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A Note on Generically Stable Measures and fsg Groups

Ehud Hrushovski, Anand Pillay, and Pierre Simon

Abstract We prove (Proposition 2.1) that if � is a generically stable measure
in an NIP (no independence property) theory, and �.'.x; b// D 0 for all b, then
for some n, �.n/

�
9y.'.x1; y/ ^ � � � ^ '.xn; y//

�
D 0. As a consequence we

show (Proposition 3.2) that if G is a definable group with fsg (finitely satisfiable
generics) in an NIP theory, and X is a definable subset of G, then X is generic
if and only if every translate of X does not fork over ;, precisely as in stable
groups, answering positively an earlier problem posed by the first two authors.

1 Introduction and Preliminaries

This short paper is a contribution to the generalization of stability theory and stable
group theory to NIP theories and also provides another example where we need to
resort to measures to prove statements (about definable sets and/or types) which do
not explicitly mention measures. The observations in the current paper can and will
be used in the future to sharpen existing results aroundmeasure and NIP theories (and
this is why we wanted to record the observations here). Included in these sharpenings
will be the following:

(i) replacing average types by generically stable types in a characterization of
strong dependence in terms of measure and weight in Pillay [6], and

(ii) showing the existence of “external generic types” (in the sense of Newelski
[5]), over any model, for fsg groups in NIP theories, improving on Lemma 4.14 and
related results from [5].

If p.x/ 2 S.A/ is a stationary type in a stable theory and '.x; b/ is any formula,
then we know that '.x; b/ 2 pjC if and only if ˆ

V
iD1;:::;n '.ai ; b/ for some

independent realizations a1; : : : ; an of p (for some n depending on '.x; y/). Hence
'.x; b/ … pjC for all b implies that (and is clearly implied by) the inconsistency
of
V
iD1;:::;n '.ai ; y/ for some (any) independent set a1; : : : ; an of realizations of p.

This also holds for generically stable types in NIP theories (as well as for generically
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stable types in arbitrary theories, as defined in Pillay and Tanovic [7]). In [6], an
analogous result was proved for “average measures” in strongly dependent theories.
Here we prove it (Proposition 2.1) for generically stable measures in arbitrary NIP
theories and give a generalization as well (Remark 2.2).

The fsg condition on a definable groupG is a kind of “definable compactness” as-
sumption, and in fact means precisely this in o-minimal theories and suitable theories
of valued fields (and of course stable groups are fsg). The genericity of a definable
subset X of G means that finitely many translates of X cover G. Proposition 2.1 is
used to show that forX a definable subset of an fsg groupG,X is generic if and only
if every translate of X does not fork over ;. This is a somewhat striking extension of
stable group theory to the NIP environment.

We work with an NIP theory T and inside some monster model C. If A is any
set of parameters, let Lx.A/ denote the Boolean algebra of A-definable sets in the
variable x. A Keisler measure over A is a finitely additive probability measure on
Lx.A/. Equivalently, it is a regular Borel probability measure on the compact space
Sx.A/. We will denote by Mx.A/ the space of Keisler measures over A in the
variable x. We might omit x when it is not needed or when it is included in the
notation of the measure itself (e.g., �x). If X is a sort, or more generally a definable
set, we may also use notation such as LX .A/, SX .A/, MX .A/, where, for example,
SX .A/ denotes the complete types over A which contain the formula defining X (or
which “concentrate on X”).
Definition 1.1 A type p 2 Sx.A/ is weakly random for �x if �.'.x// > 0 for
any '.x/ 2 L.A/ such that p ` '.x/. A point b is weakly random for � over A if
tp.b=A/ is weakly random for �.
We briefly recall some definitions and properties of Keisler measures, referring the
reader to Hrushovski, Pillay, and Simon [4] for more details.

If � 2 Mx.C/ is a global measure and M is a small model, then we say that �
isM -invariant if �.'.x; a/4'.x; a0// D 0 for every formula '.x; y/ and a; a0 2 C
having the same type overM . Such a measure admits a Borel defining scheme over
M . For every formula '.x; y/, the value �.'.x; b// depends only on tp.b=M/ and
for any Borel B � Œ0; 1�, the set ¹p 2 Sy.M/ W �.'.x; b// 2 B for some b ˆ pº is
a Borel subset of Sy.M/.

Let �x 2 M.C/ be M -invariant. If �y 2 M.C/ is any measure, then
we can define the invariant extension of �x over �y , denoted by �x ˝ �y .
It is a measure in the two variables x; y defined in the following way. Let
'.x; y/ 2 L.C/. Take a small model N containing M and the parameters of '.
Define �x ˝ �y.'.x; y// D

R
f .p/ d�y ; the integral ranging over Sy.N / where

f .p/ D �x.'.x; b// for b 2 C, b ˆ p. (This function is Borel by Borel definabil-
ity.) It is easy to check that this does not depend on the choice of N .

If �y is also invariant, then we can also form the product �y ˝ �x . In general it
will not be the case that �y ˝ �x D �x ˝ �y .

If �x is a globalM -invariant measure, then we define by induction: �.n/x1;:::;xn
by

�
.1/
x1
D �x1

and �nC1x1;:::;xnC1
D �xnC1

˝ �
.n/
x1;:::;xn

. We let �.!/x1x2��� be the union and
call it the Morley sequence of �x .

Special cases of M -invariant measures include definable and finitely satisfiable
measures. A global measure �x is definable overM if it isM -invariant and for every
formula '.x; y/ and open interval I � Œ0; 1� the set ¹p 2 Sy.M/ W �.'.x; b// 2 I
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for some b ˆ pº is open in Sy.M/. The measure � is finitely satisfiable in M
if �.'.x; b// > 0 implies that '.x; b/ is satisfied in M . Equivalently, any weakly
random type for � is finitely satisfiable inM .

Lemma 1.2 Let � 2 Mx.C/ be definable over M , and let p.x/ 2 Sx.C/
be weakly random for �. Let '.x1; : : : ; xn/ be a formula over C. Suppose that
'.x1; : : : ; xn/ 2 p

.n/. Then �.n/.'.x1; : : : ; xn// > 0.

Proof Note that p.m/ is M -invariant for all m. The proof of the lemma is by in-
duction on n. For n D 1 it is just the definition of weakly random. Assume this to be
true for n, and we prove it for nC 1. So suppose that '.x1; : : : ; xn; xnC1/ 2 p.nC1/.
This means that for .a1; : : : ; an/ realizing p.n/jM , '.a1; : : : ; an; x/ 2 p. So as p
is weakly random for �, �.'.a1; : : : ; an; x// D r > 0. So as � is M -invariant,
tp.a01; : : : ; a0n=M/ D tp.a1; : : : ; an=M/ implies that �.'.a01; : : : ; a0n; x// D r and
thus also that r � � < �.'.a01; : : : ; a

0
n; x// for any small positive �. By definability

of � and compactness there is a formula  .x1; : : : ; xn/ 2 tp.a1; : : : ; an=A/ such
that ˆ  .a01; : : : ; a

0
n/ implies that 0 < r � � < �.'.a01; : : : ; a

0
n; x//. By the induc-

tion hypothesis, �.n/. .x1; : : : ; xn// > 0. So by definition of �.nC1/ we have that
�.nC1/.'.x1; : : : ; xn; xnC1// > 0, as required.

A measure �x1;:::;xn
is symmetric if for any permutation � of ¹1; : : : ; nº and any for-

mula '.x1; : : : ; xn/, we have �.'.x1; : : : ; xn// D �.'.x�:1; : : : ; x�:n//. A special
case of a symmetric measure is given by powers of a generically stable measure as
we recall now. The following is Theorem 3.2 of [4].

Fact 1.3 Let �x be a globalM -invariant measure. Then the following are equiv-
alent:

(1) �x is both definable and finitely satisfiable (necessarily overM );
(2) �.n/x1;:::;xn

jM is symmetric for all n < !;
(3) for any globalM -invariant Keisler measure �y , �x ˝ �y D �y ˝ �x ;
(4) � commutes with itself: �x ˝ �y D �y ˝ �x .

If �x satisfies one of those properties, we say that it is generically stable.

If � 2 Mx.A/ and D is a definable set such that �.D/ > 0, we can consider
the localization of � at D which is a Keisler measure �D over A defined by
�D.X/ D �.X \D/=�.D/ for any definable set X .

We will use the notation Fr.�.x/; x1; : : : ; xn/ to mean
1

n

ˇ̌®
i 2 ¹1; : : : ; nº Wˆ �.xi /

¯ˇ̌
:

The following is a special case of Lemma 3.4 of [4].

Proposition 1.4 Let '.x; y/ be a formula overM , and fix r 2 .0; 1/ and � > 0.
Then there is n such that for any symmetric measure �x1;:::;x2n

, we have
�x1;:::;x2n

�
9y
�ˇ̌
Fr
�
'.x; y/; x1; : : : ; xn

�
� Fr

�
'.x; y/; xnC1; : : : ; x2n

�ˇ̌
> r

��
� �:

2 Main Result

Proposition 2.1 Let �x be a global generically stable measure. Let '.x; y/ be
any formula in L.C/. Suppose that �.'.x; b// D 0 for all b 2 C. Then there is n
such that �.n/

�
9y.'.x1; y/ ^ � � � ^ '.xn; y//

�
D 0.

Moreover, n depends only on '.x; y/ and not on �.
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Proof Let �x be a global generically stable measure, and let M be a small
model over which '.x; y/ is defined and such that �x isM -invariant. Assume that
�.'.x; b// D 0 for all b 2 C. For any k, define

Wk D
°
.x1; : : : ; xk/ Wˆ 9y

� ^
iD1;:::;k

'.xi ; y/
�±
:

This is a definable set. We want to show that �.n/.Wn/ D 0 for n big enough.
Assume, for a contradiction, that this is not the case.

Let n be given by Proposition 1.4 for r D 1=2 and � D 1=2. Consider the
measure �x1;:::;x2n

overM defined as being equal to �.2n/ localized on the set W2n.
(By our assumption, this is well defined.) As the measure �.2n/ is symmetric and
the set W2n is symmetric in the 2n variables, the measure � D �x1;:::;x2n

mentioned
above is symmetric. Let �.x1; : : : ; x2n/ be the formula .x1; : : : ; x2n/ 2 W2n ^

8y
�
jFr.'.x; y/; x1; : : : ; xn/�Fr.'.x; y/; xnC1; : : : ; x2n/j � 1=2

�
. By definition of

n, we have �
�
9y.jFr.'.x; y/; x1; : : : ; xn/�Fr.'.x; y/; xnC1; : : : ; x2n/j > 1=2/

�
�

1=2. Therefore �.2n/.�.x1; : : : ; x2n// > 0.
As � isM -invariant, we can write

�.2n/
�
�.x1; : : : ; x2n/

�
D

Z
q2Sx1;:::;xn .M/

�.n/
�
�.q; xnC1; : : : ; x2n/

�
d�.n/;

where �.n/.�.q; xnC1; : : : ; x2n// stands for �.n/.�.a1; : : : ; an; xnC1; : : : ; x2n// for
some (any) realization .a1; : : : ; an/ of q. As �.2n/.�.x1; : : : ; x2n// > 0, there is
q 2 Sx1;:::;xn

.M/ such that

�.n/
�
�.q; xnC1; : : : ; x2n/

�
> 0: (*)

Fix some .a1; : : : ; an/ ˆ q. By (*), we have .a1; : : : ; an/ 2 Wn. So let b 2 C
be such that ˆ

V
iD1;:::;n '.ai ; b/. Again by (*), we can find some .anC1; : : : ; a2n/

weakly random for �.n/ overMa1; : : : ; anb and such that

ˆ �.a1; : : : ; an; anC1; : : : ; a2n/: (**)

In particular, for j D nC 1; : : : ; 2n, aj is weakly random for � overMb, and hence
ˆ :'.aj ; b/. But then jFr.'.x; b/I a1; : : : ; an/ � Fr.'.x; b/I anC1; : : : ; a2n/j D 1.
This contradicts (**).

Remark 2.2 The proof above adapts to showing the following generalization. Let
�x be a global generically stable measure, and let '.x; y/ be a formula in L.C/.
Let †.x/ be the partial type (over the parameters in ' together with a small model
over which � is definable) defining ¹b W �.'.x; b// D 0º. Then for some n,
�.n/

�
9y.†.y/ ^ '.x1; y/ ^ � � � ^ '.xn; y//

�
D 0.

3 Generics in fsg Groups

Let G be a definable group, without loss defined over ;. We call a definable subset
X of G left (right) generic if finitely many left (right) translates of X cover G, and
a type p.x/ 2 SG.A/ is left (right) generic if every formula in p is. In Hrushovski,
Peterzil, and Pillay [2], we originally definedG to have “finitely satisfiable generics,”
or to be fsg, if there is some global complete type p.x/ 2 SG.C/ of G, every left
G-translate of which is finitely satisfiable in some fixed small modelM .
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The following summarizes the situation, where the reader is referred to [2, Propo-
sition 4.2] for (i) and [3, Theorem 7.7] and [4, Theorem 4.3] for (ii), (iii), and (iv).

Fact 3.1 Suppose that G is an fsg group. Then we have the following.
(i) A definable subset X of G is left generic iff it is right generic, and the family

of nongeneric definable sets is a (proper) ideal of the Boolean algebra of definable
subsets of G.

(ii) There is a left G-invariant Keisler measure � 2MG.C/ which is generically
stable.

(iii) Moreover, � from (ii) is the unique left G-invariant global Keisler measure
on G as well as the unique right G-invariant global Keisler measure on G.

(iv) Moreover, � from (ii) is generic in the sense that for any definable set X ,
�.X/ > 0 iff X is generic.

Remember that a definable set X (or rather a formula '.x; b/ defining it) forks over
a set A if '.x; b/ implies a finite disjunction of formulas  .x; c/, each of which
divides over A; and  .x; c/ is said to divide over A if for some A-indiscernible
sequence .ci W i < !/ with c0 D c, ¹'.x; ci / W i < !º is inconsistent.

Proposition 3.2 Suppose that G is fsg and that X � G a definable set. Then X
is generic if and only if for all g 2 X , g �X does not fork over ; (if and only if for all
g 2 G, X � g does not fork over ;).

Proof Left to right: It suffices to prove that any generic definable set X does not
fork over ;, and as the set of nongenerics forms an ideal it is enough to prove that
any generic definable set does not divide over ;. This is carried out in (the proof of )
[3, Proposition 5.12].

Right to left: Assume that X is nongeneric. We will prove that for some g 2 G,
g �X divides over ; (so also forks over ;).

Let �x be the generically stable G-invariant global Keisler measure given by
Fact 3.1. Let M0 be a small model such that � does not fork over M0 (namely,
as � is generic, every generic formula does not fork over M0) and X is definable
over M0. Let '.x; y/ denote the formula defining ¹.x; y/ 2 G � G W y 2 x � Xº.
So ' has additional (suppressed) parameters from M0. Note that for b 2 G,
'.x; b/ defines the set b � X�1. As X is nongeneric, so is X�1, and so also
is b � X�1 for all b 2 G. Hence, as � is generic, �.'.x; b// D 0 for all b.
By Proposition 2.1, for some n �.n/

�
9y.'.x1; y/ ^ � � � ^ '.xn; y//

�
D 0. Let

p be any weakly random type for � (which in this case amounts to a global
generic type, which we note is M0-invariant). So by Lemma 1.2 the formula
9y.'.x1; y/ ^ � � � ^ '.xn; y// … p.n/. Let .a1; : : : ; an/ realize p.n/jM0. Then
.a1; : : : ; an/ extends to anM0-indiscernible sequence .ai W i D 1; 2; : : :/, a Morley
sequence in p over M0, and ˆ :9y.'.a1; y/ ^ � � � ^ '.an; y//. So, in particular,
¹'.ai ; y/ W i D 1; 2; : : :º is inconsistent. Hence the formula '.ai ; y/ divides over
M0, and so also divides over ;. But '.a1; y/ defines the set a1 �X , so a1 �X divides
over ;, as required.

Recall that we called a global type p.x/ of a ;-definable group G left f -generic if
every left G-translate of p does not fork over ;.

We conclude the following (answering positively [3, Problem 5.5] as well as
strengthening Conversano and Pillay [1, Lemma 4.14]).
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Corollary 3.3 Suppose that G is fsg and that p.x/ 2 SG.C/. Then the following
are equivalent:

(i) p is generic;
(ii) p is left (right) f -generic;
(iii) (left or right) Stab.p/ has bounded index inG (where left Stab.p/ D ¹g 2 G W

g � p D pº).

Proof The equivalence of (i) and (ii) is given by Proposition 3.2 and the defini-
tions. We know from [2, Corollary 4.3] that if p is generic, then Stab.p/ is precisely
G00. Now suppose that p is nongeneric. Hence there is a definable set X 2 p such
thatX is nongeneric. LetM be a small model over whichX is defined. Note that the
fsg property is invariant under naming parameters. HenceG is fsg in Th.C; m/m2M .
By Proposition 3.2 (as well as what is proved in “right to left” there), for some
g 2 G, g � X divides over M . As X is defined over M , this means that there is
anM -indiscernible sequence .g˛ W ˛ < N�/ (where N� is the cardinality of the monster
model) and some n such that g˛1

�X \ � � � \ g˛n
�X D ; whenever ˛1 < � � � < ˛n.

This clearly implies that among ¹g˛ � p W ˛ < N�º, there are N� many types, whereby
Stab.p/ has unbounded index.
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