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dp-Rank and Forbidden Configurations

Hunter Johnson

Abstract A theory T is shown to have an ICT pattern of depth k in n variables
iff it interprets some k-maximum VC class in n parameters.

1 Introduction

We begin with the definition of an independent contradictory types (ICT) pattern.
Our definition comes from Adler [2] as adapted from Shelah. The definition as-
sumes an ambient theory T in a language L, and a monster model from which the
parameters are taken.

Definition 1.1 For a cardinal �, an ICT pattern of depth � in variables Nx is a set
of formulas ¹ ˛. NxI Ny˛/ W ˛ < �º together with an array h Nb˛n W ˛ < �; n < !i such
that lg. Nb˛n / D lg. Ny˛/ and for any � W � ! !, the set of formulas®

 ˛. NxI Nb
˛
�.˛// W ˛ < �

¯
[
®
: ˛. NxI Nb

˛
n / W ˛ < �; n < !; �.˛/ ¤ n

¯
(1)

is consistent.

Intuitively, an ICT pattern constitutes an array of formulas with � rows and !
columns, such that for any “path” downward through the array it is consistent that
exactly the formulas appearing on the path are nonnegated.

Though ICT patterns and definitions of other similarly array-based notions (such
as independent partition [INP] patterns) appear in Shelah, interest in them partly
stems from Onshuus and Usvyatsov [10], who extracted from Shelah a simple con-
cept of dp-rank and in particular dp-minimality.

Shelah investigated a cardinal invariant of a theory T , denoted �ict, defined as the
least infinite cardinal (should it exist) such that T does not admit an ICT pattern of
depth �ict. When �ict exists, T is said to be dependent, and when �ict D @0, T is said
to be strongly dependent (see Shelah [14], [13]). Note that because many formulas
are involved in the definition of an ICT pattern, strong dependence does not imply a
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finite bound on the possible depth of an ICT pattern. Nonetheless, it is possible to
study the properties of finite cardinal bounds as well. Onshuus and Usvyatsov define
dp-rank for a partial type p. Nx/ as the maximum cardinal � (possibly finite) such that
p. Nx/ is consistent with an ICT pattern in variables Nx of depth �.

In this paper we generally assume p. Nx/ D ¹ Nx D Nxº, so that we are really consid-
ering the dp-rank of a certain sequence of variables Nx. We define dpRT .n/ as the
dp-rank of any partial type ¹ Nx D Nxº in T , where lg. Nx/ D n and all variable symbols
occuring in Nx are distinct. This is clearly independent of the particular Nx chosen.
When the theory under consideration is obvious, we suppress the dependence on T
and simply write dpR.n/.

We call a set system interpretable in T if it can be realized as a subfamily of
some definable family in a model of T , possibly after (nondefinably) restricting the
domain of the family. Our usage of the word is somewhat nonstandard, and a more
formal definition of our meaning is given at the end of Section 2. As is frequently
the case in model-theoretic definitions, dp-rank can be understood in terms of the
interpretability of certain set systems in models of the theory. Dependence in T ,
for example, can be defined by forbidding models of T from interpreting an infinite
power set. Stability of a theory can be expressed as a statement about forbidding the
interpretation of set systems which resemble a linear order.

While these classical concepts are defined on the basis of finite/infinite distinc-
tions, we wish to consider the more fine-grained question of which set families can
be interpreted inM n when M ˆ T and dpRT .n/ D k.

In this paper (see Theorem 4.10) we have shown that a cardinality-based prop-
erty of interpretable set systems is sufficient to characterize dpRT .n/. The property
we consider, the maximum property, can be viewed as a homogeneity condition on
Vapnik–Chervonenkis (VC) density. (This notion is described in Aschenbrenner et
al. [3].) Along the course of our investigation we encounter set systems which are
characterized in terms of certain forbidden configurations (see Definition 2.9). We
describe the relation of these forbidden configurations to the alternation properties
of a dependent formula and to dp-rank.

2 Definitions and Basic Facts

In this section we introduce notation and give some background on VC classes. For
the purposes of the paper, fix a complete theory T in a language L. We consider L-
formulas '. NxI Ny/which are partitioned in the sense that the Ny-variables are viewed as
parameters. The semicolon indicates the separation of variables. We use the symbol
M to denote a monster model of T . The model M is assumed to be saturated in a
high cardinality and to be sufficiently large to admit an elementary embedding of all
other models and sets considered. We will be interested in combinatorial properties
of formulas '. NxI Ny/. These are sometimes conveniently expressed by considering the
family of sets defined by ' on M as its parameters vary.

We use the convention that whenever A � M j Nxj and Nb 2 M j Nyj, the symbol
'.AI Nb/ denotes

'.AI Nb/ D
®
Na 2 A WM ˆ '. NaI Nb/

¯
:

For A � M j Nyj and B � M j Nxj, let C'.B/
A D ¹'.B; Nb/ W Nb 2 Aº. We let C'.B/

where no parameter set is specified implicitly denote C'.B/
M j Nyj . The abbreviation

C'.M/ will be used for C'.M
j Nxj/M

j Nyj .
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It was observed by Laskowski [9] that the independence dimension of '. NxI Ny/ is
the VC dimension of C'.M/. We give several definitions related to the VC dimen-
sion. For a set X , we represent the power set of X by 2X D ¹A W A � Xº.

Definition 2.1 Let X be a set, let A � X , and let C � 2X . Define
C.A/ D ¹c \ A W c 2 Cº:

Say that C shatters A if C.A/ D 2A. Let the VC dimension of C , denoted VC.C/,
be defined as sup¹jAj W A � X;C shatters Aº. We say that C is a VC class if
VC(C/ < !.

It is clear from Laskowski’s observation that T is dependent, that is, not the inde-
pendence property (NIP) if and only if every L-formula '. NxI Ny/ induces a definable
family in M which is a VC class.

For n 2 !, d 2 !, define ˆd .n/ D
Pd
iD0

�
n
i

�
if n � d and 2n otherwise.

The following lemma was discovered independently by Sauer [11], Perles, and
Shelah [12], and in an asymptotic form by Vapnik and Chervonenkis [15].

Lemma 2.2 (Sauer’s lemma; see [11], [12], [15]) Suppose C � 2X for a set X . If
VC.C/ D d and A � X is finite, then

jC.A/j � ˆd .jAj/:

We now define maximum VC classes, which were investigated first by Welzl [16],
who called them “complete range spaces.” They are defined by the property that they
always realize the bound imposed by Sauer’s lemma.

Definition 2.3 Suppose C � 2X and VC.C/ D d . Say that C is maximum of
VC-dimension d (or d -maximum) if for all finite A � X ,

jC.A/j D ˆd .jAj/:

If sets are added to a VC class until no more can be added without increasing the VC
dimension, the result is not necessarily maximum. Therefore the following definition
is useful.

Definition 2.4 (see Dudley [4]) Suppose C � 2X and VC.C/ D d . Say
that C is maximal of VC-dimension d (or d -maximal) if for any c 2 2X n C ,
VC.C [ ¹cº/ D d C 1.

Proposition 2.5 If for a finite setX , C � 2X is maximum, then it is also maximal.

Proof This follows from Sauer’s lemma.

Definition 2.6 Say that a partitioned formula '. NxI Ny/ is d -maximum (maximal)
in M if C'.M/ is d -maximum (maximal).

While being maximum does not depend on the model used in the above definition,
being maximal does.

Let C � 2X be d -maximum. For any A � X with jAj D d C 1, jC.A/j D
ˆd .d C 1/ D 2dC1 � 1. Let the unique A� 2 2A n C.A/ be called the forbidden
label for C on A (see Floyd’s thesis in [5, Section 3.4]).

Example 2.7 Let X be an infinite set, let d 2 !, and let C D ŒX�d . Then for any
A � X of cardinality d C 1, the forbidden label for C on A is A itself.
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Example 2.8 Let X D Q and C D Cx<y.Q/. Then for ¹a; bº � Q with a < b,
the forbidden label for C on ¹a; bº is ¹bº.

For a set X and n 2 !, we use the notation ŒX�n D ¹A � X W jAj D nº and
ŒX��n D ¹A � X W jAj � nº.

Definition 2.9 Let X be a set linearly ordered by <. Let the function � W
ŒX�dC1 ! 2dC1 assign a forbidden label to every subset of X of size d C 1 by
associating every A D ¹a0; : : : ; ad º, a0 < a1 < � � � < ad with the forbidden label
A� D ¹ai 2 A W �.A/.i/ D 1º. Say that C � 2X is characterized by � if, for all
c � X , we have c 2 C ” 8A 2 ŒX�dC1.c \ A ¤ A� /.

If � is constantly � for some � 2 2dC1 and C is characterized by � , we will abuse
notation and say that C is characterized by �. Sometimes we will refer to � as a
forbidden label, even though it is technically only a bit string. We do this because �
gives the form for all forbidden labels in C .

We will usually be interested in finite sets, and so the following definition is con-
venient.

Definition 2.10 For a linearly ordered set .X;</, C � 2X , d 2 !, and � 2 2dC1,
say that C is finitely characterized by � if for every finite X0 � X , C.X0/ is charac-
terized by �.

We would like to establish that if C � 2X is characterized by � 2 2dC1, then C is
finitely characterized by �. Toward this end we give the following lemma. For any
B � X , we say that c � B traces (or induces) � on B if there are b0 < � � � < bd in
B such that bi 2 c iff �.i/ D 1.

Lemma 2.11 Let .X;</ be a linearly ordered set, and choose any finite B � X ,
d 2 !, and � 2 2dC1. Then for any c � B not inducing � on B there can be found
some c0 � X which does not induce � on X and such that c0 \ B D c \ B .

Proof We prove the lemma by induction on � as a binary string. The base cases
� D h0i and � D h1i are clear. Now suppose for s; t 2 2, � 2 2dC1 has ending digit
s, and � D �_hti.

Let a finite B � X be given. Suppose that c � B does not induce � on B . If c
does not induce � on B , then by inductive hypothesis there exists c0 � X such that
c0 does not induce � on X . A fortiori c0 fails to trace � as well.

Now suppose that c does induce � on B . Let b0 < � � � < bd be a least witness
in the sense that bd is lowest. Define B<bd D ¹b 2 B W b < bd º. Now c \ B<bd
does not induce � on B<bd , and so, by inductive hypothesis, there is c0 � X such
that c0 \B<bd D c \B<bd and c0 does not induce � on X . Let �c0 W X ! 2 be the
characteristic function of c0, with �c0.a/ D 1 iff a 2 c. Define �c similarly. Then
�c.bd / D s, and �c is constantly 1 � t on B>bd , for otherwise c would induce �.
Define

��.x/ D

8̂<̂
:
�c0.x/ if x < bd ;
s if x D bd ;
1 � t if x > bd :

(2)

Then �� is a total function on X which agrees with �c on B . Let c� be the set
associated to the characteristic function ��.
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We must show that c� does not induce � on X . By way of contradiction, suppose
that there are a0 < � � � < adC1 such that ai 2 c� iff �.i/ D 1. By the choice of c0,
ad � bd . Therefore adC1 > bd . Then ��.adC1/ D 1 � t by definition of ��, and
��.adC1/ D t by definition of �. This is a contradiction.

Note that in Lemma 2.11 the assumption that B is finite can be removed if .X;</ is
a well-ordering, since that assumption is only used to get a least witness.

Corollary 2.12 For any linearly ordered set .X;</, � 2 2dC1, and C � 2X , if C

is characterized by �, then C is finitely characterized by �.

Proof Let B � X be a finite subset. Clearly nothing in C.B/ traces � on B .
Suppose that c � B does not trace �. By Lemma 2.11 there is c0 � X which does
not trace � on X and such that c0\B D c. Then by hypothesis c0 2 C , and therefore
c 2 C.B/.

When .X;</ is well ordered, the above corollary can be strengthened to say that if
C is characterized by �, then C.X0/ is characterized by � for any X0 � X .

The following definitions will be needed in the next section.

Definition 2.13 If .I; </ is a linear order and h Nai ii2I is a sequence of points in
M n, we say that the sequence is indiscernible if for every formula '. Nv1; : : : ; Nvn/ and
subsequences i1 < � � � < in and j1 < � � � < jn of I , M ˆ '. Nai1 ; : : : ; Nain/ �

'. Naj1 ; : : : ; Najn/.

We will classify maximum VC classes on indiscernible sequences modulo the fol-
lowing equivalence relation, which we call similarity.

Definition 2.14 If C1 � 2
X and C2 � 2

X , say C1 � C2 if for every finiteA � X ,
C1.A/ D C2.A/.

Note that if C1 � C2 and C1 is finitely characterized by some � 2 2dC1, then C2
is also finitely characterized by �. Also, any C1 and C2 finitely characterized by the
same � 2 2dC1 will have C1 � C2.

Say that the theory T interprets C � 2X in n parameters if there is an L-formula
'. NxI Ny/, Ny D hy1; : : : ; yni, and an injection f W X ! M j Nxj such that for all c 2 C

there is Nbc 2M n such that
c D

®
x 2 X WM ˆ '

�
f .x/I Nbc

�¯
:

Note that there could exist extraneous Nb such that®
x 2 X WM ˆ '

�
f .x/I Nb

�¯
… C :

3 Alternation Conditions and Forbidden Labels

Set systems C � 2X which are characterized by some � 2 2dC1 for d 2 ! will play
a central role in the results below, and therefore we will say a few words about how
these can be understood. We offer no proofs in this section, though the claims can be
easily derived by considering the proof of Lemma 4.1 (see the remark following that
lemma).

When C � 2X is characterized by �, with the implicit ordering on X , every
set in C is given a geometric form by � in a way that is similar to, in fact stronger
than, the restrictions given by alternation number. Adler [1] includes a discussion of
alternation number, which is usually defined on an indiscernible sequence.
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Table 1 A key for directly translating forbidden labels to set-theoretic expressions.

code translation
h1 : : :i do nothing
h0 : : :i .�1; : : :

h: : : 0; 0 : : :i remove point
h: : : 0; 1 : : :i end interval
h: : : 1; 0 : : :i begin interval
h: : : 1; 1 : : :i add point
h: : : 0i : : : ;1/

h: : : 1i do nothing

Table 2 A binary string translated to a set system finitely characterized by it. Spaces
between digits can be seen as regions of alternation. We assume

a < b < c < d < e < f < g.

1,1,0,0,1,0,1,0
;1a1.b0nc0d/1.e0f /1.g01/
¹aº [ .b; d/ n ¹cº [ .e; f /[ .g;1/

Table 3 A set system translated to its finitely characterizing forbidden label. We
assume a < b < c < d < e < f .

.�1; b/ n ¹aº [ ¹c; dº [ .e; f /

.�10na0b/1c1d1.e0f /1

0,0,1,1,1,0,1

Definition 3.1 For a linear order .X;</ and A � X , the alternation number of
A in X is n 2 ! if there are a1 < � � � < an 2 X such that ai 2 A iff aiC1 … A for all
i D 1; : : : ; n � 1, and there are not nC 1 such elements in X .

The alternation number of a family C is naturally defined as the supremum of the
alternation numbers of its member sets. Note that any C finitely characterized by
a forbidden label has a finite alternation number. In particular, any c 2 C with
alternation number 2.d C 1/ induces every � 2 2dC1.

If C is characterized by �, then in some sense � contains all of the information
(modulo completeness properties of the order) about how the members of C alter-
nate. In particular it determines the alternation number of C . The converse fails,
however; the alternation number is less restrictive, although more robust.

For instance, the set systems ¹.a; b/ W a < b 2 Qº and ¹¹aº W a 2 Qº in
Q both have alternation number 3 with respect to the usual ordering on Q. But
they are clearly quite different. This difference is reflected in the different � which
characterize them; these are, respectively, h1; 0; 1i and h1; 1i.

The key for translating between set-theoretic expressions and corresponding � is
given in Table 1. We can view Table 1 as a procedure for translating a bit-string
into an order-theoretic expression. Table 2 illustrates the translation procedure, and
Table 3 shows a reverse translation.

As can be seen from considering the tables, a forbidden label gives something
like the form of a member of C . Conversely, for any given form of a point-interval
system (where the order in which points and intervals occur is held constant) there is
an associated forbidden label.
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4 Order Formulas

In this section we show that any maximum family on a sequence of indiscernibles is
similar to a family defined on the sequence by a quantifier-free (q.f.) formula in the
language L D ¹<º.

For simplicity we will restrict our attention to dense linear orders without end-
points (DLO), and in particular the structure .Q; </. We will make occasional use
of the well-known fact that any dense linear order is an L D ¹<º indiscernible se-
quence.

For any q.f. order formula '.xIy1; : : : ; yn/, define cof.'/ to be 1 if for some
(equivalently any) strictly increasing sequence a1 < � � � < an < anC1 in Q,

Q ˆ '.anC1I a1; a2; : : : ; an/;

and 0 otherwise.
For an order formula  . NxI Ny/, define

Co D
®
 .QI a1; : : : ; an/ W ai 2 Q; a1 < � � � < an

¯
:

This is a subfamily of C , corresponding to the sets definable by  with parameters
in increasing order. When we wish to restrict to some A � Qj Nxj, we use the notation

Co .A/ D
®
 .AI a1; : : : ; an/ W ai 2 Q; a1 < � � � < an

¯
as in the previous section. To restrict the parameter set to some B � Q, we will write
Co .A/

B D ¹ .AI a1; : : : ; an/ W ai 2 B; a1 < � � � < anº.
Let † denote the collection of q.f. L D ¹<º formulas in at least the variable x,

partitioned so that x is the only left-hand (nonparameter) variable.

Lemma 4.1 For any d 2 ! and � 2 2dC1, there exists some formula
 .xIy1; : : : ; yd / 2 † such that Co is finitely characterized by �.

Proof We show this by induction on binary strings. For the base case, observe that
h0i finitely characterizes x D x and h1i finitely characterizes x ¤ x. We will carry
the additional inductive hypothesis that cof.'/ D 0 iff � D �_h1i for some �.

For the induction step, suppose for '.xIy1; : : : ; yd / 2 † and � 2 2dC1 that we
have Co' finitely characterized by � D �_hsi for s 2 2.

We must find  s0 ;  s1 2 † such that �_hii finitely characterizes Co
 s
i

for i D 0; 1.
We divide the argument into cases based on cof.'/. First suppose that

cof.'/ D 0, and consequently, s D 1 by inductive hypothesis. Define

 10 .xIy1; : : : ; ydC1/ D '.xIy1; : : : ; yd / _ x > ydC1:

Claim 4.2 Co
 1
0

is finitely characterized by �_h0i.

Let A � Q be finite, and let C � A. Suppose there are no elements B D b1 < � � � <
bdC1 < bdC2 in A such that C traces �_h0i on B . We must show C 2 Co

 1
0

.A/.
Consider these cases.

1. There are B D b1 < � � � < bdC1 in A such that C traces � on B .
2. There are no such B .

Suppose case 2 holds. By inductive hypothesis C 2 Co' .A/. Then picking the ydC1-
parameter sufficiently large, C 2 Co

 1
0

.A/.
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Suppose case 1 holds. Let B D b1 < � � � < bdC1 be a least witness, in the sense
that bdC1 is minimal. Therefore if we define A<bdC1 WD ¹a 2 A W a < bdC1º

and C 0 D C \ A<bdC1 , then by inductive hypothesis C 0 2 Co' .A<bdC1/. Let this
be witnessed by parameters a1 < � � � < ad . By indiscernibility, we may assume
ad < bdC1. Since cof.'/ D 0, we have � D �_h1i for some � 2 2d . Then, by the
hypothesis on C , A�bdC1 � C . Now, picking adC1 between bd and bdC1, we have
a parameter set a1 < � � � < ad < adC1 putting C 2 Co

 1
0

.A/.
Consider the converse, that if C 2 Co

 1
0

.A/, then there are not B D b1 < � � � <

bdC1 < bdC2 in A such that C traces �_h0i on B . Suppose, by way of contra-
diction, that this situation holds. Let the parameters a1 < � � � < adC1 witness
C 2 Co

 1
0

.A/, where C traces �_h0i on B . Considering the form of  10 , we must
have adC1 > bdC2, because bdC2 … C . But then '.xI a1; : : : ; ad / induces � on
b1 < � � � < bdC1. This gives a contradiction, completing the claim.

Define

 11 .xIy1; : : : ; ydC1/ D '.xIy1; : : : ; yd / _ x D ydC1:

Claim 4.3 Co
 1
1

is finitely characterized by �_h1i.

The proof of this claim, and the cases for cof.'/ D 1, are similar to the above. Here
are the remaining forms, with the proof left to the reader:

 00 .xIy1; : : : ; ydC1/ D '.xIy1; : : : ; yd / ^ x ¤ ydC1

and
 01 .xIy1; : : : ; ydC1/ D '.xIy1; : : : ; yd / ^ x < ydC1:

Note that the forms of the formulas  st , for s; t 2 2, given in Lemma 4.1 justify the
entries in Table 1.

Definition 4.4 For a given � 2 2dC1,

†.�/ WD ¹'.xIy1; : : : ; yn/ 2 † W C
o
' is finitely characterized by �º:

Proposition 4.5 For every q.f. order formula '.xI Ny/, Co' is finitely characterized
by some forbidden label. In other words, the collection ¹†.�/ W � 2 2dC1; d 2 !º is
a partition of †.

Proof The proof is by induction on formulas. It is easy to see that the claim holds
for x D x and x ¤ x. Now fix some formula '.xI Ny/ such that Co' is finitely
characterized by �, where � D �_hsi for some � 2 2d and s 2 2. As in Lemma 4.1,
we carry the inductive hypothesis that s D 1 � cof.'/. Let N� 2 2dC1 be defined by
N�.i/ D 1 � �.i/ for all i < d C 1.

Claim 4.6 Co:' is finitely characterized by N�.

Let A � Q. Then c 2 Co:'.A/ if and only if A n c 2 Co' .A/, which holds if and only
if Anc does not induce � on A. This last condition is equivalent to the statement that
c does not induce N� on A. This proves the claim.

Consider these cases for the remainder of the induction. All other cases follow
from logical manipulations and the claim:

1.  1.xI Ny; y/ D '.xI Ny/ _ x > y,
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2.  2.xI Ny; y/ D '.xI Ny/ _ x < y,
3.  3.xI Ny; y/ D '.xI Ny/ _ x D y.
Consider  1.xI Ny; y/. If s D 0, then cof.'/ D 1 and Co 1 D Co' . If s D 1,

then by the arguments from Lemma 4.1, Co 1 is finitely characterized by �_h0i.
Consider  2.xI Ny; y/. If s D 0, then cof.'/ D 1 and Co 2 D ¹Qº, and Co 2 is finitely
characterized by h0i. If s D 1 and cof.'/ D 0, then Co 2 D Cox<y , and Co 2 is
finitely characterized by h0; 1i. Consider  3.xI Ny; y/. If s D 0, then cof.'/ D 1

and Co 3 D Co' . If s D 1, then by the arguments from Lemma 4.1, Co 3 is finitely
characterized by �_h1i.

We have so far focused our attention on order formulas, and the structure Q. Under
certain circumstances, however, the results above have implications to maximum
formulas in general.

To see more clearly why this is true, consider an L-formula '. NxI Ny/, which is
d -maximum in M. Suppose A D hNai ii2I is a linearly ordered sequence in M j Nxj
such that for some B � M j Nyj, C'.A/

B admits forbidden labels only of the form �

for some � 2 2dC1. Under these circumstances, C'.A/
B will actually be finitely

characterized by �, as follows from Proposition 2.5.
By Lemma 4.1, there is a q.f. order formula �.x; y1; : : : ; yn/ 2 †.�/ which is

also finitely characterized by �, though in Q rather than M. This � gives much
information about how C'.A/

B behaves in A.
In particular, let L0 consist of a single 2j Nxj-ary relation �. Since A is a small

subset ofM j Nxj, we may expand M to L [ L0 in such a way that .M j Nxj;�/ ˆ DLO
and . Nai � Naj /M iff i < j . Define the L0-formula � 0. NxI Ny1; : : : ; Nyd / by replacing
each instance of < in � with �, each instance of x by Nx, and each instance of yi by
Nyi , and let Co

� 0
.A/ WD ¹� 0.AI Na1; : : : ; Nan/ W Nai 2M

j Nxj; Na1 � � � � � Nanº.
The following holds.

Corollary 4.7 With the definitions above, C'.A/
B � Co

� 0
.A/.

Proof It suffices to show that for any finite A0 � A, both C'.A0/
B and Co

� 0
.A0/

are characterized by �. That C'.A0/
B is characterized by � holds by choice of ',

A, and B . By defining an appropriate partial isomorphism between .M j Nxj;�/ and
.Q; </, and using the similarities of � 0 and � , it follows that Co

� 0
.A0/ is characterized

by � also.

We now want to show that for any theory T , the property of interpreting some d -
maximum class is equivalent to interpreting Œ!�d . Define Z� D ¹.2i; 2i C 1/ W

i 2 Zº.

Lemma 4.8 Let '.xI Ny/ be a q.f. L D ¹<º formula such that Co' is finitely char-
acterized by � 2 2dC1, and define

 '.x1; x2I Ny/ D :
�
'.x1I Ny/ � '.x2I Ny/

�
:

Then Co ' .Z
�/ D ŒZ���d .

Proof We show this by induction on formulas. The statement is obvious for the
basic formulas. Suppose the lemma holds for '.xIy1; : : : ; yn/, a q.f. L D ¹<º
formula. By Proposition 4.5, Co' is finitely characterized by some � 2 2dC1. Fix
this �. We divide the argument into cases depending on cof.'/.
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Suppose cof.'/ D 0, and consider

�.xIy1; : : : ; ynC1/ WD '.xI Ny/ _ x > ynC1:

By the arguments in Lemma 4.1, Co
�
is finitely characterized by �_h0i. Define

 � .x1; x2I Ny/ D :.�.x1I Ny/ � �.x2I Ny//.
Let B 2 ŒZ���d . We want to show that B 2 Co � .Z

�/. If jBj < d , then, by
inductive hypothesis, B 2 Co ' .Z

�/. Let a1 < � � � < an be parameters witnessing
that B 2 Co ' .Z

�/. Let K 2 Z be an odd number greater than an, and put anC1 to
be the average of K and K C 1. Then a1 < � � � < anC1 are parameters witnessing
B 2 Co � .Z

�/.
Now suppose jBj D d . We may writeB D B 0[¹.2i; 2iC1/º, where 2i is greater

than any integer occurring as a coordinate in B 0. By inductive hypothesis, there are
parameters a1 < � � � < an witnessing that B 0 2 Co ' .Z

�/. By indiscernibility, we
may assume an < 2i . Then putting anC1 to be the average of 2i and 2i C 1 gives a
parameter set a1 < � � � < anC1 witnessing B 2 Co � .Z

�/.
It remains to show that there is no c 2 Co � .Z

�/ with jcj > d C 1. Suppose there
is a sequence of parameters a1 < � � � < anC1 such that  � .x1; x2I a1; : : : ; anC1/ is
satisfied by each of the tuples

.2i1; 2i1 C 1/; : : : ; .2ik ; 2ik C 1/; .2ikC1; 2ikC1 C 1/

with i1 < � � � < ikC1 for some k 2 !. Then we must have anC1 > 2ik C 1, or
else  � .2ikC1; 2ikC1 C 1I a1; : : : ; anC1/ fails. But then  '.x1; x2I a1; : : : ; an/ is
satisfied by .2i1; 2i1 C 1/; : : : ; .2ik ; 2ik C 1/. Thus k � d by inductive hypothesis.

By the above arguments, ŒZ���d D Co � .Z
�/.

The other cases in the induction are similar and left to the reader.

Lemma 4.9 Let '. NxIy1; : : : ; yn/ 2 L, A � M j Nxj, and B � M n. Suppose
C'.A/

B is infinite and d -maximum. Then there are A00 � M j Nxj and B 0 � M n with
A00 D ¹Nai W i 2 Qº and � 2 2dC1 such that C'.A

00/B
0 is d -maximum and finitely

characterized by the forbidden label �.

Proof Let � be any linear ordering of A, and define h W ŒA�dC1 ! 2dC1 which
sends each element of ŒA�dC1 to its forbidden label with respect to the ordering �.
By Ramsey’s theorem, there is an infinite homogeneous A0 � A with respect to h.
Note that C'.A

0/B is d -maximum.
We claim that for every finite A0 � A0, C'.A0/

B is characterized by �. Clearly
no set in C'.A0/

B induces �. By Proposition 2.5, C'.A0/
B is d -maximal, and so

for any c � A0 not inducing � on A0, c 2 C'.A0/
B . This completes the claim.

Let C D ¹Nci W i 2 Qº be a new set of constants compatible with Nx, and let
P. Ny/ be a new predicate. For every finite subset C0 D ¹Nci1 ; : : : ; Ncinº of C , with
i1 < � � � < in, let �.C0/ express that C'.C0/

P. Ny/ is characterized by �. The set
of sentences ¹�.C0/ W C0 � C;finiteº is easily seen to be consistent. Let this be
witnessed by a model N . Now A00 D CN and B 0 D PN are as desired. Since N

embeds into the monster model M, we are done.

Recall that we use dpR.n/ for n 2 ! to refer to the maximum depth of an ICT pattern
in n variables.

Theorem 4.10 For any theory T and n; d 2 ! the following are equivalent.
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1. T interprets an infinite d -maximum VC family in n parameters.
2. T interprets Œ!�d in n parameters.
3. We have dpR(n/ � d .

Proof The direction (2)! (1) is clear, since Œ!�d is an infinite d -maximum VC
family.

(1)! (2): Let C'.A/
B with '. NxIy1; : : : ; yn/, A � M j Nxj, and B � M n consti-

tute an interpretation of some infinite d -maximum family. By Lemma 4.9, we may
assume that A D ¹Nai W i 2 Qº and that C'.A/

B is characterized by a forbidden label
� 2 2dC1.

Let �. NxI Ny1; : : : ; Nyd / be an L0-formula as in the statement of Corollary 4.7. Then
C'.A/

B � Co
�
.A/A, since for any finite A0 � A, both C'.A0/

B and Co
�
.A0/

A are
characterized by �.

Define A0 D h. Na2i ; Na2iC1/ W i 2 Zi. Define

 '. Nx1; Nx2Iy1; : : : ; yn/ D :
�
'. Nx1Iy1; : : : ; yn/ � '. Nx2Iy1; : : : ; yn/

�
;

and let

 � . Nx1; Nx2I Ny1; : : : ; Nyd / D :
�
�. Nx1I Ny1; : : : ; Nyd / � �. Nx2I Ny1; : : : ; Nyd /

�
:

Then C ' .A
0/B � Co � .A

0/A. But by Lemma 4.8, Co � .A
0/A D ŒA0��d , and there-

fore C ' .A
0/B � ŒA0��d .

By compactness, we can find a countably infinite A00 and a set B 0 �M n such that
C ' .A

00/B
0

D ŒA00�d . Thus we have an interpretation of Œ!�d in n parameters.
(2) ! (3): Suppose there is a formula '. NxI Ny/ with j Nyj D n and infinite sets

A � M j Nxj, B � M n such that C'.A/
B D ŒA�d . Let � be a set of sentences

expressing that ¹ 1. NyI Nx1/; : : : ;  d . NyI Nxd /º witnesses a depth d ICT pattern with
 i . NyI Nxi / D '. Nxi I Ny/ for i D 1; : : : ; d . Then by compactness and choice of ', � is
consistent, and consequently dpR(n/ � d .

(3) ! (2): Suppose the tuples h Nbi;j W i � d; j < !i and the formulas
 1. NxI Ny1/; : : : ;  d . NxI Nyd / constitute a depth d ICT pattern in T with j Nbi;j j D j Nyi j
and j Nxj D n. Define

'. NxI Ny1; : : : ; Nyd / D :
�
 1. NxI Ny1/ � � � � �  d . NxI Nyd /

�
:

Let A D ¹ Nb1;j_ � � �_ Nbd;j W j < !º. Then with the dual formula '�. Ny1;
: : : ; Nyd I Nx/ D '. NxI Ny1; : : : ; Nyd /, there is clearly a set B � M n such that
C'�.A/

B D ŒA�d . Thus we have an interpretation of Œ!�d in n parameters.

Naturally any infinite set can be substituted for ! in Theorem 4.10.

5 Relations to Other Notions

In this section we relate Theorem 4.10 to some results of others.

Definition 5.1 For a formula '. NxI Ny/, let max.'/ be defined as the maxi-
mum d 2 !, should it exist, for which C'.A/

B is d -maximum, for some infinite
A � M j Nxj and B � M j Nyj. If no such d exists, put max.'/ D 1. For n 2 ! let
max.n/ D sup¹max.'. NxI Ny// W j Nyj D nº.

We may summarize Theorem 4.10 by the statement max.n/ D dpR.n/ for all n 2 !.
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Lemma 5.2 (Kaplan, Onshuus, and Usvyatsov [8, Theorem 2.7]) If dpR.1/ � n,
then dpR.k/ � kn for all k 2 !.

Corollary 5.3 If max.1/ � n, then max.k/ � kn for all k 2 !.

In particular, for any dp-minimal theory and any n 2 !, max.n/ D n.
If VCind-density is defined as in Guingona and Donnay Hill [7] and '�. NyI Nx/ D

'. NxI Ny/ is the dual formula, then for any '. NxI Ny/, max.'�/ � VCind-density of '.
This can be seen by using Lemma 4.9 and applying Ramsey’s theorem. It seems
plausible that the converse may hold as well, though this would appear to require
some work.

The following is an easy variation of Guingona [6, Theorem 3.14].

Theorem 5.4 If '. NxI Ny/ has max.'�/ D 1, then ' has uniform definability of
types over finite sets.

Whether the corresponding statement holds for max.'�/ D 2 is an interesting open
question.
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