| = 2 and so f m(1) = i . It follows that
f m−1(1) ∈ {k, j}, so assume f m−1(1) = k. Again, we apply cut successively, this
time beginning with the sequents ρ ⇒ τ1 and 3 f (1) ⇒ τ f (1). After m − 1 steps we
obtain the sequent ρ, τ j ⇒ τi reducing this case to the previous one. �

Lemma 4.3 Let τ = (τ1 · · · τn) → v. If the sequent ρ, τ, τ1, . . . , τn ⇒ v is
provable and ρ is not a split formula for the sequent, then there is a formula τ ′,
shorter than τ , such that the sequent ρ, τ ′

⇒ τ ′ is provable.

Proof By Lemmas 4.1 and 4.2. �

5 Main Argument

We are now ready to prove the main result of the paper. Let D stand for the following
substitution instance of B′

(x → y) → ((y → x) → (x → x))

where x and y are distinct variables. Consider the three element algebra

〈{−1, 0, 1}; →〉

with → defined by the table below.

→ 1 0 −1
1 1 −1 −1
0 1 0 −1

−1 1 1 1

Make it into a logical matrix by designating the values 0 and 1. Call the resulting
matrix M3. Checking that M3 verifies all theorems of BCI is an easy exercise, but
it also follows from the fact that the underlying algebra of M3 is the implicational
reduct of the three element Sugihara algebra, which in turn is a characteristic matrix
of an extension RM3 of BCI. See, for example, [1] for this fact and more on Sugihara
algebras.
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Lemma 5.1 The matrix M3 invalidates the formula

((x → y) → ((y → x) → (x → x))) → (v → v)

for any variable v, not necessarily distinct from x or y.

Proof Take v 7→ 0 and v′
7→ 1 for any variable v′

6= v. �

Theorem 5.2 There is no formula τ such that D → (τ → τ) is a theorem of BCI.

Proof We argue by reductio. Suppose that for some formula τ of the form
(τ1 · · · τn) → v, the sequent D, τ, τ1, . . . , τn ⇒ v is provable. If τ is a variable,
Lemma 5.1 provides countermodels. We can thus assume that n is positive and for
all τ ′ shorter than τ , the formula D → (τ ′

→ τ ′) is not a theorem. By Lemma 4.3
we conclude that D is a split formula for the corresponding sequent. Thus, v = x
and the sequents

T1, x ⇒ y T2, y ⇒ x T3 ⇒ x

are provable, with T1 ∪ T2 ∪ T3 = {τ, τ1, . . . , τn}. Observe that to make all the se-
quents above provable, none of T1, T2, T3 can be empty. This observation underlies
a pigeonhole argument, which divides into three cases according to where τ lives.
Since the cases are similar, we deal with the first in a detailed way and ask the reader
to supply the missing details for the two others.

Case 1 τ ∈ T1. We can assume T1 = {τ, τ1, . . . , τk}, T2 = {τk+1, . . . , τp}, and
T3 = {τp+1, . . . , τn}. We then obtain

τ ⇒ (xτ1 · · · τk) → y τk+1, . . . , τp ⇒ y → x τp+1, . . . , τn ⇒ x . (1)

Multiplying the third of these sequents by τ1 · · · τk on both sides (and changing
τ1 · · · τk on the left to τ1, . . . , τk , cf. the remarks following Lemma 2.4), we get

τ1, . . . , τk, τp+1, . . . , τn ⇒ xτ1 · · · τk .

Multiplying again, this time by the second sequent of (1), yields

τ1, . . . , τn ⇒ xτ1 · · · τk(y → x)

from which, by Lemma 2.4, we obtain

(xτ1 · · · τk(y → x)) → x ⇒ (τ1 · · · τn) → x

with the right-hand side being simply τ . Unwinding the left-hand side we get

(y → x) → ((xτ1 · · · τk) → x) ⇒ (τ1 · · · τn) → x .

Now consider the following provable sequent

(xτ1 · · · τk) → y ⇒ (y → x) → ((xτ1 · · · τk) → x)

which is a sequent version of suffixing. By an application of cut, we then obtain

(xτ1 · · · τk) → y ⇒ (τ1 · · · τn) → x

and this is just
(xτ1 · · · τk) → y ⇒ τ.

We will refer to this type of argument as unwinding and desuffixing and use it as one
step in the proof later on. It now follows that (xτ1 · · · τk) → y and τ are provably
equivalent, thus, by congruentiality of BCI, they are interchangeable. Therefore,
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D → (τ ′
→ τ ′) is provable, with τ ′

= (xτ1 · · · τk) → y. We will now show that τ ′

is strictly shorter than τ . Compare

τ = (τ1 · · · τk · τk+1 · · · τn) → x

with
τ ′

= (τ1 · · · τk · x) → y.

So, τ ′ is not shorter than τ only if k + 1 = n (and τn is a variable). However,
since both T2 and T3 must be nonempty, in the worst case we get T2 = {τn−1} and
T3 = {τn}. Then k + 1 = n − 1 < n and so τ ′ is shorter than τ , contradicting the
inductive hypothesis.

Case 2 τ ∈ T2. We can set T1 = {τ1, . . . , τk}, T2 = {τ, τk+1, . . . , τp}, and
T3 = {τp+1, . . . , τn}. We get

τ1, . . . , τk, x ⇒ y τ ⇒ (τk+1 · · · τp y) → x τp+1, . . . , τn ⇒ x (2)

and thus τ1, . . . , τk, τp+1, . . . , τn ⇒ y, by cut. Multiplying both sides by
τk+1 · · · τp, we get

τ1, . . . , τn ⇒ τk+1 · · · τp y

and from that
(τk+1 · · · τp y) → x ⇒ τ

follows by Lemma 2.4, so we get

τ ⇔ (τk+1 · · · τp y) → x .

Now k + 1 must be at least 2 and p at most n − 1. Thus, in the worst case we get
τ ′

= (τ2 · · · τn−1 y) → x , again shorter than τ .

Case 3 τ ∈ T3. We can set T1 = {τ1, . . . , τk}, T2 = {τk+1, . . . , τp}, and
T3 = {τ, τp+1, . . . , τn}. We get

τ1, . . . , τk, x ⇒ y τk+1, . . . , τp, y ⇒ x τ ⇒ (τp+1 · · · τn) → x . (3)

By cut we get x, τ1, . . . , τp ⇒ x and thus τ1, . . . , τp ⇒ x → x . Multiplying both
sides by τp+1 · · · τn yields

τ1, . . . , τn ⇒ τp+1 · · · τn(x → x);

therefore, the sequent

(τp+1 · · · τn(x → x)) → x ⇒ (τ1 · · · τn) → x

is also provable. By unwinding and desuffixing we obtain

(τp+1 · · · τn) → x ⇒ (τ1 · · · τn) → x = τ.

As in the previous case, this proves

τ ⇔ (τp+1 · · · τn) → x .

Now to make T1 and T2 nonempty p + 1 must be at least 3, so in the worst case we
get τ ′

= (τ3 · · · τn) → x , which is shorter than τ . This ends the proof. �

Corollary 5.3 Let B ′ and B stand for the respective instances of B′ and B with ϕ,ψ
and χ replaced by distinct variables. Neither B ′ nor B implies any self-implication
in BCI.
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6 Some Comments and a Question

It seems reasonable to expect that the notion of split formula might have some uses
beyond the proof of Theorem 5.2. For example, we can obtain simple proofs of the
following well-known facts.

Theorem 6.1 If ϕ is a theorem of BCI, then each variable occurs in ϕ an even
number of times.

Proof Induction on the length of ϕ. Base case is vacuously true. Let ϕ = (ϕ1 · · ·ϕn)
→ v, for some variable v. Then, the sequent ϕ1, . . . , ϕn ⇒ v is provable and thus,
by Lemma 3.1, we reduce the number of occurrences of v by two (one on the right
of the sequent arrow, the other in the split formula) getting access to inductive
hypothesis. �

The next theorem is a stronger version of a result proved for BCK in [6]. Its import
is mainly algebraic: certain facts about (congruence lattices of) appropriate quasi-
varieties are easy to prove with its help. Before we prove the theorem, we need to
reprove in our setting a technical lemma from [6].

Lemma 6.2 Let x and y be variables. Suppose the sequent ⊗1 → x, 0 ⇒ y is
provable and ⊗1 → x is not a split formula for it. Then there exists a multiset1′ of
formulas such that the sequents ⊗1 → x ⇒ ⊗1′

→ x and ⊗1′
→ x ⇒ ⊗0 → y

are provable and ⊗1′
→ x is shorter than ⊗0 → y.

Proof Induction on the length of the sequent. The base case holds vacuously,
because if x and y are distinct, then x ⇒ y is unprovable, and if x = y, then
⊗1 → x = x is a split formula for the sequent. For the inductive step, Lemma 3.1
provides (after renumbering) a system of provable sequents

⊗1 → x, 0′

1 ⇒ α1

02 ⇒ α2

...
...

0k ⇒ αk

where 0′

1 ∪
⋃k

i=2 = 0 \ {γ } and γ = (α1 · · ·αk) → y. Since α1 is of the form
⊗5 → z, the sequent ⊗1 → x, 0′

1,5 ⇒ z is provable. If ⊗1 → x is a split
formula for this sequent, then x = z and we can take 0′

1,5 for 1′. Suppose
⊗1 → x is not a split formula for ⊗1 → x, 0′

1,5 ⇒ z. Then, by inductive
hypothesis, we get a multiset 6 of formulas such that ⊗1 → x ⇒ ⊗6 → x
and ⊗6 → x ⇒ ⊗(0′

1 ∪ 5) → x are provable, and ⊗6 → x is shorter than
⊗(0′

1 ∪ 5) → x . Notice that ⊗(0′

1 ∪ 5) → x can also be written as ⊗0′

1 → α1.
Therefore, the following is also a system of provable sequents

⊗6 → x, 0′

1 ⇒ α1

02 ⇒ α2

...
...

0k ⇒ αk
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from which, by another application of Lemma 3.1, we obtain a provable sequent
⊗6 → x, 0 ⇒ y. Thus ⊗6 → x ⇒ ⊗0 → y is provable with ⊗6 → x shorter
than 0 → y, as required. �

Theorem 6.3 If the sequents ϕ ⇔ ψ are provable in BCI, then the rightmost
variable in ϕ and ψ is the same.

Proof Let ϕ = ⊗8 → x and ψ = ⊗9 → y. We have provable sequents

⊗8 → x, 9 ⇒ y

⊗9 → y,8 ⇒ x .

If x and y are different, neither ⊗8 → x nor ⊗9 → y can be split. By Lemma 6.2,
there exists a formula ⊗81 → x shorter than 9 → y and such that the sequents
⊗8 → x ⇒ ⊗81 → x and ⊗81 → x ⇒ ⊗9 → y are provable. It follows that
the sequents ⊗81 → x ⇔ ⊗9 → y are provable. Now 9 → y cannot be split
either, so repeating the reasoning we get a ⊗91 → y shorter than ⊗81 → x with
the sequents ⊗81 → x ⇔ ⊗91 → y provable. Repeating the reasoning further
produces an infinite sequence of shorter and shorter formulas, an impossibility. Thus,
x and y must be the same, as claimed. �

We finish with a remaining open question. The proof of Theorem 5.2 suggests that
an appropriately chosen substitution instance of B (or B′) might provide a positive
answer to the following question.

Question 6.4 Is there any theorem of the one variable fragment of BCI that does
not imply a self-implication?

However, a number of attempts at finding such an instance ended in failure, so the
question, although admittedly technical, appears interesting and we do not propose
any conjecture here.
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