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Galvin’s “Racing Pawns” Game, Internal
Hyperarithmetic Comprehension, and the Law of

Excluded Middle

Chris Conidis, Noam Greenberg, and Daniel Turetsky

Abstract We show that the fact that the first player (“white”) wins every in-
stance of Galvin’s “racing pawns” game (for countable trees) is equivalent to
arithmetic transfinite recursion. Along the way we analyze the satisfaction rela-
tion for infinitary formulas, of “internal” hyperarithmetic comprehension, and of
the law of excluded middle for such formulas.

1 Introduction

The proof of closed determinacy (see Gale and Stewart [1]) is often summed up as
“do not lose” or, slightly more formally, picking a move which does not result in
a situation from which the opponent has a winning strategy. This proof masks a
transfinite recursive process. For a more revealing argument, let U be an open subset
of Baire space !! , and consider the game GU, in which the players (say, I and II)
alternate picking natural numbers to eventually produce an element of Baire space;
player I wins the play if the sequence produced is an element of U. For countable
ordinals ˛, we define subsetsU˛ and V˛ of !<! (the collection of all finite sequences
of natural numbers). The set V˛ will be a collection of positions from which player
II does not have a winning strategy; the set U˛ will be a collection of positions from
which player I has a winning strategy. We let U0 be the collection of strings � for
which Œ��, the collection of all infinite extensions of � , is contained in U. Given U˛ ,
we let V˛ be the collection of strings � , all of whose immediate extensions � On lie
in U˛ . And given V<˛ D

S
ˇ<˛ Vˇ , we let U˛ be the collection of strings � which

have some immediate extension � On in V<˛ . Then player I has a winning strategy
for the game GU if the empty sequence hi is “ranked,” that is, if it is an element of
U<!1 , and player II has a winning strategy if hi is not ranked. The strategy for player
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I, given a position � 2 U˛ , is to choose an extension in V<˛; the strategy for player
II, given a position � … V<!1 , is to choose an extension outside U<!1 .

Proof-theoretically, the argument above uses the minimal subsystem of second-
order arithmetic in which a good theory of ordinals is available, namely arithmetical
transfinite recursion (ATR0); an overspill argument in ATR0 shows the existence of
the sets U˛ and V˛ . A reversal is often given (as in Simpson [6]) by †11-separation.
However, it is possible to give a direct argument: from clopen determinacy, in fact,
one can deduce the existence of the transfinite iteration X .˛/ of the Turing jump of
a set X . While probably well known, we have not found such an argument in the
literature. In this paper we develop the theory of infinitary logic within second-order
arithmetic and, among other results, use it to give a proof of ATR0 from clopen
determinacy.

We also investigate the strength of determinacy for a particular class of games.
Galvin’s “racing pawns” game FT is played on a well-founded tree T . Two players,
W and B, take turns moving one of two pawns, marked “white” and “black,” starting
at the root of the tree, and at each step moving to a child (an immediate successor).
The player W has the first move. The winner is the player whose pawn reaches a
leaf first. However, each player can move either pawn; the complexity of the game
follows from the fact that an optimal move may be either pushing one’s own pawn
toward a leaf or pushing the opponent’s pawn away from leaves.

A tricky proof (by Galvin; see [2]) shows that for any well-founded tree T , the
playerW has a winning strategy for the game FT . Grantham [2] carried out a detailed
ordinal analysis of the games FT and described a winning strategy for W along the
lines described above for an open game GU; Grantham’s analysis for FT is of course
much more complicated. We show that Galvin’s result is equivalent to ATR0. In other
words, while seemingly much more restricted than general clopen or open games, the
determinacy of the racing pawns games is equivalent to the determinacy of all open
games.

In one direction, we analyze Galvin’s original proof and show, using the existence
of !-jumps (ACAC0 ), that the player B has no winning strategy for the game FT ;
we then code Galvin’s game into a clopen game GU and invoke clopen determinacy
to show that Galvin’s theorem is provable in ATR0. We remark that it is still open
whether the bound ACAC0 can be improved. In the other direction, we use infinitary
logic. We in fact show that two natural statements regarding infinitary logic—the
law of excluded middle, and a comprehension principle which we name internal
hyperarithmetic comprehension—are equivalent to ATR0 and follow from Galvin’s
theorem.

For more background on arithmetical transfinite recursion, and on reverse mathe-
matics in general, see [6]. For a detailed account of the interplay of determinacy and
second-order arithmetic, see Montalbán and Shore [5].

1.1 Formalizing Galvin’s theorem From now, we work in the system RCA0 of recur-
sive comprehension, consisting of†01-induction and�01-comprehension, namely, the
system which corresponds to computable mathematics.

A tree is a partial ordering with a least element, for which every principal initial
segment is linearly ordered and finite; usually the structure on a tree is augmented by
the immediate predecessor relation. Every tree is effectively isomorphic to a subset
of !<! which is closed under taking initial segments, with the ordering given by
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string extension. So from now we assume that all trees are downward closed subsets
of !<! . A tree is well founded if it has no infinite paths, that is, if for no f 2 !! do
we have f�n2 T for all n.

For a well-founded tree T , we code the racing pawns game on T by a clopen
game GW.T /. The details of such coding are not that important, as long as they are
effective. The most direct coding is as follows. Let � 2 !6! . Identifying the player
W with the player I, and the player B with the player II, recursively for n < j� j, the
instruction �.n/ D 2m is interpreted as telling the player moving at step n (I if n is
even, II if n is odd) to move the white pawn from its current location � to the location
� Om; the instruction �.n/ D 2mC 1 is interpreted as telling the player to move the
black pawn from � to � Om.

Not all moves are legal: if a string � tells a player to move a pawn from � to � Om,
but � Om … T , then the move is illegal in the game FT . In the game GW.T /, this
would be interpreted as the player forfeiting the game. The success set W.T / is thus
defined to be the collection of (infinite) strings which determine plays at which B
forfeits first, or the white pawn reaches a leaf of T . We define the racing pawns game
FT to be the game GW.T /.

It is immediate that W.T / is open. In fact, because T is well founded, it is clopen:
every infinite sequence has a finite initial segment which either determines an illegal
play or which directs one of the pawns to a leaf of T . Indeed, a clopen code for W.T /

(an open code for W.T / and an open code for its complement) can be effectively
obtained from T . So RCA0 implies that for any well-founded tree T , W.T / exists.

Definition 1.1 Galvin’s theorem, which we denote by WW, is the statement that for
any well-founded tree T , the player W has a winning strategy for the racing pawns
game FT .

In Section 2.1 we show the following.

Theorem 1.2 (ACAC

0
) For any well-founded tree T , the player B does not have a

winning strategy for the game FT .

Since ATR0 implies clopen determinacy, since RCA0 is sufficient to show that it is
impossible for both players to have a winning strategy for a given game, and since
ATR0 implies ACAC0 , we get that ATR0 implies Galvin’s theorem WW. As we men-
tioned above, we do not know if Theorem 1.2 can be improved; perhaps it is possible
to prove in RCA0 that B does not have a winning strategy for any game FT .

We do get a reversal, but before we indicate how, we explain why we would like to
pass to a narrower class of games. The point is that set-theoretically, Galvin’s game
FT depends only on the isomorphism type of the tree T . The coding necessary for
formalizing the game in second-order arithmetic introduces extra information—the
numbers in the sequences which are the elements of T . This information can be
thought of as labels on the nodes of the tree T . This introduces unwarranted strength
to the game. For example, in a general (labeled) tree T � !<! , the collection of
leaves of T is …0

1.T /, and not necessarily computable in T , and so even telling
when a play has already resulted in a win is not effective.

Consider the tree described in Figure 1. Let h;0si be an effective enumeration of
the halting set ;0. The tree T consists of the empty sequence hi, the sequence h0i,
the sequences h0ni for all n < !, and the sequences h0nsi for all n and s such that
n 2 ;0s . Clearly T is computable, and so RCA0 implies its existence.
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Figure 1 Computing ;0 with a labeled tree. The number 2 enters ;0 at stage 5, and
the number 4 enters ;0 at stage 8. The numbers 0, 1, and 3 are not elements of ;0.

Claim 1.3 Any winning strategy for W for the game FT computes ;0.

Proof Fix e … ;0, and let � be a winning strategy for W for the game FT .
We first observe that W’s first move according to � must be moving the white

pawn to h0i. This is because the only other possible move is moving the black pawn
to h0i. But then B can win the game by moving the black pawn to h0ei.

Now playing against � , wanting to enquire whether a given number n is in ;0 or
not, we let B move the white pawn to h0ni. W’s next move (following � ) tells us
whether n is in ;0 or not. If W moves the white pawn to a node h0nsi, where n 2 ;0s ,
then certainly n 2 ;0. Otherwise, we claim that n … ;0. That is, we claim that h0ni
is a leaf of T , and so that W has already won the play.

Suppose for contradiction that h0ni is not a leaf of T . There are two possibilities.
If W next moves the white pawn, to a node h0nsi where n … ;0s , then as h0nsi … T ,
this would be a loss for white, which contradicts the assumption that � is a winning
strategy for W. Otherwise, W moves the black pawn to h0i; then B can respond by
moving the black pawn to the leaf h0ei and winning—again a contradiction.

Formalizing in RCA0, we see that WW implies ACA0. This is somewhat unsatisfy-
ing, however, because it takes advantage of the difficulty in determining leaves. To
address this, we introduce a restricted notion of trees.

Definition 1.4 A tree T � !<! is unlabeled if for every � 2 T , the set
¹d j �Od 2 T º is an initial segment of ! (not necessarily proper, and possibly
empty).

If T is unlabeled, then T can compute whether a string � 2 T is a leaf simply
by checking if �O0 2 T . We shall refer to trees as labeled trees when we wish to
emphasize that we are not restricting our attention to unlabeled trees.

Definition 1.5 The statement WWU is the restriction of Galvin’s theorem to un-
labeled trees, namely, the statement that for any well-founded unlabeled tree T , the
player W has a winning strategy for the racing pawns game FT .

Certainly WW implies WWU. Among other results, our main theorem (Theorem 1.20)
will state that WW and WWU are both equivalent to ATR0 (over RCA0).
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1.2 Infinitary propositional logic Classically, for a language L, the infinitary logic
L!1;! is obtained from the atomic L-formulas by closing under quantification, nega-
tion, and countable conjunctions and disjunctions. There are ordinals hidden in this
definition—formally, we need to define by recursion on ˛ < !1 the collection of
formulas of rank ˛. Usually, implied within the definition, is the fact that the ranks
of formulas are comparable, so that we indeed get an increasing collection of for-
mulas. Comparability of well-orderings is equivalent to ATR0. But if we drop the
assumption of comparability, the definition of infinitary formulas can be carried out
in RCA0.

In this paper, an ordinal is simply a well-ordering of a subset of !. The stan-
dard equivalent definitions of well-orderings (using infinite descending chains or
least elements) are equivalent in RCA0 (see Hirst [3]). In our notation, we imag-
ine though that ordinals follow the von Neumann pattern. If ˛ D .˛;<˛/ is an
ordinal and ˇ 2 ˛, then we also write ˇ < ˛, and we identify ˇ with the initial
segment ¹ 2 ˛ W  <˛ ˇº. If ˇ is the <˛-greatest element of ˛, then we also write
˛ D ˇ C 1. The empty ordering is denoted by 0.

Rather than working with an arbitrary signature L and with quantifiers, we restrict
ourselves to the most elementary infinitary logic: sentential propositional logic. The
two atomic sentences are True and False. For connectives we use disjunction,
conjunction, and negation. Informally, given an ordinal ˛, a propositional sentence
of rank ˛ is the result of applying a connective to a set of propositional sentences of
smaller rank. Formally, the object defined will consist of the sentence together with
all of its subsentences. To be concrete, we have the following.

Definition 1.6 Let ˛ be an ordinal. A propositional sentence of rank ˛ is a se-
quence of functions h ˇ iˇ6˛

such that for all ˇ 6 ˛,

�  ˇ .0/ 2 ¹:;^;_º;
� for all n > 1,  ˇ .n/ 2 ˇ [ ¹�1;�2º;
� if  ˇ .0/ D :, then for all n > 2,  ˇ .n/ D �2.

The definition is to be interpreted as follows. The sequence h ˇ iˇ6˛
is a sequence

of subsentences of the sentence  ˛ . We expand it by letting  �1 D True and
 �2 D False. Each sentence  ˇ is the result of applying the connective  ˇ .0/
to the sequence of sentences h  ˇ.n/in>1

, except that if  ˇ .0/ D :, then we really
mean  ˇ D :  ˇ.1/, so the information given by  ˇ .n/ for n > 2 is irrelevant—in
this case we require that   ˇ.n/ D False for n > 2. (We are negative people.)

However, in the remainder of the paper we will not worry about the precise formal-
ization; we will informally write sentences of the form  D

W
n  n,  D

V
n  n,

and  D :'.
Having defined the syntax, we need to consider the semantics—the interpretation

of an infinitary propositional sentence in a model of RCA0. As expected, the standard
definition of semantics can only be carried out in ATR0. Weaker systems lack the
comprehension power to show that the standard satisfaction relation exists.

We choose to understand sentences by the games that they define. The idea is best
illustrated by an example. Consider the sentence

 D
_
n<!

^
m<!

_
k<!

 n;m;k ;
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where each  n;m;k is either True or False. Satisfaction of  corresponds to a
game: say player I wants to show that  is true. She needs to pick a number n. The
opponent, player II, then responds by picking m. If player I can always respond with
some k such that  n;m;k is true, then  is true. In other words,  is true if and
only if player I has a winning strategy for the game GU, where U is the clopen set
consisting of all sequences beginning with hn;m; ki such that  n;m;k D True.

For symmetry, we associate with both players (I and II) games which they win if a
given sentence is true. For our ease, we make the following definition. Let U � !! .
� Player I can force into U if she has a winning strategy for the game GU.
� Player II can force into U if she has a winning strategy for the game G!!nU.

In other words, a player i 2 ¹I; IIº can force into U if that player has a strategy that
against any play of the opponent will result in an element of U. To motivate parts of
the following definition, we note the following.
Observation 1.7 (RCA0) Let U � !! . A player i 2 ¹I; IIº can force into U if and
only if their opponent can force into

S
n nOU.

Here nOU D ¹nOf W f 2 Uº. For brevity, let U� D
S
n nOU.

For an infinitary propositional sentence  we define two clopen sets SI. / and
SII. / by recursion:
� SI.True/ D SII.True/ D !! and SI.False/ D SII.False/ D ;;
� SI

�W
 n
�
D
S
n nOSII. n/ and SII

�W
 n
�
D SI

�W
 n
��;

� SII
�V

 n
�
D
S
n nOSI. n/ and SI

�V
 n
�
D SII

�V
 n
��;

� SI.: / D !
! n SII. / and SII.: / D !

! n SI. /.
The definition of the clopen sets SI. / and SII. / is performed by effective trans-

finite recursion on the rank of  . If  D h ˇ iˇ6˛
for an ordinal ˛, then effectively

in  (and ˛) we construct a function from ˛ C 1 to ! mapping ˇ 6 ˛ to a pair of
 -computable indices for clopen codes for SI. ˇ / and SII. ˇ /. This can be carried
out in RCA0, and so RCA0 implies that the sequence h.SI. ˇ /;SII. ˇ //iˇ6˛

exists.
Uniqueness of this sequence, and hence of SI. / and SII. / for all  , is also prov-
able in RCA0. The point is that if both hYˇ iˇ6˛

and hZˇ iˇ6˛
satisfy the recursive

definition of this sequence, then from a point ˇ 6 ˛ such that Yˇ ¤ Zˇ we can
effectively find some  < ˇ such that Y ¤ Z .
Observation 1.8 (RCA0) There is an arithmetic formula '.�;  / which states that
� is a winning strategy for GSI. /. Indeed, since SI. / is closed, it suffices to state
that for every � 2 !<! , at the end of the partial game of � played against � , � has
not already lost.
By De Morgan’s law, all sentences are equivalent to sentences omitting the negation
connective (but building from both True and False). For an infinitary proposi-
tional sentence  , we define two infinitary propositional sentences P. / and N. /
by recursion:
� P.True/ D N.False/ D True and P.False/ D N.True/ D False;
� P.: / D N. / and N.: / D P. /;
� P

�W
 n
�
D
W
P. n/ and N

�W
 n
�
D
V
N. n/;

� P
�V

 n
�
D
V
P. n/ and N

�V
 n
�
D
W
N. n/.

This definition is again performed by effective transfinite recursion on the rank of  .
If  D h ˇ iˇ6˛

for an ordinal ˛, then effectively in  (and ˛), we construct the
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sequence h�ˇ iˇ6˛
, with �ˇ D .P. ˇ /; N. ˇ //. Again, RCA0 proves that h�ˇ iˇ6˛

exists and is unique.
Intuitively, P. / is a sentence equivalent to  which is obtained by pushing all

negations to the base level, and N. / is a similar sentence, equivalent to : . These
equivalences are made formal by the following lemma.

Lemma 1.9 (RCA0) For any infinitary propositional sentence  , SI. / D

SI.P. // D !
!nSII.N. // and SII. / D SII.P. // D !

!nSI.N. //.

Proof First we argue that this holds by transfinite induction on the complexity of
 ; then we explain why it holds in RCA0 as well. The point is that RCA0 proves
transfinite…0

1-induction.
For  2 ¹True;Falseº, this is immediate.
For : ,

SI.: / D !
!
nSII. /

D SI
�
N. /

�
D SI

�
P.: /

�
:

Also,

SI.: / D !
!
nSII. /

D !!nSII
�
P. /

�
D !!nSII

�
N.: /

�
:

The arguments for SII.: / are symmetric.
For

W
 n,

SI

�_
 n

�
D

[
nOSII. n/

D

[
nOSII

�
P. n/

�
D SI

�_
P. n/

�
D SI

�
P
�_

 n

��
:

Also,

SI

�_
 n

�
D

[
nOSII. n/

D

[
nO
�
!!nSI.N. n//

�
D !!n

[
nOSI

�
N. n/

�
D !!nSII

�^
N. n/

�
D !!nSII

�
N
�_

 n

��
:

Also,

SII

�_
 n

�
D SI

�_
 n

��
D

�[
nOSII. n/

��
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D

�[
nOSII

�
P. n/

���
D SI

�_
P. n/

��
D SII

�_
P. n/

�
D SII

�
P
�_

 n

��
:

Finally,

SII

�_
 n

�
D SI

�_
 n

��
D

�[
nOSII. n/

��
D

�[
nO
�
!!nSI.N. n//

���
D

�
!!n

[
nOSI

�
N. n/

���
D

�
!!nSII

�^
N. n/

���
D !!nSII

�^
N. n/

��
D !!nSI

�^
N. n/

�
D !!nSI

�
N
�_

 n

��
:

The arguments for
V
 n proceed as the arguments for

W
 n.

Thus we have argued that if  D h ˇ iˇ6˛
for an ordinal ˛, and ˇ is such that the

lemma does not hold for  ˇ , then there is some  < ˇ such that the lemma does not
hold for   . Moreover, since equality of clopen sets is …0

1, we can effectively (in  
and ˛) find such a  .

Thus, if the lemma fails for , RCA0 can construct an infinite decreasing sequence
of subsentences at which it fails, contradicting ˛ being well founded.

Lemma 1.10 (RCA0) For any infinitary propositional sentence  , player I can
force into SI. / if and only if player II can force into SII. /.

Proof The proof is by cases, depending on the structure of  . We emphasize that
the proof is not a transfinite induction on the complexity of  .

For  D True and  D False, the lemma is clear. For  a conjunction or
a disjunction, the lemma follows from Observation 1.7. By Lemma 1.9, we may
assume that  contains no negations.

Definition 1.11 An infinitary propositional sentence is strategically true if player
i 2 ¹I; IIº can force into Si . /.

Basic behavior of semantics is provable in RCA0.

Proposition 1.12 (RCA0)

(1) True is strategically true and False is not strategically true.
(2)

W
 n is strategically true if and only if for some n,  n is strategically true.
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(3)
V
 n is strategically true if and only if for all n,  n is strategically true, and

there is a list h�ni of strategies for some player i , with �n witnessing that i
can force into Si . n/.

(4) For no sentence  are both  and : strategically true.
(5) A sentence  is strategically true if and only if :: is strategically true.

However, the familiar behavior of propositional logic depends on the law of excluded
middle. We say that a sentence  is strategically false if : is strategically true.

Definition 1.13 The law of excluded middle, denoted by LEM, states that every
infinitary propositional sentence is either strategically true or strategically false.

It is immediate that clopen determinacy implies LEM: for a sentence  , consider
the game GSI. /. By clopen determinacy, either player I or player II has a winning
strategy for this game. If player I does, then  is strategically true. If player II has
the winning strategy, then player II can force into !!nSI. / D SII.: /, and thus
: is strategically true.

Definition 1.14 The axiom conjunction introduction, denoted by CI, states that
for every infinitary propositional sentence

V
n  n, if every  n is strategically true,

then
V
n  n is strategically true.

Claim 1.15 (RCA0) The law of excluded middle implies conjunction introduction.

Proof Unfurling the definition, we see that

SI

�
:

^
 n

�
D

[
n

nO
�
!! n SI . n/

�
:

If
V
 n is not strategically true, then by the law of excluded middle, player I can

force into
S
n nO!

! n SI . n/. Let n be the first move according to a strategy �
witnessing this fact. Then the rest of the strategy � shows that player II can force into
!! n SI . n/ (i.e., player II has a winning strategy for the game GSI . n/). In other
words, player I cannot force into SI . n/, and so  n is not strategically true.

Indeed, this result is not surprising. In light of Observation 1.8 and Proposi-
tion 1.12(3), conjunction introduction follows from †11-AC, the principle of †11-
choice. In Section 3 we prove the following.

Theorem 1.16 (RCA0) The law of excluded middle implies ATR0.

Since ATR0 implies †11-AC, it follows that LEM proves CI.
We relate the racing pawns game to LEM in Section 2.2.

Theorem 1.17 (RCA0) WWU implies LEM.

We also investigate a comprehension principle related to infinitary logic. A sequence
h nin<! of infinitary propositional sentences can be thought of as an infinitary
propositional formula  .x/, with  .n/ stating that  n is strategically true. The
sets defined by infinitary propositional formulas are the same as the subsets of !
defined by computable infinitary formulas of first-order arithmetic, and so we expect
(and can prove in ATR0) that they coincide with the relatively hyperarithmetic sets.

Definition 1.18 The principle of internal hyperarithmetic comprehension, de-
noted by IHC, is the statement that for any infinitary propositional formula  .x/, the
set ¹n < ! W  .n/º defined by  exists.
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The principle IHC is not equivalent to �11-comprehension, which is weaker than
ATR0, and in fact the separation can be observed by !-models, the most prominent
example being the model of all hyperarithmetic sets. The reason is that IHC requires
comprehension for formulas internal to the model, which may include ill-founded
formulas. For example, in the model of hyperarithmetic sets, Harrison’s linear order-
ing is a well-ordering, and it supports an infinitary formula (namely, the iteration of
the Turing jump), which if it defined a set, that set would compute all hyperarithmetic
sets.

In Section 3 we prove the following.

Theorem 1.19 (RCA0) LEM implies IHC, and IHC implies ATR0.

And so since clopen determinacy immediately implies LEM, IHC is equivalent to
ATR0. Indeed, the proof that IHC implies ATR0 does not pass through clopen deter-
minacy, and so as promised above, Theorem 1.19 gives a direct argument showing
that clopen determinacy implies ATR0.

We sum our results in the following theorem.

Theorem 1.20 The following are equivalent over RCA0:
(1) Galvin’s theorem for labeled trees (WW);
(2) Galvin’s theorem for unlabeled trees (WWU);
(3) the law of excluded middle (LEM);
(4) internal hyperarithmetic comprehension (IHC);
(5) arithmetical transfinite recursion (ATR0).

We leave the following question open.

Question 1.21 Can Theorem 1.2 be proved in a weaker system than ACAC0 ? Does
it hold in RCA0?

2 Racing Pawns

Here we show that ATR0 implies Galvin’s theorem and that Galvin’s theorem implies
the law of excluded middle.

As discussed above, to show that ATR0 implies WW, it is sufficient to prove Theo-
rem 1.2: a proof from ACAC0 that player B does not have a winning strategy for the
game FT , where T is a well-founded tree.

2.1 Player B does not have a winning strategy

Proof of Theorem 1.2 We first present Galvin’s argument. Let T be a well-
founded tree. Let � be a strategy for player B in the game FT . Galvin’s idea is to
play infinitely many games in parallel. At the root of the tree T we place infinitely
many pawns, pn, one for each n < !. The game Gn considers the pawn pn as the
white pawn, and the pawn pnC1 as the black pawn. At each game, player B follows
the instructions of the strategy � . The multigame is played in several rounds, until
one of the pawns reaches a leaf of T , that is, until one of the games Gn ends.

At the beginning of each round, we move the first pawn p0 to an arbitrary child
of its current location, being a move of player W in the game G0. As promised, this
prompts a move by player B in the game G0, as determined by the strategy � . The
instruction is to move either the white pawn (p0) or the black pawn (p1). In the first
case, we end the round and start the next round. In the second case, we think of p1’s
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move as a move by player W in the game G1, and as promised, we now let player B
move according to � in the gameG1, moving either the white pawn (p1) or the black
pawn (p2). In the first case, we consider p1’s move as a move by player W in the
game G0 (moving the black pawn), and go on to player B’s response in the game G0,
following � . In the second case, we consider p2’s move as a move by player W in
the game G2 (moving the white pawn), and follow � ’s response in the game G2. We
repeat; in general, at some step of the round, a pawn has been moved by player W in
a game Gn. Assuming that a leaf has not been reached, we follow � ’s instruction for
player B’s response, moving either the white pawn (pn) or the black pawn (pnC1).
In the latter case, we consider pnC1’s move as a play by W in the game GnC1 and
move to the next step, playing GnC1. In the second case, if n > 0, we consider pn’s
move as a play by W in the game Gn�1 and move to the next step, playing Gn�1. If
n D 0, we end the round.

It is possible that a round goes on for infinitely many steps. But in this case, every
pawn pn makes only finitely many moves during the round: an infinite sequence of
moves which does not pass through a leaf of T witnesses that T is ill founded. This
means that the position of each pawn pn is well defined at the end of the round, and
so we can proceed to a new round. Further, each game witnesses an even number
of moves during the round, and so, by induction, each game begins the next round
waiting for a move by player W.

Similarly, we see that it is impossible to play infinitely many rounds of the multi-
game. At the beginning of each round we move the first pawn p0; we cannot do so
infinitely many times without reaching a leaf along the way. This shows that the last
round must end with some pawn, say pn, reaching a leaf. But this means that player
W won the play of the game Gn, as pn is the white pawn of the game Gn, while
player B followed the strategy � . This shows that � is not a winning strategy for
player B for the game FT .

In the context of second-order arithmetic, let X be a set which computes both
T and � . Inductively, we see that the sequence of positions of the pawns at the
beginning of the kth round of the multigame is computable from X .k/ (uniformly in
k). This is because given the starting position, carrying out the round is computable
from X . In particular, this means that if some pawn moves infinitely many times
during the kth round, then X .k/ computes an infinite path through T . If there is no
such path, then each pawn moves finitely many times, and X .kC1/ D .X .k//0 can
follow the kth round and tell when each pawn has stopped moving for the rest of the
round, thus finding the pawn’s position at the beginning of the next round.

If there are infinitely many rounds, then X .!/ can follows p0’s path and so find an
infinite path in T . In other words, working in a model of second-order arithmetic, if
X .!/ exists (within the structure) and T has no infinite paths in the structure, then the
multigame, which also exists in the structure, is only played for finitely many rounds
and so must end with a pawn reaching a leaf of T and yielding the counterexample
witnessing that � is not a winning strategy for B. Thus Galvin’s argument can be
carried out in ACAC0 , the system which ensures the existence of X .!/.

2.2 When player W has a winning strategy

Theorem 2.1 (RCA0) WWU implies the law of excluded middle.
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Proof Given an infinitary propositional sentence  , we will construct a tree T
such that W’s winning strategy for the game FT gives a winning strategy for GSI. /,
for either player I or player II. Recall that an open set is given by a set U � !<! ,
with the interpretation that the corresponding open set is

U D ¹f 2 !! j f�n2 U for some n 2 !º:

We may assume that U is an antichain.
Since SI. / is clopen, it is represented by some antichain U1, and !!nSI. / is

represented by some antichain U2. As a first attempt, consider the tree T whose
leaves are the strings in U1, and the strings � O0 for � 2 U2. That is,

T D .U1 [ U2/
�
[ .U2O0/;

where U� indicates the closure of U under the taking of initial segments, and
U2O0 D ¹� O0 j � 2 U2º. Note that since U1 [ U2 is an antichain covering all
of !! , the set .U1 [ U2/� is computable from U1 [ U2: a string � is an initial seg-
ment of an element of U1 [ U2 if and only if no proper initial segment of � is an
element of U1 [U2. Thus the tree T exists by recursive comprehension. This tree is
well founded because U1 and U2 represent complementary open sets.

Suppose for the moment that the racing pawns game on this tree were to play out
as two sequential sprints: first W and B take turns moving the white pawn until it
reaches an element of U1 [ U2; then, if the game is not yet won, B and W again
alternate moving the black pawn until it reaches an element of U1 [ U2, this time
with B taking the first move. At the end of such a play, if the white pawn reaches
an element of U2 and the black pawn reaches an element of U1, B has won. So a
winning strategy for W that adheres to this restricted play style will either guarantee
that the white pawn reaches an element of U1 or, failing that, guarantee that the black
pawn reaches an element ofU2. Thus it gives a winning strategy for the gameGSI. /,
either as player I or as player II. So the theorem would be proven.

Of course, although we can assume that B plays in the manner described above
(by restricting our attention to those which do), there is no reason a priori to assume
that W’s winning strategy will do so. W might move the black pawn before the first
sprint is over, or it might move the white pawn before the second sprint is over. There
is also the possibility that the white pawn reaches an element of U2 on B’s turn; then
the rules of the game do not allow B to take the first move of the second sprint.
Indeed, an obvious winning move for W in this case is to move the white pawn to the
adjacent leaf.

We address the final concern first, because it is a simple change: we add the sets
of strings U2O00 [ U2O000 to the tree. Now if the white pawn reaches a � 2 U2
on B’s turn, W can take its turn moving the white pawn to � O0, and the black pawn
sprint can begin next. In fact, U2O00 alone would suffice for this, but we will later
need the fact that if the white pawn did not reach an element of U1, then it did not
end its sprint on either a leaf or the parent of a leaf.

Now we describe how we ensure that W plays as desired. Consider the tree in
Figure 2. Suppose that the black pawn is at the root of this tree, and suppose that
the white pawn is somewhere on the tree which is not a leaf nor the parent of a leaf;
so W has not yet won the game, and W cannot win in a single move. Suppose also
that W is playing a winning strategy, and it is B’s turn to play. Then if B moves the
black pawn to some hni, W must respond by moving the black pawn again. For if W
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Figure 2 By having a leaf originating from every odd-height vertex, W is required to
move the black pawn whenever B moves it.

instead moves the white pawn, then since by assumption W has still not yet won the
game, B can win by moving the black pawn to hn0i.

In general, by attaching a leaf to every odd-height vertex, we can ensure that W
always takes its turn moving the black pawn whenever the black pawn reaches an odd
height. This also ensures that W never moves the black pawn from an even-height
vertex to an odd-height vertex; if it were ever to do so, B could immediately win by
moving the black pawn to the appropriate leaf.

Returning to our earlier tree, consider those � in the tree of odd length which are
not in U1 [

S3
iD0 U2O0

i . If every such � is the parent of a leaf, then we know that a
winning strategy for W will play as desired: W will not move the black pawn from
the root before the game ends, as that would result in a loss; during the white sprint,
W will move the white pawn from even heights to odd heights, and B will move it
from odd heights to even heights; during the black sprint, if the game is not yet over,
W will not move the white pawn before the black sprint ends; and during the black
sprint, if the game is not yet over, W will move the black pawn from odd heights to
even heights, and B will move it from even heights to odd heights. These can all be
shown using bounded induction.

Of course, there is no reason to assume that every odd-height vertex is the parent
of a leaf, so we add such leaves when constructing our tree T . To aid with that,
consider the function f W !<! ! !<! with jf .�/j D j� j, and for all n < j� j,

f .�/.n/ D

´
�.n/ if n is even;
�.n/C 1 if n is odd:

(We must slide over all the even levels to make room for the extra leaf at that level.)
This function is computable, so it exists by recursive comprehension; and further-
more, for any set of strings A, f ŒA� exists. We define our tree T to be

T WD
®
f .�/

ˇ̌
� 2 .U1 [ U2/

�
¯

[
®
f .�/O0

ˇ̌
j� j is odd, and � 2 .U1 [ U2/�n.U1 [ U2/

¯
[
®
f .�/O0; f .�/O00; f .�/O000

ˇ̌
� 2 U2

¯
:

Recursive comprehension suffices to show that T exists.
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T is well founded, because if g were an infinite path through T , then g.n/ > 0

for all odd n, and so f �1.g/ would be an element of !! not covered by U1 [ U2;
f �1.g/ would exist by recursive comprehension.
T is also unlabeled. Consider any � and any n < mwith � Om 2 T . Then � 2 T . If

j� j is odd and n D 0, then � O0 2 T by construction. If n ¤ 0 or j� j is even, then since
m > 0, f �1.� Om/ 2 .U1[U2/�. Since U1[U2 is an antichain, f �1.�/ … U1[U2.
Since U1 [U2 cover !! , some extension (not necessarily proper) of f �1.� On/ must
be in U1 [ U2, so � On 2 T by construction.

As argued earlier, for a W winning strategy, if some B play results in the white
sprint reaching an element of U2, then W’s strategy from that point on computes
a strategy for player II to force into !!nSI. / D SII.: / (using f and f �1 to
perform the computation). If no B play results in the white sprint reaching an element
of U2, every B play must result in it reaching an element of U1. So W’s strategy
computes a strategy for player I to force into SI. /.

3 Infinitary Sentences

Here we show that LEM (the law of excluded middle) implies IHC (internal hyper-
arithmetic comprehension) and that IHC implies ATR0. Since clopen determinacy
immediately implies LEM, this will be sufficient to prove Theorem 1.19.

Theorem 3.1 (RCA0) LEM implies IHC.

Proof Given an infinitary propositional formula  .x/, consider the infinitary
propositional sentence � D

V
n. .n/ _ : .n//. By Proposition 1.12(2), LEM

implies that  .n/ _ : .n/ is strategically true. Then by Claim 1.15, LEM implies
that � is strategically true.

So there is a strategy by which player II can force into SII.�/. Unpacking the
definitions,

SII.�/ D
[
n

�
nO0OSII

�
 .n/

�
[ nO1OSII

�
: .n/

��
:

So if player I begins by playing n, and then player II, following this strategy, responds
by playing m 2 ¹0; 1º, then the remainder of this strategy forces into SII. .n// (if
m D 0) or SII.: .n// (if m D 1). So the set of n such that player II’s strategy
responds to n by playing 0 is precisely ¹n j  .n/º. This set exists by recursive
comprehension.

3.1 Some consequences of IHC Before we can prove IHC implies ATR0, we need
several preliminary results. First, we will need ACA0, arithmetic comprehension.

Lemma 3.2 (RCA0) IHC implies ACA0.

Proof Fix a set X . The set Y D ¹.e; s/ j ˆXe;s.e/ #º is recursive in X , and
so it exists by recursive comprehension. Let  e;s D True if .e; s/ 2 Y , and let
 e;s D False if .e; s/ … Y . Let  .e/ D

W
s  e;s . Note that the sentence  .e/

is recursive from Y uniformly in e, and so the sequence h .e/i exists by recursive
comprehension. By Proposition 1.12(2),  .e/ is strategically satisfied precisely if
e 2 X 0. So by IHC, Z D ¹e j  .e/º exists, and Z is precisely X 0.

We also need CI, the axiom of conjunction introduction. To show that IHC implies
CI, we show that IHC allows us to effectively determine a satisfying strategy for any
strategically satisfied sentence  . We first describe what this strategy is.
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Suppose  contains no negations, and let � be a sequence of moves in the game
GSI. /. Then � determines a subsentence of  : at a disjunction, player I’s next
move chooses a disjunct (if it is player II’s turn, player II’s move is irrelevant); at a
conjunction, player II’s next move chooses a conjunct (if it player I’s turn, player I’s
move is irrelevant).

We formalize this with the following definition, which is effective in  . For
� 2 !<! :
� if � is the empty string, �. / D  ;
� if �. / D True, .� Od/. / D True for all d 2 !;
� if �. / D False, .� Od/. / D False for all d 2 !;
� if �. / D

W
n �n and j� j is even, .� Od/. / D �d for all d 2 !;

� if �. / D
W
n �n and j� j is odd, .� Od/. / D �. / for all d 2 !;

� if �. / D
V
n �n and j� j is odd, .� Od/. / D �d for all d 2 !;

� if �. / D
V
n �n and j� j is even, .� Od/. / D �. / for all d 2 !.

Now, for a sentence  , let h ˇ iˇ�˛ be the sequence of subsentences of  . IHC
implies that the set of ˇ 6 ˛ such that ˇ is strategically true exists. So we can define
the strategy “always choose the satisfied subsentence” for player I in GSI. /. More
formally, if � is the (possibly empty) sequence of moves which have been played so
far, the strategy instructs us thus:
� If �. / D True or False, play 0.
� If �. / D

V
n �n, play 0.

� If �. / D
W
n �n and �. / is strategically true, play the least d such that �d

is strategically true. If �. / is not strategically true, play 0.
We call this strategy the satisfaction strategy for  . Note that this definition requires
RCA0 + IHC. We can extend this to sentences with negations by letting the satis-
faction strategy for  be the satisfaction strategy for P. /, the sentence which is
equivalent to  but contains no negations.
Lemma 3.3 (RCA0 + IHC) For any infinitary propositional sentence  , if  is
strategically satisfied, then the satisfaction strategy for  is a winning strategy for
GSI. /.
Proof By Lemma 1.9, we may assume that  contains no negations.

Let h ˇ iˇ6˛
be the sequence of subsentences of . We claim that for all ˇ 6 ˛, if

 ˇ is strategically satisfied, then the satisfaction strategy for  is a winning strategy
for GSI. ˇ/. Note that the set X D ¹ˇ 6 ˛ j  ˇ is strategically satisfiedº exists by
IHC, and the satisfaction strategy for  ˇ is computable from h ˇ i and X uniformly
in ˇ. Thus the sequence of satisfaction strategies exists by recursive comprehension,
and so by Observation 1.8, the set
Y D ¹ˇ 6 ˛ j the satisfaction strategy for  ˇ is not a winning strategy for GSI. ˇ/º

exists by arithmetic comprehension. Then X \ Y exists and is the set of ˇ 6 ˛ at
which the claim fails. Since this set exists, we may proceed by induction.

Fix ˇ. If  ˇ is not strategically satisfied, the claim is trivially true. So henceforth,
we assume that  ˇ is strategically satisfied.

If  ˇ D True, the result is immediate.
It cannot be that  ˇ D False, since  ˇ is strategically satisfied.
If  ˇ D

W
n �n, then the first play of the satisfaction strategy for  ˇ will be a d

with �d strategically satisfied. There are now several cases.



248 Conidis, Greenberg, and Turetsky

� If �d D True, then SII.�d / D !! . So d O!! � SI. ˇ /, and thus the
satisfaction strategy for  ˇ will always produce an element of SI. ˇ /.
� It cannot be that �d D False, since �d is strategically satisfied.
� If �d is a disjunction, then SII.�d / D .SI.�d //

�. So d OaOSI.�d / � SI. ˇ /

for any a 2 !. Further, the satisfaction strategy for  ˇ above d Oa is the same
as the satisfaction strategy for �d , and by hypothesis the latter strategy always
produces an element of SI.�d /. So the satisfaction strategy for  ˇ always
produces an element of SI. ˇ /.
� If �d D

V
n �n is a conjunction, then aOSI.�a/ � SII.�d / for any a 2 !. So

d OaOSI.�a/ � SI. ˇ /. Further, the satisfaction strategy for  ˇ above d Oa
is the same as the satisfaction strategy for �a, and by hypothesis the latter
strategy always produces an element of SI.�a/. So the satisfaction strategy
for  ˇ always produces an element of SI. ˇ /.

If  ˇ D
V
�n, then the first play of the satisfaction strategy for  ˇ will be 0.

Then for any a which player II might play, �a is strategically satisfied. So by hy-
pothesis, the satisfaction strategy for �a always produces an element of SI.�a/. But
the satisfaction strategy for �a is the same as the satisfaction strategy for  ˇ above
0Oa, and 0OaOSI.�a/ � SI. ˇ /. So the play of the satisfaction strategy for  ˇ always
produces an element of SI . ˇ /.

Lemma 3.4 (RCA0) IHC implies CI.

Proof Suppose that
V
n �n is an infinitary propositional sentence with each �n

strategically satisfied. If each �n D h�ˇ;niˇ6˛n
, then by IHC the set X D ¹.ˇ; n/ j

�ˇ;n is strategically satisfiedº exists, and the satisfaction strategy for �n is com-
putable from

V
n �n andX , uniformly in n. So the sequence of satisfaction strategies

exists by recursive comprehension, and by Lemma 3.3, this is a sequence of win-
ning strategies. So by Proposition 1.12(3), we know that

V
n �n is strategically

satisfied.

Finally, we will need LEM.

Theorem 3.5 (RCA0) IHC implies LEM.

Proof Fix an infinitary propositional sentence  , and let h ˇ iˇ�˛ be its sequence
of subsentences. We claim that for all ˇ � ˛, either or: is strategically satisfied.
The set of ˇ for which this fails exists by IHC. The claim then follows by induction
(using CI at the appropriate step).

3.2 A digression Although our intention is to directly show that IHC implies ATR0,
we derail the progression a moment to show that IHC implies clopen determinacy,
since the proof is straightforward.

Lemma 3.6 (ACA0) Every clopen set is of the form SI. /, for some infinitary
propositional sentence  . Moreover,  can be obtained uniformly from a represen-
tation of the clopen set.

Proof Fix a clopen set U, and let U1 and U2 be disjoint antichains representing U

and !!nU, respectively. Consider the tree

T D
®
� 2 !<!

ˇ̌
� 2 .U1 [ U2/

�
¯
:
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Here again U� indicates the closure of U under the taking of initial segments. As
argued in Theorem 2.1, T exists by recursive comprehension.

Totally order T with the Kleene–Brouwer ordering. ACA0 proves that the Kleene–
Brouwer ordering is a well-ordering since T is well founded by [6]. Define infinitary
propositional sentences  � for � 2 T as follows.
� If � 2 U1,  � D True.
� If � 2 U2,  � D False.
� If � … .U1 [ U2/ and j� j is even,  � D

W
n  �Od .

� If � … .U1 [ U2/ and j� j is odd,  � D
V
n  �Od .

We claim that for � 2 T , ¹f 2 !! j � Of 2 Uº is precisely GSj . � /, for j D I if
j� j is even, and j D II if j� j is odd. Since equality of clopen sets is a…0

1-statement,
the set of � for which this fails exists by arithmetic comprehension. The claim then
follows by induction.

Thus U D SI. �/, where � is the empty string.

Theorem 3.7 (RCA0) IHC implies clopen determinacy.

Proof Fix a clopen set U. Since IHC implies ACA0, U D SI. / for some infini-
tary propositional sentence  . Since IHC implies LEM, either  is strategically true,
and thus player I has a winning strategy forGSI. / D GU, or: is strategically true,
and thus player II has a winning strategy for G!!nSII.: / D GSI. / D GU.

We can also use Lemma 3.6 to analyze CI. Montalbán [4] introduced the following
axiom, which we express in our own notation.

Definition 3.8 (Montalbán [4]) The axiom of choice for determined games, de-
noted by DG-AC, states that if U D

S
n nbUn is a clopen set, and for every n,

one of the players has a winning strategy for G!!nUn
, then one of the players has a

winning strategy for GU.

Montalbán showed that over RCA0, †11-AC implied DG-AC and DG-AC implied
�11-comprehension. We shall show that DG-AC is equivalent to CI. First we require
ACA0.

Lemma 3.9 (RCA0) CI implies ACA0.

Proof This is similar to the proof of Lemma 3.2. Again, fix X , and let  .e/ be
as before. Note that  .e/ is strategically satisfied precisely if e 2 X 0, and : .e/ is
strategically satisfied precisely if e … X 0. So  .e/ _ : .e/ is strategically satisfied
for all e. By CI,  D

V
e. .e/ _ : .e// is strategically satisfied. So fix a strategy

for player II to force into SII. /.
If player I begins by playing e, player II must either play 0 or 1 (choosing  .e/ or

: .e/). If player II chooses .e/, then the strategy above he0i is a strategy for player
II to force into SII. .e//. Similarly, if player II chooses :. .e//, then the strategy
above he1i is a strategy for player II to force into SII.: .e//. So X 0 is precisely the
set of e such that player II plays 0 in response to player I beginning with e. Thus X 0
exists by recursive comprehension.

Theorem 3.10 (RCA0) DG-AC is equivalent to CI.

Proof First we show that CI implies DG-AC. Fix a clopen set U D
S
n nbUn

such that for every n, one of the players has a winning strategy for G!!nUn
. If for



250 Conidis, Greenberg, and Turetsky

some n, player II has a winning strategy for G!!nUn
, then player II has a strategy to

force into Un. Then a winning strategy for player I in GU is straightforward: play n;
then follow player II’s strategy to force into Un.

So suppose that for every n, player I has the winning strategy for G!!nUn
. Since

CI proves ACA0, for each n there is a  n such that SI. n/ D !!nUn. Then
player I can force into SI. n/, and so  n is strategically satisfied. Moreover, the
sequence h nin2! exists by uniformity, and so  D

V
n  n exists. Also note that

SII. / D !
!nU. By CI,

V
n  n is strategically satisfied, and so player II can force

into !!nU. Thus player II has a winning strategy for GU, and DG-AC follows.
Now we show that DG-AC implies CI. Fix an infinitary propositional sentenceV
n  n, such that every  n is strategically satisfied. Let Un D SII.: n/ D !!n

SI. n/. Then for every n, player I has a winning strategy for G!!nUn
D GSI. n/.

Let U D
S
n nbUn. By DG-AC, some player has a winning strategy for GU. If

player I has the winning strategy, then player I can force into nbUn for some n.
Considering the strategy for this above n, player II can force into Un D SII.: n/.
But this contradicts  n being strategically satisfied and so is impossible.

So it must be that player II has the winning strategy. But

U D
[
n

nb�!!nSI. n/
�
D !!n

�[
n

nbSI. n/
�
D !!nSII. /;

and so player II can force into SII. /. Thus  is strategically satisfied, and CI
follows.

3.3 IHC implies ATR0 As promised, we show that IHC implies ATR0 directly.

Theorem 3.11 (RCA0) IHC implies ATR0.

Proof Given an ordinal ˛ and a set X , we must show that X .˛/ exists. Here X .˛/
is any set Z satisfying
� ZŒ0� D X ; and
� for all ˇ < ˛ with ˇ > 1, ZŒˇ� D .ZŒ<ˇ�/0.

RCA0 proves that any such Z is unique.
Note that, by arithmetic comprehension, the sets

C.ˇ; e/ D
®
� 2 !<!

ˇ̌
� � !Œ<ˇ� & ¹eº� .e/#

¯
exist uniformly in ˇ and e. We construct sentences  .ˇ; e/ for all ˇ < ˛ and e 2 !
as follows.
� If e 2 X ,  .0; e/ D True.
� If e … X ,  .0; e/ D False.
� For ˇ > 0,

 .ˇ; e/ D
_

�2C.ˇ;e/

h� ^
�.h;yi/D1

 .; y/
�
^

� ^
�.h;yi/D0

: .; y/
�i
:

These are constructed from X and ˛ by effective transfinite recursion.
By IHC, the set Z D ¹hˇ; ei j  .ˇ; e/ is strategically satisfiedº exists. We claim

that Z satisfies the criteria to be X .˛/. By arithmetic comprehension, the set of ˇ at
which it fails to meet the criteria exists. So we may proceed by induction.
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If e 2 ZŒˇ�, then  .ˇ; e/ is strategically satisfied. Thus, by Proposition 1.12(2),
for some � 2 C.ˇ; e/,� ^

�.h;yi/D1

 .; y/
�
^

� ^
�.h;yi/D0

: .; y/
�

is strategically satisfied. By Proposition 1.12(3), each  .; y/ with �.h; yi/ D 1 is
strategically satisfied, as is every : .; y/ with �.h; yi/ D 0. Thus, by definition
of Z, y 2 ZŒ� for every �.h; yi/ D 1, and y … ZŒ� for every �.h; yi/ D 0. Thus
� is an initial segment of ZŒ<ˇ�, and so e 2 .ZŒ<ˇ�/0.

Conversely, if e 2 .ZŒ<ˇ�/0, there is some � 2 C.ˇ; e/ with � an initial seg-
ment of ZŒ<ˇ�. By definition of Z,  .; y/ is strategically satisfied for every
�.h; yi/ D 1, and  .; y/ is not strategically satisfied for every �.h; yi/ D 0. By
LEM, : .; y/ is strategically satisfied for every �.h; yi/ D 0. By CI,� ^

�.h;yi/D1

 .; y/
�
^

� ^
�.h;yi/D0

: .; y/
�

is strategically satisfied. By Proposition 1.12(2),  .ˇ; e/ is strategically satisfied,
and thus e 2 ZŒˇ�.
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