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Euclidean Functions of
Computable Euclidean Domains

Rodney G. Downey and Asher M. Kach

Abstract We study the complexity of (finitely-valued and transfinitely-valued)
Euclidean functions for computable Euclidean domains. We examine both the
complexity of the minimal Euclidean function and any Euclidean function. Addi-
tionally, we draw some conclusions about the proof-theoretical strength of min-
imal Euclidean functions in terms of reverse mathematics.

1 Introduction

One of the first algorithms discussed in almost any elementary algebra course is
Euclid’s algorithm for computing the greatest common divisor of two integers. Later,
this algorithm is extended to other principal ideal domains like Q[X ]. In a first course
in abstract algebra, this idea is explained by describing both Z and Q[X ] as Euclidean
domains. We recall the definition of a Euclidean domain.

Definition 1.1 A commutative ring R is a Euclidean domain if it is an integral
domain (i.e., there are no zero divisors) and there is a function φ : R \{0} → ω
satisfying

(∀a, d ∈ R)(∃q ∈ R)
[
d = 0 or a + qd = 0 or φ(a + qd) < φ(d)

]
.

If there is such a function φ : R \{0} → ON (where ON is the class of ordinals),
then R is a transfinite Euclidean domain.

In the former case, we say the function φ is a (finitely-valued) Euclidean function
for R; in the latter case, we say the function φ is a transfinitely-valued Euclidean
function for R.

The reader should note that it is equivalent to demand φ(a − qd) < φ(d); indeed,
this inequality better aligns with the intuition that if a = 18 and d = 7, then the
quotient is q = 2 (rather than q = −2 as above). The reader may also note that
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texts often restrict attention to Euclidean domains rather than transfinite Euclidean
domains, though the greatest common divisor algorithm works provided the range
of φ is well-founded. Remarkably, it is a forty-year-old open question (implicitly
a sixty-year-old open question) whether there exists a transfinite Euclidean domain
having no finitely-valued Euclidean function.

If the commutative ring does not need to be an integral domain, then Z⊕Z (the di-
rect product of two copies of Z) serves as an example of a ring having a transfinitely-
valued Euclidean function (with range ω2

+ ω2) but no finitely-valued Euclidean
function (see [7]). Some integral domains are known to have both finitely-valued and
transfinitely-valued Euclidean functions. For example, the functions φ1(z) = |z|,
φ2(z) = blog2 |z|c, and φ3(z) = ω · i + j + 1 (where z = ±2i (2 j + 1)) are all
(transfinitely-valued) Euclidean functions for R = Z (see [8]). Of course, these
functions demonstrate the well-known fact that Euclidean functions are not unique
for a ring R.

A fact that is not presented in many texts on (transfinite) Euclidean domains is
that they can be defined without recourse to the existence of a (transfinitely-valued)
Euclidean function. The idea is to define a hierarchy of sets with the property that
it exhausts the set R \{0} of nonzero elements if and only if R is a (transfinite)
Euclidean domain. At the bottom level R0 of this hierarchy, we have the units. At the
next level R1, we have all those elements which either exactly divide all elements or
give remainder a unit upon division. More generally, at level Rα , we have all those
elements which either exactly divide all elements or give remainder in R<α upon
division.

Definition 1.2 (Motzkin [5], Samuel [7]) If R is an integral domain, define a se-
quence of sets {Rα}α∈ON via recursion by

Rα =
{
d ∈ R \{0} : (∀a ∈ R \{0})(∃q ∈ R)

[
a + dq = 0 or φ(a + dq) ∈ R<α

]}
.

Theorem 1.3 (Motzkin [5], Samuel [7]) If R is an integral domain, then R is a
(transfinite) Euclidean domain if and only if

R \{0} =
⋃
α∈ωRα (R \{0} =

⋃
α∈ON Rα).

In the case that R \{0} = ∪α∈ON Rα , the function φR mapping x to the least ordinal α
with x ∈ Rα satisfies φR(x) ≤ φ(x) for any transfinitely-valued Euclidean function.

If R is a transfinite Euclidean domain, the second part of Theorem 1.3 says there is
always a least transfinitely-valued Euclidean function. As a consequence, it is also
possible to define φR as the infimum (minimum) of all transfinitely-valued Euclidean
functions; that is,

φR(x) = inf{φ(x) : φ is a transfinitely-valued Euclidean function for R}

(see [7]). Naturally, we seek to understand the complexity of this least function φR

and of any transfinitely-valued Euclidean function φ for R.
The goal of the current paper is to add to our understanding of the complexity

of the possible transfinitely-valued Euclidean functions φ on effectively-presented
Euclidean domains. Thus, we are studying computable commutative algebra in a
tradition going back to Herrmann (see [3]) and van der Waerden (see [11]), and in
its modern incarnation certainly going back to Fröhlich and Shepherdson (see [2]),
Mal′cev (see [4]), and Rabin (see [6]). We refer the reader to the survey article [10]
for background in effective commutative ring theory.
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In this paper, we will be extending earlier work of Schrieber (see [8]), solving the
questions posed in that paper. There, Schrieber showed that there is a computable
Euclidean domain with no computable finitely-valued Euclidean function, that there
is a computable Euclidean domain with a computable Euclidean function but whose
units are noncomputable, and that there is a computable Euclidean domain with nei-
ther computable units nor a computable Euclidean function.

A coarse analysis based on quantifiers in the definition of the Rα reveals some
upper bounds. As the set R0 is 60

1 , being the collection of units, the set Rn is 50
2n

for 0 < n < ω. Thus in a computable Euclidean domain R, if φR is finitely-valued,
then φR is ∅(ω)-computable.

Any Euclidean function φ for R, where R is Schrieber’s computable Euclidean
domain with no finitely-valued computable Euclidean function, computes ∅′.
Schrieber asked if it was possible to remove the restriction of being finitely-valued.
We show that it is.

Theorem 1.4 There is a computable Euclidean domain R having no transfinitely-
valued computable Euclidean function φ. Moreover, every transfinitely-valued Eu-
clidean function φ for R computes ∅′.

Schrieber’s computable Euclidean domain for which the set of units R0 is non-
computable has the property that R0 is 60

1 -complete in any computable pre-
sentation. As we utilize this ring when later discussing relevant reverse math-
ematics, we sketch his proof (see [8]). First, we recall the fact that if R is a
Euclidean domain with Euclidean function φ and S is a multiplicatively closed
set in R containing the multiplicative identity but not the additive identity, then
S−1R := {s−1r | s ∈ S and r ∈ R} is also a Euclidean domain (see [7]). Let the
Halting Problem be represented by a set of primes P and apply the above with S as
the multiplicative closure of P ∪ {±1} in Z. Then the Euclidean domain S−1Z has
60

1 -complete units.
This result shows that it is possible to have a computable Euclidean domain for

which R0 is as complicated as possible and for which the least Euclidean function is
as complex as ∅′ (since it can compute the units). We strengthen this by exhibiting
a computable Euclidean domain for which R1 is as complicated as possible, namely,
50

2-complete, and thus for which the least Euclidean function is as complex as ∅′′

(since it can compute R1).

Theorem 1.5 There is a computable Euclidean domain R for which the set R1 is
50

2-complete.

We do not know whether this result can be extended and will make some remarks
about R j for j ≥ 2 in Section 4. We also show that Schrieber’s result can be extended
to any ∅′-computable Euclidean function.

Theorem 1.6 There is a computable Euclidean domain R for which there is no
finitely-valued ∅′-computable Euclidean function φ.

We note Schrieber’s computable Euclidean domain with no computable finitely-
valued Euclidean function does have a computable transfinitely-valued Euclidean
function.

Theorem 1.7 There is a computable Euclidean domain R having no computable
finitely-valued Euclidean function but having a computable transfinitely-valued Eu-
clidean function.
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It is well known that results in effective algebra (which seeks to understand algebra
via computability theory) often go hand in hand with results in reverse mathemat-
ics (which seeks to understand the logical strength of theorems of mathematics via
their proof-theoretical strength in second-order arithmetic). To conclude the paper,
we discuss the implications of these results to the proof-theoretic strength (within
the framework of reverse mathematics) of the theorem asserting the existence of a
minimal Euclidean function. Though we offer some background in Section 3, in a
short paper such as this, we do not include all the necessary background.

Theorem 1.8 (RCA0) The statement

MEF: every Euclidean domain has a minimal Euclidean function

proves ACA0.

2 Proofs of Results

It is really quite difficult to construct complicated Euclidean domains. Our results
will use extensions of methods of Schrieber. Thus, as preparation for proving the
theorems, we recall some notation and results introduced by Samuel and Schrieber.

Definition 2.1 (Schrieber [8]) If K is a field and {X i }i∈ω is a set of variables, denote
by K 〈X i 〉i∈ω the commutative ring of reduced fractions p/q with p, q ∈ K [X i ]i∈ω
and q not divisible by X i for any i .

Thus, every element x of the commutative ring K 〈X i 〉i∈ω is the product of a mono-
mial m and a unit u.

Theorem 2.2 (Schrieber [8]) The function φ(x) = φ(mu) := deg(m), where m
is a monomial and u is a unit, is the least Euclidean function for K 〈X i 〉i∈ω. In
particular, K 〈X i 〉i∈ω is a Euclidean domain.

All the Euclidean domains we construct will be of the form K 〈X i 〉i∈ω, where the
field K is either Q or Q(Z j ) j∈ω, for some sets of formal variables {X i }i∈ω and
{Z j } j∈ω.

Proposition 2.3 (Samuel [7]) If R is an integral domain and B, T ∈ R are nonzero,
then φR(T ) ≤ φR(BT ).

Proof We consider the function φ(T ) := min06=B∈R φR(BT ). We note φ is a
Euclidean function for R as given a nonzero D ∈ R, there is a nonzero B ∈ R
with φ(D) = φR(B D). Thus for any A ∈ R, there is a Q ∈ R such that either
A + Q B D = 0 or φR(A + Q B D) < φR(B D). Considering B Q, we have either
A+ (B Q)D = 0 or φ(A+ (B Q)D) ≤ φR(A+ (B Q)D) < φR(B D) = φ(D). This
verifies φ is a Euclidean function for R.

Moreover, we have φ = φR since

φR(T ) ≤ φ(T ) ≤ φR(1T ) = φR(T )

as a consequence of the minimality of φR and taking 1 for B. It is clear that φ, and
thus φR, has the desired property. �

Proposition 2.4 (Folklore) If R is an integral domain, B, T ∈ R are nonzero,
and B is a nonunit, then φR(T ) < φR(BT ).
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Proof Since B is a nonunit, it follows BT does not divide T . Thus

min
Q∈R

{φR(T + Q BT )} < φR(BT )

by virtue of the definition of Rα . By Proposition 2.3 (as 1 + Q B 6= 0 for all Q ∈ R),
we have minQ∈R{φR(T + Q BT )} = minQ∈R{φR(T (1 + Q B))} ≥ φR(T ). �

We are now prepared to demonstrate the theorems.

Proof of Theorem 1.4 It would seem difficult to diagonalize against all computable
functions from elements of the ring to ordinal notations, but we realize that any such
function would simply map the elements of the ring to some computable subordering
of the rational numbers (as a dense linear ordering) with various extra constraints.
Thus, rather than construct R to diagonalize against transfinitely-valued Euclidean
functions φ, we diagonalize against computable relations

Eφ(x, y) := {(x, y) ∈ R × R : φ(x) ≤ φ(y)}.

This is justified because Eφ is computable if φ is a computable transfinitely-valued
Euclidean function.

Therefore, fix an enumeration {Ei }i∈ω of computable binary relations. The idea
is to determine whether Ei (X i , Yi ) or Ei (Yi , X i ) (if either computation converges)
and assure this cannot be the case by making either X i a power of Yi or Yi a positive
power of X i .

Construction At stage s, we introduce terms Xs and Ys . For each i ≤ s, we check
whether Ei (X i , Yi )↓= 1 or Ei (Yi , X i )↓= 1. If either has newly converged, we put
X i = Y s

i if E(X i , Yi )↓= 1 and Yi = X s
i otherwise.

Finally, at each stage s, we continue the enumeration of the ring, working toward
Q 〈X i , Yi 〉i∈ω (with a slight abuse of notation).

Verification It is clear that we construct a computable ring. By Theorem 2.2, it
is a Euclidean domain. Moreover, it cannot have a computable transfinitely-valued
Euclidean function φ. For if it did, the binary relation Eφ would be total com-
putable. Fixing an index i for which Eφ(x, y) = Ei (x, y), the relationship between
the terms X i and Yi contradicts Ei by Proposition 2.4. �

The idea for Theorem 1.5 and Theorem 1.6 is to construct a computable ring R
classically isomorphic to Q (X i )i∈ω

〈
Y j

〉
j∈ω, where {X i }i∈ω and {Y j } j∈ω are some

set of formal variables. However, the ring R we construct will not be computably
isomorphic as it will be difficult to determine whether a formal variable Z ∈ R is
invertible.

Proof of Theorem 1.5 Fix a 50
2-complete set S and a computable predicate P(i, s)

so that i ∈ S if and only if ∃
∞s [P(i, s)]. The idea is to start with the rationals Q

and expressions {Zi }i∈ω. As the construction proceeds, each expression Zi will be
declared equal to a product of two variables Zi = X i, j Yi, j (starting with j = 0).
Every time i appears in a fixed50

2 set, we make X i, j a unit and declare Zi also equal
to the product X i, j+1Yi, j+1. The point is that if ∃

<∞s [P(i, s)], then Zi will have
rank two (being a product of two variables); if ∃

∞s [P(i, s)], then Zi will have rank
one (being a product of only a variable and a unit).
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Construction At stage s, we introduce two new terms Xs,s and Ys,s and denote
their product by Zs . For each i ≤ s, we test whether P(i, s) holds. If it does, we
enumerate X−1

i,s′ into the ring, where s′ is the greatest t < s where P(i, t) held and
s′

= i if no such t exists; introduce two new terms X i,s and Yi,s into the ring; and
equate Zi with the product X i,sYi,s . If it does not, we take no action.

Finally, at each stage s, we continue the enumeration of the ring, working toward
the ring Q(A) 〈B〉, where

A := {X i : X−1
i exists} and B := {X i : X−1

i does not exist} ∪ {Yi : i ∈ ω}.

Verification It is clear that we construct a computable integral domain. Moreover,
if R is a Euclidean ring, then Zs ∈ R1 if and only if ∃

∞s P(i, s) (as noted earlier).
Thus, it suffices to show that R is classically a Euclidean ring.

We show that R is a Euclidean ring by showing R ∼= Q (Ai )i∈ω
〈
B j

〉
j∈ω for

appropriate sets of variables {Ai }i∈ω and {B j } j∈ω. Indeed, any bijection between
{X i,s : X−1

i,s exist} and {Ai }i∈ω and {X i,s : X−1
i,s does not exist} ∪ {Yi,s} and {Bi }i∈ω

induces a bijection between R and Q (Ai )i∈ω
〈
B j

〉
j∈ω. �

Utilizing larger products of variables allows diagonalizing against finitely-valued ∅′-
computable Euclidean functions.

Proof of Theorem 1.6 Fix an effective enumeration {ψe(x)}e∈ω of the partial ∅′-
computable functions and an effective enumeration {φe(x, s)}e∈ω of total computable
functions with the property ψe(x) = lims φe(x, s) if ψe(x) ↓. Additionally, we
assume that if 0 6= φe(x, s) and φe(x, s) 6= φe(x, s + 1), then φe(x, s + 1) = 0,
that is, that the value zero is taken for at least one stage if the approximation changes
value. We construct a computable Euclidean domain R for which φR 6≤ ψe for
any e.

Construction At stage s, we introduce a fresh term Xs into R and compute the
value of φs(Xs, s). We then introduce φs(Xs, s)+ 1 many new terms Xs,s,0, Xs,s,1,
. . . , Xs,s,φs (Xs ,s) and declare their product equal to Xs .

Then, for each e < s, we compare the values of φe(Xe, s) and φe(Xe, s − 1).
If φe(Xe, s) 6= φe(Xe, s − 1) = 0, we introduce φe(Xe, s) + 1 many new terms
Xe,s,0, Xe,s,1, . . . , Xe,s,φe(Xe,s) to the ring R and declare their product equal to Xe. In
the case that φe(Xe, s) 6= φe(Xe, s−1) and φe(Xe, s) = 0, we enumerate X−1

e,s′, j into
the ring for 1 ≤ j ≤ φe(Xe, s′) (where s′ is the last stage at which the approximation
changed), making Xe = q · Xe,s′,0 for some unit q ∈ R.

Finally, at each stage s, we continue the enumeration of the ring, closing under
addition, multiplication, and additive inverse.

Verification It is clear that we construct a computable integral domain. Moreover,
if R is a Euclidean ring, it cannot have a finitely valued ∅′-computable Euclidean
function. This is because if lims φe(Xe, s) fails to exist, then ψe(x) = lims φe(x, s)
is not a total function, and ifψe(Xe) = lims φe(Xe, s) exists, then φR(Xe) = ψe(Xe)
+ 1 > ψe(Xe), contradicting the minimality of φR. Thus, it suffices to show that R
is classically a Euclidean ring.

We show R is a Euclidean ring by showing R ∼= Q(Ai )i∈ω
〈
B j

〉
j∈ω for ap-

propriate sets of variables {Ai }i∈ω and {B j } j∈ω. Indeed, any bijection between
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{X i,s, j : X−1
i,s, j exists} and {Ai }i∈ω, and {X i,s, j : X−1

i,s, j does not exist} and {Bi }i∈ω

induces a bijection between R and Q (Ai )i∈ω
〈
B j

〉
j∈ω. �

We continue by sketching Schrieber’s construction of a computable Euclidean do-
main with no computable finitely-valued Euclidean function and noting it has a com-
putable transfinitely-valued Euclidean function.

Proof of Theorem 1.7 Fix an effective enumeration {φe(x)}e∈ω of the partial com-
putable functions.

Construction At each stage s, we create a term Xs . For each i ≤ s for which
φi (X i ) newly converges, we create a new variable Yi and set X i = Y φi (X i )+1

i . Fi-
nally, at each stage s, we continue the enumeration of the ring, working toward
Q 〈X i 〉i∈ω 〈Yi 〉Yi exists (with a slight abuse of notation).

Verification The ring R is a Euclidean domain with no computable finitely-valued
Euclidean function (see [8]). On the other hand, the computable transfinitely-valued
function induced by mapping Yi to 1 and X i to ω is a transfinite Euclidean function
for R. More precisely, the function φ assigns the rank ω ·

∑t=m
t=1 kt +

∑t=n
t=1 `t to the

monomial X k1
i1
. . . X km

im
Y `1

j1 . . . Y
`n
jn , where `i ≤ φi (X i ) if φi (X i )↓. This suffices as

every monomial is assigned a rank and φ(x) < φ(y) whenever x | y and y6 | x . �

Remark 2.5 It is not difficult to show that the ring R of Theorem 1.7 has no com-
putable α-valued Euclidean function for any α < ω2. Indeed, if there were a com-
putable α-valued Euclidean function φ, then for each i we could find a, c ∈ ω such
that φ(Xa+1

i ) = φ(Xa
i )+ c. As a consequence of Proposition 2.4, this would imply

φi (X i )+1 ≤ φi (Y
φi (X i )+1
i ) = φi (X i ) < c if φi (X i )↓, an impossibility. On the other

hand, the function given shows there is a computable ω2-valued Euclidean function.
A generalization of the construction (noted by the anonymous referee) yields,

for any integer k, a ring R having no computable α-valued Euclidean function for
any α < ωk , but having a computable ωk-valued Euclidean function. For example,
with k = 3, it is possible to ensure φ(Yi ) ≥ ω (if Yi exists) for any computable
Euclidean function φ by creating a new variable Zi when (if) we see φi (Yi ) converge
and setting Yi = Zφi (Yi )+1

i . In turn, this ensures φ(X i ) ≥ ω2 for any computable
Euclidean function.

By taking an appropriate “union” of such rings, it is possible to construct a com-
putable Euclidean domain having no computable ωk-valued Euclidean function for
any k ∈ ω, but having a computable ωω-valued Euclidean function. Unfortunately,
it does not seem as if this technique can be extended to ordinals higher than this.

3 Connections with Reverse Mathematics

Reverse mathematics is the subfield of mathematics that attempts to calibrate the
proof-theoretic strength of theorems within the framework of second-order arith-
metic. This is done by considering a theorem T of classical mathematics and asking
what set existence axioms A are necessary to prove T over a base set of axioms B.
If T is provable from A and A is provable from T (the reversal ), both over B,
then A and T have the same proof-theoretic strength. This program was introduced
by Friedman (see [1]). We refer the reader to other sources (see [9], for example)
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for further discussion of reverse mathematics and a formal definition of the axiom
systems within this paper.

Often, the axiom system RCA0 is chosen as the base set of axioms. Roughly
speaking, the axiom system RCA0 only requires the model to contain the computable
sets and be a Turing ideal. A theorem T is provable from RCA0 (over RCA0) only if
the computable sets witness the conclusion of T .

The axiom system ACA0 is strictly stronger than RCA0, requiring the model also
be closed under Turing jump. A theorem T is provable from ACA0 (over RCA0) only
if the arithmetic sets witness the conclusion of T . The system ACA0 is equivalent to
many natural theorems of classical mathematics (see [9]).

Before doing so, we need to formalize terminology within the framework of
second-order arithmetic.

Definition 3.1 (RCA0) If M is a model, then a commutative ring R is a (transfinite)
Euclidean domain [in M] if it is an integral domain and there is a (transfinitely-
valued) Euclidean function φ for R in M.

A (transfinitely-valued) Euclidean function φ [in M] for R is minimal if φ ≤ φ′

for all (transfinitely-valued) Euclidean functions φ′ [in M] for R.

A priori, there is no reason for the minimal (transfinitely-valued) Euclidean func-
tion φ [in M] to satisfy φ = φR. The following observation, however, is the key step
in showing that any classically nonminimal (transfinitely-valued) Euclidean function
has classically a strictly smaller (transfinitely-valued) Euclidean function of the same
Turing degree. This will enable us to conclude that if R has minimal (transfinitely-
valued) Euclidean function [in M], then it is φR.

Lemma 3.2 (RCA0) Fix a Euclidean domain R and a nonminimal finitely-valued
Euclidean function φ for R. Let α be the least ordinal for which there is a T ∈ R
with α = φR(T ) < φ(T ). Then (fixing such a T )

φ̂(z) =

{
φ(z) if z 6= T
φR(T ) if z = T

is a finitely-valued Euclidean function for R and satisfies φ 6≤ φ̂.

Proof Since φ̂(T ) = φR(T ) < φ(T ), it is immediate that φ 6≤ φ̂. As α was
chosen minimal, for any A ∈ R, there exists a Q ∈ R with φ(A + QT ) < φ(T ) as
φ(A + QT ) = φR(A + QT ) < φR(T ) = α. �

Proof of Theorem 1.8 Fixing a set X in the model, we show X ′ exists. We consider
the X -computable ring whose units are 60

1(X)-complete constructed by relativizing
Schrieber’s construction of a computable subring of the rationals whose units are
intrinsically 60

1 -complete. As noted in the introduction, the (relativized) ring R has
a computable Euclidean function, namely, φ(a/b) = a. Thus, it is a Euclidean
domain; that is, it has a Euclidean function in the model.

Consequently, by MEF, we may fix a minimal Euclidean function φ for R (so that
φ ≤ φ′ for all φ′ in the model). We argue that φ = φR. If not, the function φ̂ of
Lemma 3.2 is in the model as φ̂ ≡T φ ≡T ∅ and is a Euclidean function for R. But
then we would have φ̂ < φ, contradicting the minimality of φ. Thus it must be the
case that φ = φR. As φR computes X ′, the model must be closed under the Turing
Jump. �
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4 Questions and Comments

We close with some questions that remain open. We begin with the question explic-
itly stated in Samuel’s classic paper.

Question 4.1 (Samuel [7]) Is there (classically) a transfinite Euclidean domain
that is not a Euclidean domain?

We note Theorem 1.7 demonstrates that the effective analogue of this question
has a positive answer. However, the computable ring of Theorem 1.7 does have
computable presentations with computable finitely-valued Euclidean functions. We
would like to know how much the complexity of (minimal) Euclidean functions can
vary across presentations. Indeed, is there always a computable presentation having
a computable finitely-valued Euclidean function?

Question 4.2 Is there a computable Euclidean domain R such that no isomorphic
presentation R′ has a computable finitely-valued Euclidean function?

For finitely-valued Euclidean functions, we would like to know if the upper bound
of the complexity on the Euclidean function can be achieved.

Question 4.3 Is there a computable Euclidean domain R for which any Euclidean
function for R computes ∅(ω) (or even ∅(3))?

The Euclidean domains both Schrieber and we use have the property that the least
Euclidean function is determined by the rank one elements. As a consequence, it
is impossible to have R2 be more complex than ∅′′ using this approach. Thus to
answer Question 4.3 in the positive direction, it is necessary to construct a Euclidean
domain where the rank two elements are somehow more independent than the rank
one elements.

It is interesting to note that all classical constructions (at least those of which we
are aware) seem to have the property that the rank two elements are determined by
the rank one elements, or are somehow easily definable from the rank one elements.
It is conceivable that Question 4.3 has a negative answer as a consequence of some
rather deep algebra. If the answer is positive, likely new algebra will be needed too!

Finally, determining the exact proof-theoretical strength of the results above in
terms of reverse mathematics would seem interesting. For example, Theorem 1.8
shows MEF proves ACA0 over RCA0. Is it strictly stronger?

Conjecture 4.4 (RCA0) The theorem MEF is equivalent to ACA+

0 .

Also interesting would be a similar analysis for the more general case of Euclidean
rings.
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