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Abstract. This is part IV of our series of articles on log abelian varieties.
In this part, we study the algebraic theory of proper models of log abelian
varieties.
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§0. Introduction

This is part IV of our series of articles on log abelian varieties.

Degenerating abelian varieties cannot preserve group structures, proper-

ness, and smoothness at the same time. However, in a log world, degenerat-

ing abelian varieties can become group objects called log abelian varieties,

which behave like proper smooth objects. For the idea of our theory, see the

introductory section of part II [9, Section 1].

In part I [8], we studied a complex analytic theory of log abelian varieties.

In part II [9], we started to study an algebraic theory of log abelian varieties.

In part III [10], we illustrated our theory in the case of log elliptic curves.

In this part IV, we continue to study an algebraic theory of log abelian

varieties. The main subject of this part is to construct proper models of log

abelian varieties.

We plan to study polarizations and projective models in part V (forth-

coming). In the remaining parts of this series, one of the main subjects

should be moduli spaces of log abelian varieties.

In this part, we work with the notion of weak log abelian varieties, which

is a slight generalization of that of log abelian varieties, and which is more

natural for the study of proper models. See Section 1 for the definition of

weak log abelian varieties.

Our first main result is, in rough form, the following.

Theorem 0.1. For any weak log abelian variety A over an fs log scheme

and for any fan Σ, the Σ-part A(Σ) of A is an algebraic space.

This is proved in Section 8 by using a log version of the Artin criterion

on representability of a functor by an algebraic space (see Section 7).

The second main theorem is, roughly speaking, the existence of proper

models of weak log abelian varieties, as follows.

Theorem 0.2. For any weak log abelian variety A over an fs log scheme

and for any complete fan Σ, the Σ-part A(Σ) of A is proper.

By the existence of a complete fan (see [8, 5.2.1]), this theorem shows

that we have always a proper model of A étale locally on the base. More-

over, a proper model exists globally under some situations (see Sections 2.4

and 2.5).

Theorem 0.2 is in Section 17. To prove this, we use the valuative criterion.

So we need the detailed analysis of the category of weak log abelian varieties
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over a trait (see Sections 13–16). This story continues in a forthcoming part

of this series of articles.

Terminology. A morphism f : X → Y of fs log schemes is strict if the

induced homomorphism of log structures f∗MY →MX is an isomorphism,

and f is affine (resp., finite, resp., proper) if its underlying morphism of

schemes is affine (resp., finite, resp., proper).

§1. Weak log abelian varieties

As we said in the Introduction, our main subject is the study of proper

models of log abelian varieties. To this end, it is natural and convenient to

generalize the notion log abelian variety. We introduce and work with the

notion weak log abelian varieties instead of log abelian varieties. This notion

weak log abelian variety is an algebraic analogue of the notion log complex

torus (see [8]) all of whose fibers are algebraic (see Section 1.8).

1.1. To define a weak log abelian variety, we first review the notion

admissible pairing (see [8], [9]).

Let X and Y be finitely generated free Z-modules, let S be an fs monoid,

and let

〈 , 〉 : X × Y →Sgp

be a Z-bilinear form. For a face σ of S , let Xσ be the subgroup of X

consisting of all elements x of X such that 〈x,Y 〉 is contained in σgp. The

subgroup Yσ of Y is defined similarly.

We say that 〈 , 〉 is admissible (precisely, S-admissible) if the following

condition is satisfied: for any face σ of S and any homomorphism N : S →
R≥0 into the additive monoid R≥0, if we write the face σ ∩N−1(0) of S as

τ , then the induced pairing of R-linear spaces by N

(Xσ/Xτ )R × (Yσ/Yτ )R →R

is nondegenerate.

Equivalently, it is admissible if the following condition is satisfied: for any

face σ of S and any homomorphism N : σ → R≥0, the induced pairing of

R-linear spaces by N

(Xσ/Xτ )R × (Yσ/Yτ )R →R

is nondegenerate, where τ is the face N−1(0) of σ.
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1.2. Let S be an fs log scheme. We denote by

(fs/S)

the category of fs log schemes over S. We endow it with the strict étale

topology and denote it by (fs/S)ét (see [9, 1.2]).

We denote by Gm,log or by Gm,log,S (resp., by Gm or by Gm,S) the

sheaf of abelian groups on (fs/S)ét defined by Gm,log(T ) = Γ(T,Mgp
T ) (resp.,

Gm(T ) = Γ(T,O×
T )).

Let X and Y be finitely generated free Z-modules, and let

〈 , 〉 : X × Y → (Gm,log/Gm)S

be a Z-bilinear form. We say that 〈 , 〉 is admissible if, for any s ∈ S, the

induced pairing X × Y → (Mgp
S /O×

S )s is (MS/O×
S )s-admissible.

1.3. Let S be an fs log scheme. Let 〈 , 〉 : X × Y → (Gm,log/Gm)S be an

admissible pairing. Here and hereafter, we regard the sheaves as those on

(fs/S)ét. Consider the sheaf of abelian groups Hom(X,Gm,log/Gm) on S.

The admissible pairing gives a homomorphism Y →Hom(X,Gm,log/Gm).

We define a subsheaf

Q :=Hom(X,Gm,log/Gm)(Y )

of groups, which plays an important role in our theory. Let U ∈ (fs/S).

A section ϕ of Hom(X,Gm,log/Gm) over U belongs to this subsheaf Q
of groups if and only if, for any u ∈ U and for any x ∈ Xu, there exist

y, y′ ∈ Yu such that 〈x, y〉 | ϕu(x) | 〈x, y′〉, that is, such that ϕu(x)/〈x, y〉 and
〈x, y′〉/ϕu(x) belong to (MU/O×

U )u in (Mgp
U /O×

U )u.

We denote by Y the image of Y in Hom(X,Gm,log/Gm), which is con-

tained in Q.

1.4. We briefly review the notion log 1-motif and some related definitions.

See [9, Sections 2.1, 2.3, and 3.2] for the details.

Let S be an fs log scheme. Let G be a commutative group scheme over

the underlying scheme of S which is an extension of an abelian scheme B

over S by a torus T over S. We regard G,B, and T as sheaves of abelian

groups on (fs/S)ét. Let X :=Hom(T,Gm), and let Tlog =Hom(X,Gm,log).

Let Glog be the pushout of G ← T ↪→ Tlog in the category of sheaves of

abelian groups on (fs/S)ét.
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A log 1-motif [Y →Glog] over S is a complex of sheaves of abelian groups

on (fs/S)ét with Glog degree 0, where Y is a locally constant sheaf of finitely

generated and free abelian groups, and G is a commutative group scheme

over the underlying scheme of S which is an extension of an abelian scheme

by a torus.

Assume that we are given a log 1-motif as above. Assume that the canon-

ical pairing

X × Y →X × (Glog/G)∼=X × (Tlog/T )→Gm,log/Gm

is admissible, where X =Hom(T,Gm).

Let

G
(Y )
log ⊂Glog

be the inverse image of Q (see Section 1.3) under Glog →Glog/G∼=Hom(X,

Gm,log/Gm).

1.5. Let (P ) be a property of morphisms of fs log schemes. We say that

a morphism F1 → F2 of contravariant functors (fs/S)→ (Set) is represented

by morphisms with the property (P ) if, for any fs log scheme V over S and

any morphism V → F2 over S, the fiber product F1×F2 V is represented by

an fs log scheme over S and the morphism F1 ×F2 V → V obtained by base

change has the property (P ).

Below, we consider the case where the morphism is the diagonal one

Δ: F1 → F1 × F1. In this case, if (P ) is stable under base changes in the

category of fs log schemes, it is formally shown that Δ is represented by

morphisms with the property (P ) if and only if the following holds: for any

fs log schemes U and V over S and for any morphisms U → F1 and V → F1,

the fiber product U ×F1 V is represented by an fs log scheme over S and

the natural morphism U ×F1 V → U ×S V has the property (P ).

Definition 1.6. A weak log abelian variety over an fs log scheme S

is a sheaf of abelian groups A on (fs/S)ét satisfying the following three

conditions.

(1) For any s ∈ S, the pullback of A to (fs/s)ét is isomorphic to G
(Y )
log /Y

for an admissible and nondegenerate log 1-motif [Y → Glog] (see Sec-

tion 1.4).

(2) Étale locally on S, there are a semiabelian scheme G over S, finitely

generated free Z-modulesX and Y , an admissible pairing 〈 , 〉 : X×Y →
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(Gm,log/Gm)S on (fs/S), and an exact sequence

0→G→A→Q/Y → 0,

where Y denotes the image of Y in Q=Hom(X,Gm,log/Gm)(Y ) as in

Section 1.3.

(3) The diagonal morphism A→A×A is represented by finite morphisms.

If we replace “admissible and nondegenerate” in condition (1) by “polar-

izable” (see [9, Definition 2.8]), we get the definition of log abelian variety

(see [9, Section 4]).

Since the polarizability implies the admissibility and the nondegeneracy

(see [9, Example 7.2(1)]), a log abelian variety is a weak log abelian variety.

1.7. We can develop the theory of weak log abelian varieties in a parallel

way to that of log abelian varieties in [9].

Let S be an fs log scheme. The semiabelian part G and the canonical

pairing X × Y →Gm,log/Gm for a weak log abelian variety A are globally

defined in the same way as in [9, Sections 4.4, 9.2, and 9.3]. A weak log abelian

variety with constant degeneration over S is a sheaf of abelian groups on

(fs/S)ét which is isomorphic to G
(Y )
log /Y for an admissible and nondegenerate

log 1-motif [Y →Glog].

By [9, 8.1], the category of weak log abelian varieties with constant degen-

eration is equivalent to that of log 1-motifs whose pairing is admissible and

nondegenerate. A weak log abelian variety with constant degeneration is a

weak log abelian variety. A weak log abelian variety is with constant degen-

eration if and only if the rank of the torus part of a fiber of the semiabelian

part is locally constant on S. If the sheaf MS/O×
S on Sét is locally constant,

any weak log abelian variety over S is with constant degeneration. These

results are analogs of [9, Proposition 4.5 and Theorem 4.6] and are proved

similarly.

1.8. We can develop the analytic theory over C of weak log abelian vari-

eties. Recall that, for an fs log analytic space S over C, a log abelian variety

over S in the sense of [8] is a log complex torus A over S in the sense of [8]

such that for each s ∈ S, the pullback of A to s comes from a log abelian

variety on the fs log scheme s. (Note that s= Spec(C) with an fs log struc-

ture, and hence s can be regarded as an fs log scheme over C.) Here the

fact that F comes from F ′ means that the sheaf F on the site of fs log

analytic spaces over s is the inverse image of the sheaf F ′ on the site of fs
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log schemes over s with the strict étale topology (see [9, Section 4.9]). We

define a weak log algebraic variety over S as a log complex torus A over

S such that, for each s ∈ S, the pullback of A to s comes from a weak log

abelian variety over the fs log scheme s.

Let H be the log Hodge structure of weight −1 over an fs log analytic

space S corresponding to a log complex torus A over S. Then, A is a log

abelian variety (resp., weak log abelian variety) over S if and only if, for

each s ∈ S, the pullback H|s of H to s has the following property: H|s
is polarizable (resp., the graded quotient gr

W (s)
−1 (H|s) with respect to the

weight filtration W (s) at s is polarizable).

We can say that, for an fs log analytic space S, a log abelian variety

(resp., a weak log abelian variety) over S is a log complex torus over S all

of whose fibers are polarizable (resp., algebraic). In fact, if A is a weak log

abelian variety over S, by definition the pullback of A to each s ∈ S comes

from an algebraic object, that is, a weak log abelian variety over the fs log

scheme s. Conversely, a log complex torus A over S is a weak log abelian

variety if, for each s ∈ S, the complex torus corresponding to gr
W (s)
−1 (H|s) is

algebraic (i.e., it is an abelian variety).

§2. Definition of A(Σ)

By definition, a weak log abelian variety A over an fs log scheme S is an

étale sheaf on the big site of S. In this section, we define a certain type of

subsheaf A(Σ) of A, which is proved to be representable under some mild

conditions (see Sections 4 and 8). We call these models of A, and they are

the main subject of this article and the next installment of this series of

papers.

2.1. Let S be an fs log scheme. Let 〈 , 〉 : X × Y → (Gm,log/Gm)S be an

admissible pairing (see Section 1.2).

Then, étale locally on S, there exist a homomorphism from an fs monoid

S →MS/O×
S

and an admissible pairing

X × Y →Sgp

which induce the above admissible pairing (see [9, Section 7.7]).

In the following, we assume that these data exist and fix them.
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2.2. Let C be the subcone of Hom(S,N)×Hom(X,Z) defined as

C =
{
(N, l)

∣∣ l(Xker(N)) = 0
}

(see [8, Section 3.4.2]). By a finitely generated subcone of C, we mean a

finitely generated submonoid Δ of the additive monoid C such that for any

a ∈C satisfying na ∈Δ for some n≥ 1, we have a ∈Δ.

For a positive rational number a, we denote by aΔ the subcone of C

spanned by the intersection of C and the image of Δ by the map C →
CQ≥0

; (N, l) �→ (N,al), where CQ≥0
is the Q≥0-monoid spanned by C in

Hom(S,Q≥0)×Hom(X,Q).

2.3. For a finitely generated subcone Δ of C, define the subsheaf

V (Δ)⊂Hom(X,Gm,log/Gm)(Y )

as follows. For an fs log scheme U over S,

V (Δ)(U) =
{
ϕ ∈Hom(X,Gm,log/Gm)(U)

∣∣
μϕ(x) ∈MU/O×

U for any (μ,x) ∈Δ∨},
where Δ∨ is the dual cone of Δ in Sgp ×X ; that is,

Δ∨ =
{
(μ,x) ∈ Sgp ×X

∣∣Ngp(μ) + l(x)≥ 0 for all (N, l) ∈Δ
}
.

Recall that we have

Hom(X,Gm,log/Gm)(Y ) =
⋃
Δ

V (Δ),

where Δ ranges over all finitely generated subcones of C (see [9, Sec-

tion 7.7]).

Let σ be a finitely generated Q≥0-submonoid of CQ≥0
. Then, by abuse of

notation, we denote V (σ ∩C) by V (σ).

Further, for simplicity, we sometimes denote V (σ) just by [σ].

2.4. Let S be an fs log scheme, and let A be a weak log abelian variety

over S. Then, by Definition 1.6, étale locally on S, there are a semiabelian

scheme G over S, an admissible pairing 〈 , 〉 : X × Y → (Gm,log/Gm)S on

(fs/S), and an exact sequence

0→G→A→Q/Y → 0.
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We assume that they globally exist.

Let Ã be the fiber product of

A→Q/Y ←Q.

Then, we have an exact sequence

0→G→ Ã→Q→ 0.

2.5. Further, we assume that the data S →MS/O×
S and X × Y →Sgp

for 〈 , 〉 : X × Y → (Gm,log/Gm)S as in Section 2.1 also exist.

Let C be the cone as in Section 2.2.

Let Δ be a finitely generated subcone of C.

We define the subsheaf Ã(Δ) of Ã as the pullback of V (Δ) by Ã→Q.

We define the subsheaf A(Δ) of A as the pullback of the image of V (Δ)

in Q/Y by A→Q/Y .

2.6. Let the situation be as in Sections 2.4 and 2.5. In particular, C ⊂
Hom(S,N)×Hom(X,Z) is the cone as in Section 2.2.

A fan Σ in C is by definition a fan in Hom(Sgp ×X,Q) whose support

is contained in CQ≥0
.

We define the subsheaf of Q=Hom(X,Gm,log/Gm)(Y ) (see Section 1.3)

associated to Σ as

Q(Σ) :=Hom(X,Gm,log/Gm)(Σ) :=
⋃
Δ∈Σ

V (Δ).

We define the subsheaf Ã(Σ) of Ã as the pullback of Q(Σ) by Ã→Q.

Assume that Σ is stable under the action of Y on C, where y ∈ Y acts

on C by (N, l) �→ (N, l+N(〈−, y〉)).
Then we define the subsheaf A(Σ) of A as the pullback of the image of

Q(Σ) in Q/Y by A→Q/Y .

We call these subsheaves Σ-models or Σ-parts of Ã and A, respectively.

Remark 2.7. As was stated in Section 1.7, for a weak log abelian variety

A over S, the semiabelian scheme G, the sheaves of abelian groups X and

Y , and the pairing X × Y → Gm,log/Gm exist globally on S canonically.

By this and by the construction in Section 2.4 Ã also exists globally on S

canonically. We have Ã=G
(Y )
log in the case of constant degeneration.
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§3. Complete fans

3.1. First we review the definition of a complete fan in [8, Section 5.3.1].

Let the notation be as in Sections 2.1 and 2.2. A fan Σ in C is complete

if the following three conditions are satisfied:

(1) the support of Σ coincides with CQ≥0
,

(2) Σ is stable under the action of Y ,

(3) Σ has only finitely many Y -orbits.

Here y ∈ Y acts on C by (N, l) �→ (N, l+N(〈−, y〉)).
A complete fan exists (see [8, Theorem 5.2.1]).

Proposition 3.2. Let the situation be as in Sections 2.4 and 2.5. Assume

that Γ(S,MS/O×
S ) is finitely generated. If Σ is complete, for any ϕ ∈A(S)

there is a log modification S′ of S such that ϕ|S′ belongs to A(Σ)(S′).

Here a morphism S′ → S is a log modification if, strict étale locally on S,

it is the base change of a birational proper equivariant morphism of toric

varieties (see [11, Section 9], [8, Lemma 4.6.6], [14, Section 3.6]).

Proof of Proposition 3.2. It is enough to show that, for any finitely gen-

erated subcone Δ of C and for any ϕ ∈ V (Δ)(S) (see Section 2.3), there

exist a finite number of cones σi of Σ and a log modification S′ of S such

that ϕ|S′ ∈
⋃

i V (σi)(S
′).

We take any finite number of σi such that Δ⊂
⋃

i σi and prove that there

is a log modification as above.

Let us denote by P the fs monoid Γ(S,MS/O×
S ). Using the definition

of V (Δ), we have the homomorphism Δ∨ → P ; (μ,x) �→ μϕ(x). Taking its

dual, we get P∨ → Δ ⊂
⋃

i σi. Let Ri be the dual monoid of the inverse

image of σi to P∨ for each i. Taking the duals again, we get a homomor-

phism (σi∩C)∨ →Ri; (μ,x) �→ μϕ(x) ∈Ri, so the section ϕi = ϕ|Si belongs

to V (σi)(Si) ⊂
⋃

i V (σi)(Si), where Si is the partial log modification of S

defined by Ri ⊃ P . Gluing Si and ϕi, we have a log modification S′ =
⋃

i Si

of S such that ϕ|S′ is in
⋃

i V (σi)(S
′).

§4. Models in the case of constant degeneration

In this section and Section 8, we prove the representability of the models

of weak log abelian varieties. In this section, we treat the case of constant

degeneration. In Section 8, we prove the general case by using this case and

the log Artin’s criterion in Section 7.
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Theorem 4.1. Let S be an fs log scheme, and let A be a weak log abelian

variety over S. Assume that there are an exact sequence

0→G→A→Hom(X,Gm,log/Gm)(Y )/Y → 0,

a homomorphism S → MS/O×
S , and an admissible pairing X × Y → Sgp

as in Sections 2.4 and 2.5. Let C ⊂ Hom(S,N)×Hom(X,Z) be as in Sec-

tion 2.2, and let Σ be a fan in C.

Assume that MS/O×
S is locally constant. Then we have the following.

(1) The Σ-part Ã(Σ) of Ã (see Section 2.6) is represented by a log smooth

fs log scheme over S.

(2) Assume that Σ is stable under the action of Y (see Section 2.6). Assume

further the following condition:

(∗) For any y ∈ Y and σ ∈Σ, the action of y on (y · σ)∩ σ is trivial.

Then A(Σ) is represented by a log smooth fs log scheme over S.

Corollary 4.2. There is a model A(Σ) of A which is a proper scheme

over S.

Remark 4.3. In the next part of this series of articles, we prove that if

A is polarizable, then there is a model which is a projective scheme.

4.4. For the proofs of Theorem 4.1 and Corollary 4.2, we introduce some

notation. Let the situation be as in Section 2.1. For a finitely generated

subcone Δ of C, define the subsheaf

V (Δ)⊂Hom(X,Gm,log)

as the pullback of V (Δ) by the projection Hom(X,Gm,log) → Hom(X,

Gm,log/Gm).

Let

Hom(X,Gm,log)
(Σ) =

⋃
Δ∈Σ

V (Δ).

If MS/O×
S is locally constant, then Hom(X,Gm,log)

(Σ) is represented by

an fs log scheme (see [9, Section 1.5]). We denote it by

T
(Σ)
log

for short. Note that, in the totally degenerate case, that is, the case where

G is a torus, it is nothing but Ã(Σ).
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4.5. We prove Theorem 4.1 and Corollary 4.2.

We prove Theorem 4.1(1). Over S, we have an exact sequence

0→ T →G→B → 0,

where T is a torus and B is an abelian variety. Pushing out this sequence

by the natural map T → T
(Σ)
log , we have another exact sequence

0→ T
(Σ)
log → Ã(Σ) →B → 0;

that is, Ã(Σ) is a toroidal enlargement of the T -torsor G over B. Hence, it

is represented by a log smooth fs log scheme.

We prove Theorem 4.1(2) by reducing it to Theorem 4.1(1). First note

that A(Σ) = Ã(Σ)/Y . If the condition (∗) is satisfied, the intersection V (y ·
σ)∩V (σ) is empty for any y in Y �{0} and any σ ∈Σ so that A(Σ) is locally

isomorphic to Ã(Σ), and Theorem 4.1(2) is reduced to Theorem 4.1(1).

Corollary 4.2 is shown by the fact that there always exists a complete fan

satisfying (∗) in Theorem 4.1(2). This is proved in [8, Theorem 5.2.1]. (Note

that for any complete fan Σ, for a sufficiently large n > 0, the fan 1
nΣ :=

{ 1
nσ | σ ∈ Σ} satisfies (∗), which is also complete. This gives an alternative

proof when we are given a fan which is only complete.)

Remark 4.6. The authors do not know if the condition (∗) in Theo-

rem 4.1(2) is indispensable or not. But, A(Σ) is, at least, an algebraic space

with fs log structure in the sense defined later in Section 6.2, even if (∗) is
not satisfied in Theorem 4.1(2). To see it, take a sufficiently large n > 0 such

that nY satisfies (∗) for Σ. Then, Ã(Σ)/nY is represented by a log smooth

fs log scheme by Theorem 4.1(2), and the projection Ã(Σ)/nY → A(Σ) =

(Ã(Σ)/nY )/(Y/nY ) is represented by surjective and strict étale morphisms.

This shows that A(Σ) is represented by a log smooth algebraic space with

fs log structure.

§5. A weak log abelian variety is a két sheaf

Here we prove, as an application of Theorem 4.1, that a weak log abelian

variety is a két (Kummer log étale) sheaf. See [17] for the két topology.

Theorem 5.1. Let A be a weak log abelian variety over an fs log scheme S.

Then, Ã and A are sheaves with respect to the két topology.
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Here, when we mention Ã, we assume that we are in the situation of

Section 2.4.

In the rest of this section, we prove Theorem 5.1.

Theorem 5.2. Let Y be an fs log scheme over an fs log scheme X. Then,

the functor MorX(−, Y ) on (fs/X) is a sheaf for the log flat topology. In

particular, it is a két sheaf.

A proof for this theorem is given in [12, Section 3], which is also included

in [18, Theorem 2.20].

Here we give some supplement of that proof.

In [12, Sections 3.4, 3.5], it is proved that

T �→ Γ(T,OT ) and T �→ Γ(T,MT )

are sheaves for the log flat topology, and the case of Theorem 5.2 is deduced

from it where X = Spec(Z), Y is affine, and Y has a chart. It may not,

however, be trivial to reduce the general case of Theorem 5.2 to this case.

We now explain this step of reduction.

We may and will assume that X = Spec(Z) and that Y is affine. (But we

do not assume that Y has a chart.) We may assume that there is an étale

surjection f : Y ′ → Y from an affine Y ′ having a chart such that the log

structure of Y ′ is the inverse image of that of Y . We assume that we already

know that Mor(−, Y ′) is a sheaf. Further, since Y is affine, Mor(−, Y0) is also

a sheaf, where Y0 is the underlying scheme of Y endowed with the trivial

log structure. This is seen as in [12, Section 3.3] (see [18, Theorem 2.20]);

the proof there for that F (−) :=Mor(−, Y0) is a sheaf still works even when

Y does not have a chart.

Now let p : U → T be a covering for the logarithmic flat topology. We

have to show that

(∗) Mor(T,Y )→Mor(U,Y )⇒Mor(U ×T U,Y )

is exact.

First, let g,h be two morphisms from T to Y , and assume that gp= hp.

Then, the underlying morphisms of g and h coincide because F is a sheaf as

is noted above. Hence, the two fiber products T ′ = T ×Y Y ′ with respect to

g and h are isomorphic over T because their log structures are the inverse

images of that of T . We identify these two T ′, and let U ′ be the fiber product
U×T T

′ = U×Y Y ′. Then the base changes g′ and h′ of g and h by f coincide
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because g′p′ = h′p′ and Mor(−, Y ′) is a sheaf, where p′ is the base change

of p by f . Hence, g and h coincide.

Next, let k be a morphism from U to Y , and assume that kp1 = kp2,

where pi is the ith projection U ×T U → U for i= 1,2. Similarly as above,

first the underlying morphism of k factors through the underlying scheme of

T because F is a sheaf. Let g0 be the induced morphism from the underlying

scheme of T to the underlying scheme of Y , and let T ′ be the fiber product

of the underlying scheme of Y ′ and the underlying scheme of T over the

underlying scheme of Y endowed with the inverse image of the log structure

of T . Then, U ′ = U ×T T ′ and U ×Y Y ′ are isomorphic over U , and we

identify them. Again similarly as above, the base change k′ of k by f factors

through T ′ because Mor(−, Y ′) is a sheaf. Together with the uniqueness

already proven, this implies that k factors through T , which completes the

proof of the exactness of the sequence (∗).

5.3. We prove Theorem 5.1. First we prove that Ã is a két sheaf. Consider

the commutative diagram

0 −−−−→ G −−−−→ Ã −−−−→ Q −−−−→ 0⏐⏐	
⏐⏐	

⏐⏐	
0 −−−−→ ε∗(Gkét) −−−−→ ε∗(Ãkét) −−−−→ ε∗Qkét

with exact rows.

Here the upper row is the last one in Section 2.4, ε is the morphism

of topoi from the big két site (fs/S)két to the usual big site (fs/S)ét, and

0→Gkét → Ãkét →Qkét → 0 is the pullback of the upper row by ε−1.

Our task is to show that the middle vertical arrow is an isomorphism.

Since the left vertical arrow is an isomorphism by Theorem 5.2 and the right

vertical arrow Q→ ε∗Qkét ⊂Q⊗Q is injective, we may consider the prob-

lem fiberwise. Hence, we may assume that A has a constant degeneration.

Moreover, we may assume that we are in the situation of Section 2.5. Then,

by Theorem 4.1, Ã(Δ) is represented by an fs log scheme for any finitely gen-

erated subcone Δ of C. Hence, it is a két sheaf by Theorem 5.2 again. Since

Ã is the union of Ã(Δ), where Δ runs over the set of all finitely generated

subcones of C, it is a két sheaf; that is, we have

(∗) ε∗(Ãkét) = Ã.
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Next, we prove that A is a két sheaf. We may assume that we are in the

situation of Section 2.4. Consider the exact sequence

0→ Y → Ã→A→ 0,

which comes from the definition of Ã in Section 2.4. Pulling it back, we have

another exact sequence

0→ Y két → Ãkét →Akét → 0.

Applying ε∗ to this sequence, and using the equalities (∗) and ε∗(Y két) = Y ,

we have the third exact sequence

0→ Y → Ã→ ε∗(Akét)→R1ε∗Y .

Here we also have the vanishing R1ε∗Y = 0, which can be calculated fiber-

wise by the proper base change theorem (see [17, (5.1), (5.1.1)]). Comparing

the last sequence with the original one, we see that A = ε∗(Akét), that is,

that A is a két sheaf. This completes the proof.

§6. Algebraic spaces with fs log structure

In this section, we discuss algebraic spaces with fs log structure. An alge-

braic space with fs log structure is nothing but an algebraic space in the

sense of M. Artin with an fs log structure on its étale site. (Recall that we

can consider an fs log structure on any ringed topos.) We will explain that

we can regard an algebraic space with fs log structure as a sheaf over the

category of fs log schemes.

6.1. First we recall the definition of algebraic spaces in the sense of Artin.

Let S be a scheme. A (quasiseparated) algebraic space over S is a sheaf F

on the category (sch/S)ét of schemes over S endowed with the étale topology

having the following properties.

6.1.1. There exists a scheme F ′ over S and a morphism f : F ′ → F over

S such that f is represented by surjective étale morphisms of schemes.

6.1.2. The diagonal morphism F → F × F is represented by morphisms

of schemes of finite type.

Let S be a scheme, and let F be an algebraic space over S in the above

sense. Then F has the small étale site Fét. (Objects are pairs (X,f), where

X is a scheme over S and f is a morphism X → F which is represented by
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étale morphisms of schemes, and the morphisms and the topology of this

site are defined in the evident way.) Hence, we can discuss fs log structures

on Fét. This gives the notion of “algebraic space with fs log structure,”

which we will define precisely in Section 6.2 below.

6.2. Let S be an fs log scheme. Recall that (fs/S)ét denotes the category

of fs log schemes over S endowed with the strict étale topology.

An algebraic space with fs log structure over S means an algebraic space

over the underlying scheme
◦
S of S endowed with an fs log structure over S.

Let F be an algebraic space with fs log structure over S. Then F defines

a sheaf on (fs/S)ét by U �→ HomS(U,F ). (Explicitly, for any fs log scheme

U over S, the set of U -sections is defined to be the set of pairs (g,h) of a

morphism g :
◦
U →

◦
F of algebraic spaces and a homomorphism h : g∗MF →

MU over MS of log structures on
◦
U ét.)

By this, we can regard the category of algebraic spaces with fs log struc-

ture over S as a full subcategory of the category (fs/S)∼ét of the sheaves

on (fs/S)ét in virtue of the fact that (fs/S)∼ét = (algebraic space with fs log

structure/S)∼ét. (The topology of the latter site is naturally defined.)

The full subcategory can be described as follows. To give an algebraic

space with fs log structure over S is equivalent to giving a sheaf F on

(fs/S)ét satisfying the following conditions.

(1) There exist an fs log scheme F ′ over S and a morphism F ′ → F

which is represented by surjective and strict étale morphisms such that the

underlying morphism of schemes of the morphism F ′ ×F F ′ → F ′ × ◦
S
F ′ of

fs log schemes is a monomorphism.

(2) The diagonal morphism F → F × F is represented by morphisms of

finite type.

In fact, if we have a sheaf F satisfying conditions (1) and (2), we obtain

an algebraic space J over
◦
S and a log structure MJ on the étale site of

J as follows. Let F ′ → F be as in condition (1). Let X =
◦
F ′, and let R =

(F ′ ×F F ′)◦. Then, R is an equivalence relation on X by the assumption

that R→X × ◦
S
X is a monomorphism. Let J be the quotient sheaf of X

by this equivalence relation.

We prove that J is an algebraic space. Since F ′ → F is represented by

surjective and strict étale morphisms, the first projection F ′ ×F F ′ → F ′ is
represented by a surjective and strict étale morphism. Hence, its underlying

morphism R→X is represented by a surjective étale morphism of schemes,
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which implies that X → J is represented by surjective étale morphisms of

schemes. Next, condition (2) implies that F ′×F F ′ → F ′×SF
′ is represented

by a morphism of finite type, that is, that its underlying morphism R →
(F ′ ×S F ′)◦ of schemes is of finite type. Since (F ′ ×S F ′)◦ →X × ◦

S
X is a

finite morphism, the composite R→ (F ′ ×S F ′)◦ →X × ◦
S
X is a morphism

of finite type. Hence, the diagonal J → J × J is represented by morphisms

of finite type, which completes the proof of the fact that J is an algebraic

space.

The log structure of F ′ with the natural descent data on R gives the log

structure MJ on J over MS . The (J,MJ) is independent of the choice of

F ′ → F .

Conversely, for an algebraic space J over
◦
S with an fs log structure MJ

over MS , we can show that the corresponding F satisfies conditions (1) and

(2) as follows.

First we see that the condition (1) is satisfied by taking a scheme cover

X → J as in property 6.1.1, and we define F ′ to be the functor represented

by X endowed with the pullback of MJ . We prove condition (2). Since the

composite J
d→ ((J,MJ)×S (J,MJ))

◦ q→ J ×S◦ J is quasicompact as a mor-

phism of algebraic spaces and q is finite, the morphism d of algebraic spaces

is quasicompact. It follows that F → F ×S F is represented by morphisms

of finite type.

§7. Log Artin’s criterion

In [1, Theorem 3.4], M. Artin obtained a criterion for a functor to be

an algebraic space. To prove the representability of models in general, we

use a log version of Artin’s criterion. We remark that M. C. Olsson studied

another log version of Artin’s criterion in [19, Section 3.5].

7.1. A contravariant functor F : (fs/S) → (set) is said to be locally of

finite presentation if the following condition is satisfied: if U is an fs log

scheme over S whose underlying scheme is an affine scheme SpecR, and if

(Rλ)λ is a filtered direct system of rings over R, we have

lim
−→

F
(
Spec(Rλ)

) ∼=−→ F
(
Spec(lim

−→
Rλ)

)
,

where Spec(Rλ) and Spec(lim
−→

Rλ) are endowed with the inverse images of

the log structure of U .
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For example, the functor Gm,log and U �→ Γ(U,MU ) are locally of finite

presentation. The latter implies that, for an fs log scheme X over S, X is

locally of finite presentation in the above sense if and only if the underlying

scheme of X is locally of finite presentation over that of S in the usual sense.

Proposition 7.2. Let S be an fs log scheme whose underlying scheme is

of finite type over a field or over an excellent Dedekind domain. Let F be a

sheaf on (fs/S)ét. Assume the following condition.

7.2.1. The diagonal morphism F → F × F is represented by morphisms

of finite type.

Consider the following condition.

(∗) There exist an fs log scheme F ′ over S and a morphism F ′ → F which

is represented by surjective and strict étale morphisms.

Then, condition (∗) is satisfied if and only if F satisfies the following

conditions.

7.2.2. Finiteness. The sheaf F is locally of finite presentation (see Sec-

tion 7.1).

7.2.3. Effective pro-representability. The sheaf F is effectively pro-

representable in the sense explained in Definition 7.3 below.

7.2.4. Openness of versality. Let U be an fs log scheme over S of finite

type, let f : U → F be a morphism, and let u ∈ U . Assume that f is formally

strict étale at u ∈ U in the sense in Definition 7.4 below. Then f is formally

strict étale at each point of some neighborhood of u in U .

Definition 7.3. For a sheaf F on (fs/S)ét, we say that F is effec-

tively pro-representable if there exist a family of triples (Wλ,wλ, ξλ) (λ ∈ Λ)

of fs log schemes Wλ over S of finite type, points wλ of Wλ, and mor-

phisms ξλ : Spec(ÔWλ,wλ
)→ F satisfying the following condition: for an fs

log scheme U over S such that the underlying scheme of U is the spectrum

of a local Artin ring, and a morphism f : U → F , there exist a unique index

λ and a unique morphism g : U → Spec(ÔWλ,wλ
) whose image is wλ such

that ξλ ◦ g = f . Here Spec(ÔWλ,wλ
) is endowed with the inverse image of

the log structure of Wλ.

Definition 7.4 (see [1, Definition 3.1]). Let S be an fs log scheme, let

F be a sheaf on (fs/S)ét, let U be an fs log scheme over S, let f : U → F
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be a morphism, and let u ∈ U . We say that f is formally strict étale (resp.,

formally log étale, formally strict) at u ∈ U if for any commutative diagram

Z ′ g−−−−→ U

i

⏐⏐	
⏐⏐	f

Z −−−−→
h

F

of sheaves on (fs/S)ét satisfying the following conditions (i) and (ii), there

exists a unique morphism k : Z → U such that g = k ◦ i and h= f ◦ k:
(i) The sheaves Z and Z ′ are represented by fs log schemes over S whose

underlying schemes are spectra of local Artinian rings, and the image

of the underlying morphism of schemes of g is u; and

(ii) the underlying morphism of schemes of i is a closed immersion (resp.,

the morphism i is a strict closed immersion, resp., the underlying mor-

phism of schemes of i is an isomorphism).

Remark 7.4.1. As is easily seen, a morphism is formally strict étale at

u if and only if it is formally log étale at u and formally strict at u.

7.5. Proof of Proposition 7.2

Proof. The proof is essentially the same as that of the nonlog version

given by Artin [1, Theorem 3.4].

First, we show that condition (∗) implies conditions 7.2.2–7.2.4.

We show condition 7.2.2. Considering the cover F ′ in condition (∗) and

the equivalence relation F ′ ×F F ′, we see that condition 7.2.2 is reduced to

the fact that the functor associated with an fs log scheme locally of finite

presentation over S is locally of finite presentation, which is mentioned in

the last paragraph in Section 7.1.

The remaining conditions 7.2.3 and 7.2.4 are easily verified by using non-

log statements [2, Theorem 2.4] and [1, Lemma 3.3], respectively.

Next, we prove that condition (∗) holds for any sheaf F satisfying condi-

tions 7.2.1–7.2.4. By condition 7.2.3, there is a family of triples (Wλ,wλ, ξλ)

as in Definition 7.3. For λ ∈ Λ, let Oh
Wλ,wλ

⊂ ÔWλ,wλ
be the Henselization of

the local ring (OWλ,wλ
,mwλ

). By condition 7.2.2, there is a finitely gener-

ated subring R of ÔWλ,wλ
over Oh

Wλ,wλ
such that ξλ comes from an element

ξ′λ of F (Spec(R)). By Artin’s approximation theorem, there is a homomor-

phism s : R→Oh
Wλ,wλ

over Oh
Wλ,wλ

such that the composite R
s→Oh

Wλ,wλ
→

OWλ,wλ
/m2

wλ
coincides with the composite R

⊂→ ÔWλ,wλ
→ OWλ,wλ

/m2
wλ

.
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Let ξ′′λ ∈ F (Spec(Oh
Wλ,wλ

)) be the image of ξ′λ under s. By the property of

(Wλ,wλ, ξλ) in condition 7.2.3, for any n≥ 0 there exists a unique morphism

gλ,n : Spec(OWλ,wλ
/mn+1

wλ
) → Spec(ÔWλ,wλ

) over S whose composite with

ξλ coincides with the composite Spec(OWλ,wλ
/mn+1

wλ
) → Spec(Oh

Wλ,wλ
)

ξ′′λ→
F . Note that, by the uniqueness, gλ,1 coincides with the canonical inclu-

sion. The limit of gλ,n for n→∞ gives a morphism gλ : Spec(ÔWλ,wλ
)→

Spec(ÔWλ,wλ
). Since gλ,1 coincides with the inclusion morphism, gλ is an

automorphism of Spec(ÔWλ,wλ
). Let βλ : Spec(ÔWλ,wλ

) → Spec(Oh
Wλ,wλ

)

be the composite of g−1
λ and the canonical morphism Spec(ÔWλ,wλ

) →
Spec(Oh

Wλ,wλ
). Then the pullback of ξ′′λ under βλ coincides with ξλ. By the

condition 7.2.2 of F , ξ′′λ comes from an étale neighborhood W ′
λ →Wλ of wλ.

Since Spec(ÔWλ,wλ
)→ F is formally strict étale at wλ by condition 7.2.3,

W ′
λ → F is formally strict étale at wλ. Hence, W ′

λ → F is formally strict

étale at each point of an open neighborhood W ′′
λ of wλ in W ′

λ by condition

7.2.4. Let F ′ be the disjoint union of W ′′
λ for λ ∈ Λ, and let F ′ → F be the

canonical morphism. It is enough to show that F ′ → F satisfies condition

(∗). Let V be any fs log scheme over S, and let V → F be any morphism

over S. Let f be the base change V ′ := V ×F F ′ → V of F ′ → F . Then, f

is formally strict étale, as F ′ → F is so. Since F ′ is locally of finite presen-

tation over S and since F is locally of finite type over S, the morphism f

is also locally of finite presentation. Thus, f is strict étale. Further, let v

be any fs log point, and let v → V be any morphism. By condition 7.2.3,

there is a λ such that v→ V → F factors through wλ → Spec(ÔWλ,wλ
)→ F ,

factors through W ′′
λ , and hence, factors through F ′. Therefore, v → V fac-

tors through V ′, which implies the surjectivity of f . Thus, F ′ → F satisfies

condition (∗).

Remark 7.6. Proposition 7.2 is weaker than [1, Theorem 3.4] in the

nonlog case, for we modified the effective pro-representability. In [1], the

existence of Wλ of finite type over S is not assumed in the effective pro-

representability.

§8. Models

In this section, we start to show the general case (Theorem 8.1) of the

theorem that a model of a weak log abelian variety is an algebraic space

with fs log structure. A special case was proved in Theorem 4.1.
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Theorem 8.1. Let S be an fs log scheme, and let A be a weak log abelian

variety over S. Assume that there are an exact sequence

0→G→A→Hom(X,Gm,log/Gm)(Y )/Y → 0,

a homomorphism S → MS/O×
S , and an admissible pairing X × Y → Sgp

as in Sections 2.4 and 2.5. Let C ⊂ Hom(S,N)×Hom(X,Z) be as in Sec-

tion 2.2, and let Σ be a fan in C. Then we have the following.

(1) The Σ-part Ã(Σ) of Ã (see Section 2.6) is an algebraic space with fs log

structure over S.

(2) If Σ is stable under the action of Y , then A(Σ) is an algebraic space

with fs log structure over S.

Remarks.

(1) Recall that y ∈ Y acts on C by (N, l) �→ (N, l+N(〈−, y〉)).
(2) The support of Σ need not cover C.

(3) Both Ã(Σ) and A(Σ) over S are log smooth in the following sense: an

algebraic space F with fs log structure over S is log smooth if there is a

log smooth fs log scheme F ′ over S which covers F like in Section 6.2,

condition (1). This is seen by using the proof of Theorem 8.1 below

together with Theorem 4.1.

(4) Definition 1.6(3) is not necessary; that is, the conclusion of Theorem 8.1

still holds for a sheaf of abelian groups on (fs/S)ét satisfying only Defi-

nition 1.6(1), (2). (The definition of Σ-part for such a sheaf is the same.)

We use the case of this fact where the base S is of finite type over Z

later in Section 9.

In the rest of this section, we prove Theorem 8.1 in the case where S

is of finite type over a field or over an excellent Dedekind domain. After

preparations in Section 9, we prove the general case in Section 9.13.

8.2. We assume that S is of finite type over a field or over an excellent

Dedekind domain. Let A be a sheaf of abelian groups on (fs/S)ét satisfying

Definition 1.6(1), (2). We prove Theorem 8.1(1), (2) for A (see Theorem 8.1,

Remark (4)). The proofs of (1) and (2) are similar, so we give only the

proof of Theorem 8.1(1). In Sections 8.3–8.6, we check that Ã(Σ) satisfies

conditions 7.2.1–7.2.4, respectively. Let

Q=Hom(X,Gm,log/Gm)(Y ) = Ã/G,
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and let

Q(Σ) = (the Σ-part of Q) = Ã(Σ)/G.

(In the proof for A(Σ), we replace Q and Q(Σ) by Q/Y and Q(Σ)/Y , respec-

tively.)

8.3. The fact that Ã(Σ) → Ã(Σ) × Ã(Σ) is represented by morphisms of

finite type is reduced to the fact that Ã has the same property. The latter

is equivalent to that the zero section S → Ã is represented by morphisms

of finite type and is equivalent to the fact that Q and G have the same

properties.

8.4. The fact that Ã(Σ) is locally of finite presentation is reduced to the

fact that both Q(Σ) and G are locally of finite presentation.

8.5. We prove that Ã(Σ) satisfies the effective pro-representability. This

is a consequence of Theorem 4.1. In fact, by Theorem 4.1, for any subscheme

S′ of S such that MS′/O×
S′ is locally constant, the pullback of Ã(Σ) to (fs/S′)

is represented by a log smooth fs log scheme over S′. Hence, for each s ∈ S,

the pullback of Ã(Σ) to (fs/Ŝs) is represented by a log smooth formal fs

log scheme As over the formal completion Ŝs of S at s (endowed with the

pullback log structure from S). Let Λ be the set-theoretic disjoint union of

the special fibers of all such As (s ∈ S). For each λ ∈ Λ, let ξλ : Spec(Rλ)→
As → F be the canonical morphism from the completed local ring of As at λ

(endowed with the pullback log structure from As). Since As is log smooth

over Ŝs, the fs log scheme Spec(Rλ) is algebraizable; that is, there is an fs

log scheme Wλ over S of finite type and a point wλ ∈Wλ such that Rλ is

isomorphic to ÔWλ,wλ
. These triples (Wλ,wλ, ξλ) (λ ∈ Λ) form the desired

family.

8.6. We prove that Ã(Σ) satisfies the openness of versality. Let U be

an fs log scheme over S of finite type, let f : U → Ã(Σ) be a morphism,

and let u ∈ U . Assume that f is formally strict étale at u. We prove that

f is formally strict étale at each point of some open neighborhood of u.

There exist an fs log scheme V over S and a morphism V →Q(Σ) which is

represented by surjective and strict smooth morphisms. Let f ′ be the base

change U ×Q(Σ) V → Ã(Σ) ×Q(Σ) V of f , and let u′ be a point of the scheme

U ×Q(Σ) V lying over u. Then f ′ is formally strict étale at u′. Since f ′ is a
morphism of fs log schemes and is of finite type, f ′ is strict étale on some

open neighborhood U ′ of u′ in U ×Q(Σ) V . Let U ′′ be the image of U ′ in U .
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Since U ×Q(Σ) V → U is strict smooth and hence is an open map, U ′′ is an
open neighborhood of u in U . It is easily seen that f is formally strict étale

at each point of U ′′.

8.7. Now we have checked all the necessary conditions to apply Proposi-

tion 7.2. Hence, by Proposition 7.2, there is an fs log scheme F ′ = (X,MX)

and a morphism F ′ → Ã(Σ) which is represented by surjective and strict

étale morphisms. To complete the proof of Theorem 8.1 in the present case,

it is enough to prove that i : R→X×X is a monomorphism, where R is the

underlying scheme of F ′ ×
Ã(Σ) F

′. By construction in the proof of Proposi-

tion 7.2, F ′ can be pulled back by any strict immersion S′ → S so that X

and R can be pulled back, too.

Let T be a test scheme over
◦
S. Let f, g : T →R be two morphisms such

that i◦f = i◦g. It is enough to show that f = g. First, if S has a constant log

structure, then Ã(Σ) is represented by an fs log scheme (see Theorem 4.1)

and f = g. Next, by considering the base change by the projection from

the disjoint union of the constant log loci (i.e., the strata where the log is

locally constant) of S to S, we see that the underlying maps of sets of f

and g coincide. Then, we may and will assume that T is affine.

If, further, T is Noetherian, then the projection from the disjoint union of

all constant log loci of T (including thickenings) to T is an epimorphism (by

the fact that for any element a of a Noetherian ring A, the homomorphism

A→Aa × Â is injective). Hence, f and g coincide, as desired.

The general case reduces to the previous case where T is Noetherian

because X and R are locally Noetherian. In conclusion, we have f = g in

general, and i is certainly a monomorphism, which completes the proof of

Theorem 8.1(1) in the present case that Ã(Σ) is an algebraic space with fs

log structure over S.

The following results will be used later in Proposition 12.7. Their proofs

are easy once Theorem 8.1 is proved.

Proposition 8.8. Let A be a weak log abelian variety over an fs log

scheme S. Assume that we are in the situation of Sections 2.4 and 2.5. Let

Σ be a fan which is stable under the action of Y .

(1) Let Σ′ be a subdivision of Σ which is also Y -stable. Then the natural

morphism A(Σ′) →A(Σ) is proper and surjective.

(2) Let Σ′ be a subfan of Σ which is also Y -stable. Then the natural mor-

phism A(Σ′) →A(Σ) is a strict open immersion.
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§9. Weak log abelian varieties over limits

In this section, we prove that the category of weak log abelian varieties

over a filtered limit of quasicompact and quasiseparated fs log schemes Sλ

is equivalent to the limit of the categories of weak log abelian varieties over

Sλ (see [10, Section 5.3(1)] for the 1-dimensional (log elliptic curve) case).

This result is fundamental and will be repeatedly used in future parts in our

series. As an application, in the end of this section, we use this to complete

the proof of Theorem 8.1.

9.1. For an fs log scheme T , let F (T ) be the set of isomorphism classes

of weak log abelian varieties over T .

Let (Sλ)λ be a filtered projective system of quasicompact and quasisepa-

rated fs log schemes whose transition morphisms are affine and strict. Then,

S := lim
←−

Sλ is represented by an fs log scheme whose underlying scheme is

the projective limit of the underlying schemes of Sλ and whose log structure

is the inverse image log structure of that of any Sλ.

Proposition 9.2. Let S := lim
←−

Sλ be as above.

(1) Let A1,A2 be weak log abelian varieties over some Sλ0 . Then, the

natural map

lim
−→

HomSλ

(
(A1)Sλ

, (A2)Sλ

)
→HomS

(
(A1)S , (A2)S

)

is bijective. Here, (Ai)Sλ
and (Ai)S are the pullbacks of Ai to Sλ and S,

respectively (i= 1,2). In particular, if (A1)S and (A2)S are isomorphic over

S, then there is some λ0 → λ such that (A1)Sλ
and (A2)Sλ

are already

isomorphic over Sλ.

(2) The natural map

lim
−→

F (Sλ)→ F (S)

is bijective. In particular, for a weak log abelian variety A over S, there are

an index λ and a weak log abelian variety Aλ over Sλ whose pullback to S

is isomorphic to A.

We prove this proposition in 9.6–9.12.

Let (WLAV/S) be the category of weak log abelian varieties over an fs

log scheme S.

Corollary 9.3. As a category, we have (WLAV/S) = lim
−→

(WLAV/Sλ).
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Corollary 9.4. The functor F : (fs/S)→ (set) in Section 9.1 is locally

of finite presentation in the sense of Section 7.1.

Corollary 9.5. Any weak log abelian variety over an affine scheme is

defined over a finitely generated ring over Z.

9.6. To prove Proposition 9.2, we may assume that there is an initial

object in the index category. In Proposition 9.2(1), we may assume that

it is λ0. In Proposition 9.2(2), we denote it by λ0. In general, Proposi-

tion 9.2(1) implies the injectivity of the map in Proposition 9.2(2). Let

(Sλ0,j → Sλ0)j∈J be the strict étale covering with a finite index set J . Then,

if Proposition 9.2(1) holds for the objects obtained by base change with

respect to Sλ0,j → Sλ0 for each j ∈ J , it holds for the original one. Fur-

ther, Proposition 9.2(1) implies that the surjectivity of Proposition 9.2(2)

reduces to the case of the objects obtained by base change with respect to

Sλ0,j → Sλ0 for each j. (Here we use the easy fact that an abelian sheaf on

the big site of an fs log scheme is a weak log abelian variety if and only if so

is it strict étale locally.) Thus, in proving Proposition 9.2, we may assume

that there is a prime 
 such that 
 is invertible on Sλ0 . In the following, we

will assume that there is such an 
 and fix it.

Further, it is enough to prove the following statements (1)′ and (2)′. Let
the situation be as in Proposition 9.2.

(1)′ Proposition 9.2(1) holds if there are a homomorphism from an fs

monoid S → MSλ0
/O×

Sλ0
, admissible pairings Xi × Yi → Sgp, and exact

sequences 0→Gi →Ai →Qi/Y i → 0 as in Sections 2.4 and 2.5 (i= 1,2).

(2)′ Let A be a weak log abelian variety A over S. Assume that there are a

homomorphism from an fs monoid S →MS/O×
S , an admissible pairing X×

Y →Sgp, and an exact sequence 0→G→A→Q/Y → 0 as in Sections 2.4

and 2.5. Then, there are an index λ and a weak log abelian variety Aλ over

Sλ whose pullback to S is isomorphic to A.

9.7. The proofs for (1)′ and (2)′ in Section 9.6 are similar, and we describe

only the proof for (2)′ after proving some propositions.

First, let A be a weak log abelian variety over an fs log scheme S. Assume

that there are a homomorphism from an fs monoid S →MS/O×
S , an admissi-

ble pairing X×Y →Sgp, and an exact sequence 0→G→A→Q/Y → 0 as

in Sections 2.4–2.5. Then, we have an exact sequence 0→G→ Ã→Q→ 0

as in Section 2.4. Assume that there is a prime number 
 which is invertible

on the base.
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Take a finitely generated subcone σ of C (in the terminology of Sec-

tion 2.2) such that
⋃

n 

nσ = C, where 
nσ is defined in Section 2.2. (Such

a cone exists. Indeed, the cone C(1) in [8, Section 3.4.9] satisfies the con-

dition, as is seen in [8, Lemma 3.4.10].) Then, we have
⋃

n[

nσ] = Q (see

Section 2.3 for the notation [−]). Let I := Ã(σ) ⊂ Ã be the part correspond-

ing to σ, that is, the pullback of [σ]. Then I is a G-torsor over [σ] with

respect to the étale topology. Let J = Ã(�−1σ) ⊂ I . We have a surjection of

két sheaves J → I;x �→ x� (see Theorem 5.1).

Proposition 9.8. Consider the két sheaf of sets L̃= {(x,n) | x ∈ I,n≥
0}/∼, where ∼ is the equivalence relation generated by the following.

(1) If x ∈ J , then (x�, n)∼ (x,n+ 1) for n≥ 0.

(2) If a ∈G, x ∈ I, n≥ 0, and a�
n
= 1, then (ax,n)∼ (x,n).

Then we have an isomorphism of két sheaves

L̃
∼=→ Ã; (x,n) �→ x�

n
.

Proof. The well-definedness of the map is by condition (1). By the prop-

erty
⋃

n 

nσ = C of σ, the map is surjective. The injectivity is proved by

condition (2).

9.9. The group structure of L̃ (written multiplicatively) corresponding

to the group structure of Ã is characterized by the property (x,n)(y,n) =

(xy,n) for x, y ∈ J (note that xy ∈ I).

Lemma 9.10. Let the notation and the assumption be as in Sections 2.1

and 2.2. Let σ be a finitely generated subcone of C such that σ maps onto

S∨. Let Z be a scheme of finite type over S. Then, any morphism f : [σ]→ Z

is constant.

Remark. The surjectivity assumption on σ →S∨ is necessary. In fact,

consider the case where X is trivial. Then [σ] is a partial log blowing up of

the base. The identity morphism from it to itself is not constant unless it

coincides with the base.

Proof. We may assume that the base S is affine, say, SpecR. By the

assumption, we see that the homomorphism S → σ∨ is exact. Since [σ] =

V (σ)/Hom(X,Gm), the given f induces a morphism V (σ)→ Z of schemes.

Let z ∈ Z be the image of the closed orbit of V (σ). Then, f factors into

any open neighborhood of z. Hence, we may assume that Z is also affine.
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Further, we may assume that Z is the affine line over S. Again, since

[σ] = V (σ)/Hom(X,Gm), the lemma is reduced to the following: if an ele-

ment a of the coordinate ring U :=R⊗Z[S] Z[σ
∨] of V (σ) is Hom(X,Gm)-

invariant, it belongs to R. Here the Hom(X,Gm)-invariance implies that, for

any ring homomorphism R→R′, the image of a in R′⊗RU is Hom(X,R′×)-
invariant. Thus, by strictly localizing R, we may assume that R satisfies the

following condition.

(∗) For any n > 0, there is an invertible element r of R such that 1− rn

is also invertible.

Below, we assume this. Let a be an element of U , and assume that a is

Hom(X,R×)-invariant. We will show that a ∈R. For each x ∈X , consider

the R-submodule Ux of U generated by the set {xSgp ∩ σ∨}. Then, U is

the direct sum decomposition of Ux. Further, by virtue of condition (∗),
Ux is characterized as the part of U on which the group Hom(X,R×) acts

via x. Hence, a belongs to U0, which coincides with R by the exactness

Sgp ∩ σ∨ = S .

Lemma 9.11. Let the notation and the assumption be as in Sections 2.1

and 2.2. Let S ′ →MS/O×
S be another homomorphism from an fs monoid,

and let 〈 , 〉′ : X ′ × Y ′ →S ′gp be another admissible pairing. Let Q′ be the

associated sheaf of abelian groups as in Section 1.3, and let C ′ be the asso-

ciated cone as in Section 2.2.

Let X ′ →X, Y → Y ′, and S ′ →S be homomorphisms which are compat-

ible with 〈 , 〉, 〈 , 〉′, S →MS/O×
S , and S ′ →MS/O×

S . Let h be the induced

homomorphism Q→Q′.
Let σ (resp., σ′) be a finitely generated subcone of C (resp., C ′) such that

σ maps into σ′ by the induced map C → C ′. Assume that the natural map

σ→S∨ is surjective.

Let g : G→G′ be a homomorphism of semiabelian schemes over S. Let I

(resp., I ′) be a G-torsor (resp., G′-torsor) over [σ] (resp., [σ′]) with respect

to the étale topology.

Let f1, f2 : I → I ′ be two morphisms over S which are compatible with g

and h. Then, there is a constant map c : I →G′ such that c · f1 = f2.

Proof. Since f1 and f2 are compatible with h, there is a morphism r : I →
G′ such that f2(x) = r(x)f1(x) (x ∈ I). For a ∈ G and x ∈ I , we have

f2(ax) = g(a)f2(x) = g(a)r(x)f1(x) = r(x)f1(ax). We have also f2(ax) =

r(ax)f1(ax). Hence, we have r(x) = r(ax), and r factors through [σ]. By

Lemma 9.10, the map r : [σ]→G′ is constant, which completes the proof.
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9.12. We now prove statement (2)′ in Section 9.6.

Let Y be the image of Y in Hom(X,Gm,log/Gm), and let X be the

image of X in Hom(Y,Gm,log/Gm). Then, the admissible pairing X × Y →
Gm,log/Gm induces a pairing X × Y →Gm,log/Gm.

The semiabelian scheme G and the homomorphism S →Gm,log/Gm are

defined over some Sλ. There, the sheaves X , Y , the pairing X × Y →
Gm,log/Gm, and the sheaf Q are defined. Let σ be a finitely generated sub-

cone of C such that
⋃

n 

nσ = C as in Section 9.7. The G-torsor I = Ã(σ)

over [σ] is also defined over some Sλ because a G-torsor over [σ] can be

replaced with a G-torsor over V (σ) with a descent data. Let the G-torsor J

over [
−1σ] be the restriction of I to [
−1σ]⊂ [σ]. A map f : J → I , which

induces x �→ x� over S and which satisfies the following conditions (1) and

(2), is defined over some Sλ. We denote f(x) for x ∈ J by x�, though I has

no multiplication.

(1) This map is compatible with Q→Q;x �→ x�.

(2) We have (ax)� = a�x� (a ∈G, x ∈ J).

Define the két sheaf of sets L̃ on Sλ as {(x,n) | x ∈ I,n ≥ 0}/ ∼, where

∼ is the equivalence relation generated by Proposition 9.8(1), (2). We have

a surjection L̃→Q; (x,n) �→ class(x)�
n
, and L̃ becomes a G-torsor over Q,

where a ∈G acts by (x,n) �→ (bx,n) with b ∈G such that a= b�
n
. Over S, we

have a canonical isomorphism of G-torsors L̃∼= Ã over Q by Proposition 9.8.

Next, a map g : J ×J → I , which induces the map (x, y) �→ xy over S and

satisfies the following conditions (3) and (4), is defined over some Sλ. We

denote g(x, y) for x, y ∈ J by xy, though I has no multiplication.

(3) This map is compatible with Q×Q→Q; (x, y) �→ xy.

(4) We have a(xy) = (ax)y = x(ay) for a ∈G, x, y ∈ J .

Then the following conditions are also satisfied.

(5) We have xy = yx for x, y ∈ J .

(6) We have (xy)z = x(yz) for x, y, z ∈ K, where K is the G-torsor over

[
−2σ] defined by restricting I to [
−2σ]⊂ [σ].

(7) We have x�y� = (xy)� for x, y ∈K.

For example, to see condition (5), we apply Lemma 9.11 to G × G →
G; (x, y) �→ xy, J × J → I; (x, y) �→ xy, J × J → I; (x, y) �→ yx, and so on,

and prove that there is a constant c ∈ G such that xy = cyx for any x, y.

Then, c must be 1, and we have condition (5). Conditions (6) and (7) are

proved similarly. For condition (6), we apply Lemma 9.11 to G×G×G→
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G; (x, y, z) �→ xyz, K ×K ×K ⇒ I; (x, y, z) �→ (xy)z, (x, y, z) �→ x(yz), and

so on. For condition (7), we apply Lemma 9.11 to G→G;x �→ x�, K×K ⇒
I; (x, y) �→ x�y�, (x, y) �→ (xy)�, and so on.

From these properties, we see that there is a unique commutative group

structure on L̃ such that (x,n)(y,n) = (xy,n) for any x, y ∈ J and n ≥ 0.

Again by Lemma 9.11, it can be shown that the map J → I;x �→ x� is com-

patible with the 
th power map for this group structure of L̃, and the nat-

ural maps J → L̃;x �→ (x,0) and I → L̃;x �→ (x,0). The above isomorphism

L̃∼= Ã over S preserves the group structures.

A homomorphism Y → L̃, which induces the map Y → Ã over S, is

defined over some Sλ. Let L = L̃/Y . Over S, we obtain an isomorphism

L∼=A of group sheaves.

We show that L becomes a weak log abelian variety for some Sλ. Defini-

tion 1.6(2) is already satisfied because there is an exact sequence 0→G→
L→Q/Y → 0.

We prove that Definition 1.6(1) for L that all fibers become weak log

abelian varieties holds for some Sλ. By dividing S and Sλ into the parts with

locally constant log structure, we may assume that Sλ has a locally constant

log structure. It suffices to identify the extensions 0→G→G
(Y )
log →Q→ 0

and 0→G→ L̃→Q→ 0. In the case of locally constant log structure, [9,

Theorem 7.3(1)] implies that Ext1(Q,G)∼=Hom(T,G) =Hom(T,T ), which

is locally constant. Here T is the torus part of G. Hence, both extensions in

the above coincide in a neighborhood U of the image of S. Replacing λ, we

may assume that U = Sλ; that is, we may assume that they coincide.

The rest is to show that the separability condition (Definition 1.6(3)) for L

holds for some Sλ. To show this, we may assume that each Sλ is of finite type

over Z. First, condition (3) is equivalent to that the zero section Sλ → L

is represented by finite morphisms. Then it reduces to that the inclusion

map Y → L̃ is represented by finite morphisms. Further, it reduces to that

the inclusion map I ∩Y ↪→ I is represented by finite morphisms. Since each

Sλ is of finite type over Z, by the part of Theorem 8.1 already proven in

Section 8 (see Remark (4) after Theorem 8.1), both I ∩ Y and I = L(σ) are

represented by algebraic spaces with fs log structures of finite presentation

over Sλ. Hence, the inclusion map I ∩Y ↪→ I is in fact represented by finite

morphisms for some Sλ. This completes the proof of Proposition 9.2.

9.13. We prove Theorem 8.1 in general. By Corollary 9.5, a weak log

abelian variety over any base S is locally a base change from a base of finite
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type over Z. Hence, we may assume that S is of finite type over Z. This case

is already proven in Section 8. Thus, the proof of Theorem 8.1 is completed.

§10. Weak log abelian varieties are log algebraic spaces in some

sense

10.1. We introduce notions of log algebraic space in the first sense and

in the second sense.

Let S be an fs log scheme.

A log algebraic space F over S in the first sense is just an algebraic space

with fs log structure (see Section 6.2).

We say that F is log étale over S if, for any fs log scheme T which is

strict étale over F , the composite T → F → S is log étale.

A log algebraic space over S in the second sense is a sheaf F on (fs/S)ét
satisfying the following condition: there are a log algebraic space F ′ over S
in the first sense and a surjective morphism F ′ → F of sheaves such that, for

any fs log scheme T and any morphism T → F , the fiber product T ×F F ′

is a log étale log algebraic space over T in the first sense.

Proposition 10.2. A log algebraic space over S in the first sense is a

log algebraic space over S in the second sense.

For the proof, see Section 6.2.

A weak log abelian variety is not just a sheaf of groups. It is a log alge-

braic space in the second sense as follows, though it is not necessarily a log

algebraic space in the first sense.

Lemma 10.3. Let A be a weak log abelian variety. Let τ ⊂ σ be two cones

in C. Then Ã(τ) → Ã(σ) is represented by log étale morphisms.

Proof. Since V (τ)→ V (σ) is log étale, [τ ]→ [σ] is represented by log étale

morphisms. Hence, Ã(τ) → Ã(σ) is represented by log étale morphisms.

Theorem 10.4. Let A be a weak log abelian variety. Then we have the

following.

(1) The sheaf A is a log algebraic space in the second sense.

(2) Assume that we are in the situation of Section 2.4; then, Ã is a log

algebraic space in the second sense.

Proof. Wemay assume that we are in the situation of Sections 2.4 and 2.5.

We prove (2) first. Cover Ã by the disjoint union of the σ-parts Ã(σ),

where σ runs over the set of all finitely generated subcones of C. Note
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that each Ã(σ) is a log algebraic space in the first sense by Theorem 8.1.

For two such subcones σ and τ , the fiber product Ã(σ) ×
Ã
Ã(τ) is Ã(σ∩τ).

Since the projection Ã(σ∩τ) → Ã(σ) is represented by log étale morphisms

by Lemma 10.3, this proves (2).

We prove (1). Since Y is constructible, it is represented by an étale alge-

braic space by [5, Exposé IX, Proposition 2.7].

Let T be an fs log scheme over A. Since Ã is étale locally isomorphic

to A × Y , the fiber product T ×A Ã is a log algebraic space in the first

sense, which is strict étale over T . Since we may assume that the morphism

T ×A Ã→ Ã factors through Ã(σ) for some σ, (1) reduces to (2).

Proposition 10.5. For a log algebraic space F in the second sense, for

log algebraic spaces U,V in the first sense, and for morphisms U,V → F ,

the fiber product U ×F V is a log algebraic space in the first sense.

Proof. Take a cover F ′ → F from a log algebraic space in the first sense,

which exists by definition. Strict étale locally on U , the morphism U → F

factors as U → F ′ → F . Thus, we may assume that U → F factors as U →
F ′ → F . Similarly, we may assume that V → F factors as V → F ′ → F .

Then, U ×F V is the fiber product of U × V → F ′ × F ′ ← F ′ ×F F ′, which
is a log algebraic space in the first sense.

10.6. Question on algebraic geometry

A weak log abelian variety A is regarded as a minimal model for the

models A(Σ) for various complete fans Σ. How general can we find the

minimal model in the category of log algebraic spaces in the second sense?

We will see that the moduli space of polarized log abelian variety with

level structure has also such a minimal model in the category of log algebraic

spaces in the second sense. This should be considered as the minimal model

of various toroidal compactifications and resides over the Satake compact-

ification. Do we have a general theory of nice minimal compactification of

an algebraic variety in the category of log algebraic spaces in the second

sense?

§11. Valuative criterion for weak log abelian varieties

In this section, we give a sufficient condition for a model of a weak log

abelian variety to be proper.

11.1. We recall the definition of the direct image log structure. Let

f : T → S be a morphism of schemes, and let N be a log structure on T .
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Let f∗N be the direct image sheaf of N . Then we define the direct image

log structure of N as the fiber product M of f∗N → f∗OT ←OS .

11.2. Let K be a complete discrete valuation field with valuation ring

OK .

Fix an fs log structure N on η := Spec(K), and let M be the log structure

on Spec(OK) defined to be the direct image of N . If N is trivial, M is the

standard log structure of Spec(OK). If N is not trivial, then M is not an

fs log structure. If we denote by S the stalk of N/O×
η , which is a sharp fs

monoid, and if we denote the monoid law of S additively, then the stalk of

M/O×
Spec(OK) over the closed point of Spec(OK) is isomorphic to the monoid

{(x, y) ∈ S ×Z | y ≥ 0 if x= 0}. Here (0,1) ∈ S ×Z corresponds to the class

of a prime element of K, and the canonical projection to the stalk of N/O×
η

corresponds to the projection S ×Z→S . For example, if S =N, this stalk

of M/O×
Spec(OK) is isomorphic to the monoid of all positive elements of Z2

for the lexicographic order, and it is not a finitely generated monoid.

From now on, assume that N is charted by S . Then, M is the filtered

union of fs log structures contained in M . Further, M is the filtered union

of fs log structures contained in M whose restriction on η is N . Let A

be a weak log abelian variety over an fs log scheme S. For a morphism

(Spec(OK),M) → S of log schemes, let A(OK) := lim
−→

A((Spec(OK),Mi)),

where Mi runs over the set of fs log structures contained in M whose restric-

tion on η is N .

In this section, we prove the following.

Proposition 11.3. Let A be a weak log abelian variety over an fs log

scheme S. Assume that we are in the situation of Sections 2.4 and 2.5. Let

Σ be a complete fan. Assume that A satisfies the following condition.

(∗) Let K be a complete discrete valuation field. Let N be an fs log struc-

ture on η = Spec(K). Suppose that N is charted by the stalk of N/O×
η . Let M

be the direct image log structure of N on Spec(OK). Then, A(OK) =A(K)

for any morphism (Spec(OK),M)→ S of log schemes.

Then the algebraic space A(Σ) with an fs log structure is proper and log

smooth over S.

Remark. We will prove in Theorem 17.1 that (∗) is always satisfied.

In the rest of this section, we prove Proposition 11.3. The log smoothness

is satisfied (see Remark (3) after Theorem 8.1). We prove the properness by

checking the valuative criterion as follows.
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First, we may assume that S is locally Noetherian because a weak log

abelian variety over any base is locally a base change from a base of finite

type over Z (see Corollary 9.5).

We show that A(Σ) is separated over S by using the separatedness of A.

By definition, the diagonal morphism A→A×S A is represented by finite

morphisms. Since the diagonal morphism A(Σ) → A(Σ) ×S A(Σ) for A(Σ) is

the base change of that for A (because A(Σ) is a subsheaf of A), it is also

represented by finite morphisms. Since (A(Σ)×SA
(Σ))◦ → (A(Σ))◦×◦

S
(A(Σ))◦

is finite, the diagonal morphism for (A(Σ))◦ → (A(Σ))◦×◦
S
(A(Σ))◦ of algebraic

spaces is also finite, hence a closed immersion; that is, (A(Σ))◦ is separated.

To see that (A(Σ))◦ is universally closed over
◦
S, we recall the valuative

criterion for algebraic spaces.

Proposition 11.4. Let Y be a locally Noetherian scheme. Let f : X → Y

be a separated morphism of algebraic spaces. Assume that

(1) f is of finite type, and

(2) for any commutative diagram

SpecK −−−−→ X⏐⏐	
⏐⏐	

SpecV −−−−→ Y

where V is a discrete valuation ring with the field of fractions K, there

exist a finite separable extension K ⊂K ′ of fields, a discrete valuation ring

V ′ ⊂K ′ dominating V , and a morphism SpecV ′ →X such that SpecK ′ →
SpecK →X coincides with SpecK ′ → SpecV ′ →X and SpecV ′ →X → Y

coincides with SpecV ′ → SpecV → Y .

Then f is universally closed and, hence, proper.

The proof is parallel to the scheme case [6, Théorème 7.3.8] based on the

Chow’s lemma for algebraic spaces [15, Chapter IV, Theorem 3.1] (see [6,

Corollaire 5.6.3] and [3, Lemma 41.1]).

11.5. By Proposition 11.4, it is enough to check Proposition 11.4(1)–(2)

for A(Σ) → S.

First we prove Proposition 11.4(1). We already know that A(Σ) is locally

of finite type (see Section 8.4). To prove that A(Σ) → S is quasicompact,

we may assume that S is affine and has a chart, and it is enough to show

that A(Σ) is quasicompact. In this case, each constant log locus of S is
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quasicompact. Hence, we may further assume that the log of S is constant.

By condition (3) in Section 3.1, there are a finite number of cones Δ1, . . . ,Δn

such that Σ consists of all the Y -translations of all their faces. Then, the

proof of Theorem 4.1 shows that
⋃

i Ã
(Δi) →A(Σ) is surjective and that A(Σ)

is represented by a quasicompact fs log scheme.

Next, we prove that A(Σ) → S satisfies Proposition 11.4(2). It is sufficient

to prove the following.

11.6. Assume that the underlying scheme of the base S is Spec(V ), where

V is a complete discrete valuation ring with separably closed residue field.

Let K be the field of fractions of V , and assume that we have a morphism

a from Spec(K) to the underlying algebraic space (A(Σ))◦ of A(Σ) over the

underlying scheme S◦ of S. Assume that there is a chart P →N such that

P →N(K)/K× is bijective, where N is the inverse image log structure on

Spec(K) from A(Σ) via a. Then, there is a morphism b : S◦ → (A(Σ))◦ over

S◦ which is compatible with a.

11.7. We prove the statement of Section 11.6. Endow Spec(K) with the

pullback log structure N from A(Σ) via a. Then, we have a section a′ ∈
A(Σ)(K) whose underlying morphism is a. Let Mi be as in Section 11.2.

Let Si := (Spec(OK),Mi). By definition and the assumption, lim
−→

A(Si) =

A(OK) =A(K). Hence, for some i, we have an element a′′ of A(Si) whose

image in A(K) coincides with that of a′. By Proposition 3.2, there are a

log blowing up S′ → Si and an element of A(Σ)(S′) whose image in A(S′)
coincides with that of a′′. Take a V -rational point S◦ → (S′)◦ of (S′)◦.
Denote by S′′ the S◦ endowed with the pullback log structure from S′.
Let η′′ be its generic point, that is, Spec(K) endowed with the pullback

log structure from S′. Then, by the injectivity of A(Σ)(S′′)→A(Σ)(η′′), the
restriction of a′ to A(Σ)(η′′) lifts to A(Σ)(S′′). This proves the statement of

Section 11.6 and completes the proof of Proposition 11.3.

§12. Proper models with constant degeneration

Here we prove that a complete fan yields a proper model in the case of

constant degeneration. The general case will be proved in Theorem 17.1.

Proposition 12.1. Let A be a weak log abelian variety with constant

degeneration over an fs log scheme S. Assume that we are in the situation

of Sections 2.4 and 2.5. Let Σ be a complete fan. Then the log smooth

algebraic space A(Σ) with fs log structure is proper over S.
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We prove the converse in Proposition 12.7.

Since we can take a complete fan Σ by [8, Theorem 5.2.1], we have the

following.

Corollary 12.2. Let A be a weak log abelian variety with constant

degeneration. Then a proper model of A exists.

We remark that, if MS/O×
S is locally constant, then there is a proper

model which is a scheme (see Corollary 4.2).

12.3. We prove Proposition 12.1. By Proposition 11.3, it is enough to

check that A(OK) =A(K). Since A is with constant degeneration, by defini-

tion it corresponds to a log 1-motif [Y →Glog], which induces an admissible

and nondegenerate pairing X × Y →Gm,log. Here X and Y are locally free

sheaves of Z-modules on S.

First we reduce to

(∗) T
(Y )
log (OK) = T

(Y )
log (K),

where the left-hand side is defined by the limit similarly as in Section 11.2.

Assume that (∗) is valid. Since we have the exact sequence 0 → T
(Y )
log →

G
(Y )
log →B → 0, and B(OK) =B(K), (∗) implies that G

(Y )
log (OK) =G

(Y )
log (K).

Then, by dividing Y , we have A(OK) = A(K). (Here we use A = G
(Y )
log /Y

and H1
ét(SpecK,Y ) =H1

ét(SpecOK , Y ) = 0.)

To show (∗), by replacing K with an unramified extension, we may and

will assume that X and Y are free. We first prove that

(∗∗) Tlog(OK)
∼→ Tlog(K).

To this end, we may assume that X = Z, and (∗∗) reduces to Mgp(OK) =

Ngp(K) in the notation of Section 11.2. We fix a chart of N by S as

in Section 11.2, and we also fix a prime element of K. Then, the map

Mgp(OK)→Ngp(K) is naturally decomposed into Mgp(OK) = Sgp × Z×
O×

K = Sgp ×K× =Ngp(K). Hence, (∗∗) holds.
Therefore, to see (∗), it suffices to show that, for a map ϕ : X →Gm,log

on OK , if its restriction on K belongs to the (Y )-part, it itself belongs to

the (Y )-part on OK . Thus, the problem is reduced to the following lemma

by fixing a prime element of K and identifying K× with Z×O×
K .

Lemma 12.4. Let K be a complete discrete valuation field. Let S be a

sharp fs monoid. Let V be an fs submonoid of M := {(x, y) ∈ S × Z | y ≥
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0 if x= 1} such that {1}×N⊂ V and V gp = Sgp ×Z. Let X and Y be free

Z-modules of finite rank, and let

〈 , 〉 : X × Y →Sgp ×Z

be an admissible and nondegenerate pairing with respect to V . Let ϕ : X →
Sgp×Z be a homomorphism. Assume that, for any x ∈X, there are y1, y2 ∈
Y such that 〈x, y1〉 |K ϕ(x) |K 〈x, y2〉, where a |K b means that b/a belongs

to S ×Z. Then, for any x ∈X, there are y1, y2 ∈ Y such that 〈x, y1〉 | ϕ(x) |
〈x, y2〉, where a | b means that b/a belongs to M .

Proof. Throughout the proof, we fix an x ∈X . Let h be the projection

V → S ; (s,n) �→ s. If h(〈x,Y 〉) ∩ S �= {1}, then there is an element y ∈ Y

with 〈x, y〉 ∈ (S�{1})×Z. Then we have 〈x, y1y−1〉 | ϕ(x) | 〈x, y2y〉. Indeed,

ϕ(x)〈x, y1y−1〉−1 = ϕ(x)〈x, y−1
1 〉〈x, y〉 ∈

(
S � {1}

)
×Z and

ϕ(x)−1〈x, y2y〉= ϕ(x)−1〈x, y2〉〈x, y〉 ∈
(
S � {1}

)
×Z.

If h(〈x,Y 〉) ∩ S = {1}, then we take a homomorphism N : S → R≥0 such

that KerNgp ⊃ h(〈x,Y 〉) and KerNgp ∩S = {1}. Let σ =Ker(Nh). By the

admissibility, the pairing

X/Xσ × Y/Yσ →R

induced by Nh is nondegenerate. Hence, x ∈Xσ. Note that σ = {1}×N⊂ V .

Again by the admissibility, we have the nondegenerate pairing Xσ×Yσ →R

induced by a nontrivial homomorphism σ → R≥0. So there exists y ∈ Y

with 〈x, y〉= (1,m) for a sufficiently large m ∈ N. Hence, we conclude that

〈x, y1y−1〉 | ϕ(x) | 〈x, y2y〉 in the same way as above.

This completes the proof of Proposition 12.1. To prove the converse in

Proposition 12.7 below, we first show lemmas.

Lemma 12.5. Let the situation be as in Sections 2.4 and 2.5. Let Σ be

a fan in C, and let |Σ| be the R≥0-support of Σ. Let s ∈ S. The homomor-

phism S →MS,s/O×
S,s induces Hom(MS,s/O×

S,s,N)→Hom(S,N). Let N be

an element of the interior of Hom(MS,s/O×
S,s,N), and let |Σ|N be the set of

all elements of |Σ| whose image in Hom(S,R≥0) coincides with the image

of N .

Then there is a natural bijection between the following two sets:
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(1) the set of connected components of the fiber of A(Σ) (resp., Ã(Σ)) over

s; and

(2) the set of connected components of Y s \ |Σ|N (resp., |Σ|N ).

Proof. We describe the case of A(Σ). The proof for Ã(Σ) is similar.

There is a natural bijection between set (2) and the following set (3).

Endow Σ and the set Spec(S) of faces of S with Zariski topologies.

(3) The set of connected components of the fiber of Σ→ Spec(S) over

the point of Spec(S) which is the image of the unique closed point of

Spec(MS,s/O×
S,s).

By the exact sequence 0→G→A(Σ) → Y \ Q(Σ) → 0, since all fibers of

G are connected, we have a natural bijection between set (1) and set (3).

Lemma 12.6. Let Σ be a complete fan which is stable under the action

of Y . Then all fibers of A(Σ) (resp., Ã(Σ)) are connected.

Proof. In this case, |Σ|=C⊗R≥0, and hence |Σ|N is connected for any N .

Hence, this lemma follows from Lemma 12.5.

We prove the converse of Proposition 12.1.

Proposition 12.7. Let A be a weak log abelian variety with constant

degeneration over a nonempty fs log scheme S. Assume that we are in the

situation of Sections 2.4 and 2.5. Let Σ be a Y -stable fan. Then Σ is com-

plete if the log smooth algebraic space A(Σ) with fs log structure is proper

over S.

Proof. Assume that A(Σ) is proper over S. Take a complete fan Σ′ by [8,

Theorem 5.2.1]. By [8, Lemma 5.2.14], we may assume that Σ′ contains a

subdivision Σ′′ of Σ as a subfan. Consider the diagram

A(Σ)
p
←A(Σ′′) i→A(Σ′).

By Proposition 8.8, we know that p is proper and that i is a strict open

immersion. Since both A(Σ′′) and A(Σ′) are proper by the assumption and

Proposition 12.1, respectively, Lemma 12.6 implies that A(Σ′′) and A(Σ′)

coincide so that Σ′′ =Σ′, this implies that Σ is complete.

§13. Weak log abelian varieties over complete discrete valuation

rings, I

To prove the existence of a proper model for a general weak log abelian

variety with nonconstant degeneration, we study weak log abelian varieties
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over complete discrete valuation rings. First we state our results, some of

which will be proved in a future part of this series.

13.1. Assume that we are in the situation of Section 11.2. In particular,

SpecOK is endowed with the direct image log structure M . Let Mi be as

in Section 11.2.

Let C0 be the category of weak log abelian varieties over OK , which is

defined to be the inductive limit of the categories of weak log abelian variety

for fs log structuresMi. The polarizability can be understood as “polarizable

for some Mi.”

Let C1 be the category of admissible log 1-motifs over OK with respect

to the log structure M , which is defined similarly.

Let (WLAV/K) be the category of weak log abelian varieties over K with

respect to the log structure N .

Let C2 be the full subcategory of (WLAV/K) consisting of objects having

the following property: if [Y →Glog] denotes the corresponding log 1-motif

over K and 0 → T → G → B → 0 denotes the exact sequence with T a

torus and B an abelian variety, then Y and T are unramified and B is of

semistable reduction.

13.2. We have the following functors αi : C0 →Ci (i= 1,2).

The α2 is the evident functor.

The definition of α1 is as follows. If we are given a weak log abelian

variety over OK with respect to M , then for each n ≥ 1, we have a weak

log abelian variety over OK/mn
K , and the corresponding admissible log 1-

motif over OK/mn
K , where mK is the maximal ideal of OK . This family of

admissible log 1-motifs for n≥ 1 defines an admissible log 1-motif over OK .

13.3. In the present article, we prove that there is a category equiva-

lence C[pol]
1 � C2 compatible with α1 and α2, where C[pol]

1 is the following

subcategory of C1.
Let [Y1 →Glog] be an object of C1.
Let Y(1) be the kernel of the canonical homomorphism Y1 → Y2, where Y2

is the stalk of Y 1 at the generic point.

Let T2 ⊂ T be the torus corresponding to the stalkX2 ofX1 at the generic

point, where T is the torus part of G.

Let G(1) =G/T2.

The composition Y(1) → Y1 →Glog →G(1),log is an admissible log 1-motif.
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Then, [Y1 →Glog] belongs to C[pol]
1 if and only if this log 1-motif Y(1) →

G(1),log is polarizable. (Here [pol] means the partial polarization on the part

corresponding to the abelian part B2 of the corresponding object in C2.)

13.4. In a future article of this series, we will prove more details of the

following.

For i= 0,1,2, let Cptpol
i be the full subcategory of Ci consisting of point-

wise polarizable objects, and let Cpol
i be the full subcategory of Ci consisting

of polarizable objects. In particular, Cptpol
0 is the category of log abelian

varieties over OK . Evidently, for i= 0,1,2, we have Ci ⊃ Cptpol
i ⊃ Cpol

i , and,

for i= 1,2, the functor αi sends Cpol
0 (resp., Cptpol

0 ) into Cpol
i (resp., Cptpol

i ).

In a future serial, we will prove that Cpol
0 = Cptpol

0 and that, for i= 1,2,

αi induces an equivalence of categories Cpol
0 � Cpol

i .

Summing up these results, we will have

C1 ⊃ C[pol]
1 ⊃ Cptpol

1 ⊃ Cpol
1

α1 ↑ ↑ ∼= ↑ (∗)

C0 ⊃ Cptpol
0

(∗)
= Cpol

0
α2 ↓ ∼= ↓ (∗) ∼= ↓ (∗)

C2 ⊃ Cptpol
2 = Cpol

2 and C[pol]
1 � C2,

where the equivalences with (∗) will be proved in a forthcoming part of this

series.

In the case where N is trivial, C2 = Cptpol
2 . Hence, by taking the generic

fiber, we have an equivalence from the category of log abelian varieties over

OK for the standard log structure to the category of abelian varieties over

K with semistable reduction.

§14. Weak log abelian varieties over complete discrete valuation

rings, II

We will prove that C[pol]
1 � C2 in Theorem 15.10 in the next section.

14.1. First, we prove the equivalence of classical parts C0,[pol]
1 � C0

2 of

both categories by using the Raynaud extension, where the classical parts

are defined as follows.

Let the notation be as in Section 13.

Let C0
2 be the full subcategory of C2 consisting of abelian varieties over

K of semistable reduction.
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Let C0,[pol]
1 be the full subcategory of C[pol]

1 consisting of objects [Y →Glog]

such that the image of Y is contained in G(K) ⊂ Glog(OK) after a finite

unramified extension of K.

Thus, C0,[pol]
1 (resp., C0

2) coincides with the C[pol]
1 (resp., C2) of the case

where N is the trivial log structure on Spec(K).

14.2. We have the classical equivalence C0,[pol]
1 � C0

2 . If [Y →Glog] is an

object of C0,[pol]
1 with constant Y , the corresponding object A in C0

2 satisfies

A(K) = Y \G(K) and Aan = Y \Gan
K in the category of rigid analytic groups.

Here and hereafter, the “an” represents the rigid analytification.

14.3. For this equivalence, we could refer to the result “DD = DEG” in

[4, Chapter III]. Here we see the equivalence by Raynaud’s theory. By [20,

Théorème 1], there is a functor (Raynaud’s construction)

δ : C0
2 →C0,[pol]

1 .

Let C0
3 be the category of rigid analytic abelian varieties over K. Consider

the natural functors β1 : C0,[pol]
1 →C0

3 , which is fully faithful, and β2 : C0
2 →

C0
3 , which is easily seen to be an equivalence. Since the composite β1δ coin-

cides with β2, the functor δ is an equivalence.

§15. Weak log abelian varieties over complete discrete valuation

rings, III

We prove that C[pol]
1 � C2. Let the notation be as in Section 13.

First, we construct a functor γ : C[pol]
1 →C2.

15.1. Let [Y1 → G1,log] be an object of C[pol]
1 with an exact sequence

0 → T1 → G1 → B1 → 0 with T1 a torus and B1 an abelian scheme over

OK . We define the log 1-motif [Y2 → G2,log] over K corresponding to the

associated object of C2.

15.2. Let [X1 →G∗
1,log] be the dual log 1-motif of [Y1 →G1,log] with an

exact sequence 0→ T ∗
1 →G∗

1 → B∗
1 → 0, where T ∗

1 is a torus and B∗
1 is an

abelian scheme over OK . So, X1 is the character group of T1, Y1 is the

character group of T ∗
1 , and B∗

1 is the dual abelian scheme of B1.

Let Y(1) ⊂ Y1 be the kernel of the restriction of Y1 →G1,log/G1 to Spec(K),

and define X(1) ⊂X1 similarly.

Let Y2 = Y1/Y(1), and let X2 =X1/X(1). Let T2 be the torus whose char-

acter group is X2, and let T ∗
2 be the torus whose character group is Y2. Thus,
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T2 ⊂ T1 and T ∗
2 ⊂ T ∗

1 . Define semiabelian schemes G(1) and G∗
(1) over OK

as G(1) =G1/T2 and G∗
(1) =G∗

1/T
∗
2 , respectively. Then [Y(1) →G(1),log] and

[X(1) →G∗
(1),log] are objects of C0,[pol]

1 . Let B2 and B∗
2 be the corresponding

objects of C0
2 by the classical equivalence in Section 14.

The image of the composition X1 → G∗
1,log → G∗

(1),log is contained in

G∗
(1)(K) after a finite unramified extension ofK, and hence, we have a homo-

morphism X2 =X1/X(1) → (X(1) \G∗
(1))(K) =B∗

2(K). Let G2 be the exten-

sion of B2 by T2 over K corresponding to this homomorphism X2 →B∗
2 .

Remark. The object [Y(1) →G(1),log] already appeared in Section 13.3.

An alternative construction of the extension 0→ T2 → G2 → B2 → 0 is as

follows. Take a proper model P of B2 associated to a star (see [4, Chap-

ter III, Section 3]). Then, the formal T2-torsor on P given by [Y1 →G1,log]

is algebraizable, and hence, we have a T2-torsor on P . Thus, we have the

desired extension.

15.3. We define a homomorphism Y2 → G2,log. Note that G2,log repre-

sents the functor of the pairs (E,s), where E is an extension of B∗
2 by

Gm and s is a homomorphism X2 → Elog (here Elog denotes the pushout

of Gm,log ← Gm → E) which lifts X2 → B∗
2 . Let a ∈ Y2. Then a defines a

homomorphism T ∗
2 → Gm, and hence, from the exact sequence 0→ T ∗

2 →
G∗

2 →B∗
2 → 0, we obtain an extension E of B∗

2 by Gm. The homomorphism

X2 →G∗
2,log induces X2 →Elog which lifts X2 →B∗

2 .

This homomorphism gives a log 1-motif [Y2 →G2,log]. Thus, we have an

object of C2.
Next, we construct the inverse functor δ : C2 →C[pol]

1 .

15.4. Assume that we are given an object of C2. Let [Y2 → G2,log] be

the corresponding log 1-motif over K (recall that K has the log structure

induced by M ), and let 0 → T2 → G2 → B2 → 0 be the associated exact

sequence with T2 a torus and B2 an abelian variety.

We construct the corresponding object [Y1 →G1,log] of C[pol]
1 . By unrami-

fied descent, we may and do assume that Y2 is constant, that T2 splits, and

that B2 has split semistable reduction.

15.5. Let [Y(1) → G(1),log] be the object of C0,[pol]
1 corresponding to the

object B2 of C0
2 . Let [X(1) →G∗

(1),log] be the dual. We have B2(K) = Y(1) \
G

(Y(1))

(1),log(OK) by [20, Théorème 1] and by Section 12.3, equation (∗). Let
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0→ T(1) →G(1) →B1 → 0 be the exact sequence with T(1) a torus, and let

B1 be an abelian scheme over OK .

15.6. We construct Y1. Consider the composition Y2 →G2,log →B2. This

induces Y2 →B2(K) = Y(1) \G
(Y(1))

(1),log(OK). Define Y1 to be the fiber product

of Y2 →B2(K)←G
(Y(1))

(1),log(OK).

We obtain a homomorphism Y1 →B1 as the composition Y1 →G
(Y(1))

(1),log →
B1.

From the dual log 1-motif [X2 → G∗
2,log] of [Y2 → G2,log] with an exact

sequence 0 → T ∗
2 → G∗

2 → B∗
2 → 0 (T ∗

2 is a torus, and B∗
2 is an abelian

variety), we obtain similarly B∗
1 , X1, and X1 →B∗

1 in place of B1, Y1, and

Y1 →B1. This B
∗
1 is the dual abelian scheme of B1.

Let T1 be the torus over OK whose character group is X1, and let T ∗
1 be

the torus over OK whose character group is Y1.

15.7. We define G1 as the extension of B1 by T1 corresponding to the

homomorphism X1 →B∗
1 . We define G∗

1 as the extension of B∗
1 by T ∗

1 cor-

responding to the homomorphism Y1 → B1. Let G′
1 ⊂ G1,log(OK) be the

pullback of G
(Y(1))

(1),log(OK) by G1,log(OK)→G(1),log(OK).

Lemma 15.8. We have a Cartesian commutative diagram

G′
1 → G

(Y(1))

(1),log(OK)

↓ ↓
G2,log(K) → B2(K)

Proof. Step 1. We first give a remark on the map G
(Y(1))

(1),log(OK)→B2(K).

Let α ∈ G
(Y(1))

(1),log(OK), and let β ∈ B2(K) be the image. Let 0 → Gm →
Eα → B∗

1 → 0 be the extension over OK corresponding to the image of

α in B1(OK), and let 0→Gm →Eβ →B∗
2 → 0 be the extension over K cor-

responding to β. Then α defines a homomorphism sα : X(1) →Eα,log which

lifts X(1) → B∗
1 , where Eα,log is the pushout of Gm,log ← Gm → Eα. Let

E′
α,log be the fiber product of Eα,log → B∗

1 ← (G∗
(1),log)

(X(1)). The canoni-

cal homomorphism X(1) → (G∗
(1),log)

(X(1)) and sα induce a homomorphism

X(1) →E′
α,log. Consider the exact sequence

(a) 0→Gm,log →X(1) \E′
α,log →X(1) \ (G∗

(1),log)
(X(1)) → 0.
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On the other hand, let

(b) 0→ Gm,log → Eβ,log → B∗
2 → 0 be the exact sequence induced from

the extension Eβ . We have easily the following.

Claim. There is a canonical isomorphism between the K-valued point

of the exact sequence (a) and the K-valued point of the exact sequence (b)

which induces the identity map of Gm,log(K) and the canonical isomorphism

(X(1) \ (G∗
(1),log)

(X(1)))(K)∼=B∗
2(K).

Step 2. Next we define the map G′
1 → G2,log(K). An element of G′

1 is

identified with (α,s), where α is an element of G
(Y(1))

(1),log(OK) and s is a

homomorphism X1 → Eα,log which extends sα : X(1) → Eα,log. It induces a

homomorphism X1 →E′
α,log, and hence, X2 =X1/X(1) →X(1) \E′

α,log. By

identifying (X(1) \E′
α,log)(K) with Eβ,log(K) via the canonical isomorphism

of the above claim, we obtain a homomorphism X2 → Eβ,log which lifts

X2 →B∗
2 . This defines an element of G2,log(K).

Step 3. We prove that the diagram in Lemma 15.8 is commutative and

Cartesian. The commutativity is clear from the definition of the left vertical

arrow given in step 2. Since the horizontal arrows are surjective (modulo

unramified extensions), the diagram is Cartesian because the kernels of the

two horizontal arrows are both identified with Hom(X2,M
gp)(K).

15.9. We define a homomorphism Y1 → G1,log by Lemma 15.8. This

[Y1 → G1,log] is the object of C1 which we want to define. We show that

this object is partially polarizable.

Let p : B2 → B∗
2 be a polarization. Then p induces a morphism [Y(1) →

G(1),log]→ [X(1) →G∗
(1),log]. It is easy to prove that the last morphism is a

polarization.

Thus, we defined the functor δ : C2 →C[pol]
1 . By constructions, it is easily

seen that δγ � 1 on C[pol]
1 and γδ � 1 on C2. Hence, we obtain the following.

Theorem 15.10. We have an equivalence of categories

C[pol]
1 � C2

given by the functors γ and δ which are the inverses of each other.

§16. Weak log abelian varieties over complete discrete valuation

rings, IV

Here we discuss the rigid analytic theory and related things.
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Our theory of weak log abelian varieties gives the rigid analytic shape

of a Tate curve in an algebraic way. Thus, this theory is strikingly near to

rigid analytic theory. Hence, it is very important to consider the relation of

the theory of weak log abelian variety and rigid analytic theory.

16.1. Let the notation be as in Section 13.

Let C3 be the category of contravariant functors from the category of fs

log rigid analytic spaces over K with the log structure N to the category of

commutative groups. Let (WLAVan/K) be the full subcategory of C3 con-

sisting of rigid analytic weak log abelian variety over K with respect to the

log structure N . A rigid analytic weak log abelian variety over a general

base is defined in a manner similar to the definition of weak log abelian

variety in Section 1. But, in what follows, only those over K appear, and

since Spec(K) has a constant log structure, a rigid analytic weak log abelian

variety over K corresponds to a rigid analytic log 1-motif (see Section 1.7).

Hence, we adopt here the following definition. An object A of C3 is a rigid

analytic weak log abelian variety if A can be presented as a quotient of

Y → (Gan)
(Y )
log for some locally constant sheaf Y of finitely generated and free

abelian groups, an (algebraic) semiabelian variety G over K, and a homo-

morphism Y → (Gan)log such that the induced pairing X×Y →Gan
m,log/G

an
m

(X =Hom(T,Gm)an) is admissible and nondegenerate.

16.2. We have the following functors β1 : C1 →C3 and β2 : (WLAV/K)→
(WLAVan/K).

Here β2 is the evident functor. (Note that any object of (WLAV/K) is

with constant degeneration (see Section 1.7).)

The definition of β1 is as follows. For an object [Y → Glog] of C1, we
have the object A of C3 defined to be the sheafification of the functor U �→
Y \ (Gan

K )
(Y )
log (U). It sends C[pol]

1 into (WLAVan/K).

Theorem 16.3. We have that

β2 : (WLAV/K)
→ (WLAVan/K).

Proof. Since (Gan)log(K) =Glog(K) for a semiabelian variety G over K,

we see that all objects of (WLAVan/K) come from (WLAV/K).

It remains to prove that the functor β2 is fully faithful. Let A,A′ be

objects in (WLAV/K). In the following, we denote by primes the corre-

sponding objects for A′ to those for A. For example, let [Y →G
(Y )
log ] be the
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log 1-motif associated with A. Then, [Y ′ →G
′(Y ′)
log ] is the log 1-motif asso-

ciated with A′. Let 0→ T → G→ B → 0 be the exact sequence with T a

torus, and let B be an abelian variety.

Assume that a morphism h : Aan → (A′)an is given, and we prove that it

naturally induces a morphism A→A′. First h induces a morphism of log 1-

motifs [Y → (Gan)
(Y )
log ] to [Y

′ → (G′an)(Y
′)

log ] (see [9, Theorem 8.1]). Next, since

we can prove that Gan → (G′an)(Y
′)

log /G′an is zero (see [9, Corollary 6.1.2]), h

induces the morphism h1 : G
an →G′an.

We claim here the following.

Claim. The morphism (T an)
(Y )
log →B′an induced by h is zero.

Proof. Wemay assume that we are in the situation of Sections 2.4 and 2.5.

It is sufficient to prove that the induced homomorphism on the Lie alge-

bras is zero. Let R = K[[t]], let m be its maximal ideal, and let n be a

positive integer. By the same argument as in [8, Proposition 3.5.6] or as

in [9, Proposition 7.9(3)], for any finitely generated subcone Δ of C (see

Section 2.2), there is a bigger finitely generated subcone Δ1 of C such

that the inclusion map from the Δ-part V (Δ)an of (T an)
(Y )
log (R/mn) to

the Δ1-part V (Δ1)
an of (T an)

(Y )
log (R/mn) factors through (T an)

(Y )
log (R/m).

Thus, (T an)
(Y )
log (R/mn)→ B′an(R/mn) factors through B′an(R/m). Hence,

the map on the Lie algebras is zero. Thus, the claim is proved.

By this claim, we see that h1 sends T an into (T ′)an so that we have

a homomorphism from an exact sequence 0 → T an → Gan → Ban → 0 to

0 → (T ′)an → (G′)an → (B′)an → 0. It suffices to show that it comes from

a homomorphism of exact sequences without the superscripts “an”. (Note

that Hom(G,G′) → Hom(Gan, (G′)an) is not necessarily bijective because

there is a nontrivial morphism from a torus to an abelian variety in the

category of rigid analytic spaces.)

Consider the exact sequence

0→Hom(B,T ′)→Hom(G,T ′)→Hom(T,T ′)

→ Ext(B,T ′)→ Ext(G,T ′)→ Ext(T,T ′).

Consider the homomorphism of exact sequences from this to its “an” version.

By using Hom(B,T ′) = Hom(Ban, (T ′)an), Hom(T,T ′) = Hom(X ′,X) =

Hom(T an, (T ′)an), Ext(B,T ′) = Ext(Ban, (T ′)an) (this is because an analytic

Gm-torsor on Ban is algebraizable), and Ext(T,T ′) = 0, we have
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(1) Hom(G,T ′)→Hom(Gan, (T ′)an) is surjective, and
(2) Ext(G,T ′)→ Ext(Gan, (T ′)an) is injective.

Next, consider the exact sequence

0→Hom(G,T ′)→Hom(G,G′)→Hom(G,B′)→ Ext(G,T ′)

and a homomorphism of exact sequences from it to its “an” version. Now h1
is in Hom(Gan, (G′)an), and its image h2 in Hom(Gan, (B′)an) comes from

Hom(Ban, (B′)an) = Hom(B,B′). Hence, h2 comes from Hom(G,B′). By (1)

and (2), we see that h1 comes from Hom(G,G′). The proof of Theorem 16.3

is completed.

Lemma 16.4. We have that β1 � β2γ on C[pol]
1 .

Proof. Let C = [Y1 →G1,log] be an object of C[pol]
1 , and let [Y2 →G2,log]

be the log 1-motif over K corresponding to γ(C). We have a natural iso-

morphism

Y(1) \ (Gan
1,K)

(Y1)
log

∼= (Gan
2 )

(Y2)
log .

Hence, we have natural isomorphisms

β1(C)∼= Y1 \ (Gan
1,K)

(Y1)
log

∼= Y2 \ (Gan
2 )

(Y2)
log

∼= β2γ(C).

Lemma 16.5. We have that β2 � β1δ on C2.

Proof. By applying δ to Lemma 16.4 from the right, we have β1δ � β2γδ �
β2 by Theorem 15.10.

Proposition 16.6. The functor β1 : C1 →C3 is fully faithful.

Proof. For an object [Y →Glog] of C1 and A= β1([Y →Glog]), Y is recov-

ered as the Z-dual of Ext1(A,Z), and (Gan
K )

(Y )
log is obtained as the natural

Y -torsor of A (see [9, Section 8.2]). The full faithfulness is shown by using

these.

Remark. The above proposition implies that the induced functor C[pol]
1 →

C3 is fully faithful. The last full faithfulness also follows from Theorem 16.3,

β2 = β1δ, and that δ is an equivalence.

Next we prove the following.

Proposition 16.7. We have that β1α1 � β2α2 on C0.



LOGARITHMIC ABELIAN VARIETIES, PART IV: PROPER MODELS 55

We prove this proposition in 16.8–16.11. The following lemma is easy,

and we omit its proof.

Lemma 16.8. Let P →Q be an open immersion of proper rigid analytic

spaces. Then, P is an open and closed subspace of Q. In particular, if Q is

connected, then P =Q.

16.9. Let C′
0 be the category of log algebraic spaces over OK in the second

sense (see Section 10.1), let C′
1 be the category of the formal version of log

algebraic spaces in the second sense over OK , that is, the inverse limit of the

categories of log algebraic spaces in the second sense over OK/mn
K (n≥ 1),

let C′
2 be the category of log algebraic spaces over K in the second sense, and

let C′
3 be the category of the rigid analytic version of log algebraic spaces in

the second sense over K. We have the natural functors C′
0

α1→ C′
1

β1→ C′
3 and

C′
0

α2→C′
2

β2→C′
3. They are compatible with the previous functors α1, β1, α2, β2

and denoted by the same letters.

In this paragraph, we prove that, for a log algebraic space A ∈ C′
0 over

OK in the second sense, we have a functorial morphism β1α1A→ β2α2A in

C′
3 which represents open immersions of rigid analytic spaces.

First, we prove that this is valid for fs log schemes over OK . It reduces to

the case of an affine n-space U = SpecOK [T1, . . . , Tn]. Since the concerned

functors preserve the product, we may assume that n= 1. Then, β1α1(U)

is OK in K = (U)an = β2α2(A), which is an open subspace.

Next, by taking an fs log scheme cover, the functorial morphisms in the

case of fs log schemes induce a functorial morphism for a general A by

passing to the quotient. We prove that it represents open immersions.

Let A ∈ C′
0 be a log algebraic space over OK in the second sense. Let

T2 → β2α2A be a morphism from a rigid analytic space over K. Let T1 be

the fiber product of T2 → β2α2A← β1α1A as a sheaf. We show that T1 → T2

is represented by an open immersion. Since A is a log algebraic space over

OK in the second sense, we can take an fs log scheme U and a surjective

morphism U →A of étale sheaves, which is log étale. Let T2,U be the base

change T2 ×β2α2A β2α2U as a sheaf. Since T2,U → T2 is a surjection of étale

sheaves, we may assume that there is a section T2 → T2,U of T2,U → T2. In

this case, T2 → β2α2A factors through β2α2U so that T2,U is a log algebraic

space in the first sense (see Proposition 10.5). Since T1×β2α2Aβ2α2U → T2,U

is an open immersion, by pulling back the section, we see that T1 → T2 is

an open immersion.
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Now, let A ∈ C0.
Lemma 16.10. Let Σ be a complete fan. Then β1α1(A

(Σ)) = β2α2(A
(Σ)).

Proof. By Theorem 8.1, A(Σ) ∈ C′
0, and Section 16.9 implies that

β1α1(A
(Σ)) is an open subspace of β2α2(A

(Σ)). Furthermore, for i = 1,2,

by Proposition 12.1, αi(A
(Σ)) is proper. Hence, βiαi(A

(Σ)) is proper. On

the other hand, β2α2(A
(Σ)) is connected in the sense of rigid analytic space

(see Lemma 12.6). By Lemma 16.8, we have the desired equality.

16.11. In this paragraph, we complete the proof of β1α1(A) = β2α2(A).

It suffices to prove that β1α1A→ β2α2A represents surjections of rigid

analytic spaces, for we already know that it represents open immersions by

Theorem 10.4(1) and Section 16.9. (The surjectivity here is not the surjec-

tivity of a morphism of sheaves.)

Consider any morphism T2 → β2α2A from a rigid analytic space. Let T1

be the fiber product of T2 → β2α2A← β1α1A. We have to prove that the

induced morphism T1 → T2 of rigid analytic spaces is surjective. Take a

complete fan Σ, let T ′
2 be the fiber product of T2 → β2α2A ← β2α2A

(Σ),

and let T ′
1 be the fiber product of T2 → β2α2A← β1α1A

(Σ). Then T ′
1 → T ′

2

is an isomorphism because β1α1(A
(Σ)) = β2α2(A

(Σ)) by Lemma 16.10. Fur-

thermore, T ′
2 → T2 is surjective set-theoretically as a map of rigid analytic

spaces. Hence, T ′
1 → T2 is surjective set-theoretically, and hence, T1 → T2 is

surjective set-theoretically. This completes the proof of Proposition 16.7.

The following will be used in a forthcoming part of this series of papers.

Proposition 16.12. We have that

(1) α1 � δα2 on C0 and

(2) α2 � γα1 on C0.
Proof. (1) On C0, we have β1α1 � β2α2 � β1δα2, where the first isomor-

phism follows from Proposition 16.7 and the second isomorphism follows

from Lemma 16.5. Then apply Proposition 16.6.

(2) On C0, we have β2α2 � β1α1 � β2γα1, where the first isomorphism

follows from Proposition 16.7 and the second isomorphism follows from

Lemma 16.4. Then apply Theorem 16.3.

§17. Proper models

In this section, we prove the main theorem in this article that a complete

fan yields a proper model. This is the algebraic correspondent of the result

in [8, Section 5] for analytic log abelian varieties.
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Theorem 17.1. Let A be a weak log abelian variety over an fs log

scheme S. Assume that we are in the situation of Sections 2.4 and 2.5. Let

Σ be a complete fan. Then, the algebraic space A(Σ) with an fs log structure

is proper and log smooth over S.

Proof. By Proposition 11.3, it is enough to show that Proposition 11.3(∗)
is satisfied. Let the notation be as in Proposition 11.3. Then, A(OK) =

(α1(A))(OK) = (β1α1(A))(K) = (β2α2(A))(K) = (α2(A))(K) =A(K). Here

we used β1α1 = β2α2 (see Proposition 16.7). Thus Proposition 11.3(∗) is

satisfied.

Since a complete fan exists, we have the following.

Corollary 17.2. A proper model of A exists.

17.3. A log algebraic space X in the second sense over an fs log scheme

S (see Section 10.1) is proper if the following condition is satisfied.

(∗) Let K be a complete discrete valuation field. Let N be an fs log

structure on η = Spec(K). Suppose that N is charted by the stalk of N/O×
η .

Let M be the direct image log structure of N on Spec(OK). Then, X(OK) =

X(K) for any morphism (Spec(OK),M)→ S of log schemes.

A weak log abelian variety is proper by the above proof.

Corollary 17.4. Let S be an fs log scheme. Let Σ be a complete fan,

and let P =A(Σ). Then, P →A represents proper morphisms.

Proof. It follows from the properness of P and that of A.

§18. Torsion points of weak log abelian varieties

In this section, using the representability of a model and its properness,

we study the torsion points of a weak log abelian variety A. Although A is

not representable, its torsion points surprisingly have the same properties

as the classical nondegenerate abelian varieties.

Let S be an fs log scheme, and let A be a weak log abelian variety over

S. For n≥ 1, we set

A[n] := Ker(n : A→A).

Let g = dimA.

Proposition 18.1. Let n≥ 1.

(1) The sheaf A[n] is represented by an fs log scheme over S which is finite

over S.
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(2) Kummer log flat locally on S, A[n] is represented by a usual (classical)

finite flat group scheme of rank n2g.

(3) If n is invertible over S, Kummer log étale locally on S, then A[n] is

isomorphic to the constant sheaf (Z/nZ)2g.

This is proved in 18.2–18.7 as follows.

Lemma 18.2. Let 〈 , 〉 : X × Y → S be an admissible pairing as in Sec-

tion 1.1. Let N1,N2 ∈Hom(S,N), let y ∈ Y , and assume that (N1+N2)(〈−,

y〉) = 0. Then we have Ni(〈−, y〉) = 0 for i= 1,2.

Proof. For a homomorphism N : S →N with N(〈X,y〉) = {0}, the admis-

sibility of 〈 , 〉 implies that y ∈ Yσ, where σ = N−1(0) ∩ S . So the lemma

easily follows from (N1 +N2)
−1(0)∩ S = (N−1

1 (0)∩ S)∩ (N−1
2 (0)∩ S).

Lemma 18.3. Let the situation be as in Sections 2.1 and 2.2. For a face

σ of Hom(S,N) and for y ∈ Y , let C(σ, y) = {(N,N(〈−, y〉));N ∈ σ}. Then
these C(σ, y) form a fan.

Proof. It is enough to show that, for faces σ, τ of Hom(S,N) and for

y, z ∈ Y , C(σ, y) ∩ C(τ, z) is a face of C(σ, y). We may assume that z =

0. Let (Ni,Ni(〈−, y〉)) ∈ C(σ, y) for i = 1,2. Assume that (N1 +N2, (N1 +

N2)(〈−, y〉)) ∈ C(τ,0). Then, N1 + N2 ∈ τ , which implies that Ni ∈ τ for

each i. Further, by Lemma 18.2, (N1 +N2)(〈−, y〉) = 0 implies that each

Ni(〈−, y〉) = 0. Hence, each (Ni,Ni(〈−, y〉)) belongs to C(τ,0).

Let Σ be the fan consisting of all C(σ, y), where y ∈ Y and where σ ranges

over all faces of Hom(S,N).

Lemma 18.4. The functor A[n] is represented by an algebraic space with

an fs log structure.

Proof. Since A[n] is the fiber product of A(n−1Σ) n→A(Σ) 0← S and A(Σ) is

represented by an algebraic space with an fs log structure by Theorem 8.1,

A[n] is represented by an algebraic space with an fs log structure. Here

n−1Σ is the fan { 1
nσ | σ ∈Σ}.

18.5. We prove that A[n] is proper. Let K be a complete discrete val-

uation field. Let N be an fs log structure on η = Spec(K). Suppose that

N is charted by the stalk of N/O×
η . Let M be the direct image log struc-

ture of N on Spec(OK). Let (Spec(OK),M)→ S be any morphism of log

schemes. Then, A(OK) = A(K), and hence, A[n](OK) = A[n](K); that is,

A[n] is proper. Furthermore, A[n] is quasifinite.
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By [16, Théorème A.2], if an algebraic space is proper and quasifinite over

a base, then it is a scheme and is finite over the base. Hence, A[n] is an fs

log scheme and is finite over S.

Thus (1) is proved.

The proofs of (2) and (3) are roughly as follows. Since, as the properties

of a finite object, the kfl (Kummer log flat) local classical flatness in (2), and

the két (Kummer log étale) local étaleness in (3) can be checked formally

(i.e., can be checked over Artin bases), they are reduced to the case of

constant degeneration, and then the rest is also reduced.

Precisely, we argue as follows.

18.6. First, n : Ã → Ã is surjective for kfl topology and even for két

topology if n is invertible over the base because it is so for the semiabelian

part G and for the quotient Ã/G (see Section 18.10). Hence, we may and

will assume that Y ⊂ nÃ.

Lemma 18.7. If Y ⊂ nÃ, we have that

(i) A[n] is classical and is finite flat of rank n2g; and

(ii) in the case where n is invertible over the base, A[n] is finite étale and

locally isomorphic to (Z/nZ)2g.

Proof. Since A[n] is represented by a scheme which is finite over the base

S (see Proposition 18.1(1)), the situation is reduced to the case for each

Spec(OS,s/m
n
s ), where s ∈ S, ms is the maximal ideal of OS,s, and n ≥ 1,

and hence is reduced to the case of constant degeneration. In this case, by

the assumption that Y ⊂ nÃ, we have an exact sequence 0→ Ã[n]→A[n]→
Y /nY → 0. Since Ã[n] =G[n], this implies the results.

Thus, Proposition 18.1 is proved.

Remark 18.8. Proposition 18.1(1), (2) imply that, for any prime number

p, the subgroup sheaf
⋃

n≥0A[pn] is a log p-divisible group over S (see [7],

[13]). However, we do not discuss this subject here.

18.9. Finally, we briefly discuss the Tate modules.

Let s ∈ S, and let l be a prime number which is invertible at s. Then, the

log fundamental group πlog
1 (s) acts on the l-adic Tate module

Tl(A)s(két) := lim
←−
n

A[ln]s(két),

where s(két) denotes a log geometric point of the két site over s.
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Let 〈 , 〉 : Xs × Y s → (Mgp
S /O×

S )s be the induced admissible pairing at s.

Then, we have the following two homomorphisms.

18.9.1. The canonical surjective homomorphism Tl(A)s(két) → Y s ⊗ Zl

coming from the exact sequence 0 → Y s → (G
(Y )
log )s(két) → As(két) → 0 (we

prove the surjectivity below in Section 18.10).

18.9.2. The canonical injective homomorphism Hom(Xs,Zl(1)) →
Tl(A)s(két) coming from the injection Ts →As(két), which preserve the actions

of πlog
1 (s), such that the image of homomorphism 18.9.2 is contained in the

kernel of homomorphism 18.9.1.

18.10. We prove the surjectivity of homomorphism 18.9.1, which comes

from the l-divisibility of (G
(Y )
log )s(két). Since (Glog)s(két) is l-divisible, it is

enough to show that, for any ϕ ∈ Hom(Xs,Gm,log/Gm), if ϕl belongs to

the (Y )-part, then ϕ belongs to the (Y )-part. It reduces to that, for any

x ∈ Xs, y ∈ Y s, there exist y1, y2 ∈ Y s such that 〈x, yl1〉|〈x, y〉|〈x, yl2〉. It

further reduces to that the inverse image of (MS/O×
S )s by 〈x,−〉 in Y s

generates Y s, which is deduced from the following lemma.

Lemma 18.10.1. Let 〈 , 〉 : X × Y → Sgp be an admissible pairing as in

Section 1.1. Let x ∈X, and let W = 〈x,Y 〉. Then (W ∩ S)gp =W .

Proof. Let σ be the face of S spanned by WQ ∩ S .
We prove that there is an N ∈ Hom(S,R≥0) with kernel σ such that

N(W ) = 0. First, if S is sharp and σ = {1}, it is easy to see that we can

take such an N . The general case is reduced to this case by dividing by σR
if we show that S ∩ (Wσgp)⊂ σ. Let s ∈ S ∩ (Wσgp). We show that s ∈ σ.

We may assume that s ∈Wσ. Hence, there are w ∈W and t ∈ σ such that

s= wt. Since t divides some element of W ∩ S in S , we may assume that

t ∈W ∩ S . In this case, s ∈W ∩ S ⊂ σ. Thus, we conclude that the desired

N exists.

By the admissibility, the induced pairing X/Xσ × Y/Yσ → R by N is

nondegenerate. Hence, x ∈Xσ and W ⊂ σgp. Since W contains an interior

point of σ, we have W = (W ∩ σ)gp = (W ∩ S)gp.

We have the following.

Proposition 18.11. Let γ be an element of the geometric part

πlog
1 (s)geom := πlog

1 (s) of πlog
1 (s). Then γ acts trivially on the kernel of homo-

morphism 18.9.1 and trivially on the cokernel of homomorphism 18.9.2 (so
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the action of γ on Tl(A)s(két) is unipotent), and the homomorphism

Y s ⊗Zl →Hom
(
Xs,Zl(1)

)

induced by γ − 1 coincides with the map induced by

Xs ⊗ Y s
〈 , 〉→ (Mgp

S /O×
S )s

h→ Zl(1).

Here h is the image of γ under the canonical isomorphism

l-part of πlog
1 (s)geom ∼=Hom

(
(Mgp

S /O×
S )s,Zl(1)

)
.

Proof. We may assume that S = s. Hereafter in this proof, we identify a

sheaf on S with its két stalk with Galois action. Let n≥ 0.

Since T [ln]
∼=→ Tlog[l

n], we have G[ln]
∼=→Glog[l

n], so that G[ln] =G
(Y )
log [l

n].

Thus, the action of γ on the kernel of homomorphism 18.9.1 is trivial.

Next, take an element a of A[ln]. We lift it to an element ã of Glog. Then,

ãl
n
belongs to the image of Y →Glog. Since

γ(ã)
ã maps to 1 in B, it lies in

Hom(X,Z/lnZ(1))⊂ T . Thus, the action on the cokernel of homomorphism

18.9.2 is also trivial.

Finally, let x ∈X , and let y ∈ Y . Let g be the image of y in Glog. Then,

as above, ϕ(g) := γ(g
1
ln )

g
1
ln

lies in Hom(X,Z/lnZ(1)), and we can consider the

value ϕ(g)(x) ∈ Z/lnZ(1). Now we claim that this ϕ(g)(x) coincides with

h(〈x, y〉) mod ln. In fact, consider a lift [ , ] : X × Y →Gm,log of the pairing

〈 , 〉 : X × Y → Gm,log/Gm. Let t = [−, y] ∈ Tlog. Then we have t mod T =

g mod G in Hom(X,Gm,log/Gm). Hence, ϕ(g) = γ(t1/(l
n))

t1/(l
n) . Substituting x,

we have ϕ(g)(x) = γ([x,y]1/(l
n))

[x,y]1/(l
n) . Since [x, y] mod Gm is 〈x, y〉, the right-hand

side of the last equation is equal to h(〈x, y〉) mod ln. Thus, we conclude

that ϕ(g)(x) = h(〈x, y〉) mod ln, and the last statement of Proposition 18.11

follows.
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