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Classifying the Branching Degrees in the
Medvedev Lattice of 50

1 Classes

Christopher P. Alfeld

Abstract A 50
1 class can be defined as the set of infinite paths through a com-

putable tree. For classes P and Q, say that P is Medvedev reducible to Q,
P ≤M Q, if there is a computably continuous functional mapping Q into P . Let
LM be the lattice of degrees formed by 50

1 subclasses of 2ω under the Medvedev
reducibility. In “Non-branching degrees in the Medvedev lattice of 50

1 classes,”
I provided a characterization of nonbranching/branching and a classification of
the nonbranching degrees. In this paper, I present a similar classification of the
branching degrees. In particular, P is separable if there is a clopen set C such
that P ∩ C 6= ∅ 6= P ∩ Cc and P ∩ C ⊥M P ∩ Cc. By the results in the
first paper, separability is an invariant of a Medvedev degree and a degree is
branching if and only if it contains a separable member. Further define P to be
hyperseparable if, for all such C , P ∩ C ⊥M P ∩ Cc and totally separable if, for
all X, Y ∈ P , X ⊥T Y . I will show that totally separable implies hypersepara-
ble implies separable and that the reverse implications do not hold, that is, that
these are three distinct types of branching degrees. Along the way I will show
some related results and present a combinatorial framework for constructing 50

1
classes with priority arguments.

1 Introduction

A 50
1 class of 2ω is a subset of 2ω which satisfies a certain notion of computability,

namely, that there is a tree in 2<ω which is computable and whose paths form the 50
1

class. Cenzer and Jockusch [4] provide a good overview of 50
1 classes. Applications

of 50
1 classes in mathematics can be found in [5].

A common view of 50
1 classes is as mass problems. That is, view a class P as

representing the set of solutions to a problem in computable mathematics. In such a
context, a natural question is whether solving one problem allows us to solve another.
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That is, if P and Q represent problem, then saying that P solves Q is saying that
we can computably turn members of P into members of Q. When this reduction
is uniform, this is exactly the Medvedev reduction. Specifically, P ≥M Q, if there
exists a computable functional 8 such that, for every X ∈ P , 8(X) ∈ Q. A useful
property of such functionals is that they are continuous in the normal topology of 2ω.

This reduction induces, in general, a lattice of subsets of 2ω and, in particular,
a lattice of 50

1 subsets of 2ω. This lattice has recently been studied by Cenzer and
Hinman [3], Binns [2], and Simpson [8], [9], and [10]. We will denote the lattice by
LM . It is distributive with minimum and maximum element.

As convention, say that a degree has a certain property if there exists a member
of the degree with that property.

This paper is the second half of the research track begun in “Non-Branching De-
grees in the Medvedev Lattice of 50

1 classes” [1]. There I studied the nonbranching
degrees of LM , that is, degrees which were not the meet (greatest lower bound) of
two other degrees. The results are listed in Section 3. To summarize, I defined two
properties of classes, inseparable and hyperseparable, and showed the following in-
teraction, also considering an existing property homogeneous [3]:

Non-Branching ⇔ Inseparable ⇐ Hyperinseparable ⇐ Homogeneous. (1)

Further, I showed that no unstated implications exist, that is, that these are three
distinct classes of nonbranching degrees. The reader may find it useful to look over
Section 3 at this point, but it is not necessary.

This paper follows a similar program with regard to branching degrees. I define
separable as the converse of inseparable, define hyperseparable in a similar way to
hyperinseparable, and also consider the unnamed but previously known condition
which I call totally separable. I arrive at

Branching ⇔ Separable ⇐ Hyperseparable ⇐ Totally Separable. (2)

And no unstated implications exist.
A much needed definition will be the following.

Definition 1.1 For a 50
1 class P and clopen set C , C is good for P if

P ∩ C 6= ∅ 6= P ∩ Cc. (3)

A class P is separable if there exists a C good for P such that P ∩C ⊥M P ∩Cc, that
is, if we can split P into two incomparable clopen subclasses. From the results in [1],
we immediately have that a degree is separable if and only if it is nonbranching. A
class P is hyperseparable if every clopen set C good for P splits P into incomparable
clopen subclasses. In [6], Jockusch and Soare showed that there exists a class P
such that all members of P are pairwise Turing incomparable. Call such a P totally
separable. It is straightforward to show that totally separable implies hyperseparable.

The primary results of this paper are to show the existence of degrees which are
separable and not hyperseparable, and degrees which are hyperseparable and not
totally separable. Along the way, we will prove some related results.

An additional contribution of this paper is the notion of tree lifes. Tree lifes
are a formalization of a combinatorial method for building 50

1 classes with priority
arguments. The basic method is found in, among others, [1] and [3]. There are
no difficult proofs in the discussion of tree lifes but the notions and basic results
encapsulate some of the common behavior of such constructions. Tree lifes will be
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used in Section 9 to show the existence of a hyperseparable and not totally separable
degree.

Section 2 will present the necessary definitions and results from the theory of
50

1 classes. Section 3 will review the major definitions and results of [1]. Section
4 will present tree lifes. Sections 5, 6, and 7 will present and discuss separable,
hyperseparable, and totally separable degrees, respectively. Section 8 will separate
separable and hyperseparable and present some structural results about separable
and not hyperseparable degrees. Finally, Section 9 will separate hyperseparable and
totally separable.

2 Basic Definitions and Theory

See Soare [11] or Rogers [7] for an overview of the concepts and theory of com-
putability theory.

For a string σ ∈ 2<ω, denote its length by |σ |. Denote the initial substring relation
by ≺ and concatenation of σ and τ by σ a τ . Denote the empty string by ∅, the string
of a single 0 by 0 and of a single 1 by 1. Denote truncation by σ � n. For X ∈ 2ω,
say σ ≺ X if X � |σ | = σ ; that is, σ is an initial segment of X .

A tree is a subset of 2<ω which is closed downward under ≺. Members of a tree
will frequently be referred to as nodes. If σ ≺ τ , then say that τ is a descendant
of σ . For a tree T, denote the set of infinite paths through T by [T] and the set of
extendible nodes, the nodes with descendants of arbitrary length, by Ext(T). A dead
end is a node that is not extendible. For a string σ , define σ a T = {σ a τ : τ ∈ T}.

There are several equivalent definitions of a 50
1 class. For our purposes, a 50

1
class P is a nonempty subset of 2ω such that there exists a computable tree P

with P = [P]. Denote the tree of initial substrings of members of P by TP .
Note that [TP ] = P and Ext(P) = TP for any P which generates P . Define
σ a P = [σ a TP ].

The set 2ω can be viewed as the Cantor set in R. We will use the resulting
subspace topology on 2ω. Namely, define I (σ ) = {X ∈ 2ω

: σ ≺ X}. A clopen
subset will be a finite union of such intervals. To simplify, say that σ ∈ C if there
exists X ∈ C with σ ≺ X . Similarly, for a tree T, define T ∩ C = {σ ∈ T : σ ∈ C}.

We need a concept of a computable map between classes. There are several (often
equivalent) approaches to this. We use the following.

Definition 2.1 A partial computable function ϕ : 2<ω
→ 2<ω is a tree map if it

satisfies the following properties:

dom(ϕ) is a tree, (4)

∀σ, τ ∈ dom(ϕ)
(
σ � τ ⇒ ϕ(σ) � ϕ(τ)

)
, (5)

∀X ∈ [dom(ϕ)]∀n∃m
(
|ϕ(X �m)| > n

)
. (6)

A computably continuous functional is a function 8 : 2ω
→ 2ω such that there exists

a tree map ϕ with 8(X) =
⋃

n ϕ(X �n).

To say 8 : Q → P means that there is a total tree map ϕ with ϕ(TQ) ⊆ TP .
Define P ≤M Q, said P is Medvedev below Q, if there exists 8 : Q → P .

Note that ≤M induces an equivalence relation, ≡M . Denote the resulting lattice of
equivalent classes by LM . Denote the bottom degree by 0 and the top degree by 1.
For a class P , denote the degree of P by deg(P).
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The following lemma states that, in the ≤M case, we can assume 8, and thus ϕ,
to be total. For a proof, see [3].

Lemma 2.2 Let P and Q be 50
1 classes such that P ≤M Q. Then there exists a

total computable functional 8 : 2ω
→ 2ω such that 8(Q) ⊆ P.

An immediate but much used lemma is the following.

Lemma 2.3 Let Q and P be 50
1 classes with Q ⊆ P. Then Q ≥M P.

Proof The identity function serves as a witness. �

Finally, we need to be able to enumerate the 50
1 classes.

Lemma 2.4 If P is a co-c.e. tree, then there exists a computable tree Q such that
[P] = [Q]. Furthermore, we can effectively find Q from P.

Proof Sketch Let {As}s∈ω be an enumeration of 2<ω
\ P and Q = {σ : ∀τ �

σ(τ 6∈ A|σ |)}. �

Definition 2.5 Define Pe to be [Te] where Te is the eth co-c.e. tree.

3 Nonbranching Review

For discussion, proofs, and related results, see [1].

Definition 3.1 A 50
1 class P is inseparable if, for all clopen sets C good for P ,

P ∩ C ≤M P ∩ Cc or P ∩ C ≥M P ∩ Cc.

Theorem 3.2 ([1]) If P is inseparable and Q ≡M P, then Q is inseparable.

Theorem 3.3 ([1]) A degree a is nonbranching if and only if it is inseparable.

Definition 3.4 A 50
1 class P is hyperinseparable if, for all clopen sets C good for

P , P ∩ C ≡M P ∩ Cc.

Equivalently, P is hyperinseparable if, for all clopen sets C good for P , P∩C ≡M P .
Not every member of a hyperinseparable degree is hyperinseparable. However,

every member has a hyperinseparable core. We will see a very similar result later in
the study of totally separable branching degrees, namely, Theorem 7.3.

Theorem 3.5 ([1]) If a is hyperinseparable and P ∈ a, then there exists Q ⊆ P
with Q ≡M P and Q hyperinseparable.

The next theorem shows that the concepts of inseparable and hyperinseparable are
distinct.

Theorem 3.6 ([1]) For degrees a and b with 0 <M b, there exists a degree c such
that 0 <M c <M b and c is inseparable and not hyperinseparable.

In [3], Cenzer and Hinman introduce homogeneous degrees and show that they are
nonbranching. It is straightforward to show that homogeneous implies hyperinsepa-
rable. See [1] for details.

Definition 3.7 ([3], Definition 8) A tree P is homogeneous if

∀σ, τ ∈ P ∀i ∈ 2
[
|σ | = |τ | ⇒ (σ a i ⇔ τ a i)

]
.

A class P is homogeneous if TP is.
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As with hyperinseparable and inseparable, I separated homogeneous and hyperin-
separable.

Theorem 3.8 ([1]) There exists a degree which is hyperinseparable and not homo-
geneous.

4 Tree Lifes

There are many ways to construct 50
1 classes via a priority argument. This section

formalizes a method in which a tree is enumerated along with a total computable
function which tightly bounds the length of nodes added at each stage. The combi-
nation of enumeration and length function ensures that the tree is computable and
thus produces a 50

1 class. This technique was seen in [1] and in the literature, for ex-
ample, in [3]. The formalization described below will be used to prove Theorem 9.2.

Definition 4.1 A finite tree L ⊆ 2<ω is a strict tree if all dead ends are of the same
length (necessarily maximal). The length of L , denoted l(L), is the length of the
dead ends. The set of dead ends is denoted D(L).

Definition 4.2 For strict trees L and M , M is a growth of L if l(M) ≥ l(L) and

∀σ ∈ M \ L∃τ ∈ D(L)[σ � τ ]. (7)

Call a leaf of maximal length a living leaf. Then a growth can be characterized by
two conditions: (1) the length cannot decrease, that is, at least one living leaf must
survive, and (2) any additional nodes must extend living leaves. Thus, a valid growth
may consist of extending living leaves, pruning part of the tree, or a combination of
both.

Definition 4.3 A tree life is a sequence of strict trees {Ls : s ∈ ω} such that for all
s > 0, Ls is a growth of Ls−1 and lims l(Ls) = ∞. A tree life is computable if there
exists a total computable function f such that f (s) = Ls .

To simplify notation we will hereafter omit “: s ∈ ω”; that is, we will simply write
{Ls}.

Define lims Ls = {σ ∈ 2<ω
: ∃t∀n > t[σ ∈ Ln]}.

Lemma 4.4 For any tree life {Ls}, any s, and any σ ∈ Ls+1 \ Ls , l(Ls) <
|σ | ≤ l(Ls+1).

Proof Fix σ ∈ Ls+1 \ Ls . Then, as Ls+1 is a growth of Ls , there must be some
τ ∈ D(Ls) with τ ≺ σ . Thus |σ | > |τ | = l(Ls). That |σ | ≤ l(Ls+1) is immediate.

�

Corollary 4.5 For any tree life {Ls}, any s, and any σ ∈ Ls , if σ 6∈ Ls+1, then for
all t > s, σ 6∈ L t .

Observe that this corollary implies that lims Ls is well defined; it is a d.c.e. set.

Lemma 4.6 For a tree life {Ls}, [lims Ls] =
[ ⋃

s Ls
]
.

Proof The inclusion ⊇ is immediate. For ⊆, fix X ∈
[ ⋃

s Ls
]
. Fix n and let

σ = X � n and s be such that σ ∈ Ls . As σ has descendants of arbitrary length, σ
must be in every L t for t > s. As n was arbitrary, X ∈ [lims Ls]. �
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Lemma 4.7 For a computable tree life {Ls},
⋃

s Ls is computable and lims Ls is
co-c.e.

Proof Observe that l(Ls) is a computable function. Fix σ ∈
⋃

s Ls and t such that
l(L t ) ≥ |σ |. Then σ ∈

⋃
s Ls if and only if σ ∈ L t . Thus

⋃
s Ls is computable. As

lims Ls is the difference of a computable set
(⋃

s Ls
)

and a c.e. set (the nodes that
leave), it is co-c.e. �

Corollary 4.8 For a computable tree life {Ls}, [lims Ls] is a 50
1 class.

Proof By Lemma 4.7,
⋃

s Ls is a computable tree. By Lemma 4.6, [lims Ls] =[ ⋃
s Ls

]
and thus is a 50

1 class. �

Having defined the basic construction and shown that it results in computable trees
we now define some growth operations which are effective.

Definition 4.9 For a nonempty strict tree L , the single extension of L , denoted
extend(L), is defined by

extend(L) = L ∪ {σ a i : σ ∈ D(L), i ∈ 2}. (8)

Define extend(∅) = {∅, 0, 1}.

Note that l(extend(L)) = l(L) + 1.

Definition 4.10 For a strict tree L and σ ∈ L , the trim of L by σ , denoted
trim(L , σ ) is defined by

trim(L , σ ) = {τ ∈ L : ∃ν � τ [ν ⊥ σ ]}. (9)

Note that trim(L , σ ) is L with σ and all descendants removed. We also remove an-
cestors of σ which do not lead to other non-σ descendants to ensure that trim(L , σ )
is a strict tree. Note that l(trim(L , σ )) ≤ l(L).

Lemma 4.11 For a strict tree L, extend(L) is a strict tree and a growth of L.

Proof Fix τ ∈ D(extend(L)). By definition, τ = σ a i for σ ∈ D(L) and i ∈ 2.
Then |σ | = l(L), |τ | = l(L) + 1. As τ was arbitrary, extend(L) is a strict tree.

Fix τ ∈ extend(L) \ L . Then τ = σ a i for σ ∈ D(L) and i ∈ 2, and σ witnesses
that extend(L) is a growth. �

Lemma 4.12 For a strict tree L and σ ∈ L, trim(L , σ ) is a strict tree and either
empty or a growth of L.

Proof Let M = trim(L , σ ) and assume M has a dead end α with |α| < l(L). As
|α| < l(L) there is an immediate successor of α, β ∈ L . As β 6∈ M , β is comparable
with σ but α is not, a contradiction. Thus M is a strict tree.

As trim only removes paths, if M is not empty, then it contains a path of length
l(L). Thus M is a growth of L . �

5 Separable Degrees

We define separability as the inverse of inseparability. Separable degrees are those
whose members can be split into incomparable clopen subclasses.

Definition 5.1 A 50
1 class P is separable if there exists a clopen set C good for P

such that P ∩ C ⊥M P ∩ Cc.
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The primary results move over directly.

Theorem 5.2 Separability is an invariant of a Medvedev degree; that is, if P ≡M Q
and P is separable, then Q is separable.

Proof This theorem is the contrapositive of Theorem 3.2. �

Corollary 5.3 A degree a is separable if and only if a is branching; that is, there
exists b > a, c > a with a = b ∧ c.

Proof This is the contrapositive of Theorem 3.3. �

6 Hyperseparable Degrees

Definition 6.1 A 50
1 class P is hyperseparable if for all clopen sets C good for P ,

P ∩ C ⊥M P ∩ Cc.

Observe that hyperseparable implies separable. As in the case of hyperinseparability,
it is too much to hope that this would be invariant.

Theorem 6.2 For any 50
1 class P, there exists a class Q, with Q ≡M P and Q not

hyperseparable.

Proof Take Q = P ∧ P and observe that C = I (0) contradicts hyperseparability.
�

Additional results about hyperseparable degrees, in the context of nonseparability,
can be found in Section 8.

7 Totally Separable Degrees

As with homogeneous in the nonbranching case, there is a condition in the literature
which is stronger than hyperseparable. I was unable to find a name for it, so I refer
to it as totally separable.

Definition 7.1 A 50
1 class P is totally separable if for all X, Y ∈ P , X ⊥T Y .

Note that totally separable implies hyperseparable.
Jockusch and Soare proved the existence of a totally separable class.

Theorem 7.2 ([6]) There exists a totally separable class.

Totally separable is a very strong condition which enforces a great deal of structure
on the other members of the degree. The following is similar to Theorem 3.5; that is,
it shows that members of a totally separable degree contain a totally separable core.

Theorem 7.3 Let P be a totally separable 50
1 class and Q a 50

1 class with
Q ≡M P. Then there exists a 50

1 class R ⊆ Q such that R ≡M Q and R is totally
separable. Furthermore, if 8 : P → Q and 9 : Q → P witness Q ≡M P, then
8 : P → R and 9 : R → P are bijections.

Proof Let R = 8(P). By Lemma 2.3, R ≥M Q. The function X 7→ 9(X) 7→

8(9(X)) witnesses Q ≥M R. Thus R ≡M Q.
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P
Φ
Ψ

X0 X1 Y = Φ(X0) = Φ(X1)Ψ(Y )

R = Φ(P )

Figure 1 Theorem 7.3: 8 : P → R injective.

P
Φ
Ψ

X Φ(X)Ψ(Φ(X))

R = Φ(P )

Figure 2 Theorem 7.3: 9 : R → P surjective

By definition 8 : P → R is surjective. Assume 8 is not injective and fix X0, X1
in P with 8(X0) = 8(X1) = Y . Assume 9(Y ) 6= X0 (it must differ from one of
X0 and X1). But 9(Y ) ≤T X0 as X0 7→ Y 7→ 9(Y ), a contradiction of P being
totally separable. Thus 8 : P → R is injective and thus bijective. See Figure 1.

Assume 9 : R → P is not surjective. Fix X ∈ P\9(R). Then 9(8(X)) ∈ 9(R)
and thus not equal to X , but is Turing reducible from X , a contradiction. Thus
9 : R → P is surjective. See Figure 2.
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P
Φ
Ψ

X0 X1

R = Φ(P )

Y0 Y1Z

Figure 3 Theorem 7.3: 9 : R → P injective

P
Φ
Ψ R = Φ(P )

≤TY0 Y1Φ−1(Y1)Ψ(Y0)

Figure 4 Theorem 7.3: R totally separable.

Assume 9 : R → P is not injective. Fix Y0 and Y1 in R such that 9(Y0) =

9(Y1) = Z . As 8 is bijective there exist X0, X1 in P with X0 6= X1, Y0 = 8(X0),
and Y1 = 8(X1). Assume Z 6= X0 (the other case is symmetric). Then Z ≤T X0
as X0 7→ Y0 7→ Z , a contradiction. Thus 9 is injective and thus bijective. See
Figure 3.

Assume R is not totally separable and fix Y0 and Y1 in R with Y0 6= Y1 and
Y0 ≤T Y1. Let X0 = 9(Y0) and X1 = 8−1(Y1). As 8−1 is a bijection, X0 6= X1.
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Φ
Ψ

Q RP

C CΨ(C)
X Ω(Φ(X))Θ(X) Φ(X)

S

Figure 5 Theorem 8.1: 8(X) ∈ Cc

And X0 ≤T Y0 via 9; Y0 ≤ Y1 by assumption; and Y0 ≤ X1 via 8. Thus X0 ≤T X1,
a contradiction. See Figure 4. Thus R is totally separable. �

Corollary 7.4 If P and Q are totally separable with P ≡M Q, then P is com-
putably isomorphic to Q.

Proof Repeat the proof of Theorem 7.3 with P in place of R. �

The following lemma shows that in the situation of Theorem 7.3, P retracts onto its
totally separable core.

Lemma 7.5 If Q and R are such that R ⊆ Q, R is totally separable, and
8 : Q → R is a computably continuous functional, then 8(X) = X for all X ∈ R;
that is, 8 is a retraction.

Proof If 8(X) = Y 6= X for some X in R, then Y ≤T X , a contradiction. �

8 Separable and Not Hyperseparable

Theorem 8.1 If Q and R are hyperinseparable with Q ⊥M R, then deg(Q ∧ R) is
separable and not hyperseparable.

Proof Let S = Q ∧ R and a = deg(S). Then S is separable. Consider any
CQ ⊂ I (0) good for 0 a Q and CR ⊂ I (1) good for 1 a R. By hyperinseparability
there is a reduction from 0 a Q ∩CQ to 0 a Q ∩Cc

Q and similarly for CR . Thus there
is a reduction to C = CQ ∪ CR from Cc witnessing that S is not hyperseparable.

Let P be any class with P ≡M S. Let 8 : P → S and 9 : S → P witness
P ≡M S. Let CQ and CR be clopen sets satisfying CQ ⊂ I (0), CR ⊂ I (1),
CQ good for 0 a Q, CR good for 1 a R, and 9(CR ∪ CQ) good for P . The last
requirement can be achieved by choosing CR and CQ small enough: fix σ ∈ TR long



50
1 Medvedev Branching Degrees 237

Φ
Ψ

Q RP

C CΨ(C)
XΘ(X) Φ(X)

S

Figure 6 Theorem 8.1: 8(X) ∈ C

enough such that there exists τ ∈ TS with ϕ(σ) ⊥ τ and let CR = I (σ ); similarly
for CQ .

Let CS = 9(C). Fix � : S ∩ Cc
→ S ∩ C . Define 2 by

2(X) =

{
9(8(X)) if 8(X) ∈ C,

9(�(8(X))) if 8(X) ∈ Cc.
(10)

See Figures 5 and 6. Then 2 witnesses P ∩ Cc
S ≥M P ∩ CS . So P is not hypersep-

arable. As P was arbitrary, deg(Q ∧ R) is not hyperseparable. �

The previous theorem provides a method for constructing separable and not hyper-
separable degrees from hyperinseparable degrees. The following theorem of Binns
can be used to construct homogeneous (and thus hyperinseparable and thus separable
and not hyperseparable) degrees with various structure.

Lemma 8.2 ([2]) Let A be a c.e. set and P a 50
1 class with deg(P) >M 0. Then

there exist c.e. sets A0, A1 such that

A0
∩ A1

= ∅, (11)

A0
∪ A1

= A, (12)

∀i ∈ {0, 1}∀ f ∈ P[Ai
6≥T f ]. (13)

The idea is to construct a pair of hyperinseparable (actually homogeneous) degrees
whose meet, by Theorem 8.1, is separable and not hyperseparable, but whose join is
as high as we want it. We are also able to avoid a cone.
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Corollary 8.3 For any b, c >M 0 with b homogeneous, there exist b0, b1, and a
such that

a = b0
∧ b1, (14)

a is separable and not hyperseparable, (15)

b0, b1, a 6≥ c, (16)

b0
∨ b1

≥ b. (17)

Proof Define S(A, B) = {C : A ⊆ C ⊆ Bc
}. It is known, see [3], that a class P

is homogeneous if and only if P = S(A, B) for c.e. sets A and B. Fix Q ∈ c. Fix
R = S(A, B) ∈ b with A and B c.e. Let P = Q ∧ R and A0 and A1 be as in Lemma
8.2. Let S0

= S(A0, B) and S1
= S(A1, B). For X ⊕ Y ∈ S0

∨ S1 define

Z(n) =

{
0 if X (n) = 1 or Y (n) = 1,

1 else.
(18)

Then Z ∈ S, thus S0
∨ S1

≥M R. If S1
≥M S0, then S1

≥M R ≥M P , a con-
tradiction of (13). The case of S0

≥M S1 is symmetric. Thus S0
⊥M S1. Let

T = S0
∧ S1. If S0

≥M Q, then S0
≥M P , a contradiction. Similarly for S1 and T .

Note that homogeneity implies hyperinseparability. By Theorem 8.1, T is separable
and not hyperseparable. Letting b0

= deg(S0), b1
= deg(S1), and a = deg(T ), we

arrive at the result. �

Corollary 8.4 There exists a degree a such that a is separable and not hypersepa-
rable.

9 Hyperseparable and Not Totally Separable

Finally, we work to separate the notions of hyperseparable and not totally separable.
The task is twofold: we must build a hyperseparable degree and avoid being totally
separable.

The first task is complicated by the fact that, previously, the only known construc-
tion of a hyperseparable degree was to build a totally separable degree. We will use
Theorem 7.3 to show that it is sufficient to build a class which is hyperseparable and
not totally separable. We then use the methods of Section 4 to build such a class.

Theorem 9.1 If P is hyperseparable and not totally separable, then deg(P) is
hyperseparable and not totally separable.

Proof That deg(P) is hyperseparable is immediate. Assume deg(P) is totally sep-
arable. Then, by Theorem 7.3, there exists R ⊆ P , R ≡M P , and R totally sep-
arable. As P is not totally separable, R 6= P . Let C be a clopen set such that
R ⊆ P ∩C ⊂ P . Such a C exists as for X ∈ P \ R there is some σ � X with σ 6∈ TR
and C = I (σ )c suffices. Using Lemma 2.3 twice, P ∩ C ≤M R ≡M P ≤M P ∩ Cc,
contradicting that P is hyperseparable. Thus, deg(P) is not totally separable. �

Theorem 9.2 There exists a degree which is hyperseparable and not totally sepa-
rable.

Proof We will build a computable tree life {Ls}. By Corollary 4.8, P = [lims Ls]

will be a 50
1 class. We will build P to be hyperseparable and not totally separable.

By Theorem 9.1, deg(P) will be hyperseparable and not totally separable.
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Let 〈C, ϕ〉 be an enumeration of all pairs of clopen subclasses of 2ω and partial
computable functions. For convenience we often refer to such pairs by their index, e,
in the enumeration. We also start the enumeration at e = 1. We will blur the dis-
tinction between e and 〈C, ϕ〉. For each 〈C, ϕ〉 we work to satisfy the requirement,

RC,ϕ : C good for P ⇒ ∃X ∈ P ∩ C[8(X) 6∈ P ∩ Cc
]. (19)

To ensure that P is not totally separable we will use a very simple reduction and
ensure that paths Turing equivalent through that reduction exist. Namely,

S : ∃X, Y ∈ P∃Z ∈ 2ω
[X = 0 a Z and Y = 1 a Z ]. (20)

We have a strategy acting on behalf of each Re which will be careful to ensure
that S is satisfied. Strategies are ordered in priority in the order of the enumeration
with earlier strategies having higher priority. Each node has a protection level. The
function rs : 2<ω

→ ω ∪ {ω} indicates the protection level; that is, the protection
level of σ at stage s is rs(σ ). Lower numbers indicate higher protection levels. A
strategy may protect a node with its own priority. Each strategy has two states: wait
and stop. Strategies begin in state wait and may at some point act and enter state
stop. Once in state stop, a strategy will not act unless injured. When a strategy acts,
it injures all lower priority strategies resetting them to state wait. The construction
thus progresses in typical finite injury fashion. Denote the state of strategy e at
stage s by states(e).

In order for all strategies to be able to find witnesses to kill, they must obey a
simple rule regarding protection levels. For a node σ protected at level d, strategy e
(e > d) may only kill τ � σ if |τ | ≥ |σ | + 2(e − d). As we shall see in the claims
below, this will ensure that every strategy is able to kill a witness if needed.

Let

Ss = {σ : 0 a σ ∈ D(Ls) and 1 a σ ∈ D(Ls)}. (21)

To ensure S is satisfied we require all strategies to preserve Ss 6= ∅ and only trim the
tree at even stages, growing it with single extensions at odd stages. This will ensure
that Ss is never empty and every requirement can act if necessary.

Begin with L0 = {∅, 0, 1}, r0(σ ) = ∞ for all σ , and state0(e) = wait for all e.
Assume we have run the construction up to stage s. Thus Ls−1, rs−1, and states−1
are all defined. A strategy e = 〈C, ϕ〉 is eligible to act if states−1(e) = wait and

∃σ ∈ Ls−1 ∩ C[ϕ(σ) ∈ Ls−1 ∩ Cc (22)
and ∀τ � ϕ(σ)[rs−1(τ ) > e

or |ϕ(σ)| ≥ |τ | + 2(e − rs−1(τ ))]

and ∃ν ∈ Ss−1[0 a ν 6� ϕ(σ) and 1 a ν 6� ϕ(σ)]].

If s is odd or if no such e exists, then let Ls = extend(Ls−1), rs = rs−1, and
states = states−1. Otherwise, let e be the highest priority (least index) strategy



240 Christopher P. Alfeld

eligible to act. Let σ ′
∈ D(Ls) be a descendant of σ (possibly equal to σ ). Let

Ls = extend(trim(Ls−1, ϕ(σ ))), (23)

rs(τ ) =


e τ = σ ′,

rs−1(τ ) rs−1(τ ) < e,
ω else,

(24)

states(n) =


stop n = e,
wait n > e,
states−1(n) else.

(25)

Equation (23) describes the evolution of the tree life. Equations (24) and (25) serve
to protect σ , stop strategy e, and injure (reset) all lower priority strategies. Observe
that Ss 6= ∅ as 0 a ν and 1 a ν were not killed for ν as in (22).

This completes the construction. We now prove that the result has the desired
properties.

Claim 9.3 Fix any d and e with d < e. If strategy d is not injured after stage t,
then strategy e will be injured less than or equal to 2e−d−1 times after stage t.

Proof Fix d and t and let I (e) denote the maximum number of times e could be
injured after stage t . We will show by induction that I (e) ≤ 2e−d−1.

Consider e = d + 1. Then e will be injured only if d acts after stage t . As d
is not injured after stage t it will act at most once and thus I (e) = 1 ≤ 2e−d−1

=

2d+1−d−1
= 20

= 1.
Assume I (e′) ≤ 2e−d−1 for all d < e′ < e. Any time a strategy below e − 1

is injured, e − 1 is also injured. Thus I (e − 1) is an accurate count of the number
of times e might be injured by strategies < e − 1. Each time e − 1 is injured, e is
injured. In addition, e − 1 may act once before being injured again, injuring e as
well. Thus I (e) ≤ 2I (e − 1) = 2(2e−1−d−1) = 2e−1−d−1+1

= 2e−d−1. �

Claim 9.4 Fix any d and e with d < e. If strategy d is not injured after stage t,
then strategy e will act fewer than 2e−d times after stage t.

Proof Strategy e can only act once before being injured again. Thus the total num-
ber of times it can act is equal to the number of times it is injured plus one. By the
previous claim this is less than or equal to 2e−d−1

+ 1 which is less than 2e−d . �

Claim 9.5 For all σ and s such that rs(σ ) = e < ω and strategy e is not injured at
or after stage s, σ ∈ lims Ls .

Proof As strategy e is not injured, no strategy of higher priority will kill any ances-
tor of σ , so our only worry is that lower priority strategies will kill all the children
of σ . When σ was protected, it was a leaf node. Thus any strategy which kills an-
cestors of σ must obey the protection. Namely, for d > e, d can only kill τ � σ if
|τ | ≥ |σ | + 2(d − e).

Let µ be the standard measure on 2ω; that is, µ(I (τ )) = 2−|τ |. For a finite Ls ,
define µ(I (σ ) ∩ Ls) to be µ(I (σ ) ∩

⋃
τ∈D(Ls )

I (τ )); that is, we assume that Ls will
have all possible children. We will show that, for all t > s, µ(I (σ ) ∩ L t ) > 0 and,
thus, σ ∈ L t .
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Fix a stage t and let d be the lowest priority (highest index) strategy to act so far.
For each e < f ≤ d let N f be the number of children of σ strategy f has killed
and {τi, f } be the set of these children. Strategy f can kill only a single child when
it acts, so by the previous claim, N f < 2 f −e. The requirement on the length of τ

requires that I (τi, f ) ≤ 2−(|σ |+2(d−e)).

µ(I (σ ) ∩ L t ) = µ(I (σ )) −

∑
e< f ≤d

∑
i<N f

µ(I (τi, f )) (26)

≥ 2−|σ |
−

∑
e< f ≤d

N f 2−(|σ |+2( f −e)) (27)

> 2−|σ |
−

∑
e< f ≤d

2 f −e2−(|σ |+2( f −e)) (28)

= 2−|σ |
−

d−e∑
i=1

2i 2−(|σ |+2i) (29)

= 2−|σ |
−

d−e∑
i=1

2−|σ |−i (30)

= 2−|σ |

(
1 −

d−e∑
i=1

2−i
)

(31)

> 0. (32)

�

Claim 9.6 {Ls} is a computable tree life.

Proof The previous claim shows that, at all stages, Ls is nonempty. By Lemmas
4.11 and 4.12, each Ls is a growth of Ls−1. As single extensions and trims are
computable, it is a computable tree life. �

Thus, by Corollary 4.8, P = [lims Ls] is a nonempty 50
1 class.

Claim 9.7 ∀n∃s∀t > s
[
|St | > n

]
.

Proof Define a clump in St to be a proper subset U ⊂ St maximal with respect to
U = {σ a τ : τ ∈ 2i

} for some σ and i . Let ct be the size of the smallest clump in
St .

First we show that ct+1 ≥ ct for all t . At each stage something may be killed and
then every living leaf is extended; that is, each stage is a composition of (possibly) a
trim and a single extension. As any living leaf is at least in a clump of itself (i = 0),
ct > 0. There are four possibilities:

1. Nothing in St is killed. Then the clump doubles and ct+1 = 2ct .
2. The smallest clump is killed. As it was not everything there is another clump

of at least equal size. That clump will double, but it could now be everything
in which case it is not a clump but rather two clumps of size equal to the
original. So ct+1 ≥ ct .

3. Everything but the smallest clump is killed. Then the smallest clump will
double but as it is now everything it is now two clumps rather than one. So
ct+1 = ct .
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4. Part of a clump is killed. At worst it will kill half the smallest clump. The
other half will then double and ct+1 = ct .

At odd stages, case (1) occurs, so ct+1 > ct for t odd. Thus ct is unbounded in t and
St is unbounded in t . �

Observe that while clumps of arbitrary finite size exist during the construction they
may move around. The final 50

1 class may be very nonclumpy.

Claim 9.8 For all e, Re is satisfied.

Proof By a previous claim, let s be sufficiently large such that strategy e is not
injured at or after stage s. Let e = 〈C, ϕ〉. If C is not good for P , then we are done.
Assume C is good for P .

Assume there exists X ∈ P ∩ C such that 8(X) ∈ P ∩ Cc. For stages t > s, the
set of nodes protected by strategies d < e will stay fixed. Thus there is a stage t and
an n such that σ = X �n ∈ L t , |ϕ(σ)| ≥ |τ | + 2(e − rt−1(τ )) for all τ � ϕ(σ) with
rt−1(τ ) < e. Strategy e may still not be able to act because of the requirement to
preserve St . As higher priority strategies will not act again the strategy will continue
to be otherwise eligible to act at later stages. Let Y be such that X = i a Y for some
i ∈ 2. If we never act that means that at each stage t , St = {Y � l(L t )}, contradicting
the previous claim that |St | is unbounded. �

Claim 9.9 S is satisfied.

Proof By the definition of Ss and that Ls is a tree life, if a string σ leaves Ss , that is,
σ ∈ Ss \ Ss+1, then no descendant of it can ever enter Ss later. Thus, using an above
claim, [lims Ss] exists and is nonempty. Then, for any Z in [lims Ss], X = 0 a Z and
Y = 1 a Z serve as witnesses that S is satisfied. �

Thus P is hyperseparable as for any C good for P and any 8, R〈C,ϕ〉 shows that
8 is not a witness of P ∩ C ≥M P ∩ Cc. As S is satisfied, P contains a pair of
comparable paths, namely, 0 a X and 1 a X for some X . �
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