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On Existence in Set Theory
Rodrigo A. Freire

Abstract  The aim of the present paper is to provide a robust classification of
valid sentences in set theory by means of existence and related notions and, in
this way, to capture similarities and dissimilarities among the axioms of set the-
ory. In order to achieve this, precise definitions for the notions of productive
and nonproductive assertions, constructive and nonconstructive productive as-
sertions, and conditional and unconditional productive assertions, among others,
will be presented. These definitions constitute the result of a semantical analysis
of the notions involved. The conceptual clarification developed here results in a
classification of valid sentences of set theory that goes against the standard view
that extensionality is not an existence assertion.

1 Introduction

In this introduction, some of the problems concerning the notion of existence in set
theory that motivated this investigation are stated. The aim of this paper is to classify
the valid sentences of set theory in terms of existence and related notions, and, in
order to do so, some precise concepts and distinctions must first be introduced. This
will be done gradually in the forthcoming sections.

The work on the axiomatization of set theory provides a list of principles about
sets that constitutes the basis of the contemporary conception of mathematical ex-
istence. Some principles of set theory, such as the axiom of pairs, are understood
as existence assertions: given sets x and y, the axiom of pairs asserts the existence
of the pair {x, y}. Other principles are usually understood in a different way, as ax-
ioms about the nature of sets: the extensionality axiom, for example, is understood
as defining the equality of sets. The axioms are therefore usually separated in two
groups, the axioms of the nature of sets and the existence axioms. The extensionality
and regularity axioms constitute the first group, and the remaining axioms constitute
the second group. This separation is not made on the basis of a syntactic property
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such as the occurrence of an existential quantifier in the prefix of a prenex normal
form of a formula expressing the axiom. Rather, it is presented as a conceptual dis-
tinction.

There is a further division of the existence axioms in two groups: the constructive
existence axioms and the nonconstructive ones. The second group is constituted by
the axiom of choice alone, and the first group by the other existence axioms. In
this case, the separation is presented, at least in part, as a property of the system: the
capacity of introducing, or not, abstraction terms that instantiate the existence axiom.
Joseph Shoenfield [V, p. 259] formulates this distinction as follows:

We shall also prove a related result: if ZF is consistent, then neither the axiom
of choice nor its negation can be proved in ZF. One might ask why this is of
special interest, since the axiom of choice is certainly true for sets. One answer
is that the axiom of choice is of a special nature. The sets asserted to exist by
the existence axioms of ZF (such as the power set of a set) can be explicitly
described in ZF; in fact they are of the form {x | Q(x,v1,...,v,)}. On the
other hand, there is no reason to suppose that for every set v, there is a choice
function on v which can be described in this way. Thus it is conceivable that for
some notion of set which involves using only collections which can be described,
the axioms of ZF are true while the axiom of choice is false.

Together with the previous separation of the axioms into the axioms of nature and
the so-called existence axioms, this further splitting of the existence axioms results
in a trichotomy in the axioms of Zermelo—Fraenkel set theory with choice (ZFC).
Up until now, this trichotomy has not been founded on solid grounds. Although the
constructive/nonconstructive separation, as formulated by Shoenfield, is not estab-
lished “by decree” as is the separation between existence/nonexistence, it relies on
the previous one (nature versus existence), and the above extract is still far from giv-
ing a precise definition of a constructive existence axiom or theorem. The analysis of
some examples will show that a first attempt at giving precision to these distinctions
encounters some difficulties. Consider the axiom of extensionality:

VxVy(Vz(zex <> zey) > x=y).

This formula is equivalent, by the definition of one quantifier in terms of the other
and tautological consequence, to

VxVy(x7éy—>EIZ((ZexAZ¢y)v(z¢xAz€y))),

which says that if x is different from y, then there exists a witness z of their differ-
ence. The above formula is equivalent, by prenex operations, to the formula

VxVyEIz(x;éy—)((zexAz¢y)v(z¢x/\z€y))).

Why is this not an existence axiom? One could say that the axiom is not used as
such, to prove the existence of sets, but only to prove the equality or the difference of
sets. One could, however, in principle, prove that two sets are different by showing
that they are distinguished by a property and then conclude, by extensionality, that
there is a witness of their difference. This would be an existential use of this axiom,
similar to Cantor’s proof of the existence of a transcendental real number. Of course,
Cantor’s diagonal method constructs a transcendental number, making the use of
extensionality superfluous. Nevertheless, this does not exclude the possibility of
an existential use of this axiom. Furthermore, an adequate existence/nonexistence
distinction should be based on a priori grounds, not on the actual use of the principle.
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The separation of existence axioms into the constructive or instantiated ones on
one side, and the axiom of choice on the other, is not immune to this undefined
situation concerning the axiom of extensionality. If extensionality is to be considered
an existence axiom, then there is also no reason to suppose that there is a witness of
the difference of any two sets that can be described by an abstraction term. In fact,
all such witnesses could be choice functions for complex sets. Therefore, it is not
sufficient to simply stipulate the axiom of extensionality as a nonexistence axiom.
One must provide a satisfactory definition for the notion of an existence axiom and
prove that this axiom is on the nonexistence side. But this is not the only difficulty
with the constructive/nonconstructive division usually found in discussions of the
axiom of choice. Consider the following tautology:

dxP(x) — AxP(x), P(x) stands for “x is a well-ordering of R.”
The formula above is equivalent, by prenex operations, to
dx (EIxP (x) > P (x)) ,

and this is an existential theorem of standard first-order logic such that even the
system ZF C cannot provide an abstraction term that instantiates it (see Levy [4],
p. 130). Azriel Levy gives a similar example and comments on this in [0, p. 175].
Levy ends his commentary in a pessimistic tone:

If the reader will claim that the counterexamples we mentioned here are unnatural

he will not be totally wrong, but he will probably be at a loss suggesting a clear-
cut distinction between natural and unnatural statements " (x).

Therefore, “constructive subtheories of ZFC” have nonconstructive conse-
quences, in Shoenfield’s sense, and the axiom of choice cannot be considered at fault
for the nonconstructive consequences of set theory. The separation of the axiom
of choice from the other axioms presented by Shoenfield is not robust enough: it
is confused by logical deduction. Satisfactory distinctions must not have this lack
of stability. For a proper analysis of the existence requirements of the axioms, it is
necessary that adequate definitions be presented. The exposition by Shoenfield lacks
such definitions.

The forthcoming analysis refers, above all, to the system of set theory ZFC by
which twentieth-century mathematics is canonically organized. The consistency of
the system ZFC is assumed throughout. A precise formulation of ZFC that is
adequate for the purposes of the present investigation of existence will be postponed
until Section 6 on conditional and unconditional degrees of existence requirements.
The reason for a later formulation of the system is twofold: first, the specific features
of the definition given here are not really necessary before then, and, second, this
avoids introducing an overwhelming apparatus all at once. The last section, dedicated
to concluding remarks, will provide additional explanations of the main notions of
the present paper and a short discussion on the foundational relevance of the results.

2 A Gradation of Existence Requirements for ZFC

The existential character of a statement is not adequately captured by the syntactic
features of a formula expressing it. In fact, any formula A is equivalent to an existen-
tial formula, for example, x(x = x A A), in which x is assumed not to occur free
in A. Even if one allows only prenex operations, the tautology 3xA — 3x A4 and the
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formula
z(zex)>AzzexnzNx =0)

expressing the regularity axiom are equivalent to existential formulas by prenex oper-
ations. These theorems of set theory should not be considered as existence assertions:
they are implications such that the entire existence requirement of the consequent is
already present in the antecedent.

The forthcoming analysis of the existential character of a statement will not be
formulated in terms of syntactic features of a formula expressing it. Instead, the
semantic notion of the existence requirement of a statement will play a conspicuous
role. The existence requirement of a statement is evaluated in terms of degrees of
closure of the domains of existence in which the validity of the statement is tested.
If a statement is valid in every domain presenting a certain closure property, then
that closure property is sufficient to fulfill the existential demands of the statement.
Now, there are natural closure properties for a domain in set theory: transitivity,
supertransitivity, the property of being a level V, the property of being the universe
V', among others. These constitute a hierarchy of closure properties. Therefore,
a natural gradation of existence requirements can be introduced.

Although any set or class is a domain of existence in set theory, only nonempty
domains are considered in the evaluation of the existence requirement of a statement.
The contribution of the empty domain to the classification of valid sentences of set
theory is not a quantitative one. Instead, the contribution of the empty domain for
the present analysis is qualitative. The reason for this is that the degree of closure
of the empty domain is that of a level. Thus, the consideration of this domain in
the gradation of existence requirements would only artificially raise the existence
requirement of a sentence like 3x (x = x). Indeed, if the empty domain is considered
in the definition of degrees, then the associated existence requirement of this sentence
is higher than that of separation axioms, among others. The identification of the
existence requirement of a statement with the least degree of closure that is sufficient
to fulfill the existential demands of the statement is plausible only if the domains are
restricted to the nonempty ones. The consideration of the empty domain gives an
entirely qualitative distinction that will be expounded in Section

Definition |, and the results immediately following it, introduce a gradation of
existence requirements in terms of the degree of closure of the domains in which
the validity of the statement is tested. For example, a statement A admits a lower
degree of existence requirement than B if the existential demands of A are already
supplied by the transitivity of the domain, while the demands of B are supplied by
the supertransitivity of the domain (closure under taking elements and subsets) but
not by the transitivity only. Any set or class can be seen as a domain of existence.
The universe presents the maximum degree of closure. If a domain presents a higher
closure degree than another one, then it more closely resembles the universe. The
analysis that follows is restricted to sentences.

Definition 1 The sentence 4 in L(ZF) is said to admit the following degrees of
existence requirements:

e degree zero of existence requirement, if A holds in every (nonempty) e-
interpretation I of L(ZF) in an extension by definitions or by introduction
of constants 7" of ZF C;" that is, for each e-interpretation 7,

T+ AL
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e degree 1 of existence requirement, if A holds in every transitive e-
interpretation / of L(ZF) in an extension by definitions or by introduc-
tion of constants 7" of ZF C; that is,

THYxVy(Ur(x) = (y € x — Ur(y)) — A%

e degree 2 of existence requirement, if A holds in every supertransitive e-
interpretation / of L(ZF) in an extension by definitions or by introduction
of constants 7" of ZF C; that is,

THYxVy(Ur(x) > (y ex vy Cx)— Ur(y) — A';
e degree 3 of existence requirement, if
ZFC I Ord(a) — A",

in which Ord(«) stands for “a is an ordinal”;
e degree 4 of existence requirement, if

ZFC F Lim Ord(or) — A%,

in which Lim Ord(«) stands for “« is a limit ordinal”;
e degree 4w of existence requirement, if

ZFC FLimOrd(e) Aw < o — AVe.

e degree 5 of existence requirement, if for the identity interpretation V of
L(ZF)in ZFC itholds that ZFC I~ AV; that is,

ZFC - A.

Remark2  An e-interpretation of L(Z F') in an extension of ZF C is just a domain
and need not satisfy the axioms.

Notation 3 Denote by E(d) the set of sentences in L(ZF) that admit a de-
gree d of existence requirement, 0 < d < 5ord = 4w. If d and d’ are de-
grees, denote by d < d’ the ordering obtained from the usual lexicographic or-
dering on pairs by the correspondence of the degrees 0, 1,2, 3, 4,5 with the pairs
(0,0),(1,0),(2,0),(3,0), (4,0), (5, 0), respectively, and the degree 4w with the pair
4, w).

Lemma 4 The degrees of existence requirement are linearly ordered by strength
in the sense that E(d) C E(d’) ifd < d’. All inclusions are proper.

Proof  All the inclusions are trivial, except that E(4w) C E(5), and this follows
from the reflection principle. In Section 3, the evaluation of the axioms will show
that the inclusions are proper. O

Proposition 5 is an immediate corollary of Lemma <. It is important mainly because
it identifies the scope of the notion of existence requirement and defines the existence
requirements associated to a sentence within this scope.

Proposition 5 (The existence requirement of a sentence) A sentence in L(ZF) is
a theorem of ZF C if and only if it admits a degree of existence requirement. If this
is the case, then the existence requirement associated to the sentence A is defined to
be the least degree admitted by A and is denoted by r(A).
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The gradation of existence requirements considered here is restricted to statements
that hold in the universe; it makes no sense to speak of the existence requirement as-
sociated to a sentence that is not valid. If A is a valid sentence then one can ask how
much closure of the universe is required by the validity of A. Is the transitivity of the
domain sufficient for the existential demands of A? Is the supertransitivity sufficient
for the existential demands of A? The validity of A may require the following: no clo-
sure property (degree zero); closure under taking elements (degree 1); closure under
taking elements and subsets (degree 2); closure under any operation not increasing
rank (degree 3); closure under any operation not increasing rank, or increasing rank
by a finite ordinal (degree 4); closure under any operation not increasing rank, or
increasing rank by a finite ordinal, or producing sets of rank at most w (degree 4w);
closure under everything (degree 5). Intuitively, if 0 < r(A), then the sentence A
demands some closure on a nonempty domain. If some closure is required, then A is
a productive assertion; it has the power of producing sets on nonempty domains. If
r(A) = 0, then A is a nonproductive assertion. This new productive/nonproductive
assertion distinction is more restrictive than the syntactical distinction that relies on
the mere occurrence of an existential quantifier in the prefix of a prenex normal form
of a sentence, as Proposition | | will show, and it can be formulated as follows.

Definition 6 (Productive and nonproductive assertions) The sentence A is a non-
productive assertion (in ZFC) if A admits degree zero of existence requirement.
On the other hand, A is a productive assertion (in ZFC) if A admits a degree of
existence requirement and 0 < r(A4).

Therefore, the productive assertions in ZF C are defined to be those sentences that
admit only nonzero degrees of existence requirements. Proposition 7 below expresses
a very important property of the classification of valid sentences in terms of existence
requirements: stability under logical deduction. If a sentence B is proved from an-
other sentence A that admits a degree of existence requirement, then B also admits
a degree of existence requirement and r (B) is at most equal to r(A). Furthermore, it
may be seen that the value r(A) is stable under logical variations of A.

Proposition 7 If the sentence A admits a degree of existence requirement (equiv-
alently, ZFC \= A) and B is a sentence such that = A — B, then B also admits a
degree of existence requirement and r (B) < r(A) or r(B) = r(A). In particular, if
A< B(and ZFC = A), then r(B) = r(A).

Proof If A — B andif A is valid in a nonempty domain, then so is B. O

Corollary 8 If ZFC + A, then any proof of A makes use of axioms with existence
requirement at least r (A). Furthermore, if T is a subtheory of ZF C suchthatT + B
and if A is a nonlogical axiom of T, then r(A) < d, for 0 < d, then r(B) < d.

Definition 9 (d-equivalence) Two sentences A and B are d -equivalent if the sen-
tence A <> B admits a degree d of existence requirement.

Remark 10 The relation of d-equivalence is clearly an equivalence relation. Fur-
thermore, if A and B are d-equivalent and A admits a degree d of existence require-
ment, then B also admits a degree d of existence requirement. This follows from the
fact that relativization of sentences preserves the propositional connectives.

It is worth noting that in any proof of the sentence A, with associated existence
requirement r(A), there occurs an axiom with associated existence requirement at
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least r(A). This is a consequence of Proposition 7. Proposition | | shows that the
semantical definition of productive assertion is stronger than the mere syntactical
property of occurrence of an existential quantifier in the prefix of the sentence.

Proposition 11 If the sentence A admits a degree of existence requirement and
0 < r(A), then the symbol 3 occurs in the prefix of any sentence in prenex normal
form zero-equivalent to A.

Proof  If the symbol 3 does not occur in the prefix of a sentence B in prenex normal
form zero-equivalent to A, then this sentence is universal. Since it is a theorem, its
relativization to any nonempty domain holds. Indeed, the effect of the relativization
on B is only the restriction of the universal quantifiers. Since B is zero-equivalent to
A, A admits degree zero. This is a contradiction. O

In the following section, the axioms of ZF C are evaluated in terms of the classifica-
tion introduced above. Before doing so, however, the pathological example given in
the introduction may be easily evaluated:

dxP(x) — AxP(x), P(x) stands for “x is a well-ordering of R.”

This sentence admits a degree zero of existence requirement, and although the
symbol 3 occurs in the prefixes of all its prenex normal forms, it is in fact a nonpro-
ductive assertion.

3 The Existence Requirements of the Axioms

If ZFC = A and r(A) = 5, then by Corollary ¢ the theory Z F C must have axioms
with existence requirement 5, and this is indeed the case. In fact, the principles of
set theory have a uniform distribution in terms of existence requirements in the sense
that all levels are populated by some statements. This uniform distribution of the
axioms indicates further that they are not accidental or arbitrarily chosen: there are
axioms for all levels of existence requirements. Propositions |2 and |3 evaluate the
existence requirements of the axioms. The main results needed for this evaluation
can be found in standard expositions of set theory (see Kunen [3, pp. 112-17], Drake

[2, pp. 107-8]).

Proposition 12 (Evaluation of axioms)  [f the sentence A is

the regularity axiom or the axiom of the empty set, then r(A) = 0;

the extensionality axiom, then r(A) = 1;

the union axiom or the axiom of the choice set, then r(A) = 3;

the power set axiom or the axiom of the choice function or the axiom of pairs,
thenr(A) = 4;

o the axiom of infinity, then r (A) = 4w.

Proof If I is any e-interpretation of L(ZF) in (an extension by definitions or by
introduction of constants 7 of ) ZFC and x is a set in I, then, by the regularity
axiom, there is a minimal element y in the set {z € x | Uy (z)}, Uy standing for the
universe of the interpretation. The element y is a minimal element of x in /, and the
regularity axiom holds in /. For the axiom of the empty set, any set of minimal rank
in [ is an empty setin /.
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It is fairly well known that the extensionality axiom holds in any transitive €-
interpretation of L(ZF) in (an extension by definitions or by introduction of con-
stants 7' of) ZFC. However, it is not the case that this axiom holds in any e-
interpretation: it suffices to consider an interpretation given by the domain {x, y}
such that x # y and x ¢ y and y ¢ x. (In this interpretation there are two “empty
sets.”)

The supertransitive domain {(25, {0}, {{9}}, {{{9}}}, {{9}, {{@}}}} shows that both
the axiom of union and the axiom of the choice set do not hold in any supertransitive
e-interpretation. However, both axioms hold in all levels V,, because taking a choice
set or the union are rank-decreasing operations.

The power set axiom, the axiom of pairs, and the axiom of the choice function do
not hold in all successor levels because the corresponding operations increase rank.
For instance, all three axioms fail in V, = {0, {#}}. Nevertheless, all these axioms
hold in limit levels since the corresponding operations can increase rank by a finite
ordinal only.

The axiom of infinity does hold in any transitive €-interpretation that contains w,
and in any V,, for any o < w in particular, and does not hold in V,,, for example. [

Before treating the schemas, it is already a fact that the productive assertions among
the axioms do not coincide with the existence axioms in Shoenfield’s sense and as
presented in the introduction. Indeed, the extensionality axiom is a productive asser-
tion, although a weak one. It admits degree 1, but not degree zero. In the case of
the regularity axiom, it is indeed a nonproductive assertion. The axiom of the empty
set admits a degree zero of existence requirement. A finer analysis is needed to dis-
tinguish the axiom of the empty set from the regularity axiom. This will be done in
Section 6 on conditional and unconditional degrees.

Proposition 13 (Evaluation of schemas) The existence requirements of the
schemas are evaluated differently and defined to be the least upper bound of r(A)
for A an instance of the axiom:

o the existence requirement of the separation schema is 2;
o the existence requirement of the replacement schema is 5.

Proof  The transitive domain {0, {0}, 49, {@}}} shows that not all the instances of
the separation schema hold in transitive domains. Nevertheless, all instances of this
schema hold in supertransitive domains since supertransitive domains contain all
subsets of a given set.

It is well known that not all instances of the replacement schema hold in V4.
Of course, all instances of this axiom hold in V. O

The analysis presented so far already shows differences with some of the usual con-
ceptions regarding the axioms, and Remark |4 explains some of these. Nevertheless,
it is important to note that this section contains only the first part of the analysis,
which at this point is still far from being complete.

Remark 14 (The logic of €) The evaluation of the axioms shows that the only
nonproductive assertions among them are the regularity axiom and the axiom of the
empty set. If one is to speak of a logic of €, analogous to the logic of =, and if such
a logic must hold in every domain adapted to it, that is, in every interpretation in
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which € and = are interpreted as the true membership and equality relations, then
its principles should be only these nonproductive axioms.
The extensionality axiom is commonly considered as the definition of equality

among sets. Dana Scott writes in [, p. xiii]:
An axiom like the Extensionality Axiom, which says that sets are uniquely de-
termined by their elements, is also sufficiently logical in character, because of its
most definitional nature. So we can throw it to the side of logic.

George Boolos goes one step furtherin [ 1, p. 501]:

The axiom of extensionality enjoys a special epistemological status shared by
none of the other axioms of ZF. Were someone to deny another of the axioms
of ZF, we would be rather more inclined to suppose, on the basis of his denial
alone, that he believed that axiom false than we would if he denied the axiom
of extensionality. Although “there are unmarried bachelors” and “there are no
bachelors” are equally preposterous things to say, if someone were to say the
former, he would far more invite the suspicion that he did not mean what he said
than someone who said the latter. Similarly, if someone were to say, “there are
distinct sets with the same members,” he would thereby justify us in thinking his
usage nonstandard far more than someone who asserted the denial of some other
axiom. Because of this difference, one might be tempted to call the axiom of
extensionality “analytic,” true by virtue of the meanings of the words contained
in it, but not to consider the other axioms analytic.

If logic is to be understood in the way explained above, then the extensionality
axiom should not figure among the principles of the logic of €. On the contrary, aside
from the usual logical axioms, the principles of e-logic should be just the regularity
axiom and the axiom of the empty set. Since these axioms admit a simple Skolem
normal form, the theorems of such theory can be characterized by an application of
Herbrand’s theorem (see [Y, p. 54]) in a simple way. In fact, consider the Skolem
normal form of these axioms:

VxVsz(z ex—>(f(x)exn—-(yexAnye f(x)))) (regularity axiom),
Yw—(w € c¢) (axiom of the empty set).

The term f(x) stands for a €-minimal element in x, where f is a unary function
symbol. The constant symbol ¢ stands for an empty set. A sentence in prenex normal
form is a theorem of the e-logic if and only if there is a disjunction of instances of the
matrix of its Herbrand normal form that is a tautological consequence of instances
of the identity and equality axioms, and the axioms above (in Skolem normal form).
All those instances will be in the expansion of L(Z F') obtained by the addition of ¢
and f.

4 Constructive and Nonconstructive Productive Assertions

The purpose of this section is to introduce another important definition, intended to
capture the constructive/nonconstructive distinction. As in the case of the produc-
tive/nonproductive distinction, the approach to the problem is purely semantical: the
constructivity of a productive/nonproductive assertion cannot be read from the sym-
bols. The constructive character of a theorem, on the contrary, is evaluated when the
validity of the sentence is tested against all domains of constructive productivity: an
assertion is constructive if it holds in every L(x), the constructible sets relative to x.
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An exposition of some syntactical features related to the definition will be given in
Remark |7, where a relation to the Levy hierarchy will be explored and will further
motivate the definition.

Regarding the domains of constructive productivity, it is important to consider
not only the absolute constructible sets but also the relative constructible sets. The
reason for this will be made clear by the consideration of the definition of condi-
tional/unconditional existence degrees that will be introduced in Section 6. The point
is that productive assertions may have a conditional existence degree. Consider the
power set axiom: it implies the existence of a power set of a set, under the condi-
tion that the set is given. Therefore, if this assertion is constructive, then it must
constructibly assign a power set for any given set, not only for any constructible set.

The constructive/nonconstructive distinction is entirely qualitative: there will be
no contribution to the existence requirements. It results in a further division: it intro-
duces the constructive productive assertions, the nonconstructive productive asser-
tions, and the constructive nonproductive assertions, without changing the existence
requirements associated to the productive assertions, or the degree zero admitted by
the nonproductive ones.

Definition 15 Suppose that A is a productive assertion according to Definition
In this case, A4 is a constructive productive assertion in ZF C if for the interpretation
L(x) of L(ZF) in ZF C, given that x is the first variable in the alphabetical ordering
that does not occur in A4, it holds that ZFC + VxAYX® If ZFC ¥ VxAY™  then
A is a nonconstructive productive assertion. If A admits degree zero of existence
requirement, then ZFC + VxAL™) and A is said to be a constructive nonproductive
assertion.

In Definition |5, the variable x can be instantiated by any set. For the empty set,
L(?) = L. The important property of this definition is stability under deduc-
tion: A set theory with only constructive axioms cannot have nonconstructive conse-
quences. The constructive/nonconstructive distinction is stable under logical deduc-
tion. Proposition |6 identifies the nonconstructive character of the axiom of choice
and the constructive character of the other axioms of ZF C.

Proposition 16 If the sentence A is such that ZF + A and A is a productive
assertion, then A is a constructive productive assertion in ZF C. If A admits degree
zero, then A is a constructive nonproductive assertion. The axiom of choice is a
nonconstructive productive assertion in ZF C.

Proof L(x) is an interpretation of ZF, and the first part of the proposition follows
from the soundness theorem for interpretations. It is known that if M is a countable
transitive interpretation of ZF C, then, for an appropriate partial order, the generic
extensions M [G] are such that ZFC —ACL®MI] (see [3, p. 245]). This shows
that ZFC ¥ AC"® and proves the second part. O

The somewhat extended Remark provides some connections with syntactical
properties of sentences. In doing so, it also motivates the definition of construc-
tive productive assertion, and this is the most important reason for including it. The
scenario will be further clarified by the development of the conditional and uncondi-
tional productive assertions in Section
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Remark 17 (Relation with the Levy hierarchy)

o If the sentence A is a theorem of ZFC and is in the class I1; in the Levy
hierarchy, then A admits degree 1 and is either a constructive productive or a
constructive nonproductive assertion in ZFC.

e Suppose that A is I, (and not I1;) and is a theorem of ZF C. In particular,
A is not a theorem of ZF, but A is equivalent (in ZF) to a sentence of the
form Vz3yB, for B a bounded formula. In this case, ZFC Vx AY®) if and
only if, omitting the quantifier Vx,

ZFC F (Vz3yB)"™,

that is, if and only if
ZFC F (Vz € L(x))(EIy € L(x))B,
because B is absolute. If this holds, then
ZFCF (x e L(x)) — (Iy € L(x)) B’

for B’, the formula obtained by replacing the free occurrences of z in B by
x. But then

ZFCF (3y e L(x))B’
and, replacing back x by z,

ZFC + (Ely € L(z))B.

This means that if A is a [T, -constructive productive assertion in ZF C equiv-
alent to Vz3yB, then ZF C proves that given a set z there exists a set y in
L(z) such that B is valid.

e Similarly, if A is [13, equivalent (in ZF) to Yz3yVYwB, and is a constructive
productive assertion in ZF C, then

ZFC (Ely € L(Z))(Vw € L(Z))B.

This analysis holds in general for theorems of ZF C of complexity IT,.
e Analogously, if A4 is a constructive productive assertion in ZF C of complex-
ity ¥ and is equivalent to 3y C, then

ZFC @y e L)C

A trivial generalization applies to X, -theorems of ZF C.

5 A Unified Treatment for Stronger Set Theories

The distinctions introduced so far have a somewhat limited scope because the notion
of existence requirement applies only to theorems of ZF C. It is desirable to include
further principles of set theory in the analysis. In order to do so, it is sufficient to
consider stronger theories in the place of ZFC and to generalize the notions and
results introduced into this new setting. This will be done in what follows. Avoiding
tedious repetitions, the main notions and results will be given in outline.

Consider 7" a simple extension” of ZF C as, for example, a theory obtained from
Z FC by adding to it some generalized axiom of infinity. In this section the consis-
tency of each theory 7" under consideration is assumed.

Definition 18 The sentence A in L(T') is said to admit, in T, the following de-
grees of existence requirement:
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e degree zero of existence requirement, if A holds in every (nonempty) e-
interpretation / of L(7T) in an extension by definitions or by introduction
of constants T’ of T'; that is, for each €-interpretation I,

T'+ A"
e degree 1 of existence requirement, if A holds in every transitive e-

interpretation I of L(T') in an extension by definitions or by introduction of
constants 7”7 of T'; that is,

T FVxVy(Ur(x) = (y € x = U () — A’

e degree 2 of existence requirement, if A holds in every supertransitive e-
interpretation / of L(T) in an extension by definitions or by introduction
of constants 7" of T'; that is,

T FVx¥y(Ur(x) —» (y € xVy Cx) — Up(y) — A’
e degree 3 of existence requirement, if
T + Ord(a) — A%,

in which Ord(«) stands for “a is an ordinal”;
e degree 4 of existence requirement, if

T + Lim Ord(a) — A",

in which Lim Ord(«) stands for “« is a limit ordinal”;
e degree 40 of existence requirement, if

T FLimOrd(@) A B <a — A",

where S is a constant for a limit regular ordinal introduced by definition in 7;
e degree 5 of existence requirement, if for the identity interpretation V of L(T')
in 7 it holds that T + AV that is,

THA.

Notation 19 Denote by E(d) the set of sentences in L(7") that admit, in 7', de-
gree d of existence requirement, 0 < d < 5ord = 48, for some 8. If d and d’ are
degrees, denote by d < d’ the ordering obtained from the usual lexicographic order-
ing on pairs of ordinals by the correspondence of the degrees 0, 1, 2, 3, 4, 5 with the
pairs (0, 0), (1,0), (2,0), (3,0), (4,0), (5,0), respectively, and the degrees 48 with
the pairs (4, §).

Remark 20 (On the metatheory) Definitions and cannot, in general, be
formulated in a finitary metatheory like the corresponding Definitions | and 3, but
for some particular theories they can be recast in a finitary setting.

The following results are straightforward generalizations of the corresponding state-
ments, Lemma < and Propositions 5, 7, and | |. The relevance of these results has
already been explained above. Only the most important features associated with them
will be emphasized here.

Lemma 21 The degrees of existence requirement are linearly ordered by strength
in the sense that E(d) C E(d’) ifd < d’. All inclusions are proper.

Proof  The nontrivial inclusions are again consequences of the reflection principle.
O
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The next proposition/definition establishes the existence requirement associated with
a sentence within the scope of this notion.

Proposition 22 A sentence is a theorem of T if and only if it admits, in T, a degree
of existence requirement. If this is the case, then the existence requirement associated
to A is defined to be the least degree admitted by A and is denoted by r(A).

Definition 23 (Productive and nonproductive assertions) The sentence A is a
nonproductive assertion (in T') if A admits a degree zero of existence requirement.
On the other hand, A is a productive assertion (in T) if A admits a degree of existence
requirement and 0 < r(A).

The stability of the existence requirements under deduction is established by Propo-
sition

Proposition 24 If the sentence A admits a degree of existence requirement (equiv-
alently, T = A) and B is a sentence such that = A — B, then B also admits a

degree of existence requirement and r(B) < r(A) or r(B) = r(A). In particular, if
FA< B(and T\ A), then r(B) = r(A).

Definition 25 (d-equivalence) Two sentences A and B are d-equivalent if the
sentence A <> B admits a degree d of existence requirement.

The semantical definition of productive assertion is stronger than the mere syntactical
characterization of existentials in this unified context as well.

Proposition 26 If the sentence A admits a degree of existence requirement in T
and 0 < r(A), then the symbol 3 occurs in the prefix of any sentence in prenex
normal form zero-equivalent to A.

The following simple result will be useful in the subsequent exposition. It is also in-
teresting since it states precisely that bounded existential quantifiers cannot produce
strong productive assertions.

Proposition 27 If the sentence A admits a degree of existence requirement in T
and is of the form Yxy---Vx, B, where B in L(ZF) is such that all its quantifiers
are bounded, then A admits a degree 1 of existence requirement.

Proof Bounded formulas are absolute for any transitive e-interpretation of
L(ZF). Therefore, the relativization of A to the transitive e-interpretation I of
L(ZF) consists of a restriction of the universal quantifiers Vxj,...,VXx, to the
domain of 7. Since A is a theorem, A7 is also a theorem. O

If a sentence A of the form Vx;---Vx, B, where B in L(ZF) is such that all its
quantifiers are bounded, is a productive assertion, then Proposition 27 shows that it
is a productive assertion of the weakest kind, that is, r(A4) = 1.

Proposition 28 below asserts that if a sentence A in L(ZF') is provably consistent
with ZF C by a method of extending transitive e-interpretations and admits degree
1 in the theory ZFC + A, then ZFC | A. In particular, one cannot change the set
E(1) for ZF C, as defined in Notation 3, using forcing without further assumptions.
If A admits degree 1 in the theory ZFC + A, holds in M [G], and M [G] is a generic
extension of M constructed within the resources of ZF C, then A also holds in M.
After the statement and proof of Proposition 2¢, it will be made clear that the same
argument does not apply to E(2).



538 Rodrigo A. Freire

In order to formulate this precisely, consider the theory ZF Cy, obtained from
ZFC by adding a constant M, an axiom saying that M is transitive, and, for each
sentence A in L(ZF'), an axiom saying that M reflects A. By the reflection principle,
Z FCyy is conservative over ZF C (see [+, pp. 132-33]).

Proposition 28 Suppose that A is a sentence in L(ZF), and suppose that A ad-
mits degree 1 in the theory ZFC + A. Suppose further that, in the theory ZF Cyy,
M’ is a transitive €-interpretation of ZFC + A and that M C M'. In these condi-
tions it results that ZFC F A.

Proof If x is a new variable, and Trans(x) is the predicate expressing that x is
transitive, then ZFC + A + Trans(x) — A*. By hypothesis, M’ is a transitive
e-interpretation of ZFC + A in ZF Cys. Since Trans(x) is absolute for transitive
€-interpretations, Trans(x) — A* relativized to M’ holds:

ZFCy - x € M' — (Trans(x) — A%).

Now, M is a transitive interpretation of ZF C in ZF Cyy. The reflection principle
for A, relativized to M, gives

ZFCpy b 3x(x € M A Trans(x) A (A% < 4M)).

Since M C M’, it holds that ZFCy + AM. Therefore, ZFCyp + A, be-
cause A <> AM is an axiom of ZF Cj. Conservativity of ZF Cys over ZF C gives
ZFC F A. O

Notice that the proof of Proposition 2% does not apply to higher degrees. The argu-
ment above fails for supertransitive domains since supertransitivity is not absolute
for M and M'.

If A is a sentence in L(ZF) that is consistent with ZF C and admits degree 1 in
ZFC + A, then, in general, it does not hold that ZF C F A. In fact, following Godel
and Rosser, consider A4 a IT;-sentence of the form Vx; --- Vx, B, where B in L(ZF)
is such that all its quantifiers are bounded, and such that if ZF C is consistent, then
neither A nor —A are theorems. Proposition 27 states that sentences of the form
Vxp---Vx, B are preserved under restriction, and that in ZF C + A the sentence A
admits degree 1. Since A is equivalent in ZF to the Rosser sentence for ZFC, it is
not a theorem of ZFC.

In this general setting, further principles of set theory can be evaluated. Most no-
table are the so-called large cardinal notions. Proposition 29 provides an evaluation
of some simple examples.

Proposition 29 (Evaluation of further axioms)

o [fthe standard sentence A expressing “there exist weakly inaccessible cardi-
nals” is an axiom of T and k is a constant for the least weakly inaccessible
cardinal, then r (A) = 4«k.

o [f the standard sentence A expressing “there exist strongly inaccessible car-
dinals” is an axiom of T and A is a constant for the least strongly inaccessible
cardinal, then r(A) = 4A.

o [f the standard sentence A expressing “there exist measurable cardinals” is
an axiom of T and w is a constant for the least measurable cardinal, then
r(A) = 4u.



On Existence in Set Theory 539

o [fthe sentence A expressing the continuum hypothesis is a theorem of T, then
r(A) = 4w. If it is —A that is a theorem of T, then r(—A) = 4w.

Proof  Only the last item requires a proof. It follows from the absoluteness of
o and of the power set operation for supertransitive domains that these sentences
admit a degree 4w of existence requirement. Furthermore, the sentence expressing
the continuum hypothesis asserts the existence of w, and hence it admits no degree
lower than 4w. O

The qualitative constructive/nonconstructive distinction can also be introduced in
this setting, and it gives some interesting results. Proposition below provides
some examples.

Definition 30 Suppose that A4 is a sentence that admits a degree of existence re-
quirement in 7. In this case, if A is productive, then A is a constructive productive
assertion in T if for the interpretation L(x) of L(T) in T', given that x is the first vari-
able in the alphabetical ordering that does not occur in A, it holds that 7'+ Vx AX®)
If T ¥ VxAL(x), then A is a nonconstructive productive assertion. If A admits
a degree zero of existence requirement, then 7 ¥ VxAY®) and A4 is said to be a
constructive nonproductive assertion.

Proposition 31 If the sentence A expressing “there exist weakly inaccessible car-
dinals” is a theorem of T, then A is a constructive productive assertion in T. If the
sentence A expressing “there exist measurable cardinals” is a theorem of T, then A
is a nonconstructive productive assertionin T .

Proof  The first part of the result follows from the absoluteness of weakly inaccessi-
ble cardinals for transitive interpretations. The second part is an immediate corollary
of a well-known theorem due to Dana Scott: If there exists a measurable cardinal,
then V # L (see [Y, p. 314]). O

Remark 32 (The axiom of constructibility) Every theorem of ZFL (ZF + the
axiom of constructibility) is either a constructive productive assertion or a construc-
tive nonproductive assertion in the theory ZFL, because L is an interpretation of
ZFL in ZF and L(x) = L under the axiom of constructibility.

6 Conditional and Unconditional Degrees of Existence Requirement

Aside from the productive/nonproductive distinction and the subordinated notion of
constructive productive assertion, there is a further division of the axioms of set
theory. It can be said of an axiom that it expresses an unconditional existence, that
is, that it says that some set exists regardless of whether other sets are given or not.
The axioms of the empty set and of infinity are unconditional. On the other hand,
an axiom may express a conditional existence, stating that given some sets there is
another set satisfying some property. The axioms of power set, union, and pairing are
examples of conditional existence axioms. This distinction can also be made precise
with the notion of validity in the empty domain: roughly, conditional existence holds
in the empty domain, and unconditional existence does not hold in the empty domain.

In order to provide a precise formulation of this distinction, a more careful analy-
sis is required. The inclusive logic, that is, the quantification theory allowing empty
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domains, must be considered: first-order logic, in its standard formulations, is not ex-
istentially neutral because it is not valid in the empty domain. In making this restric-
tion, part of the standard logical apparatus is lost: prenex operations are no longer
available on purely logical grounds, for example. Nevertheless, it will be shown that
the whole first-order logic can be recovered with an unconditional existential.

In this paper, inclusive logic deals only with sentences. Validity in the empty
interpretation of L(ZF) in ZF C is defined for all sentences and is truth-functional:
a quantified subsentence of a sentence is assigned the value true if it is of the form
VxA, or false if it is of the form 3x A. The truth value of any other sentence in L(ZF)
is obtained from these by the truth tables for classical connectives. A sentence is valid
in inclusive logic if and only if it is a theorem of standard first-order logic that is also
valid in the empty interpretation. Therefore, proofs in inclusive logic can be defined
precisely as proofs in standard first-order logic followed by the test of validity in the
empty interpretation. Since validity in the empty interpretation is truth-functional,
the set of valid sentences in inclusive logic is recursively enumerable. Furthermore,
a system of axioms for inclusive logic, with modus ponens as the only inference rule,
can be obtained from the system ETH (see Mendelson [/, p. 149]) by adding the
following axioms of identity and equality (for L(ZF)):

e Vx(x = x) (identity axiom);
o VxVyVzVw(x =z = (y = w = (x = y > z = w))) (equality axiom);
e VxVyVzVuw(x =z = (y = w — (x € y — z € w))) (equality axiom).

Remark 33 (Relation between inclusive and standard first-order validity) Let T
denote some fixed sentence C v —=C. We have

A iff FraIxT — A,

where F; denotes validity in inclusive logic and - denotes validity in standard first-
order logic. In fact, if A is a theorem in standard first-order logic, then IxT — A
is also a theorem in standard logic and is valid in the empty domain. Conversely, if
F;3dxT — A, thent IxT — A. Since - 3x T, it follows that - A.

The theory ZFC (or the stronger systems considered in the above section) has a
relational language and an axiom that implies 3x T in the inclusive logic” and hence
can be formulated directly, taking the inclusive logic with the usual equality axioms
as the background logic. Furthermore, the logic free of existential presuppositions is
the proper logic for identifying with accuracy the degrees of existence requirements
of the sentences in set theory.

For the sake of definiteness, consider the axiom system for ZF C with the system
for inclusive logic as the background logic and having the following axioms:

e VxVy(Vz(z € x < z € y) — x = y) (extensionality axiom);

. Vx(Ey(y ex)—>Iy(yexAn—-dz(zexAnze y))) (regularity axiom);

e Vx3dyVz(z € y <> z € x A A), all the variables are distinct, and x and y do
not occur in 4 (separation axioms);

o Vx(VydzVw(4 < w € z) > wVw@y(y € x A A) > w € v)), all the
variables are distinct, and x, z, and v do not occur in 4 (replacement axioms);

e VxIyVz(Vw(w € z > w € x) > z € y) (power set axiom);

) Hx(ﬂy(y ExAVz(zéy)AVy(yex > z(zexAVw(w ez < we
yvuw= y)))) (axiom of infinity);

e IxVy(y ¢ x) (axiom of the empty set);
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o VxAy(Vz(z € x »> Qw(w € 2) AVu(u € x > Vi(t ¢ u Vit ¢ 2)))) —
VzawVv(zex > (veEzAVEYy ©>V = w))) (axiom of the choice set).

From Remark 33 it follows that this is indeed an axiomatization of ZF C. Further-
more, the above formulation of ZFC (or ZF) is to be considered, except for some
inessential variations, the proper formulation for the present analysis. In particular,
all subtheories and stronger theories of the previous sections are to be considered
as built over this formulation. The whole analysis presented so far applies without
any change. In a word, throughout this paper the labels ZFC or ZF should be
understood as referring to the above formulation of the corresponding theories.

Remark 34 All the sentences of the above system, with the exception of the axiom
of infinity and the axiom of the empty set, are true in the empty interpretation, and
the rule of inference modus ponens preserves validity of sentences. The axiom of
infinity and the axiom of the empty set are false in the empty interpretation.

The main definition of this section is the following.

Definition 35 (Conditional and unconditional degrees) = The sentence A in
L(ZF) admits a conditional degree d of existence requirement if A is valid in
the empty interpretation and admits a degree d of existence requirement. On the
other hand, A admits unconditional degree d of existence requirement if A is not
valid in the empty interpretation and admits degree d of existence requirement.

Among the principles of ZFC set theory, only the axioms of infinity and of the
empty set admit unconditional degrees of existence requirements. The generalized
axioms of infinity also admit unconditional existence degrees in the stronger theories
in which they are theorems.

Proposition 36 If A admits a conditional degree of existence requirement, then it
does not admit an unconditional degree. Conversely, if A admits an unconditional
degree of existence requirement, then it does not admit a conditional degree. In
particular, if ZF C = A, then r (A) is either a conditional degree or an unconditional
degree.

Proof  The proof follows immediately from Definition 30: A cannot be both valid
and invalid in the empty interpretation. O

Proposition 37 If A admits a conditional degree of existence requirement and
;1 A — B, then B also admits a conditional degree of existence requirement and
r(B) < r(A) or r(B) = r(A). Specifically, at least one of either the axiom of
infinity or the axiom of the empty set occurs in any proof of a sentence that admits an
unconditional degree of existence requirement in the above axiomatization of ZF C.

Proof  This is a corollary of Remark < above and Proposition 7. O

Definition 3¢ introduces the last distinction of the present analysis. It is a further
division in the previous dichotomy of the productive/nonproductive assertion. This
section has been restricted to existence degrees in ZF C, but straightforward gener-
alizations apply to some stronger theories.

Definition 38 (Conditional and unconditional productive assertions)  The sen-
tence A is a conditional productive assertion (in ZF C) if it is a productive assertion
(0 < r(A)) and admits a conditional degree of existence requirement. Analogously,
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the sentence A is an unconditional productive assertion (in Z F C ) if it is a productive
assertion and admits an unconditional degree of existence requirement. The sentence
A can also be a conditional nonproductive assertion if it admits conditional degree
zero or an unconditional nonproductive assertion if it admits unconditional degree
Zero.

Remark 39 Although it may sound strange to speak of an unconditional non-
productive assertion, the examples show that this is reasonable terminology. For
example, a logical theorem of the form 3x(C Vv —C), for a sentence C, is an uncon-
ditional nonproductive assertion. It simply excludes the empty domain, but it does
not make any existence requirement in nonempty domains. On the other hand, strong
productive assertions like the power set axiom or the replacement axioms do hold in
the empty interpretation. The analysis of the empty interpretation provides a quali-
tative conditional/unconditional distinction, and it plays no role in the evaluation of
the degrees of existence requirements. In this respect, it is similar to the analysis of
the constructible domains L(x).

The prototype syntactical form of an unconditional productive assertion is 3x A, and
the prototype of a conditional productive assertion is Vx3yA. The connection to the
Levy hierarchy exploited in extended Remark |7 makes even more sense now.

The results above show that the distinction introduced in Definition is ex-
haustive and stable under inclusive logical consequence. It defines four mutually
exclusive classes: the conditional productive/nonproductive assertions and the un-
conditional productive/nonproductive assertions. The subordinate distinction of con-
structive/nonconstructive productive assertion is not disturbed by this novel compo-
nent, and it applies in the same way, providing six mutually exclusive classes.

Putting all these distinctions together gives a partition of the sentences that admit
a degree of existence requirement in six classes: the conditional constructive pro-
ductive assertions, the conditional nonconstructive productive assertions, the uncon-
ditional constructive productive assertions, the unconditional nonconstructive pro-
ductive assertions, the conditional constructive nonproductive assertions, and the
unconditional constructive nonproductive assertions. The corresponding existence
requirements provide a quantitative scale within each class. Now the notion of exis-
tence assertion can be defined.

Definition 40 The sentence A is a nonexistence assertion if and only if A is a
conditional constructive nonproductive assertion. If A lies in any of the remaining
five classes mentioned above, then A is an existence assertion.

A conditional constructive nonproductive assertion holds in any domain, including
the empty one. The sentences lying in any of the other classes are not valid in at least
one domain of existence, and this is the motivation for the above definition.

Proposition 4 | classifies the axioms present in the above formulation of ZF C and
is the final outcome of this section. It does not require a proof as it only aggregates
results already established.

Proposition 41 (Classification of the axioms of ZFC)

o The axioms of identity and equality are all conditional constructive nonpro-
ductive assertions.
o The extensionality axiom is a conditional constructive productive assertion.
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o The regularity axiom is a conditional constructive nonproductive assertion.

e FEach separation axiom is either a conditional constructive productive or a
conditional constructive nonproductive assertion.

e FEach replacement axiom is either a conditional constructive productive or a
conditional constructive nonproductive assertion.

o The power set axiom is a conditional constructive productive assertion.

o The axiom of infinity is an unconditional constructive productive assertion.

e The axiom of the empty set is an unconditional constructive nonproductive
assertion.

o The axiom of the choice set is a conditional nonconstructive productive as-
sertion.

The existence requirements of those axioms that are existence assertions are as in
Proposition |2. The schemas are evaluated as in Proposition

Proposition < | completes the analysis of the axioms of ZFC. There are not only
two or three classes, but six qualitative classes with quantitative distinctions within
them. For instance, the distinction between the extensionality axiom and the power
set axiom is a quantitative one, that is, a difference of degree: both are conditional
constructive productive axioms. The extensionality axiom admits degree 1, but the
power set axiom does not. Furthermore, the qualitative difference between the regu-
larity axiom and the axiom of the empty set has been made clear.
This section closes with a brief remark on the inclusive logic of €. Remark

provides some context and motivation for considering this topic.

Remark 42 (The inclusive logic of €) According to the present analysis, the in-
clusive logic of € should be constituted by ETH or any other formal system for
inclusive logic, the axioms of identity and equality, and the regularity axiom (as this
last is the only principle of ZF C that admits a conditional degree zero of existence
requirement).

7 Final Remarks

The existence requirement expressed by a sentence of set theory is a semantical prop-
erty; it is not written in the symbols. This property can be evaluated when the valid-
ity of the sentence is tested against domains of existence. A gradation of existence
requirements was introduced according to the closure degrees of the domains: the
minimum degree of closure required for the validity of a sentence is a measure of its
existence requirement. If the existence requirement of a sentence is nonzero, then this
sentence is productive; it has the power of producing new sets under the condition
that other sets are given.

Regarding a productive assertion, its constructivity is also a semantical property,
and in order to evaluate it, the validity of the sentence expressing it should also be
tested against domains of constructive productivity. These domains are identified in
this paper with the relative constructible sets, and this leads to Definition |5 of a
constructive productive assertion. A nonproductive assertion is always constructive
according to the definition mentioned above.

Finally, the conditional or unconditional character of a degree of existence re-
quirement is also a semantical property, and it is evaluated by testing the validity in
the domain of conditional existence only, that is, in the empty domain.
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These notions are relative to a background theory: a sentence can only be said to
make an existence requirement if it is valid in the background theory. If a sentence is
not valid in the theory under consideration, then there is no sense in speaking of its
existence requirement. In order to avoid truth definitions for strong set theories, the
degrees of existence requirements have been restricted to the theorems of the theory
in question, and in this sense a proof-theoretic semantics was adopted. Nevertheless,
it is also possible to work with a notion of validity more general than that of being a
theorem.

The perspective adopted in the present paper is to be compared and contrasted
with more syntactically oriented approaches to the notions of existence and construc-
tive existence, such as the analysis set forth in [5] by Levy. It is enough to examine
[5, Table I, p. 129] to confirm that Levy’s analysis follows a syntactical path. With
the exception of a few particular cases, the results exposed in Levy’s paper are nega-
tive. This is an indication of the inadequacy of a syntactical perspective on existence
and related notions.

An important consequence of the semantical formulation of the distinctions above
is the fact that they are stable under the proper notion of consequence—a sentence on
one side of the distinction has no consequences, in the inclusive logic, on the other
side of the distinction. If the existence requirements associated to the axioms of a set
theory T are bounded by d, then the existence requirements associated to the theo-
rems of T are also bounded by d. In a constructive set theory, that is, a theory without
nonconstructive productive assertions among its axioms, there are no nonconstruc-
tive productive theorems. The consequences of conditional existence axioms admit
only conditional degrees of existence requirements. Here it is important to consider
inclusive logic. Standard formulations of first-order logic have theorems that admit
unconditional degree zero.

The final result is achieved in the section on conditional and unconditional de-
grees (Section 0). This is a classification of the theorems of ZF C (and simple ex-
tensions or subtheories) in six mutually exclusive classes: the conditional construc-
tive productive assertions, the conditional nonconstructive productive assertions, the
unconditional constructive productive assertions, the unconditional nonconstructive
productive assertions, the conditional constructive nonproductive assertions, and the
unconditional constructive nonproductive assertions. Theorems in different classes
are qualitatively different from the point of view of existence in set theory. Within a
given class, the theorems may have quantitative differences given by the degrees of
existence requirement.

All these qualitative classes are populated by principles of set theory with dif-
ferent existence requirements. For example, the sentence expressing the existence
of a measurable cardinal is an unconditional nonconstructive productive assertion
in the theory with this generalized axiom of infinity. The axiom of the empty set
is an unconditional constructive nonproductive assertion because, although it sim-
ply excludes the empty domain, it holds in every nonempty domain. The axiom of
choice (set or function) is a conditional nonconstructive productive assertion. These
six classes and the degrees of existence requirement are the most important notions
introduced here, and the uniform distribution of the axioms in the classes and in
degrees is an important property indicating that they are not accidental.

According to Definition 40, the extensionality axiom is an existence assertion,
and this is in disagreement with the standard view. The criticism of the standard
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view presented in the introduction already pointed to the fact that the received view
is based on insufficient grounds. In fact, this paper disputes the standard view, and
although there is some agreement between this view and the present analysis, the
results achieved here have followed a completely different path. Furthermore, as
presented in the introduction, the usual view on existence axioms completely lacks
clarification, and the usual explanations for the constructive character of the axioms
are seriously flawed. Indeed, the usual characterization of constructivity in terms
of set-theoretic definability (or instantiation by abstraction terms) gives the absurd
result that there are existential theorems from logic that are nonconstructive. Also,
the extensionality axiom is not constructive under this characterization: In general,
there is no abstraction term for a witness of the difference of two sets in ZFC.” The
problem with this characterization becomes more evident if one remembers that the
extensionality axiom is the axiom that guarantees the uniqueness condition for the
instantiated axioms. The constructivity of an axiom in the standard view is always
based on a nonconstructive axiom (under the standard characterization).

The present analysis provided semantical definitions of existence and related no-
tions. The motivation for the definitions of productive, constructive, and conditional
character of a statement is simple: These are semantical notions and are evaluated
when the validity of the statement is tested against the appropriate domains. Thus,
the productive character of a statement, that is, the power of producing new sets from
given sets, is evaluated when the validity of the statement is tested against arbitrary
nonempty domains. This introduces a gradation of productivity corresponding to a
natural hierarchy of closure properties for domains of existence in set theory. Simi-
larly, the constructive character of the productivity of a statement, that is, whether the
production of new sets from given sets is constructive, is evaluated when the validity
of the statement is tested against the domains of constructive production of sets from
arbitrary sets: the relative constructible sets. Finally, the conditional character of a
statement is evaluated when the validity of the statement is tested against the domain
of conditional existence, that is, the empty domain. The result of these definitions is
an exhaustive classification of the valid sentences in set theory.

The motivation for Definition <0 of existence and nonexistence assertions is also
clear. A sentence is an existence assertion if it is productive in nonempty domains
or if it is unconditional and excludes the empty domain. The corresponding classifi-
cation of the axioms in existence and nonexistence ones agrees with the usual view,
with the exception of the extensionality axiom. This is an existence axiom in the
present sense, although it is of the weakest kind: it admits conditional degree 1 of
existence requirement.

It was mentioned in the introduction that the extensionality axiom may indeed
have an existential use in mathematics. Suppose that two mathematical structures
are given, one of them being a substructure of the other. One could prove that these
structures are different by showing, for example, a topological property that holds in
one structure and not in the other. Then one would conclude, by extensionality, that
there is an element in the structure that is not in the substructure. This would be an
existential use of extensionality in a mathematical proof.

A last word on the foundational relevance of the present results. The principles of
set theory constitute the basis for the contemporary notion of mathematical existence.
If the analysis presented here is indeed on the right track, and the usual view on
these principles is not entirely correct, then it would constitute a contribution to the
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understanding of the notion of mathematical existence. Furthermore, the application
of the notions introduced here to stronger set theories may have some bearing on the
problem of new axioms for set theory that could also change the understanding of
the notion of mathematical existence. At the very least, the present paper has shown
that the usual view of the extensionality axiom is disputable. Since the extensionality
axiom plays an essential role in set theory, this cannot be ignored.

(1]

Notes

Other systems related to ZF C will also be considered.

. The exact definition of e-interpretation of L(Z F) in T can be found in Shoenfield’s book

[V, p- 261]. Shoenfield requires that 7" proves that the interpretation is nonempty. For
the present purposes, it is preferable to include 3x Uy (x) as a hypothesis in each clause.
Thus, for example, the first clause in Definition | should read 7 + 3IxUj (x) — Al For
the sake of legibility, the hypothesis that / is nonempty will be omitted. In what follows,
whenever an e-interpretation is specified, such as Vy, it is not necessary to indicate what
extensions by definitions or by introduction of constants of ZFC are concerned.

In this item, and in the following ones, some €-interpretations of L(ZF') are specified,
and, although it is implicit that the function symbol V4, is introduced, it is not necessary
to indicate an extension of ZF C. That is the reason for writing ZFC | instead of T' |-,
for some specified 7T'.

T is a simple extension of 7" if they have the same language.

. In what follows, whenever an e-interpretation is specified, such as V, it is not neces-

sary to indicate what extensions by definitions or by introduction of constants of 7" are
concerned.

In this item, and in the following ones, some e-interpretations of L(7") are specified,
and, although it is implicit that the function symbol V}, is introduced, it is not necessary
to indicate an extension of T'. That is the reason for writing T F instead of T’ I, for
some specified 7.

In fact, the Rosser sentence for Z F C translates into a Aj-sentence in the Levy hierarchy
(see [2, p. 160]).

For example, consider the existential sentence 3x A expressing the axiom of infinity. In
the inclusive logic it holds that 3x4 — 3xT.

. This was already explained in the introduction: It suffices to take two sets X and Y con-

stituted by choice functions for other complicated sets, and such that ZFC can prove
X # Y. This is an important remark since, according to the present analysis, the exten-
sionality axiom is an existence assertion.
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