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Mass Problems and Intuitionism

Stephen G. Simpson

Abstract Let Pw be the lattice of Muchnik degrees of nonempty 50
1 subsets

of 2ω. The lattice Pw has been studied extensively in previous publications. In
this note we prove that the lattice Pw is not Brouwerian.

1 Introduction

Definition 1.1 Let ω denote the set of natural numbers, ω = {0, 1, 2, . . .}. Let ωω

denote the Baire space, ωω
= { f | f : ω → ω}. Following Medvedev [22] and

Rogers [27, §13.7], we define a mass problem to be an arbitrary subset of ωω. For
mass problems P and Q we say that P is Medvedev reducible or strongly reducible
to Q, abbreviated P ≤s Q, if there exists a partial recursive functional 9 such that
9(g) ∈ P for all g ∈ Q. We say that P is Muchnik reducible or weakly reducible to
Q, abbreviated P ≤w Q, if for all g ∈ Q there exists f ∈ P such that f is Turing
reducible to g. Clearly, Medvedev reducibility implies Muchnik reducibility, but the
converse does not hold.

Definition 1.2 A Medvedev degree or degree of difficulty or strong degree is an
equivalence class of mass problems under mutual Medvedev reducibility. A Much-
nik degree or weak degree is an equivalence class of mass problems under mutual
Muchnik reducibility. We write degs(P) = the Medvedev degree of P . We write
degw(P) = the Muchnik degree of P . Let Ds be the set of Medvedev degrees, par-
tially ordered by Medvedev reducibility. There is a natural embedding of the Turing
degrees into Ds given by degT ( f ) 7→ degs({ f }). Let Dw be the set of Muchnik de-
grees, partially ordered by Muchnik reducibility. There is a natural embedding of the
Turing degrees into Dw given by degT ( f ) 7→ degw({ f }). Here { f } is the singleton
set whose only element is f .
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Definition 1.3 Let L be a lattice. For a, b ∈ L we define a ⇒ b to be the unique
minimum x ∈ L such that sup(a, x) ≥ b. Note that a ⇒ b may or may not exist
in L . Following Birkhoff [8; 9] (first two editions) and McKinsey/Tarski [20] we
say that L is Brouwerian if a ⇒ b exists in L for all a, b ∈ L and L has a top
element. It is known (see Birkhoff [9, §IX.12] [10, §II.11] or McKinsey/Tarski [20]
or Rasiowa/Sikorski [26, §I.12]) that if L is Brouwerian then L is distributive and
has a bottom element and for all a ≤ b in L the sublattice

{x ∈ L | a ≤ x ≤ b}

is again Brouwerian.

Remark 1.4 Given a Brouwerian lattice L , we may view L as a model of
first-order intuitionistic propositional calculus. Namely, for a, b ∈ L we define
a ∧ b = sup(a, b), a ∨ b = inf(a, b), a ⇒ b as above, and ¬ a = (a ⇒ 1) where
1 is the top element of L . We may also define a ` b if and only if a ≥ b in L .
There is a completeness theorem (see Tarski [46] or McKinsey/Tarski [19; 20; 21] or
Rasiowa/Sikorski [26, §IX.3] or Rasiowa [25, §XI.8]) saying that a first-order propo-
sitional formula is intuitionistically provable if and only if it evaluates identically to
the bottom element in all Brouwerian lattices.

Remark 1.5 Brouwerian lattices have also been studied under other names and
with other notation and terminology. A pseudo-Boolean algebra is a lattice L such
that the dual of L is Brouwerian; see Rasiowa/Sikorski [26] and Rasiowa [25].
Pseudo-Boolean algebras are also known as Heyting algebras; see Balbes/Dwinger
[2, Chapter IX], Fourman/Scott [13], and Grätzer [14]. Brouwerian lattices are also
known as Brouwer algebras; see Sorbi [42; 43], Sorbi/Terwijn [45], and Terwijn
[47; 48; 49; 50]. Remarkably, the so-called Brouwerian lattices of Birkhoff [10]
(third edition) are dual to those of Birkhoff [8; 9] (first two editions). We adhere to
the terminology of Birkhoff [8; 9].

Remark 1.6 It is known that Ds and Dw are Brouwerian lattices. There is a nat-
ural homomorphism of Ds onto Dw given by degs(P) 7→ degw(P). This homo-
morphism preserves the binary lattice operations sup and inf and the top and bottom
elements, but it does not preserve the binary if-then operation ⇒.

Remark 1.7 The relationship between mass problems and intuitionism has a con-
siderable history. Indeed, it seems fair to say that the entire subject of mass problems
originated from intuitionistic considerations. The impetus came from Kolmogorov
1932 [17; 18] who informally proposed to view Heyting’s intuitionistic propositional
calculus [15] as a “calculus of problems” (Aufgabenrechnung). This idea amounts
to what is now known as the BHK or Brouwer/Heyting/Kolmogorov interpretation
of the intuitionistic propositional connectives; see Troelstra/van Dalen [51, §§1.3.1
and 1.5.3]. Elaborating Kolmogorov’s idea, Medvedev 1955 [22] introduced Ds and
noted that Ds is a Brouwerian lattice. Later Muchnik 1963 [23] introduced Dw and
noted that Dw is a Brouwerian lattice. Some further papers in this line are Skvortsova
[41], Sorbi [42; 43; 44], Sorbi/Terwijn [45], and Terwijn [47; 48; 49; 50].

Definition 1.8 Let 2ω denote the Cantor space, 2ω
= { f | f : ω → {0, 1}}.

Following Simpson [34] let Ps be the sublattice of Ds consisting of the Medvedev
degrees of nonempty 50

1 subsets of 2ω, and let Pw be the sublattice of Dw consisting
of the Muchnik degrees of nonempty 50

1 subsets of 2ω.
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Remark 1.9 The lattices Ps and Pw are mathematically rich and have been studied
extensively. See Alfeld [1], Binns [3; 4; 5; 6], Binns/Simpson [7], Cenzer/Hinman
[11], Cole/Simpson [12], Kjos-Hanssen/Simpson [16], Simpson [28; 29; 31; 32;
33; 34; 35; 36; 37; 38; 39], Simpson/Slaman [40], and Terwijn [48]. It is known
that Pw contains not only the recursively enumerable Turing degrees [36] but also
many specific, natural Muchnik degrees which arise from foundationally interesting
topics. Among these foundationally interesting topics are algorithmic randomness
[34; 36], reverse mathematics [30; 34; 35; 37], almost everywhere domination [37],
hyperarithmeticity [12], diagonal nonrecursiveness [34; 36], subrecursive hierarchies
[16; 34], resource-bounded computational complexity [16; 34], and Kolmogorov
complexity [16]. Recently Simpson [39] has applied Ps and Pw to prove a new
theorem in symbolic dynamics.

Remark 1.10 It is known that Ps and Pw are distributive lattices with top and
bottom elements. Moreover, the natural lattice homomorphism of Ds onto Dw re-
stricts to a natural lattice homomorphism of Ps onto Pw preserving top and bottom
elements.

Remark 1.11 In view of Remarks 1.6, 1.7, 1.9, and 1.10, it is natural to ask whether
Ps and Pw are Brouwerian lattices. The purpose of this note is to show that Pw is
not a Brouwerian lattice. Letting 1 denote the top element of Pw, we shall produce
a family of Muchnik degrees p ∈ Pw such that p ⇒ 1 does not exist in Pw. In other
words, ¬ p does not exist in Pw.

Remark 1.12 It remains open whether Ps is a Brouwerian lattice. Terwijn [48] has
shown that the dual of Ps is not a Brouwerian lattice. It remains open whether the
dual of Pw is a Brouwerian lattice.

2 Proof That Pw Is Not Brouwerian

In this section we prove that the lattice Pw is not Brouwerian.

Definition 2.1 For f, g ∈ ωω we write f ≤T g to mean that f is Turing reducible
to g; that is, f is computable relative to the Turing oracle g. We write g′

= the
Turing jump of g. In particular, 0′

= the halting problem = the Turing jump of 0.
We use standard recursion-theoretic notation from Rogers [27]. We say that f is
majorized by g if f (n) < g(n) for all n.

We begin with four well-known lemmas.

Lemma 2.2 Given f ≤T 0′, we can find g ≡T f such that {g} is 50
1.

Proof Since f ≤T 0′, it follows by Post’s Theorem (see, for instance, [27, §14.5,
Theorem VIII]) that f is 10

2. From this it follows that the singleton set { f } is 50
2.

Let R ⊆ ωω
× ω × ω be a recursive predicate such that our f is the unique f ∈ ωω

such that ∀m ∃n R( f, m, n) holds. Let g = f ⊕ h where h ∈ ωω is defined by
h(m) = the least n such that R( f, m, n) holds. It is easy to verify that g ≡T f and
{g} is 50

1. �

Lemma 2.3 If { f } is 50
1 and f is nonrecursive, then f is not majorized by any

recursive function.

Proof This lemma is equivalent to, for instance, [34, Theorem 4.15]. �
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Lemma 2.4 For all nonempty 50
1 sets Q ⊆ 2ω we have Q ≤w {0′

}.

Proof This lemma is a restatement of the well-known Kleene Basis Theorem.
Namely, every nonempty 50

1 subset of 2ω contains an element which is ≤T 0′. See,
for instance, the proof of [36, Lemma 5.3]. �

Lemma 2.5 Let Q ⊆ 2ω be nonempty 50
1 such that no element of Q is recursive.

Then we can find g ∈ ωω such that 0 <T g <T 0′ and Q �w {g}.

Proof By Lemma 2.4 it suffices to find g ∈ ωω such that 0 <T g ≤T 0′ and
Q �w {g}. To construct g we may proceed as in the proof of Lemma 2.6 below. The
construction is easier than in Lemma 2.6, because we can ignore f . �

Lemma 2.6 Let Q ⊆ 2ω be nonempty 50
1. Let f be such that 0 <T f <T 0′ and

Q �w { f }. Then we can find g ∈ ωω such that 0 <T g <T 0′ and Q �w {g} and
f ⊕ g ≡T 0′.

Proof We adapt the technique of Posner/Robinson [24]. Let U ⊆ ω<ω be a recur-
sive tree such that Q = {paths through U }. By Lemmas 2.2 and 2.3 we may safely
assume that f is not majorized by any recursive function.

For integers e ∈ ω and strings σ ∈ ω<ω we write

8e(σ ) = 〈ϕ
(1),σ
e,|σ |

(i) | i < j〉,

where j = the least i such that either ϕ
(1),σ
e,|σ |

(i) ↑ or i ≥ |σ |. Note that the
mapping 8e : ω<ω

→ ω<ω is recursive and monotonic; that is, σ ⊆ τ implies
8e(σ ) ⊆ 8e(τ ). Moreover, for all g, h ∈ ωω we have g ≥T h if and only if
∃e (8e(g) = h). Here we are writing

8e(g) =

∞⋃
n=0

8e(g � n) .

In order to prove Lemma 2.6, we shall inductively define an increasing sequence of
strings τe ∈ ω<ω, e = 0, 1, 2, . . .. We shall then let g =

⋃
∞

e=0 τe. In presenting the
construction, we shall identify strings with their Gödel numbers.

Stage 0 Let τ0 = 〈 〉 = the empty string.

Stage e + 1 Assume that τe has been defined. The definition of τe+1 will be given
in a finite number of substages.

Substage 0 Let σe,0 = τe.

Substage i + 1 Assume that σe,i has been defined. Let ne,i = the least n such that
either

(1) ∃σ < f (n) [ σe,i
a

〈n〉 ⊆ σ and 8e(σe,i ) ⊂ 8e(σ ) ∈ U ]

or
(2) ¬ ∃σ [ σe,i

a
〈n〉 ⊆ σ and 8e(σe,i ) ⊂ 8e(σ ) ∈ U ] .

Note that ne,i exists, because otherwise f (n) would be majorized by the recursive
function le,i (n) = least σ such that σe,i

a
〈n〉 ⊆ σ and 8e(σe,i ) ⊂ 8e(σ ) ∈ U .

If (1) holds with n = ne,i , let σe,i+1 = le,i (ne,i ). If (2) holds with n = ne,i , let
τe+1 = σe,i

a
〈ne,i , 0′(e)〉. This completes our description of the construction.
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We claim that, within each stage e+1, (2) holds for some i . Otherwise, we would
have infinite increasing sequences of strings

σe,0 ⊂ σe,1 ⊂ · · · ⊂ σe,i ⊂ σe,i+1 ⊂ · · ·

and
8e(σe,0) ⊂ 8e(σe,1) ⊂ · · · ⊂ 8e(σe,i ) ⊂ 8(σe,i+1) ⊂ · · ·

with 8e(σe,i ) ∈ U for all i . Moreover, these sequences would be recursive relative
to f ; namely, σe,i+1 = le,i (ne,i ) where ne,i = least n such that (1) holds. Thus,
letting h =

⋃
∞

i=0 8e(σe,i ), we would have h ∈ Q and h ≤T f . Thus Q ≤w { f }, a
contradiction. This proves our claim.

From the previous claim it follows that τe is defined for all e = 0, 1, 2, . . ..
By construction, the sequence 〈τ0, τ1, . . . , τe, τe+1, . . .〉, is recursive relative to 0′.
Moreover, 0′ is recursive relative to 〈τ0, τ1, . . . , τe, τe+1, . . .〉, because for all e we
have 0′(e) = τe+1(|τe+1| − 1).

Finally let g =
⋃

∞

e=0 τe. Clearly g ≤T 0′.
We claim that the sequence 〈τ0, τ1, . . . , τe, τe+1, . . .〉 is ≤T f ⊕ g. Namely,

given τe, we may use f and g as oracles to compute τe+1 as follows. We begin with
σe,0 = τe. Given σe,i we use the oracle g to compute ne,i = g(|σe,i |). Then, using
the oracle f , we ask whether there exists σ < f (ne,i ) such that σe,i

a
〈ne,i 〉 ⊆ σ and

8e(σe,i ) ⊂ 8e(σ ) ∈ U . If so, we compute σe,i+1 = the least such σ . If not, we use
the oracle g to compute τe+1 = g � |σe,i | + 2. This proves our claim.

From the previous claim it follows that 0′
≤T f ⊕ g. Hence 0′

≡T f ⊕ g.
We claim that Q �w {g}. To see this, let e be such that 8e(g) =

⋃
∞

e=0 8e(τe) is
a total function. Consider what happened at stage e+1 of the construction. Consider
the least i such that (2) holds; that is, τe+1 = σe,i

a
〈ne,i , 0′(e)〉. Since (2) holds, there

does not exist σ such that σe,i
a

〈ne,i 〉 ⊆ σ and 8e(σe,i ) ⊂ 8e(σ ) ∈ U . In particular,
letting τ be an initial segment of g such that σe,i

a
〈ne,i 〉 ⊆ τ and 8e(σe,i ) ⊂ 8e(τ ),

we have 8e(τ ) /∈ U . Hence 8e(g) /∈ Q. This proves our claim.
From the two previous claims, it follows that 0 <T g <T 0′. The proof of Lemma

2.6 is now finished. �

Remark 2.7 By a similar argument we can prove the following. Let S ⊆ ωω be
60

3 . Let f ∈ ωω be of hyperimmune Turing degree such that S �w { f }. Let h ∈ ωω

be such that f ⊕ 0′
≤T h. Then we can find g ∈ ωω such that 0 <T g <T h and

S �w {g} and f ⊕ g ≡T g′
≡T g ⊕ 0′

≡T h.

Lemma 2.8 Let P ⊆ 2ω be nonempty 50
1. Let S ⊆ ωω be 60

3 . Then

degw(P ∪ S) ∈ Pw .

Proof This is Simpson’s Embedding Lemma. See [36, Lemma 3.3] or [38]. �

We are now ready to prove our main result.

Theorem 2.9 Pw is not Brouwerian.

Proof Let PA be the set of completions of Peano Arithmetic. Recall from Simpson
[34] that degw(PA) = 1 = the top element of Pw. By Lemma 2.5 let f be such that
0 <T f <T 0′ and PA �w { f }. Let

p = degw(PA ∪ { f })
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and note that p < 1. By Lemmas 2.2 and 2.8 we have p ∈ Pw.
It is well known (see, for instance, [34, Remark 3.9]) that Dw is a complete lattice.

This means that for all A ⊆ Dw the least upper bound sup(A) and the greatest lower
bound inf(A) exist in Dw. Therefore, within Dw, let

q = inf({x ∈ Pw | sup(p, x) = 1})

and note that sup(p, q) = 1 in Dw. In other words, q ≥ (p ⇒ 1) in Dw.
We claim that q /∈ Pw. Otherwise, let q = degw(Q) where Q ⊆ 2ω is nonempty

50
1. Since sup(p, q) = 1, we have PA ≤w { f ⊕ h} for all h ∈ Q. Since PA �w { f },

it follows that Q �w { f }. By Lemma 2.6, let g be such that 0 <T g <T 0′ and
Q �w {g} and f ⊕ g ≡T 0′. Let

q0 = degw(Q ∪ {g})

and note that q0 < q. By Lemmas 2.2 and 2.8 we have q0 ∈ Pw. By Lemma 2.4 we
have PA ≤w {0′

} ≡w { f ⊕ g}; hence sup(p, q0) = 1, contradicting the definition of
q. This proves our claim.

Because q /∈ Pw, it follows that p ⇒ 1 does not exist in Pw. Thus Pw is not
Brouwerian. �

Remark 2.10 The same proof shows that for all q > 0 in Pw we can find p < q
in Pw such that p ⇒ q does not exist in Pw. On the other hand, we know at least
a few nontrivial instances where p ⇒ q exists in Pw. For example, letting r be the
Muchnik degree of the set of 1-random reals, Theorem 8.12 of Simpson [34] tells us
that r < 1 in Pw and r ⇒ 1 exists in Pw. In fact, r ⇒ 1 in Pw is equal to r ⇒ 1 in
Dw, which is equal to 1. We do not know any instances of p, q ∈ Pw where p ⇒ q
exists in Pw and both p and p ⇒ q are < q in Pw.
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