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On Cofinal Submodels and Elementary Interstices

Roman Kossak and James H. Schmerl

Abstract We prove a number of results concerning the variety of first-order
theories and isomorphism types of pairs of the form .N;M/, where N is a
countable recursively saturated model of Peano Arithmetic and M is its cofinal
submodel. We identify two new isomorphism invariants for such pairs. In the
strongest result we obtain continuum many theories of such pairs with the fixed
greatest common initial segment of N andM and fixed lattice of interstructures
K, such thatM � K � N .

1 Introduction

Craig Smoryński wrote in [17]: A relatively neglected aspect of the study of nonstan-
dard models of arithmetic is the study of their cofinal extensions. These extensions
certainly do not present themselves to the intuition as readily as do their more pop-
ular cousins the end extensions, but they are not exactly shrouded in mystery or
unnatural objects of study either. They are equal partners with end extensions in
the construction of general extensions of models; they offer both special advantages
and disadvantages worthy of our interest; and, occasionally, they are useful in un-
derstanding the generally more simply behaved end extensions. Cofinal extensions
deserve more attention than they have traditionally received.

Smoryński’s remark was justified in the 1980s, and its validity has not diminished
since then. The study of elementary end extensions of models of PA is much more
advanced than the study of cofinal ones. In this note we will heed Smoryński’s advice
and we will consider isomorphism types and the first-order theories of pairs of the
form .N;M/, where N ˆ PA andM is an elementary cofinal submodel of N . We
will review what is known about such pairs, we will prove some new results, and we
will pose open problems. Much in this note is based on Smoryński’s three papers
[17], [18], and [19]. We are aiming at a more systematic study of some problems left
open in those papers.
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The complete treatment of the general case of elementary pairs .N;M/, even
in the countable case, seems far out of reach. For example, there are many open
basic questions concerning the interstructure lattices of elementary submodels
Lt.N=M/ D ¹K W M � K � N º. We do not even know if there is a finite lattice
which cannot be realized as an interstructure lattice withM cofinal in N .

In this paper, we will consider the case of countable recursively saturated models
and their recursively saturated cofinal elementary submodels. By the well-known
theorem of Gaifman the assumption of elementarity of the extension is redundant: if
M is cofinal in N and both models are models of PA, thenM � N .

All countable recursively saturated models of PA have continuum many noniso-
morphic cofinal submodels. This can be proved in several different ways, providing
different types of diversity. We give two proofs in Propositions 2.6 and 2.7, where we
consider standard systems and sets of complete types realized in cofinal submodels.
Once we know that there is a great variety of cofinal submodels of N , the next goal
is to consider isomorphism types and first-order theories for pairs of models .N;M/

for a fixed countable recursively saturated model N and a fixed isomorphism type of
M . This is the main theme of the paper. Smoryński [18], [17] was the first to study
such pairs, and, among other results, he proved that there are continuum many com-
plete first-order theories of pairs .N;M/, whereM �cof N . He did this by showing
that for each cut I of N that is closed under addition and multiplication, there is a
cofinal submodelM such thatM Š N and the greatest common initial segment of
M and N is I . Since there are continuum many complete theories of such cuts I ,
the result follows. Our main results concern the case when M is isomorphic to N
and the greatest common initial segment of N andM is fixed. We give two indepen-
dent constructions yielding continuum many first-order theories of such pairs under
different assumptions on the greatest common initial segment. Instead of greatest
common initial segments, we use another isomorphism invariant: the base of M in
N . To define the base of a submodel M of N , we first define the notions of an
M -interstice and elementaryM -interstice in analogy with interstices introduced by
Bamber and Kotlarski [1]. The base ofM is its least elementary interstice, if it exists.
We give three independent constructions, each yielding continuum many theories of
pairs .N;M/. In each construction we use different assumptions on the greatest
common initial segment of N andM , and each is based on a different isomorphism
invariant. One construction uses bases, one uses a finitely generated cofinal exten-
sion, and one is based on Smoryńki’s idea of rational sequences of skies from [19].
In preliminary sections we also prove a number of general results concerning bases
and, in particular, bases of finitely generated submodels.

1.1 Notation Let N be a model of PA, and let E.N / D ¹M W M � N º. Our con-
vention is thatM � N allows for the possibility thatM D N . We writeM �endN

if M 2 E.N / and M is an initial segment of N or, as we more often say, M is an
elementary cut of N . The set ¹M W M �endN º is denoted by Eend.N /. We write
M �cof N if M 2 E.N / and M is cofinal in N ; that is, for each a 2 N there is a
b 2M such that a < b. The set ¹M WM �cof N º is denoted by Ecof.N /.

If A � N , then SclN .A/ is the smallest model in E.N / which contains A. We
call SclN .A/ the Skolem closure of A in N . For a 2 N , Scl.a/ is Scl.¹aº/. If the
context is clear, we will omit the superscript N .
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A Skolem term is an expression of the form min¹y W 9y'.x; y/ ! '.x; y/º,
where '.x; y/ is a formula of the language of PA. It is easy to see that for each
A � N ,

Scl.A/ D
®
t .a/ W a 2 A and t is a Skolem term

¯
:

We will also consider Skolem closures in expansions of N that satisfy the induction
schema. Such expansions are often referred to as models of PA�.

It is sometimes convenient to use arithmetic coding of finite sequences under
which each element codes a sequence. We choose such a coding. For each a, .a/i de-
notes the ith term of the sequence coded by a. We also use Cantor’s pairing function.
For all a; b, ha; bi is Cantor’s code of the pair .a; b/.

Def.N / is the set of subsets of N which are definable with parameters; Def0.N /
is the set of subsets of N which are definable without parameters.

For I �endN , let Cod.N=I / D ¹I \ X W X 2 Def.N /º. As usual SSy.N / D
Cod.N=N/, where N is the standard cut.

For A � N , sup.A/ D ¹x 2 N W 9y 2 A N ˆ .x � y/º and inf.A/ D
¹x 2 N W 8y 2 A N ˆ .x � y/º.

For a 2 N , the gap of a, denoted by gapN .a/, is the convex set sup.Scl.a// n
¹b 2 N W Scl.b/ < aº. If a > sup.Scl.0//, then we say that gap.a/ is proper. With
few exceptions, we write gap.a/ instead of gapN .a/.

Recall that a model N ˆ PA is short if Scl.a/ is cofinal in N for some
a 2 N . Otherwise N is tall. If M �endN and there is an a 2 N n M such
thatM D inf.gap.a//, thenM is coshort in N .

Minimal types will be used several times in this paper; in particular, we will use
the fact that they are strongly indiscernible, which means that if Na D ha0; : : : ; ani
and Nb D hb0; : : : ; bni are increasing tuples of elements realizing the same minimal
type in a model N , then for every c 2 N such that sup.Scl.c// < min¹a0; b0º,
tp. Na; c/ D tp. Nb; c/.

A type is rare if it cannot be realized by two elements in the same gap. All
minimal types are rare, and there are rare types that are not minimal (see Kossak and
Schmerl [14, Chapter 3]).

For the rest of the paper let N be a fixed countable recursively saturated model of
PA. Let N0 D sup.Scl.0//; with this notation, N � N if and only if N0 D N.

For A � N, by Tp.A/ we denote the set of complete types realized by elements
of A in N, that is, Tp.A/ D ¹tpN.a/ W a 2 Aº. Since N is !-homogenous, for all
a; b 2 N, either Tp.gap.a// D Tp.gap.b// or Tp.gap.a// \ Tp.gap.b// D ¿.

2 Sources of Diversity

If every complete type realized in a countable model M ˆ PA is also realized in
N, thenM can be elementarily embedded into N. This implies that E.N/ contains
uncountably many pairwise nonisomorphic models and, in fact, that there are con-
tinuum many pairwise nonisomorphic models in Ecof.N/. Full arguments are given
in Propositions 2.6 and 2.7 below. Diversity among models in Eend.N/ is more mod-
est. If M 2 Eend.N/, then either M is tall, and in this case M is isomorphic to
N, or M is short, and then M is one of the countably many elementary cuts of the
form sup.Scl.a//. There are infinitely many pairwise nonisomorphic short elemen-
tary cuts. This was proved independently by Kotlarski and Smoryński [17], but it



270 Kossak and Schmerl

also follows from earlier results of Gaifman [3]. Here we will give a more direct
argument with a stronger conclusion. We need two lemmas.

Lemma 2.1 IfM 2 E.N/ is short, then ! 2 Def0.N;M/.

Proof Let M 2 E.N/ be short. Then, by recursive saturation, there is an a 2 N
such that a codes an infinite increasing sequence and sup¹.a/i W i < !º D M .
This implies that ! 2 Def.N;M/. To get the stronger conclusion, notice that
if ! is definable in some expansion of a model of PA, then it is also definable
in that expansion without parameters, for if a formula '.x; a/ defines !, for
some a, then ! is also defined by the formula 8yŒ .y/ �! '.x; y/�; where
 .y/ D '.0; y/ ^ 8xŒ'.x; y/ �! '.x C 1; y/�.

Lemma 2.2 LetM 2 E.N/, and suppose that ! is definable in .N;M/. Then the
satisfaction relation forM is definable without parameters in .N;M/.

Proof Let ‚.x; S;M/ be a formula expressing that S satisfies Tarski’s inductive
conditions for satisfaction inM for all formulas of the language of PA with no more
than x unbounded quantifiers. For each arithmetic formula '.x/ and each a 2M ,

M ˆ '.a/ iff .N;M/ ˆ 9x 2 !9dŒ‚.x; d \M;M/ ^ h'; ai 2 d�:

Theorem 2.3 There are infinitely many different theories of pairs .N;M/, where
M 2 Eend.N/ is short and the last gap ofM realizes a minimal type.

Proof In the proof of Schmerl [15, Theorem 4.6], two recursive sequences
h'i .v/ W i < !i and h�i .v/ W i < !i of formulas are defined with the properties that
whenever T is a consistent completion of PA and I � !, then there is a unique com-
plete 1-type pI .v/ � T [ ¹'i .v/ W i < !º [ ¹�i .v/ W i 2 I º [ ¹:�i .v/ W i 2 !nI º.
Moreover, each pI .v/ is a minimal type, and whenever I ¤ J , then pI .v/, pJ .v/
are independent (i.e., they cannot be realized in the same gap of a model of T ).

By recursive saturation, if I 2 SSy.N/, then pI .v/ is realized in N. Let
aI be a realization of pI .v/ in N, and let MI D sup.gap.aI //. To finish the
proof, notice that, by Lemma 2.2, gap.aI / 2 Def0.N;MI /. Since aI is the
only element of gap.aI / realizing the recursive type h'i .v/ W i < !i, this im-
plies that aI 2 Def0.N;MI /. Finally, since ! 2 Def0.N;MI /, we conclude
that I D ¹i W N ˆ �i .aI /º 2 Def0.N;MI /. Furthermore, since the defini-
tions of gap.aI /, aI , and I are uniform, for I; J 2 SSy.N/, if I 6D J , then
.N;MI / 6� .N;MJ /.

It is not hard to prove that for each a > N0, either some element in gap.a/ re-
alizes a rare type, or each element in gap.a/ realizes a ubiquitous type, meaning
that for all b; c 2 gap.a/ there are b0; b00 2 gap.a/ such that b0 < c < b00

and tp.b0/ D tp.b00/ D tp.b/ (see Kossak, Kotlarski, and Schmerl [12] for de-
tails). It is clear that if an element in gap.a/ realizes a rare type, then no ele-
ment in gap.a/ realizes a ubiquitous type. It follows from the results in [12] that
there are at least two a; a0 2 N such that tp.a/ and tp.a0/ are ubiquitous and
Tp.gap.a//\Tp.gap.a0// D ¿. By a bit more elaborate construction, we have been
able to prove the following counterpart of Theorem 2.3. We omit the proof.

Theorem 2.4 There are infinitely many different theories of pairs .N;M/, where
M 2 Eend.N/ is short and the last gap ofM realizes a ubiquitous type.
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According to the terminology introduced in [12], a gap containing an element re-
alizing a rare type is called labeled, and a gap without such elements is called un-
labeled. It is shown in [12] that in a recursively saturated model each element of
an unlabeled gap realizes a ubiquitous type. Thus, Theorems 2.3 and 2.4 show
that in any recursively saturated model there are infinite sets L and U of labeled
gaps and unlabeled gaps, such that for distinct gaps 
 and 
 0 in either L or U ,
Tp.
/\Tp.
 0/ D ¿. Moreover, both proofs show that there are infinitely many the-
ories of pairs .N;M/, whereM 2 Eend.N/ is short. The case of coshortM is differ-
ent. It is shown in Kossak and Kotlarski [10] that for all coshortM;M 0 2 Eend.N/,
.N;M/ � .N;M 0/. If 
 and 
 0 are the least gaps in N nM and N nM 0, respec-
tively, such that Tp.
/\Tp.
 0/ D ¿, then .N;M/ 6Š .N;M 0/. Thus, Theorems 2.3
and 2.4 give us infinitely many elementarily equivalent and pairwise nonisomorphic
pairs .N;M/, where M 2 Eend.N/ is coshort. The following interesting question
remains open.

Question 2.5 Let M;M 0 2 Eend.N/ be short, and assume that .N;M/ �

.N;M 0/. Is .N;M/ isomorphic to .N;M 0/?

How do we know that there are continuum many nonisomorphic models which are
elementarily embeddable into N? There are many arguments providing different
kinds of diversity; we will present two in the next two propositions.

Recall that for A � N, Tp.A/ D ¹tpN.a/ W a 2 Aº.

Proposition 2.6 There is I � Ecof.N/ such that
(1) jIj D 2@0 ;
(2) for all M;M 0 2 I, Tp.M/ D Tp.M 0/; moreover, we can request that

Tp.M/ D Tp.N/, for allM 2 I;
(3) for allM;M 0 2 I, ifM 6DM 0, thenM 6ŠM 0.

Proof We will present two constructions. The second will address the “moreover”
part of (2). Let p and q be independent minimal types realized in N. For eachX � !
letMX D Scl.¹aXi W i < !º/, where haXi W i < !i is an increasing sequence that is
cofinal in N and such that for all i < !, if i 2 X , then aXi realizes p, and otherwise it
realizes q. Let I D ¹MX W X � !º. By the results of Gaifman [3] mentioned above,
for X; Y � !, and for all i < !, tp.aXi / D tp.aYi / iff Tp.gap.aXi // D Tp.gap.aYi //.
Since for each X ,MX D Scl.0/ [

S
i<! gapMX .aXi /, it follows thatMX is isomor-

phic to MY iff X D Y . Also, since every element of MX is of the form t . Na; Nb/,
where t is a Skolem term, Na is an increasing sequence of elements realizing p, and
Nb is an increasing sequence of elements realizing q, it is easy to see, by the strong
indiscernibility of the types, that if bothX and Y are infinite and coinfinite, thenMX

andMY realize exactly the same types.
For the second construction, let p be a minimal type realized in N. For ev-

ery countable linear ordering .A;</, N has a canonical A-extension NA generated
over N by a set that is order isomorphic to .A;</ of elements realizing p over N
(see [14, Section 3.3] for details). By strong indiscernibility of p, for each .A;</,
Tp.NA/ D Tp.N/, and hence NA elementarily embeds in N; moreover, if .A;</
has no last element, then it is not hard to see that NA can be embedded as a cofinal
submodel of N. Since for all A;B � !, NA Š NB if and only if .A;</ Š .B;</,
the result follows.
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We also have the other extreme. One can modify the construction from the proof of
Proposition 2.6 as follows. Let ¹pn W n < !º be a collection of pairwise independent
minimal types realized in N. For each X � !, let MX D Scl.¹aXi W i < !º/,
where haXi W i < !i is an increasing sequence that is cofinal in N and such that for
all i < !, if i 2 X , then aXi realizes pi , and if i … X , then aXi D ha; a

0i, where
a and a0 realize pi and a < a0. It is easy to see that for all X; Y � !, we have
Tp.MX / D Tp.MY /, and if X 6D Y , then MX 6Š MY . A different construction
gives an even stronger result in the next proposition.

Proposition 2.7 There is J � Ecof.N/ such that
(1) jJj D 2@0 ;
(2) for allM 2 J,M is recursively saturated;
(3) for allM;M 0 2 J, ifM 6DM 0, thenM 6ŠM 0.

Proof By an unpublished result of Stephen Simpson, every Scott set has contin-
uum many Scott subsets. Here is an outline of Simpson’s argument: using [16,
Theorem VIII.2.6] one can show that the set of Scott subsets of a given Scott set
contains a subset that is densely ordered by inclusion. Since the union of a chain of
Scott sets is a Scott set, the result follows.

By standard arguments, for every Scott set X � SSy.N/ such that Th.N/ 2 X,
there is a recursively saturated MX 2 Ecof.N/ such that SSy.MX/ D X. This con-
cludes the proof, since for all recursively saturated modelsM;M 0 2 E.N/,M ŠM 0
iff SSy.M/ D SSy.M 0/.

Since all tall elementary cuts of N are recursively saturated, they are isomorphic to
N. Still, there are continuum many nonisomorphic, and in fact even nonelementarily
equivalent, structures of the form .N;M/, whereM 2 Eend.N/ is tall. This can be
shown in various ways (see [18] or Kossak [7]). As a corollary we have the following
proposition.

Proposition 2.8 LetM 2 E.N/ be tall. Then there are continuum many complete
theories of structures of the form .N; K/, where K 2 E.N/ and K ŠM .

Proof Let M be a tall model, and suppose that K 2 E.N/ is isomorphic to M .
Then K 0 D sup.K/ is recursively saturated. By taking a recursively saturated ele-
mentary end extension of N if necessary, we can assume thatK 0 < N. By the results
mentioned above, there are continuum many complete theories of structures of the
form .N; K 00/, whereK 00 2 Eend.N/ andK 00 Š K 0. SinceK 0 is definable in .N; K/,
the result follows.

Proposition 2.8 cannot be improved by requiring that K 2 Ecof.N/. For example,
it is not hard to show that if p is a minimal type realized in N, K and K 0 are gen-
erated by !-sequences of elements realizing p, and they are both cofinal in N, then
.N; K/ Š .N; K 0/.

2.1 The role of combinatorial properties In the known constructions of large fami-
lies of pairwise nonisomorphic pairs .N;M/ with M 2 Eend.N/, M is either not
semiregular in N, or M is strong in N. Semiregularity and regularity of a cut
I �endM are defined by Kirby and Paris in terms of coded functions and parti-
tions, and later were given the following characterizations. A cut I is semiregular
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iff .I; A/A2Cod.N=I/ is a model of the †1-induction schema I†1, and I is regular iff
.I; A/A2Cod.N=I/ is a model of the †2-collection schema B†2.

Question 2.9 Are there infinitely many pairwise nonisomorphic pairs .N;M/

such thatM 2 Eend.N/ andM is semiregular but not regular in N?

In the context of the known facts one would expect that Question 2.9 has a positive
answer and that there should be continuum many nonisomorphic such pairs. At the
moment we only know how to get two nonisomorphic pairs. Richard Kaye and Tin
Lok Wong [5] defined a notion of genericity for elementary cuts and proved that

(1) all countable arithmetically saturated models have elementary generic cuts;
(2) if I and J are elementary generic cuts, then .N; I / Š .N; J /;
(3) all elementary generic cuts are semiregular but not regular.

They also proved that ifM is generic in N, then .N;M/ is not recursively saturated.
By chronic resplendency, there areM 2 Eend.N/ such thatM is semiregular but not
regular in N, and .N;M/ is recursively saturated. It follows that M is not generic.
This gives us an example of two nonisomorphic pairs .N;M/, one in which M is
generic and one in which it is not.

3 Elementary Interstices and Bases

If M 2 E.N/ is bounded in N, then sup.M/ is a very useful isomorphism in-
variant for the pair .N;M/. For M which are cofinal in N we have to look for
something else. Smoryński proved that there are continuum many theories of pairs
.N;M/ where M is cofinal in N by considering the greatest common initial seg-
ment (GCIS) ofM and N, denoted GCIS.N;M/. Smoryński’s proof is based on the
fact that for any cut I �end N that is closed under addition and multiplication, there
is M 2 Ecof.N/ such that GCIS.N;M/ D I . Since GCIS.N;M/ is definable in
.N;M/, and there are continuum many complete theories of cuts that are closed un-
der addition and multiplication, we get continuum many theories Th..N;M// where
M 2 Ecof.N/. One of our goals is to analyze diversity in the collection of pairs
.N;M/ with a fixed greatest common initial segment. Since GCIS is fixed, we
need other isomorphism invariants. The idea is to look at the convex set separat-
ing GCIS.N;M/ from the rest ofM , if there is one.

Bamber and Kotlarski [1] introduced a useful notion of an interstice. For each
a 2 N n Scl.0/, the interstice of a, denoted �.a/, is the largest convex subset of N
that contains a and is disjoint from Scl.0/. We will adapt this definition as follows.

Definition 3.1 (M -interstices) ForM 2 E.N/ and a 2 N nM theM -interstice
of a, denoted �M .a/, is the largest convex subset of N that contains a and is dis-
joint from M . Each M -interstice determines two cuts: IM� .a/ D inf.�M .a//
and IMC .a/ D sup.�M .a//. We say that an M -interstice �M .a/ is elementary
if IM� .a/ 2 E.N/.

Notice that for all a, �Scl.0/.a/ D �.a/. Instead of Scl.0/-interstice, we will say (as
usual) interstice.

In the definition above we are referring to IM� .a/, but we could have used IMC .a/
as well. This follows from the next proposition.

Proposition 3.2 Suppose thatM 2 E.N/ and a 2 NnM . Then, IM� .a/ � N iff
IMC .a/ � N.
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Proof .H)/ Suppose that b 2 IMC .a/ and that t .x/ is a Skolem term. If t .b/ >
IMC .a/, then let c 2 M be such that IMC .a/ < c < b. Let d 2 M be the least such
that t .d/ > c. Clearly, d � b, so that d 2 IM� .a/. But then t .d/ > c, contradicting
that IM� .a/ � N.
.(H/ Suppose that b 2 IM� .a/ and that t .x/ is a Skolem term. Let c 2 M be

such that b < c < �M .a/. Let d D max¹t .x/ W x � cº. Then d 2 IMC .a/ since
IMC .a/ � N and also d 2M , so that d 2 IM� .a/, so t .b/ 2 IM� .a/.

It is not immediately obvious that every elementary submodel of N has elementary
interstices. To see that this indeed is the case, let us make the following observa-
tions. First of all, for each gap 
 and each a 2 
 , Scl.a/ \ 
 is both upward
and downward cofinal in 
 . It follows that for each a, if gap.a/ � �M .a/, then
�M .a/ D

S
¹gap.b/ W b 2 �M .a/º, and, consequently, theM -interstice �M .a/ is

elementary iff gap.a/ � �M .a/. Now the result will follow from the next proposi-
tion.

Proposition 3.3 LetM 2 E.N/ be such that for each a 2 N,M \ gap.a/ 6D ¿.
ThenM D N.

Proof For each a 2 N, there is a b 2 N such that tp.b/ is rare, and a 2 Scl.b/. One
way to get such a b is by realizing in N a minimal type of the theory Th..N; a//. By
[14, Theorem 3.1.16], if a and b are as above, then a 2 Scl.c/ for each c 2 gap.b/.
It follows that if A � N meets every gap of N, then Scl.A/ D N, and the result
follows.

Corollary 3.4 If M 2 E.N/ n Eend.N/ is tall, then there is a 2 N such that
gap.a/ \M D ¿, and, consequently,M has elementary interstices.

Proof Since M is tall, sup.M/ is recursively saturated, and the result follows di-
rectly from Proposition 3.3.

The next two results are a short digression before we continue with the main theme of
this section. They are related to the following question: which types can be realized
in N nM , forM 2 Ecof.N/? As observed in Kossak and Kotlarski [11], Corollary
3.4 can be strengthened if in additionM is recursively saturated. In this case one can
show that there is a convex set ˇ � N nM such that sup.ˇ/ is a tall elementary cut
of N. This implies the following proposition.

Proposition 3.5 Let M 2 E.N/ be proper and recursively saturated. Then for
each a 2 N such that a > N0, there is a b 2 N nM such that tp.a/ D tp.b/.

Corollary 3.6 Let M 2 E.N/ be proper and recursively saturated, and let p be
an unbounded type realized in M . If each element of N realizing p is in M , then
M D N.

Now we return to the main theme. In the rest of the paper we will be mostly inter-
ested in the situation when IM� .a/ D GCIS.N;M/. The question to consider is to
what extent does IM� .a/ determine the properties of IMC .a/; that is, we would like
to fix the former cut and vary the latter by varying M . In general, this seems to
be a difficult problem, even in the case when GCIS.N;M/ D N. The difficulty is
that if N has nonstandard definable elements, the structure of interstices inside N0

is rather complex. For example, altering the question a bit one could ask for which
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interstices �.a/ in N0 are there M such that �.a/ is the least interstice such that
�.a/\ .M nScl.0// is nonempty. It follows from the results in Bigorajska [2] that in
an arithmetically saturated model N there are such interstices, but to analyze poten-
tial cuts of the form IMC .a/ in such interstices would require more precise tools. To
avoid technical difficulties, here we will only consider the easier case of elementary
M -interstices.

The set ofM -interstices is naturally ordered by <. We refer to this ordering when
we talk about the smallest elementaryM -interstice in the definition below.

Definition 3.7 (Bases) Suppose that M � N and a 2 NnM . If �M .a/ is
the smallest elementary M -interstice, then the cut B.M/ D IMC .a/ is the base of
M in N. The cut sup.B.M/ \M/ is called the subbase of M and is denoted by
Sb.M/.

Notice that, by Proposition 3.2, if an M � N has a base, then B.M/ 2 Eend.N/.
Moreover, we have the following proposition.

Proposition 3.8 Assume thatM 2 E.N/ has a base. Then
GCIS.N;M/ � Sb.M/�end B.M/;

and there is an a 2 N nM such that .Sb.M/ n GCIS.N;M// � gap.a/.

Proof The result follows from definitions and Corollary 3.4. Suppose that the last
part of the conclusion fails. Then there is a gap that is a proper subset of Sb.M/ and
is disjoint fromM , which is a contradiction.

There are examples of a > Scl.0/ such that Scl.a/ has no base. Suppose that N � N
and that N is not arithmetically saturated. Then, since N is not strong in N, there is
an a 2 M such that the set ¹.a/n W n < ! and .a/n > Nº is downward cofinal in
N n N. We will generalize this remark in Theorem 4.3 below.

We are primarily interested in bases of models that are not finitely generated, but
let us first examine the finitely generated case.

4 Bases of Finitely Generated Submodels

Let M 2 E.N/ be finitely generated. If a; b 2 N are such that for all n < !,
a C n < b, then, by recursive saturation, there is c … M such that a < c < b. It
follows that GCIS.N;M/ D N. Moreover, we have the following proposition.

Proposition 4.1 If a modelM 2 E.N/ is finitely generated and has a base, then
there is an a 2 N such that IMC .a/ D B.M/ and IM� .a/ D N0.

Proof Suppose that the conclusion fails. Then, by the observation preceding the
proposition and by Corollary 3.4, there is no least elementaryM -interstice. Hence,
M has no base. This is a contradiction.

Recall that a cutM 2 E.N/ is coshort if N nM has a least gap. Since the gaps with
ordering inherited from N are densely ordered, coshort models are tall. Since N has
only countably many coshort elementary cuts, it has continuum many tall elementary
cuts which are not coshort.

If a > N0 and 
 is the least proper gap of Scl.a/, then B.Scl.a// D inf.
/;
hence B.Scl.a// is coshort. One can ask whether every coshort elementary cut can
be represented as a base of a finitely generated model. If a > Scl.0/, a < gap.b/,
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tp.b/ is rare, and a 2 Scl.b/, then a 2 Scl.c/ for each c 2 gap.b/. Then, it is
easy to see that inf.gap.b// cannot be a base of a finitely generated model. There is
still a possibility that inf.gap.b// is a base of a model that is not finitely generated.
Corollary 5.7 below shows that there are proper gaps 
 such that inf.
/ is not a base
of anyM 2 E.N/ such thatM \ B.M/�end N.

Proposition 4.2 IfM 2 E.N/ is finitely generated and has a base, then B.M/ is
tall.

Proof SinceM has a base, we can pick a b such that N0 < b 2 B.M/. Suppose
thatM D Scl.a/, and let htn.x/ W n < !i be a recursive enumeration of all Skolem
terms in one variable. Consider the type

p.x; a; b/ D
®
tn.b/ < x < tm.a/ W m; n < ! and b < tm.a/

¯
:

Since b < B.M/, it is easy to see that p.x; a; b/ is finitely realizable in N, and since
p.x; a; b/ is recursive in tp.a; b/, it is realized in N. By Proposition 4.1, this finishes
the proof.

The next result tells us that if N is arithmetically saturated, then finitely generated
submodels of N have bases. In fact, this property characterizes arithmetic saturation.

Theorem 4.3 N is arithmetically saturated if and only if every finitely generated
M 2 E.N/ has a base.

Proof The proof of the H) direction is the same as that of Proposition 4.2 once
we notice that the type®

tn.0/ < x < tm.a/ W m; n < ! and N0 < tm.a/
¯

is arithmetic in tp.a/.
If N is not arithmetically saturated, then there is a b 2 N such that

inf¹.b/n W n < ! ^ .b/n > Nº D N. By recursive saturation there is c 2 N such that
h.c/n W n < !i is an increasing sequence cofinal in Scl.0/. Let a D hb; ci. We will
show that inf.Scl.a/nN0/ D N0. Let n0 > N be such that h.c/n W n < n0i is increas-
ing. We can assume that for all n < !, .b/n < n0. Then for X D ¹.c/.b/n W n < !º,
we have X � Scl.a/ and inf¹x 2 X W x > Scl.0/º D N0, which finishes the
proof.

Proposition 4.2 tells us what bases of finitely generated models in E.N/ cannot be.
It is a bit harder to see what they can be. The partial answer is given in the next
theorem. Quasi-selective types were defined in [12]. An element a 2 N realizes a
quasi-selective type iff gap.a/ \ Scl.a/ D Scl.a/ n Scl.0/.

Theorem 4.4 Let I 2 Eend.N/ be coshort. Then the following are equivalent:
(1) There is an a 2 N such that a realizes a quasi-selective type and I D

inf.gap.a//.
(2) There is a finitely generatedM � N such that I D B.M/.

Proof The theorem follows directly from definitions and the remark at the begin-
ning of this section.

As we noted earlier, if a 2 N is such that Scl.a/ has a least proper gap 
 , then
B.Scl.a// D inf.
/. The case of finitely generated models with no least proper gap
is more interesting. To begin, it is not obvious that there are such models. Let p be a
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minimal type realized in N, and let h.a/i W i < !i be a coded sequence of elements
realizing p such that for all i < !, .a/i > gap.a/iC1. One can show that there is
a minimal type q of Th..N; .a/i /i<!/ such that q is recursive in tp.a/ (hence it is
realized in N) and that for each i < ! there is a Skolem term ti .x/ such that the
formula ti .x/ D .a/i is in q. Lemma 2.1.10 of [14] is crucial for this construction.
If b realizes q in N, then it follows from the general properties of minimal types that
B.Scl.b// D inf¹.a/i W i < !º, and hence Scl.b/ has no least proper gap. (Recall
that if c and d realize the same minimal type, then c D d iff gap.c/ D gap.d/.)
The next result shows that if N is arithmetically saturated, the construction described
above captures all not-coshort bases of finitely generated models.

Theorem 4.5 Suppose that N is arithmetically saturated and that I 2 Eend.N/ is
not coshort. Then the following are equivalent:

(1) There is a 2 N such that I D inf¹.a/n W n < !º.
(2) There is a finitely generatedM � N such that I D B.M/.

Proof The proof of .1/ H) .2/ follows from the construction preceding Theo-
rem 4.5 once we notice that without loss of generality we can assume that all ele-
ments .a/n, n < !, realize the same minimal type.

For the .2/ H) .1/ implication, let a finitely generatedM such that I D B.M/

be given. Suppose thatM D Scl.a/, and let htn.x/ W n < !i be a recursive enumer-
ation of all Skolem terms in one variable with t0.x/ D x. Since N is arithmetically
saturated, there is c 2 N such that ¹.c/n W n < !º D ¹x 2 Scl.a/ W x > N0º.

We define f W N2 ! N as follows:

f .m; n/ D

´
min¹k W tk.tm.a// � tn.a/º if there is such k;
a otherwise:

Since N is arithmetically saturated, f is coded in N. Let a0 D t0.a/ D a. If an is
defined and is equal to tkn

.a/, to define anC1 we first let
knC1 D min

®
k W tk.a/ < min

®
an; .c/n

¯
^ f .k; kn/ D a

¯
:

Since I is not coshort, Scl.a/ has no least proper gap; hence knC1 is well defined.
We let anC1 D tknC1

.a/. By recursive saturation, the sequence han W n < !i is
coded in N and I D inf¹an W n < !º.

The next corollary indicates a limitation on the types of bases of finitely generated
models, at least in the case of arithmetically saturated N.

Corollary 4.6 Assume that N is arithmetically saturated. Let M;N 2 E.N/ be
finitely generated with no least proper gaps. Then .N;B.M// Š .N; B.N //.

Proof Let M;N 2 E.N/ be finitely generated with no least proper gap. By
Theorem 4.5, there are a; b 2 N such that B.M/ D inf¹.a/n W n < !º and
B.N / D inf¹.b/n W n < !º. Without loss of generality we can assume that all
.a/n and .b/n, n < !, realize the same minimal type, and then, by recursive sat-
uration, we can further assume that tp.a/ D tp.b/, and the result follows (see [14,
Proposition 10.2.4] for full details).

It is shown in Kossak [8] that for a countable recursively saturated model N of PA,
the following statements are equivalent:

(1) N is arithmetically saturated.
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(2) For any two tall models M;K 2 E.N/, if there exist increasing coded se-
quences han W n < !i and hbn W n < !i such thatM D sup¹an W n < !º and
K D sup¹bn W n < !º, then .N;M/ Š .N; K/.

Attempts to use similar arguments to show that the condition in Corollary 4.6
characterizes arithmetic saturation have not so far been successful, so let us pose the
following question.

Question 4.7 Suppose that for all finitely generated M;N 2 E.N/, if M and
N have no least proper gaps, then .N;B.M// Š .N; B.N //. Is N arithmetically
saturated?

5 When is a Coshort Cut a Base?

We have seen that bases of finitely generated models are tall. It is not the case in
general. If I 2 E.N/ n ¹N0º is not coshort, then I is a base of anM 2 E.N/. For
example, let p be a minimal type realized in N, and letM be the Skolem closure of
the set of realizations of p in N n I . Clearly, B.M/ D I . By a result of Smoryński
[17], for every cut I �end N that is closed under addition and multiplication, there is
M 2 Ecof.N/ such that GCIS.N;M/ D I . Combining this with the argument given
above, and the fact that cofinal extensions preserve recursive saturation, we get the
following proposition.

Proposition 5.1 Suppose that I1�end I2�end I3 2 Eend.N/, I1 is closed under
addition and multiplication, I2 n I1 is a subset of a gap, and I3 is not coshort. Then
there isM 2 Ecof.N/ such that GCIS.N;M/ D I1, Sb.M/ D I2, and B.M/ D I3.

Proof By Smoryński’s theorem applied to I2, there is M 0�cof I2 such that
GCIS.M 0; N / D I1. Since N n I3 has no least gap, there is a set A of elements
realizing a minimal type such that inf.A/ D I3. The modelM D Scl.M 0 [ A/ has
the required properties.

Thus, if we ask whether every elementary cut of N is a base, the only case to consider
is that of coshort cuts. We will start with a positive result.

Question 5.2 For which coshort I 2 Eend.N/ are there M 2 E.N/ such that
B.M/ D I?

In getting a partial answer to Question 5.2, the notion of a semiregular type will be
useful.

Definition 5.3 We call a type p.x/ semiregular if it is unbounded, and if a real-
izes p.x/ in a modelM ˆ PA, then inf.gap.a// is semiregular in Scl.a/.

Theorem 5.4 Let 
 be a proper gap of N.
(1) IfM 2 E.N/ is such thatM \B.M/�end N and B.M/ D inf.
/, then each

a 2 
 \M realizes a semiregular type.
(2) If N is arithmetically saturated and a 2 
 realizes a semiregular type,

then there is M 2 E.N/ such that a 2 M , B.M/ D inf.
/, and
M \ B.M/�end N.

Proof Let us start by introducing some notation. Suppose that we have a gap 

and an elementary cut I D inf.
/ and that we are trying to determine if there is
M � N such that B.M/ D I . If there is such an M , then we can obtain it from
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some a 2 
 as follows. Define M0;M1;M2; : : : and N0; N1; N2; : : : recursively
by M0 D Scl.a/, Ni D sup.Mi \ I /, and MiC1 D Scl.Ni [ ¹aº/. Then, let
M D

S
i Mi . Observe thatM \ I D

S
i Ni . We will refer to thisM asMŒa� and

also refer to eachMi asMi Œa� and to eachNi asNi Œa�.1 Thus, for any b 2 NnScl.0/,
if there isM � N such that B.M/ D inf.gap.b//, then there is a 2 gap.b/ such that
B.MŒa�/ D inf.gap.b//. So it is of interest to know which a 2 N n Scl.0/ are such
that B.MŒa�/ D inf.gap.a//.

(1) Let 
 D gap.a/, I D inf.
/, and suppose that B.MŒa�/ D I and tp.a/ is not
semiregular. Then the infimum of gap.a// in Scl.a/ is not semiregular in Scl.a/, and
there are b; c 2 Scl.a/ such that c 2 gap.a/ and ¹.b/x W x 2 Scl.a/ \ Œ0; c�º \ I
is unbounded in I . Let t .x/ and t 0.x/ be Skolem terms such that Scl.a/ ˆ t .a/ D

b ^ t 0.a/ D c. Let f0.x/; f1.x/; : : : be a recursive sequence of all Skolem terms,
and then let ti .x/ be defined as the least y such that max¹fj .y/ W j � iº > x:Notice
that t0.a/; t1.a/; t2.a/; : : : is a decreasing sequence downward cofinal in gap.a/ and
that for infinitely many i < !,

Scl.a/ ˆ 9x � t 0.a/
�
tiC1.a/ <

�
t .a/

�
x
< ti .a/

�
:

That sentence also holds in N. Then, it easily follows that N1Œa� D I , contradicting
the fact that B.MŒa�/ D I .

(2) Again, let 
 D gap.a/ and I D inf.
/. Suppose that N is arithmetically
saturated and that tp.a/ is semiregular. Our aim is to show thatM1Œa� D MŒa� and
B.MŒa�/ D I .

Let us start by showing that I n N0Œa� ¤ ¿. That is easy because by arith-
metic saturation, there is a c 2 N such that for any Skolem term t .x/, c < t.a/ iff
t .a/ 2 gap.a/. (This is so even if tp.a/ is not semiregular.)

Next, let us show that N1 D sup.M0 \ I /. If not, then there are b 2 N0 and a
Skolem term t .x; y/ such that N0 < t.a; b/ 2 I . Since b 2 N0, there is a Skolem
term t0.x/ such that b < t0.a/ 2 I . Since tp.a/ is semiregular, there are Skolem
terms t1.x/ and t2.x/ such that t1.a/ 2 
 < t2.a/ and

Scl.a/ ˆ 8y
�
y < t0.a/ �!

�
t .a; y/ < t1.a/ _ t .a; y/ > t2.a/

��
:

Thus, N ˆ t .a; b/ < t1.a/ _ t .a; b/ > t2.a/, a contradiction.

Corollary 5.5 Suppose that N is arithmetically saturated and 
 is a proper gap of
N. Then, 
 contains an element realizing a semiregular type iff there isM 2 E.N/
such that B.M/ D inf.
/ andM \ B.M/�end N.

One can now ask whether every gap contains an element realizing a semiregular type.
It turns out not to be the case. An example is provided by the next lemma.

Lemma 5.6 There is a 2 N realizing a rare type such that h.a/2iC1 W i < !i

is a decreasing sequence downward cofinal in gap.a/ and h.a/2i W i < !i is an
enumeration of Scl.0/.

Proof To be definitive about the Skolem term .x/y , we state our conventions. If
a 2 N, then we think of a as being a code for the sequence h.a/i W i 2 Ni such that
� every coded sequence is eventually 0.
� every N-definable sequence that is eventually 0 is coded by unboundedly
many codes.
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To get a 2 N, we will, as usual, construct a recursive sequence h'n.x/ W n < !i

of 1-ary formulas, where each 'n.x/ defines the unbounded set Xn � N such that
X0 � X1 � X2 � � � � , and then we pick any a 2

T
nXn. Notice that since N is

recursively saturated,
T
nXn 6D ¿.

We will make use of a recursive sequence hfn W n < !i of all 0-definable func-
tions f W N �! N, and also a recursive, one-to-one enumeration hcn W n < !i of
Scl.0/.

Each Xn will have the following properties:
(1) For each y 2 N, there are unboundedly many x 2 Xn such that .x/i D .y/i

whenever 2n � i 2 N.
(2) If i < n and x 2 Xn, then .x/2i D ci .
(3) If n > 0, x; y 2 Xn, y < x, and there is no z 2 Xn such that y < z < x,

then .x/2n�1 D y.
Let X0 D N. Next, suppose that we already have X0 � X1 � X2 � � � � � Xn

satisfying (1)–(3). To obtain XnC1, we inductively choose x0 < x1 < x2 < � � � as
follows. Let x0 be the least x 2 Xn such that .x/2n D cn. Assuming that we have xj ,
then let xjC1 be the least x 2 Xn such that x > fn.xj /, .x/2n D cn, .x/2nC1 D xj ,
and .x/i D .j /i for i 2 N such that 2nC 1 < i . Then let XnC1 D ¹xj W j 2 Nº.

One easily notices that this construction results in a decreasing recursive sequence
hXn W n < !i satisfying (1)–(3).

Pick any a 2
T
nXn. From (2), .a/2n D cn, so h.a/2n W n < !i is an enumeration

of Scl.0/. It is clear from the construction that h.a/2nC1 W n < !i is a decreasing
sequence. Moreover, it is downward cofinal in gap.a/ since, for any zero-definable
f W N �! N, there is n < ! such that fn dominates f and fn..a/2n�1/ < a. Also,
notice that there is no x 2 Xn such that a < x < fn.a/, thereby showing that a
realizes a rare type.

Corollary 5.7 There is a coshort elementary cut I 2 Eend.N/ such that whenever
M 2 E.N/,M \ B.M/�end N, and B.M/ exists, then B.M/ ¤ I .

Proof Let a 2 N be as in Lemma 5.6, let I D inf.gap.a//, and let M 2 E.N/
be such that M \ gap.a/ 6D ¿. Since the type of a is rare, a 2 M (see [14,
Lemma 3.1.15]). We will consider two cases.

Case 1. Suppose that GCIS.N;M/ � N0. Then, by overspill, there is a nonstan-
dard i0 2M such that N0 < .a/i0 2 I . Hence B.M/ 6D I .

Case 2. Now assume that N0 < GCIS.N;M/ D J < I . Let d 2 I be such that
J < d . Again by overspill, there is i0 2 J such that d < .a/i0 2 I , and the result
follows.

6 Elementary Pairs Sharing the Same Greatest Common Initial Segment

If I D B.M/ for someM 2 E.N/, we want to see what, if any, are the restrictions on
the isomorphism type ofM . CanM be recursively saturated? Can it be isomorphic
to N?

If I 2 Eend.N/ is strong, then N has a countable cofinal elementary exten-
sion N0 such that I D GCIS.N0;N/ and IN

C .a/�end N0 for any a 2 N0 such that
I < a < .N n I / (this is a result of Kirby [6]). Since N is isomorphic to N0, this
provides examples of bases of models in Ecof.N/ that are isomorphic to N. Kirby
[6] proved that N0 can be constructed in such a way that for any a 2 N0 such that
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I < a < .N n I /, IN
C .a/ is a strong elementary cut of N0, but beyond that there is

not much more information.
The rest of the paper is devoted to theories and isomorphism types of pairs

.N;M/, whereM 2 Ecof.N/ and GCIS.N;M/ is fixed. There are several construc-
tions giving a variety of theories and isomorphism types of pairs, and a variety of
greatest common initial segments. The strongest result is Theorem 7.6; nevertheless
we will present other constructions first, as each might be of interest on its own, and
each rests on explorations of different kinds of isomorphism invariants. We will start
with a slight improvement on a theorem of Smoryński [18, Theorem 1.3].

Theorem 6.1 There is an elementary cut J for which there are infinitely many
theories Th..N;M//, whereM 2 Ecof.N/, GCIS.N;M/ D J , andM Š N.

Proof There is a recursive list hˆn W n < !i of first-order properties of
elementary cuts such that for all distinct n and m and all cuts M 2 E.N/,
.N;M/ ˆ .ˆn ! :ˆm/. For example, ˆn can be a sentence expressing that
.M;Cod.N=M// satisfies all †n-induction axioms with set parameters from
Cod.N=M/ plus the negation of a particular instance of the (†nC1)-collection
axiom (see Kossak [9]). By chronic resplendency of N, we get X;S � N such that
.N; X; S/ is resplendent and for each n < ! the following conditions hold:

(1) .X/n�end.X/nC1�end N;
(2) .N; .X/n/ ˆ ˆn;
(3) S is a partial inductive satisfaction class such that for all n < !,�

.X/n; S \ .X/n
�
� .N; S/:

Let p be a minimal type of Th..N; S// realized in .N; S/. Let P be the set of
realizations of p in .N; S/. Let J D sup.Scl.N;S/.0//. Condition (3) implies that
J < .X/0. Finally, for each n < ! we defineMn to be Scl.N;S/

�
J [ .P n .X/n/

�
.

Since p is strongly indiscernible, for all n < !, GCIS.N;Mn/ D J and
B.Mn/ D .X/n. By condition (2), Th..N;Mm// 6D Th..N;Mn// for allm 6D n.

Notice that the cut J obtained in the proof of Theorem 6.1 is not semiregular. In
the next result we will get a strong J and continuum many different theories of pairs
.N;M/. We will need a series of lemmas. The first one applies to all cofinal exten-
sions.

Lemma 6.2 There is a sentence � of LPA with an additional unary predicate such
that for all M;N ˆ PA, if M �cof N , then .N;M/ ˆ � if and only if N is finitely
generated overM .

Proof Suppose that M �cof N and N D Scl.M [ ¹aº/ for some a 2 N . Then
every element of N is of the form t .a; b/ for some Skolem term t and some b 2M .
Let c 2 M be such that a < c, and let d 2 M be a code of the sequence
ht .x; b/ W x < ci. Then t .a; b/ D .d/a. It follows that N D ¹.d/a W d 2 M º.
Hence the sentence � D 9x8y9z.z 2M ^ y D .z/x/ is as required.

Lemma 6.2 is specifically about cofinal extensions. Suppose thatM is not cofinal in
N and that N is finitely generated overM . Let .N 0;M 0/ be a recursively saturated
pair such that .N;M/ � .N 0;M 0/. It is easy to see that N 0 is not finitely generated
overM 0.
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The next lemma is essentially due to Kirby and Paris, and it follows from standard
results on strong cuts in models of PA (see [14, Theorem 7.3.4] for details).

Lemma 6.3 For each a 2 N there is a strong elementary cut I such that a 2 I .
If I 2 Eend.N/ is strong, then there are N0 and N00 such that

(1) N�cof N0 and N�cof N00;
(2) I D GCIS.N0;N/ D GCIS.N00;N/ and Cod.N0=I / D Cod.N00=I / D

Cod.N; =I /;
(3) BN0

.N/ and BN00

.N/ exist, N0 D Scl.N [ BN0

.N//, and N00 D

Scl.N [ BN00

.N//;
(4) N0 is finitely generated over N, and N00 is not finitely generated over N.

Theorem 6.4 For every strong elementary cut J there are continuum many theo-
ries Th..N;M//, whereM 2 Ecof.N/, GCIS.N;M/ D J , andM Š N.

Proof Let J be a strong elementary cut in N, and let X � ! be given. Using
Lemma 6.3 we inductively define the sequence N D M0�cof M1�cof M2�cof � � �

such that for all n < !,
(1) BMnC1.Mn/ exists and BMnC1.Mn/ < GCIS.MnC2;MnC1/;
(2) GCIS.M1;M0/ D J and Cod.M0=J / D Cod.M1=J /;
(3) MnC1 is finitely generated overMn if and only if n 2 X .

LetKX D K D
S
n<!Mn. We will consider the pair .K;N/. Notice that for each n,

MnC1 D SclK
�
Mn [ B

K.Mn/
�
D
®
.a/b W a 2Mn ^ b 2 B

K.Mn/
¯
:

Since B.M0/ is definable in .K;N/, this allows us to inductively define each Mn

in .K;N/. Since K is countable and recursively saturated and SSy.N/ D SSy.K/,
K Š N; moreover, by (2), there is an isomorphism that is identity on J (see [14,
Theorem 8.5.2]). The result now follows from Lemma 6.2, since it implies that for
X 6D Y , Th..KX ;N// 6D Th..KY ;N//.

The construction in the proof of the next theorem is a modification of one of the basic
constructions from [19]. It yields pairs .N;M/ which are not recursively saturated
and cuts J that are not semiregular. We obtain continuum many nonisomorphic
pairs, but we have no control over their first-order theories.

Theorem 6.5 There are J �end N and continuum many nonisomorphic pairs
.N;M/ such thatM 2 Ecof.N/, GCIS.N;M/ D J , andM Š N.

Proof Let S be a partial inductive satisfaction class such that .N; S/ is recursively
saturated, and let p be a minimal type of Th..N; S// realized in .N; S/. We will fol-
low the proof of [19, Theorem 3.6]. Let <� be a recursive ordering of N of the order
type of the rationals. By recursive saturation, there is a coded sequence har W r 2 Ni
such that for all r; s 2 N, gap.N;S/.ar / < as iff r <� s: In addition, we require that
all ar realize p. Let a 2 N code har W r 2 Ni.

Let C be a Dedekind cut in .N; <�/, and let KŒC � D sup¹ar W r <� C º. It
is easy to see that KŒC � is a tall elementary cut of N. Hence KŒC � Š N. One
can show that C is uniformly defined in .N; KŒC �; a/ (see [19]). If .N; KŒC �/ and
.N; KŒC 0�/ are isomorphic, then Def0.N; KŒC �; a/ D Def0.N; KŒC 0�; a0/, where
a0 is an automorphic image of a. Since there are only countably many parameters
a, if there were only countably many isomorphism types of structures .N; KŒC �/,
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the union of all sets definable in all structures of the form .N; KŒC �; a/ would be
countable, but we know that every cut C must be in this union.

As before, we define J D sup.Scl.N;S/.0//, and for a Dedekind cut C ,
MŒC � D Scl.N;S/.J [ ¹as W C <� asº/. To finish the proof, notice that MŒC � is
isomorphic to N by an isomorphism fixing KŒC � pointwise.

7 Elementary Pairs and Lattices of Elementary Substructures

In this last section we will prove a general result on cofinal extensions of (arbitrary)
countable models of PA, which will provide another source of diversity. It will allow
us to improve Theorem 6.5 by replacing nonisomorphic pairs by pairs satisfying
different first-order theories.

If I is a proper cut in a modelM andM � N , then we say that N fills I if there
is a b 2 N such that for all a; c 2M , if a 2 I < c, then a < b < c.
Theorem 7.1 Suppose thatM is any countable model of PA and that J � M is
a proper cut closed under exponentiation. Then there is a set C of finitely generated,
cofinal extensions ofM such that

(1) jC j D 2@0 I

(2) for each N 2 C , GCIS.N;M/ D J , Cod.N=J / D Cod.M=J /, and N does
not fill J ;

(3) if N1; N2 2 C are distinct, then Th..N1;M// ¤ Th..N2;M//.
One possible approach to proving this theorem is via substructure lattices. Recall that
if N ˆ PA, then E.N / can be considered as a lattice, and when we do so we write
Lt.N / instead of E.N / (see [14, Chapter 4]). If M � N ˆ PA, then Lt.N=M/ is
the sublattice of Lt.N / consisting of those K 2 Lt.N / such that M � K. We let
Lt0.N=M/ D ¹K 2 Lt.N=M/ W K is a finitely generated extension ofM º. Notice
that, in general, Lt0.N=M/ is not a lattice, but it is a _-subsemilattice and we will
think of it as such.

For a modelM ,M.a/ will denote the elementary extension ofM generated over
M by a, that is,M.a/ D Scl.M [ ¹aº/.
Lemma 7.2 Suppose thatM �cof N ˆ PA. Then, Lt0.N=M/ is interpretable in
.N;M/.
Proof In .N;M/, the relation R D ¹hx; yi 2 N W M.x/ � M.y/º is definable by
the formula 8u 2M9v 2MŒ.u/x D .v/y �:

Lemma 7.2 implies that ifM1�cof N1,M2�cof N2 and .N1;M1/ � .N2;M2/, then
Lt0.N1=M1/ � Lt0.N2=M2/. This suggests the following question.
Question 7.3 Suppose thatM1�cof N1,M2�cof N2, and .N1;M1/ � .N2;M2/.
Is Lt.N1=M1/ elementarily equivalent to Lt.N2=M2/?
By the method described in Kossak and Schmerl [13, Section 5], the following can
be shown. If X � ! and M ˆ PA is countable and nonstandard, then there is
N �cof M such that Lt0.N=M/ D Lt.N=M/n¹N º and Th.Lt.N=M// is Turing-
reducible to X . Moreover, if J � M is a proper cut closed under exponentiation,
then, using Lemma 7.4 below, we can get N such that GCIS.N;M/ D J . Theo-
rem 7.1 easily follows.

We give another approach to proving Theorem 7.1 in which all N 2 C are such
that Lt.N=M/ is much simpler; in fact, Lt.N=M/ is a 3-element chain 3.
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Lemma 7.4 Suppose thatM is a countable model of PA, a 2 M , and J � M is
a proper cut closed under exponentiation. ThenM has a minimal cofinal extension
N such that GCIS.N;M/ D J , Cod.N=J / D Cod.M=J /, and N does not fill J .

If, moreover, M0 � M D M0.a/, then N can have the additional property that
wheneverM0 �M1 � N andM1 6D N , thenM1 �M .

Proof As is typical with proofs of lemmas like this, we will construct a decreasing
sequence X0 � X1 � X2 � � � � of nonempty definable subsets ofM that determine
a type overM in the sense that whenever Y � M is definable, then there is n < !

such that either Y � Xn or Y \ Xn D ¿. Then, we let N be the extension of M
generated by an element realizing this type.

We will say that a subset X � M is large if X � X0, X is definable, and
M ˆ jX j D b for some b > J . To start the construction, we choose some b 2MnJ
and then let X0 D ¹x 2M W x D ha; yi for some y < bº. Clearly, X0 is large.

The construction of X0 � X1 � X2 � � � � will proceed in the usual way. Every
large set X satisfies the following properties. These are just the properties that are
needed to guarantee that the sequence X0 � X1 � X2 � � � � , and then also N , has
the desired properties:

(a) If Y � X is definable, then either Y or XnY is large.
(b) If f W X �! M is a definable function, then there is a large Y � X such

that either f is constant on Y or f is one-to-one on Y .
(c) If J < b 2M , then there is a large Y � X such thatM ˆ jY j � b.
(d) For every definable function f W X �!M , there is a large Y � X such that

either there is b 2 J such that f .y/ � b for all y 2 Y or else there is b > J
such that f .y/ � b for all y 2 Y .

(e) If f W X �! M is a definable function such that for all x 2 X and all i ,
.f .x//i 2 ¹0; 1º, and there is b > J such that f .x/ � b for all x 2 X , then
there are d 2 M , c > J , and a large Y � X such that for all y 2 Y and
i < c, .f .y//i D .d/i .

We next give proofs of (a)–(e).
(a) The larger of the sets Y and X n Y is large.
(b) Let R be the range of f , and let r D jRj. If r > J , then let Y be

the collection of the smallest elements of f �1.y/, for y 2 R. If r 2 J ,
there is a y 2 R such that jf �1.y/j > J , because otherwise we would have
jX j � r �max¹jf �1.y/j W y 2 Rº 2 J .

(c) Let f W X �! jX j be a definable bijection, and then letY D f �1.Œ0; b�\jX j/.
(d) By (b), we can assume that f is one-to-one or constant on X . If f is constant

on X , then just let Y D X . So, suppose that f is one-to-one. Define h W M �! M

to be such that h.x/ D jf �1.Œx;1/�/j. Clearly, for each x 2 J , h.x/ > J , so
x < h.x/. By overspill, there is c > J such that h.c/ > c. Let Y D f �1.Œc;1//.

(e) For each i , consider the function hi W X �! 2i that maps x onto
h.f .x//j W j < ii. Since J is closed under exponentiation, by overspill, there
is a d > J such that jX j > 2dd . Pick such a d , and then let Y � X be large such
that hd is constant on Y .

Let us see why this works. From (a), we get that the sequence determines a type.
Let N be an extension of M generated by an element c 2 N realizing that type.
Notice that by the choice of X0, there is a Skolem term t .x/ such that t .c/ D a.
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Since X0 is bounded, N is a cofinal extension of M , and it is a minimal extension
by (b).

Let b 2 M n J be given. By (c), there is a large Y 2 M such that N ˆ c 2 Y

and jY j � b. Let d 2 M be such that Y D ¹.d/i W i < jY jº, and let
t .x/ D min¹i W x D .d/iº. Then t .c/ � b and t .c/ … M . This implies that
GCIS.N;M/ � J .

Conditions (b) and (d) imply that GCIS.N;M/ � J . Thus, GCIS.N;M/ D J .
By (d), N does not fill J .

We get from (e) that Cod.N=J / D Cod.M=J /.
Finally, we prove the additional minimality property. Suppose that M0 � M1

and that d 2 NnM . Because of the existence of t .x/, there is an M0-definable
f W N �! N such that f .c/ D d . By (b) we can assume that f is one-to-one,
so that c D f �1.d/ and then c 2 M1. Again, by the existence of t .x/, we get that
M1 D N .

We now prove Theorem 7.1 with additional conclusion:
(4) If N 2 C , then Lt.N=M/ Š 3.

Proof of Theorem 7.1 Applying Lemma 7.4 (without the “moreover” part), let
N0 be a minimal cofinal extension of M such that GCIS.N0;M/ D J and
Cod.N0=J / D Cod.M=J /. Let N0 D M.a/. It was shown first by Jensen and
Ehrenfeucht [4] (and it also follows easily from Friedman’s embedding theorem) that
there are continuum many cuts J0 � N0 such that J0 is closed under exponentiation,
J � J0, and for each of these continuum many cuts J0, the theories Th..N0; J0//
are distinct. Now, for each such J0, apply Lemma 7.4 (now with the “moreover”
part), and get a minimal cofinal extension N of N0 such that GCIS.N;N0/ D J0
and such that wheneverM �M1 � N andM1 6D N , thenM1 � N0. Let C consist
of one such N for each possible Th..N0; J0//.

Now, consider an N 2 C , with corresponding J0. Clearly, M � N0 � N , and
there is noN 0 ¤ N0 such thatM � N 0 � N , and all inclusions are proper. Thus, by
Lemma 7.2, N0 is definable in .N;M/ and therefore J0 is also. Thus, Th..N;M//

determines Th..N0; J0//. Then, for distinct N 2 C , the theories Th..N;M// are
distinct.

Question 7.5 Can the condition in (4) that Lt.N=M/ Š 3 be replaced with
Lt.N=M/ Š 2 (i.e., N is a minimal extension ofM )?

Theorem 7.6 Let J � N be a proper cut closed under exponentiation. Then there
is a set D � Ecof.N/ such that

(1) jD j D 2@0 I

(2) for each M 2 D , GCIS.N;M/ D J , Cod.M=J / D Cod.N=J /,
.M; J / Š .N; J /, and for every a 2 N, if a > J , then there is b 2 M
such that J < b < aI

(3) ifM1;M2 2 D are distinct, then Th..N;M1// ¤ Th..N;M2//I

(4) ifM 2 D , then Lt.N=M/ Š 3.

Proof Let D 0 be a set of cofinal extensions of N given by Theorem 7.1. Each
M 2 D 0 is recursively saturated, and since Cod.N=J / D Cod.M=J /, M Š N.
The only part now that requires an additional explanation is .M; J / Š .N; J /. This
follows from [14, Theorem 8.5.2] and two observations. In the theorem J is assumed
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to be elementary, but here since the identity on J is a partial isomorphism between
M and N, the proof works. There is also an assumption that J is not an infimum of
a coded !-sequence either inM or in N. So, if J satisfies this, we are done. If not,
suppose that J D inf¹.b/i W i < !º for some b 2 M coding a decreasing sequence.
(We are still assuming N�cof M .) Then b 7! b can be extended to an isomorphism
f W N Š M , and, clearly, f .J / D J . Now assume that J D inf¹.c/i W i < !º for
some c 2 N coding a decreasing sequence. Then ¹hi; .c/i i W i > !º � J is coded in
N and hence inM . Pick a code b of this set, and notice that there is a nonstandard
J 0 � J such that the identity on J 0 [ ¹bº extends to an isomorphism f W N Š M .
Again, f .J / D J .

Note

1. In early papers on elementary cuts in recursively saturated models of PA, NŒa� denotes
inf.gap.a//. This should not be confused with our notation here.
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