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Rank Functions and Partial Stability Spectra for
Tame Abstract Elementary Classes

Michael J. Lieberman

Abstract We introduce a family of rank functions and related notions of to-
tal transcendence for Galois types in abstract elementary classes. We focus,
in particular, on abstract elementary classes satisfying the condition known as
tameness, where the connections between stability and total transcendence are
most evident. As a byproduct, we obtain a partial upward stability transfer result
for tame abstract elementary classes stable in a cardinal � satisfying �@0 > �,
a substantial generalization of a result of Baldwin, Kueker, and VanDieren.

1 Introduction

Abstract elementary classes (AECs) were introduced by Shelah [12] as a frame-
work in which to address fundamental questions concerning the classification theory
of nonelementary classes of structures. Early work on nonelementary classes was
largely rooted in syntactic considerations, unfailingly identifying types with satis-
fiable sets of formulas, and relying on methods closely tailored to the peculiarities
of the ambient logic. Abstract elementary classes and their associated, fundamen-
tally nonsyntactic Galois types represent a broad, unifying framework that supports a
more uniform treatment of questions concerning categoricity and stability, transcend-
ing the focus on individual logics that limited the scope of earlier assays. Essentially
the category-theoretic hulls of elementary classes—we discard syntax entirely but
retain the essential diagrammatic properties of elementary embeddings—AECs are
sufficiently general to encompass classes of models of sentences in L1;! , L.Q/,
and L!1;!.Q/, as well as homogeneous classes, but also seemingly rich enough in
structure to permit the development of an interesting classification theory.

Naturally, with the added generality comes added difficulty: for AECs satisfying a
variety of conditions intended to guarantee reasonable behavior, two decades of work
have typically yielded only partial categoricity and stability transfer results. We here
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focus our attention on classes in which the Galois types satisfy the important locality
condition known as tameness. In [6], Grossberg and VanDieren obtain a large-scale
categoricity transfer result for such classes using a toolkit that includes such classical
standbys as indiscernibles and Morley sequences. With these same methods, aug-
mented with the notion of splitting, Grossberg and VanDieren also establish, in [5],
a partial stability spectrum result for tame AECs. More recently, Baldwin, Kueker,
and VanDieren [2] use a splitting argument to prove a striking upward stability trans-
fer result for @0-Galois-stable AECs (see [2, Theorem 2.1]): if � is a cardinal of
uncountable cofinality and the AEC is Galois stable in every cardinal less than �, it
must be Galois stable in � as well.

We here introduce an entirely new set of vaguely classical methods, revolving
around a family of rank functions for Galois types, with which we are able prove a
generalization of the result of [2]. In particular, we show that this kind of transfer
is triggered not merely by @0-Galois stability but by stability in any cardinal � sat-
isfying the inequality �@0 > �, and significantly weaken the assumption on stability
below �.

2 Preliminaries

Essential background material on AECs can be found in Baldwin [1] or Gross-
berg [3], whereas the tame context, in particular, is addressed in [6], [5], and [2].
We work with an AEC .K;�K/, where K is a class of structures in a fixed finitary
signature L.K/, and �K is the strong submodel relation. For any infinite cardi-
nal �, we denote by K� the subclass of K consisting of all models of cardinality
� (with the obvious interpretations for such notations as K�� and K>�). We say
that K is �-categorical if K� contains only a single model up to isomorphism. For
M;N 2 K , we say that a map f W M ! N is a K-embedding (or, more often,
a strong embedding) if f is an injective homomorphism of L.K/-structures, and
f ŒM��K N ; that is, f induces an isomorphism ofM onto a strong submodel of N .
In that case, we write f WM ,!K N . We also adopt the following notational short-
hand: for any M 2 K and any cardinal �, we denote by Sub��.M/ the set of all
strong submodels N�K M with jN j � �. We assume throughout that K satisfies
the amalgamation and joint embedding properties.

Galois types, which have their origins in the work of Shelah (first appearing in [12]
and [13]), are closely adapted to the syntax-neutral context of AECs. Although they
can be defined in very general classes, they have a particularly simple description in
AECs with amalgamation: in any K of this form, we may fix a large, strongly model-
homogeneous monster model C 2K . In this case, we are able to characterize Galois
types as follows.

Definition 2.1 LetM 2K , and let a 2 C. The Galois type of a overM , denoted
ga-tp.a=M/, is the orbit of a in C under AutM .C/, the group of automorphisms of
C that fixM . We denote by ga-S.M/ the set of all Galois types overM .

In case K is an elementary class with �K as elementary submodel, the Galois types
over M correspond to the complete first-order types over M . In general, however,
Galois types and syntactic types do not match up, even in cases when the logic un-
derlying the AEC is clear (say, K D Mod. /, with  2 L!1;!). Recall that K

is said to be �-Galois stable if for every M 2 K�, jga-S.M/j D �. Moreover, for
anyM , a 2 C, andN�K M , we define the restriction of ga-tp.a=M/ toN , denoted
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ga-tp.a=M/ � N , to be the orbit of a under AutN .C/, and we say thatM realizes a
type p over N�K M if there is an element a 2M such that ga-tp.a=M/ � N D p.
Naturally, we say that a model M is �-Galois saturated if for every N�K M with
jN j < � and every p 2 ga-S.N /, p is realized inM .

Henceforth, the word “type” should be understood to mean “Galois type.” More-
over, when there is no risk of confusion, we will omit the word “Galois” altogether,
speaking simply of types, �-stability, and �-saturation.

Initial attempts at establishing a classification theory for AECs have focused on
classes satisfying a variety of broad structural conditions: for example, excellence (as
described in Grossberg and Kolesnikov [4]) and the existence of good or semigood
frames (as considered in Shelah [14] and Jarden and Shelah [7]), which echo classi-
cal notions of simplicity, stability, and superstability, respectively. We here concern
ourselves primarily with tameness, a property that has no particularly natural classi-
cal analogue. Roughly speaking, tameness (of the form that we will consider) means
that types are completely determined by their restrictions to small submodels, a con-
dition slightly reminiscent of the locality properties of syntactic types. A possible
intuition is the following: we may regard types over small models as playing a role
analogous to formulas in first-order model theory, in which case tameness guarantees
that types are determined by their constituent “formulas.” In this analogy, tameness
of Galois types may in fact be most closely identified with completeness in the realm
of syntactic types.

We consider two degrees of tameness.

Definition 2.2

(1) We say that K is �-tame if for everyM 2 K , if p and p0 are distinct types
overM , then there is an N 2 Sub��.M/, such that p � N ¤ p0 � N .

(2) We say that K is weakly �-tame if for every saturated M 2 K , if p and
p0 are distinct types over M , then there is an N 2 Sub��.M/, such that
p � N ¤ p0 � N .

We close the preliminaries with a brief topological aside (a more detailed treatment
can be found in Lieberman [9]) which, although it will not necessarily be empha-
sized in the continuation, provides essential motivation for the definitions that follow.
Recall the identification that formed the basis of our intuition concerning tameness
of Galois types—types over small submodels as “formulas”—and fix our notion of
“small” as “of cardinality less than or equal to �,” with � � LS.K/. Just as the
Stone space topology on syntactic types is generated from a basis of open—indeed,
clopen—sets, each one consisting of all complete types containing a given formula,
we here consider sets of Galois types extending given “formulas”; that is, for each
modelM 2K , we consider all sets of the form

Up;N D
®
q 2 ga-S.M/ W q � N D p

¯
;

where N 2 Sub��.M/ and p 2 ga-S.N /. It is an easy exercise to show that the
Up;N form a basis for a topology on ga-S.M/—we denote the resulting space by
X�M—and, moreover, that they are clopen sets, analogous to the first-order case.
In fact, if K is an elementary class (in which case Galois types may be identified
with complete first-order types), we see that the topologies thus obtained refine the
standard syntactic topology.



156 Michael J. Lieberman

In fact, what we obtain is a spectrum of spacesX�M associated with eachM 2K ,
with one space for each � � LS.K/, and a tight correspondence between topological
properties of the spaces in the various spectra and model-theoretic properties of the
AEC (see [9] for a complete account). In particular, �-tameness of an AEC means
precisely that any two distinct types over a model M 2 K can be distinguished by
their restrictions to a submodel ofM of size at most �; that is, they can be separated
by basic open sets in each of the spacesX�M for � � �. It should come as no surprise,
then, that we have the following proposition.

Proposition 2.3 If K is �-tame, thenX�M is Hausdorff for allM 2K and � � �.

Furthermore, in light of the fact that every X�M has a basis of clopens, the spaces in
question will be totally disconnected—nearly Stone spaces. As it happens, though,
tameness rules out not merely compactness but even countable compactness. The
chief complication results from the following.

Proposition 2.4 For anyM 2K and � � LS.K/, the intersection of any � open
subsets of X�M is open.

Proof It suffices to show that the intersection of � basic open sets is open.
To that end, let ¹Upi ;Ni j i < �º be a family of open subsets of X�M , and let
q 2

T
i<� Upi ;Ni . The union of the Ni is a subset ofM of cardinality �, so, by the

downward Löwenheim–Skolem property, there is a submodelN�K M that contains
it. By coherence, Ni�K N for all i . Consider the basic open neighborhood Uq�N;N .
It certainly contains q. For any q0 2 Uq�N;N , moreover,

q0 � Ni D q0 � N � Ni D q � N � Ni D q � Ni D pi :

Hence q0 is contained in
T
i<� Upi ;Ni and, as this holds for any such q0, Uq�N;N �T

i<� Upi ;Ni .

As a result, if an AEC is �-tame, the spaces X�M for � � � exhibit an extraordinary
degree of separation. Although we leave the proofs to [9], the following results
(Propositions 6.5 and 7.1 in the aforementioned paper) convey the essential flavor.

Proposition 2.5 Let K be �-tame, and let � � �. Any set S � X�M with jS j � �
is closed and discrete.

Thus there will be a number of infinite sets with no accumulation point, meaning
that, as claimed above, the spaces cannot be countably compact. We close with a
closely related characterization of what it means to be an accumulation point in X�M .

Proposition 2.6 Let K be �-tame, and let � � �. A type q 2 X�M is an ac-
cumulation point of a set S � X�M if and only if for every neighborhood U of q,
jU \ S j > �.

3 Ranks for Galois Types

We have just seen that if an AEC K is �-tame, then for any � � � (and, of course,
� � LS.K/), the criterion for a type q 2 ga-S.M/ to be an accumulation point of a
family of types inX�M is quite stringent: every neighborhood must contain more than
� types in the given family. This condition inspires the definition of the following
family of ranks.
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Definition 3.1 (R�) Assume that K is �-tame for some � � LS.K/. For � � �,
we define R� by the following induction. For any q 2 ga-S.M/ with jM j � �,

(1) R�Œq� � 0;
(2) R�Œq� � ˛ for limit ˛ if R�Œq� � ˇ for all ˇ < ˛;
(3) R�Œq� � ˛ C 1 if there exists a structure M 0�K M such that q has strictly

more than � extensions to types q0 overM 0 with the property that

R�Œq0 � N� � ˛ for all N 2 Sub��.M 0/:

(�) For types q overM of arbitrary size, we define

R�Œq� D min
®
R�Œq � N� W N 2 Sub��.M/

¯
:

Before we proceed, a bit of motivation for this long-winded definition: in topolo-
gizing ga-S.M/ as X�M (and in developing our intuition with regard to tameness),
we essentially allow the types over substructures of size at most � to play a role
analogous to that ordinarily played by formulas. In defining the ranks R�, we first
define the rank of these “formulas” and subsequently define the rank on types ex-
tending them as the minimum of the ranks of their constituent “formulas,” just as in
the definition of Morley rank in classical model theory.

There is something to check here, though. The types over models of cardinality
at most � whose ranks were defined by clauses (1)–(3) are also covered by (�). We
must ensure that there is no possibility of conflict between the two. Let R�� denote
the ranks assigned to such types using only the first three clauses.

Lemma 3.2 The ranks R�� are monotone: for any N;N 0 2 K��, N 0�K N , and
any q 2 ga-S.N /, R�� Œq� � R�� Œq � N 0�.

Proof We show that for any ordinal ˛, R�� Œq� � ˛ implies R�� Œq � N 0� � ˛. We
proceed by an easy induction on ˛. The zero case is trivial, and the limit cases follow
from the induction hypothesis. For the successor case, notice that if R�� Œq� � ˛ C 1,
the extension M�K N that witnesses this fact is also an extension of N 0 and wit-
nesses that R�� Œq � N 0� � ˛ C 1.

So we need not worry that the rank assigned to a type q 2 ga-S.M/ withM 2K��
under (�), that is, R�Œq� D min¹R�Œq � N� W N�K M; jN j � �º, will differ from
the rank of p under the first three clauses. Hence the ranks R� are well defined. In
fact, we can now restate clause (3) in a more compact form: for q 2 ga-S.M/ with
M 2K��,

(30) R�Œq� � ˛ C 1 if there exists a structure M 0�KM such that q has strictly
more than � many extensions to types q0 overM 0 with R�Œq0� � ˛.

We will invariably use this formulation in the sequel.
We now consider the basic properties of the ranks R�, beginning with an extension

of our partial monotonicity result, Lemma 3.2.

Proposition 3.3 (Monotonicity) If M�K M 0 and q 2 ga-S.M 0/, then R�Œq� �
R�Œq � M�.

Proof The proof is trivial, from the second clause of the definition.

Bear in mind that “p is a restriction of q” corresponds to the first-order “q ` p,” so
this is an analogue of the monotonicity result for, say, the classical Morley rank.
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Proposition 3.4 (Invariance) Let f be an automorphism of the monster model C,
let q 2 ga-S.M/, and let M 0 D f ŒM�. Then the type f Œq� 2 ga-S.M 0/ satisfies
R�Œf Œq�� D R�Œq�.

Proof We again proceed by induction, and once again the zero and limit cases
are trivial. It remains to show that whenever R�Œq� � ˛ C 1, R�Œf Œq�� � ˛ C 1,
with the converse following by replaying the argument with f �1 in place of f . As
before, if R�Œq� � ˛ C 1, then each N 2 Sub��.M/ has an extension MN over
which q � N has more than �many extensions of rank at least ˛. Notice that for any
N 0 2 Sub��.M 0/, N 0 D f ŒN � for some N 2 Sub��.M/ and, moreover, that

f Œq� � N 0 D f Œq� � f ŒN � D f Œq � N�:

The extensions of q � N to MN of rank at least ˛ map bijectively under the auto-
morphism f to extensions of f Œq� � N 0 to types over f ŒMN � and, by the induc-
tion hypothesis, these image types are also of rank at least ˛. As a result, for any
N 0 2 Sub��.M 0/, R�Œf Œq� � N 0� � ˛ C 1. Thus R�Œq� � ˛ C 1, as desired.

Trivially, we have the following.

Proposition 3.5 (��-local character) For any q 2 ga-S.M/, there is an
N 2 Sub��.M/ with R�Œq � N� D R�Œq�.

Slightly less trivially, we have the following.

Proposition 3.6 (Relations between R�) Whenever � � �, R�Œq� � R�Œq�.

Proof The proof is by induction, with the zero and limit cases still trivial. If
R�Œq� � ˛ C 1, then for every N 2 Sub��.M/, q � N has more than � exten-
sions to types of R�-rank at least ˛ over some MN�K N . In particular, there are
more than � such extensions and, by the induction hypothesis, they are all of R�-rank
at least ˛. Noticing that Sub��.M/ � Sub��.M/, one sees that the same holds for
all N 2 Sub��.M/, meaning that, ultimately, R�Œq� � ˛ C 1.

The ranks R�Œ�� also have the following attractive property: letting CB�Œq� denote
the topological Cantor–Bendixson rank of a type q 2 X�M , where M is the domain
of q, we have the following proposition.

Proposition 3.7 For any q (say, q 2 ga-S.M/), CB�Œq� � R�Œq�.

Proof We show by induction that CB�Œq� � ˛ implies R�Œq� � ˛. The zero and
limit cases are not interesting. If CB�Œq� � ˛ C 1, q is an accumulation point of
types of CB�-rank at least ˛. This means, by Proposition 2.6, that every basic open
neighborhood of q contains more than � such types, which is to say that each q � N
withN 2 Sub��.M/ has more than �many extensions to types overM of CB�-rank
at least ˛. By the induction hypothesis, these types are of R�-rank at least ˛, and for
each N 2 Sub��.M/ witness the fact that R�Œq � N� � ˛ C 1. Naturally, it follows
that R�Œq� � ˛ C 1.

We have a quick fact about CB�, incidentally, which we obtain in the usual way.

Proposition 3.8 If every q 2 X�M has ordinal CB�-rank, isolated points are dense
in X�M .
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In particular, then, if all of the types over a model M 2 K have ordinal R�-rank,
isolated points are dense in X�M .

One of the great virtues of the classical Morley rank is that types over models have
unique extensions of the same Morley rank: if p 2 S.A/ has RŒp� D ˛ and B � A,
then there is at most one type q 2 S.B/ that extends p and has RŒq� D ˛. While we
do not have a unique extension property for the ranks R�, we do have a very close
approximation, Proposition 3.10 below. First, we notice the following.

Lemma 3.9 LetM�K M 0, q 2 ga-S.M/ with an ordinal R�-rank. There are at
most � extensions q0 2 ga-S.M 0/ with R�Œq0� D R�Œq�.

Proof For the sake of notational convenience, say R�Œq� D ˛. Let S D
¹q0 2 ga-S.M 0/ j q0 � M D q; and R�Œq0� D ˛º, and suppose that jS j > �. For any
N 2 Sub��.M/, each q0 is an extension of q � N , meaning that R�Œq � N� � ˛C1
for all such N . But then R�Œq� � ˛ C 1, a contradiction.

It is worth noting here that we have made no use of tameness in the discussion
above—neither in the definition of the ranks R� nor in the proofs of the proper-
ties thereof—and have merely made use of the fact that � � LS.K/. From now
on, however, it will often be critically important that we have the ability to separate
distinct types, leading us to restrict attention to those R� with � � �, the tameness
cardinal of the AEC at hand. We will be very explicit in making this assumption
whenever it is necessary, beginning with the following essential property of the R�.

Proposition 3.10 (Quasi-unique extension) Let K be �-tame with � � LS.K/,
and let � � �. Let M�K M 0, q 2 ga-S.M/, and say that R�Œq� D ˛. Given any
rank ˛ extension q0 of q to a type over M 0, there is an intermediate structure M 00,
M�K M 00�K M 0, jM 00j � jM j C �, and a rank ˛ extension p 2 ga-S.M 00/ of q
with q0 2 ga-S.M 0/ as its unique rank ˛ extension.

Proof Again, let S D ¹q00 2 ga-S.M 0/ j q00 � M D q; and R�Œq00� D ˛º.
From Lemma 3.9, jS j � �, meaning that S is discrete (by tameness and Propo-
sition 2.5). Thus there is some N 2 Sub��.M 0/ with the property that q0 � N

satisfies Uq0�N;N \ S D ¹q
0º. Take M 00 2 K containing both M and N and with

jM 00j � jM j C jN j C LS.K/ � jM j C �, and set p D q0 � M 00. Notice that, by
monotonicity,

˛ D R�Œq0� � R�Œp� � R�Œq� D ˛;
so R�Œp� D ˛. Naturally, q0 is a rank ˛ extension of p. Any such extension q00 of
p is also a rank ˛ extension of q, hence in S , and also an extension of q0 � N . By
choice of N , then, we must have q00 D q0.

A possible gloss for this complicated-looking result: while a type p 2 ga-S.M/

of R�-rank ˛ may have many extensions of rank ˛ over a model M 0�K M , we
need only expand its domain ever so slightly (adding at most � elements of M 0) to
guarantee that the rank ˛ extension is unique. As innocuous as this proposition may
seem, it is the linchpin of the analysis of stability in this framework and will see
extensive use in Sections 5 and 6. Of course, quasi-unique extension applies only to
types with ordinal R�-rank. To take the fullest possible advantage of this property,
then, we would be wise to confine our attention to AECs where R� is ordinal valued
on all types associated with the class.
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4 Stability and �-Total Transcendence

In classical model theory, we call a first-order theory totally transcendental if all
types over subsets of the monster model are assigned ordinal values by the rank. We
now define analogous notions for Galois types in AECs, one for each rank R�.

Definition 4.1 We say that K is �-totally transcendental if for every M 2 K

and q 2 ga-S.M/, R�Œq� is an ordinal.

Proposition 4.2 If K is �-totally transcendental, then it is �-totally transcenden-
tal for all � � �.

Proof See Proposition 3.6, the result concerning the relationship between the var-
ious ranks.

Putting this proposition together with Propositions 3.7 and 3.8, we have the follow-
ing.

Proposition 4.3 If K is �-totally transcendental, then for any M and � � �,
isolated points are dense in X�M .

As a nice special case, if LS.K/ D @0, and K is @0-tame and @0-totally transcen-
dental, then isolated points are dense in each space X@0M . This bears a certain re-
semblance to the classical result linking total transcendence to the density of isolated
points in the spaces of syntactic types.

As interesting as this result may be, the true power of the notion of �-total tran-
scendence lies in the leverage it provides in rather a different area: bounding the
number of types over models. We will take advantage of this in Sections 5 and 6
below to prove a variety of results related to Galois stability. Before we give any
further thought to �-totally transcendental AECs, though, it seems natural to inquire
whether the notion is, in fact, a meaningful one, that is, whether one can actually find
�-totally transcendental AECs. One can, as the following proposition suggests.

Theorem 4.4 If K is �-tame for some � � LS.K/ and is �-stable with � � �
and �@0 > �, then K is �-totally transcendental.

Proof Suppose that R� is unbounded; that is, suppose that there is a type p over
some N�K C with R�Œp� D1. Indeed, we may assume that jN j � �. (If there is a
type of rank1 over a larger structure, consider one of its restrictions.) We proceed
to construct a K-structure NN of size � over which there are �@0 many types, thereby
establishing that K is not �-stable. We first need the following.

Claim 4.5 For any �, there exists an ordinal ˛ such that for any q overM�K C,
R�Œq� D1 just in case R�Œq� � ˛.

Proof By local character and monotonicity, any ordinal rank attained over a model
inK is attained over a model of size at most �, meaning that it suffices to establish the
claim for types over models in K�� (i.e., “formulas”). There are at most 2� isomor-
phism classes of such models. Suppose thatM;M 0 2K�� and that ' WM ,!K M 0

is an isomorphism. By strong model-homogeneity of C, ' extends to an automor-
phism ˛ of C. Given that R� is invariant under such automorphisms, the set of
ordinal ranks attained by types overM (of which there are at most 2�) is the same as
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the corresponding set overM 0—in fact, this is an invariant on isomorphism classes.
It follows that ˇ̌®

R�Œq�
ˇ̌
q 2 ga-S.M/;M 2K��;R�Œq� <1

¯ˇ̌
� j¹isomorphism classes in K��ºj � 2

�
� 2�:

Hence the set of all ordinal ranks attained cannot be cofinite in the class of ordinals,
and we may take

˛ D sup
®
R�Œq�

ˇ̌
q 2 ga-S.M/;M 2K��;R�Œq� <1

¯
:

We construct NN as follows.
Step 1: Set p; D p. Since p; satisfies R�Œp;� D 1, R�Œp;� > ˛. Hence there

is an extensionM�K N over which p; has more than � many extensions of rank at
least ˛ and thus of rank1. Take any � many of them, say, ¹qi 2 ga-S.M/ j i < �º.
By Proposition 2.5, this set is discrete in X�M , meaning that for each i < �, there is
an N 0i 2 Sub��.M/ with the property that qj � N 0i ¤ qi � N 0i whenever j ¤ i .
Let N; be a K-substructure ofM containing N [

�S
i<�Ni

�
, jN;j D �. For each

i < �, define pi D qi � N;. Notice that
� R�Œpi � � R�Œqi � D1;
� we have pi � N D .qi � N;/ � N D qi � N D p;;
� if pi D pj , then

qi � Ni D .qi � N;/ � Ni D pi � Ni D pj � Ni D .qj � N;/ � Ni D qj � Ni ;

in which case we must have i D j . That is, the pi are distinct.
So we have a family ¹pi 2 ga-S.N;/ j i < �º of distinct extensions of p;, all of
rank1.

Step n C 1: For each � 2 �n, we have a structure N� of size at most � and a
family of distinct types ¹p�i 2 ga-S.N� / j i < �º, all of rank1. For each i < �,
apply the process of step 1 to each p�i . By this method, we obtain (for each i < �)
an extension N�i�K N� with jN�i j D � and a family ¹p�ij 2 ga-S.N�i / j j < �º

of distinct extensions of p�i , all of rank1.
Step !: Notice that for each � 2 �! , the sequence N;; N��1; : : : ; N��n; : : : is

increasing and, moreover, �K -increasing (by coherence and the fact that everything
embeds strongly in C). It follows that N� WD

S
n<! N��n is in K . Notice also

that the p��.nC1/ 2 ga-S.N��n/ for n < ! form an increasing sequence of types
over the structures in this union. By .!;1/-compactness of AECs (see [1, Theo-
rem 11.1]), there is a type p� 2 ga-S.N� / with the property that for all n < !,
p� � N��n D p��.nC1/. Let NN be a structure of size � containing the union[

�2�<!

N�

(which is possible, since the union is of size at most � � �<! D � � � D �). For each
� 2 �! , let q� be an extension of p� to a type over NN . There are �@0 many such
types, all over NN—it remains only to show that they are distinct. To that end, suppose
that �; � 0 2 �! , � ¤ � 0. It must be the case that for some � 2 �<! , � D � i � � � and
� 0 D �j � � � with i ¤ j . Then

q� � N� D .q� � N� / � N� D p� � N� D p�i :
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Similarly, we have

q� 0 � N� D .q� 0 � N� 0/ � N� D p� 0 � N� D p�j :
Since p�i and p�j are distinct by construction, q� ¤ q� 0 , and the types are distinct
as claimed. By our assumption that �@0 > �, then, K is not stable in �.

So the notion of �-total transcendence is far from vacuous: totally transcendental
AECs do exist.

5 Transfer Results

As promised, we will now employ �-total transcendence as a tool to analyze the pro-
liferation of types over models in AECs. Of the two methods for bounding the num-
ber of types over large models in totally transcendental AECs presented in Lieber-
man [8] (namely, Theorems 4.17 and 4.21), we here concern ourselves only with the
latter, which is the crucial ingredient in the generalization of the upward stability
transfer result from [2].

Theorem 5.1 Let K be �-tame for some � � LS.K/, and let it be �-totally
transcendental with � � �. For anyM 2K with cf.jM j/ > �,

jga-S.M/j � jM j � sup
®
jga-S.N /j

ˇ̌
N�K M; jN j < jM j

¯
:

Proof Take a filtration ofM ,

M0�K M1�K � � � �K M˛�K � � � �K M;

for ˛ < jM j, with jM˛j < jM j for all ˛ andM D
S
˛<jM jM˛ . Let q 2 ga-S.M/.

By �-total transcendence, R�Œq� D ˇ for some ordinal ˇ and, moreover, this is
witnessed by a restriction to a small submodel of M . That is, there is a submodel
N 2 Sub��.M/ with R�Œq � N� D ˇ. By Proposition 3.10, there is an intermediate
extension N�K N 0�K M with jN 0j D � such that q � N 0 has unique rank ˇ
extension q overM . Since cf.jM j/ > �, N 0 � M˛ for some ˛ (and, by coherence,
N 0�K M˛). Clearly, the type q � M˛ has q as its only rank ˇ extension over M .
Henceˇ̌®

q 2 ga-S.M/
ˇ̌
R�Œq� D ˇ

¯ˇ̌
�

ˇ̌̌ [
˛<jM j

®
p 2 ga-S.M˛/

ˇ̌
R�Œp� D ˇ

¯ˇ̌̌
;

and thus

jga-S.M/j �
ˇ̌̌ [
˛<jM j

ga-S.M˛/
ˇ̌̌

�

X
˛<jM j

jga-S.M˛/j

� jM j � sup
®
jga-S.M˛/j

ˇ̌
˛ < jM j

¯
:

The inequality in the statement of the theorem is an easy consequence.

In essence, the theorem asserts that for modelsM of cardinality � with cf.�/ > �,
the equality jga-S.M/j D � fails only if there is a submodel N�K M with jN j < �
and jga-S.N /j > �. To ensure that this does not occur—that we have, in short,
stability in �—we need considerably less than full stability in the cardinals below �.
To be precise, we have the following theorem.
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Theorem 5.2 Let K be �-tame for some � � LS.K/ and �-totally transcendental
with � � �, and let � satisfy cf.�/ > �. If for everyM 2K<�, jga-S.M/j � �, K

is �-stable.

Proof For anyM 2K�,

jga-S.M/j � jM j � sup
®
jga-S.N /j

ˇ̌
N�K M; jN j < jM j

¯
� jM j � jM j D jM j:

We may tighten the statement up a bit, once we notice the following.

Lemma 5.3 If there is a set S of cardinals cofinal in an interval Œ�; �/ which
has the property that for every M 2 K with jM j 2 S , jga-S.M/j � �, then
jga-S.M/j � � for everyM 2K<�.

Proof LetM 2 K<�. If jM j 2 S , we are done. If not, take � 2 S with � > jM j,
and letM 0 be a strong extension of cardinality �,M ,!K M 0 ,!K C. By assump-
tion, jga-S.M 0/j � �. Every type overM has an extension to a type overM 0, and,
of course, distinct types must have distinct extensions. Hence

jga-S.M/j � jga-S.M 0/j � �:

So Theorem 5.2 becomes the following.

Theorem 5.4 Let K be �-tame for some � � LS.K/ and �-totally transcendental
with � � �, and let � satisfy cf.�/ > �. If there is a set S of cardinals cofinal in
an interval Œ�; �/ which has the property that for every M 2 K with jM j 2 S ,
jga-S.M/j � �, K is �-stable.

The assumption on the number of types over models of cardinality less than � in the
theorem above is very weak—it is certainly more than sufficient to assume that K is
�-stable for each � in a cofinal set below �. In particular, we have the following.

Corollary 5.5 If K is �-tame for some � � LS.K/ and �-totally transcendental
with � � �, � satisfies cf.�/ > �, and K is stable on a set of cardinals cofinal in
an interval Œ�; �/, then K is �-stable.

Using Theorem 4.4 again, we may recast the corollary as a stability transfer result
that makes no mention of total transcendence. Though the product of this rewrit-
ing is a trivial consequence of the foregoing discussion (and, indeed, an extremely
special case of Theorem 5.4), it nonetheless generalizes a state-of-the-art result, [2,
Theorem 2.1]. First, we have the statement of the theorem.

Theorem 5.6 If K is �-tame for some � � LS.K/ and �-stable with � � � and
�@0 > �, then for any � with cf.�/ > �, if K is stable on a set of cardinals cofinal
in an interval Œ�; �/, K is �-stable.

If we restrict our attention to the special case in which the AEC is @0-stable and
assume more stability below � than we need, strictly speaking, we have the following
corollary.

Corollary 5.7 If K has LS.K/ D @0 and is @0-tame and @0-stable, then for any
� with cf.�/ > @0, if K is �-stable for all � < �, K is �-stable.
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In other words, in an AEC satisfying the hypotheses of the corollary, a run of stability
will never come to an end at a cardinal � of uncountable cofinality; it will, in fact,
include�, then�C, then�CC, and so on. This remarkable fact is the aforementioned
result of [2] (which also appears as [1, Theorem 11.11]). What we have discerned by
our method—and distilled in Theorem 5.6—is that it is not stability in @0 which is
critical but rather stability in any cardinal � satisfying �@0 > �. Moreover, it is not
necessary to have stability in every cardinality below the cardinal of interest, �, but
rather to have stability (or, indeed, somewhat less than stability) in a cofinal sequence
of cardinals below �.

6 Weakly Tame AECs

We now shift our frame of reference. Thus far we have limited ourselves to AECs
that are tame in some cardinal �. The time has come to consider how the picture
may differ in an AEC that is weakly �-tame, rather than �-tame. The most important
difference is that the argument for Theorem 4.4 no longer works, meaning that we
can no longer infer total transcendence from stability. In a sense, then, we must
treat total transcendence as a property in its own right, independent from the more
conventional properties of AECs. On the other hand, the argument for Theorem 5.1
still goes through, provided the model in question is saturated. That is, the following
holds.

Proposition 6.1 Let K be weakly �-tame for some � � LS.K/ and �-totally
transcendental with � � �. IfM 2K is a saturated model with cf.jM j/ > �, then

jga-S.M/j � jM j � sup
®
jga-S.N /j

ˇ̌
N�K M; jN j < jM j

¯
:

We can use this to get bounds on the number of types over more general (i.e., not nec-
essarily saturated) models, provided that there are enough small saturated extensions
in K . In particular, if we can replace a model M 2 K� with a saturated extension
M 0 2K�, we have

jga-S.M/j � jga-S.M 0/j;
where the latter is governed by the bound in the proposition above. Given an adequate
supply of such extensions, then, we can prove results similar to those found above,
but now for weakly tame AECs. The existence of saturated extensions also has the
following consequence.

Lemma 6.2 If every model in K� has a saturated extension in K�, then for any
M 2K<�, jga-S.M/j � �.

Proof Take M 2 K<�. Let M 0 be a strong extension of M of cardinality �.
By assumption, M 0 has a saturated extension NM of cardinality �. This model, NM ,
realizes all types over submodels of size less than � and hence realizes all types over
the original model,M . It follows that jga-S.M/j � j NM j D �.

Notice that this is precisely the type-counting condition from which we are able to
infer stability using the bound in Proposition 6.1. Hence we have the following.

Theorem 6.3 Let K be weakly �-tame for some � � LS.K/ and �-totally tran-
scendental with � � �. Suppose that � is a cardinal with cf.�/ > � and that every
M 2K� has a saturated extensionM 0 2K�. Then K is �-stable.
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Proof LetM 2K�. By assumption, we may replaceM with a saturated extension
M 0 of cardinality �, over which there can be at most � types, by Proposition 6.1 and
Lemma 6.2. As noted above, jga-S.M/j � jga-S.M 0/j, and we are done.

As a simple special case, we have the following.

Corollary 6.4 Suppose that K is weakly �-tame for some � � LS.K/ and �-
totally transcendental with � � �, and suppose that � is a regular cardinal with
� > �. If K is stable on an interval Œ�; �/, K is �-stable.

Proof Let M 2 K be of cardinality �. By the usual union of chains argument,
M has a saturated extension M 0 2 K which is also of cardinality �. Using the
bound in Proposition 6.1, we get jga-S.M 0/j D �, whence � D jM j � jga-S.M/j �

jga-S.M 0/j D �, and thus jga-S.M/j D �. The result follows.

In particular, we have the following.

Corollary 6.5 Suppose that K is weakly �-tame for some � � LS.K/, �-totally
transcendental with � � �, and �-stable for some � � �. Then K is �C-stable.

This is weaker than a result of [2], which infers �C-stability from �-stability in any
AEC that is weakly tame in � � �, with no additional assumptions. The methods of
[2]—splitting, limit models—are better adapted to the task of proving local transfer
results of this form in the context of weakly tame AECs. The machinery of ranks
and total transcendence provides us with leverage of a different sort, well suited to
the task of producing partial spectrum results of a more global nature.

In particular, we saw in Theorem 6.3 that in a �-totally transcendental AEC, even
if merely weakly tame, we may infer stability in � given an adequate supply of sat-
urated extensions of cardinality �. As it happens, the category-theoretic notion of
weak �-stability—introduced in Rosický [11], and analyzed in the context of AECs
in Lieberman [10]—ensures that this requirement is met. The implications of this
fact for the Galois stability spectra of weakly tame AECs are examined in [10].
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