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DECAY ESTIMATES FOR SOLUTIONS OF NONLOCAL
SEMILINEAR EQUATIONS

MARCO CAPPIELLO,

TODOR GRAMCHEV, and LUIGI RODINO

Abstract. We investigate the decay for |x| →∞ of weak Sobolev-type solutions
of semilinear nonlocal equations Pu = F (u). We consider the case when P =
p(D) is an elliptic Fourier multiplier with polyhomogeneous symbol p(ξ), and
we derive algebraic decay estimates in terms of weighted Sobolev norms. Our
basic example is the celebrated Benjamin–Ono equation

(0.1)
(
|D|+ c

)
u= u2, c > 0,

for internal solitary waves of deep stratified fluids. Their profile presents alge-
braic decay, in strong contrast with the exponential decay for KdV shallow
water waves.

§1. Introduction

The main goal of the present article is to investigate the appearance of

algebraic decay at infinity for weak solutions of semilinear nonlocal elliptic

equations of the form

(1.1) Pu= F (u),

where P = p(D) is a Fourier multiplier in R
n

(1.2) Pu(x) =

∫
Rn

eixξp(ξ)û(ξ)d−ξ,

with û(ξ) =
∫
Rn e

−ixξu(x)dx, d−ξ = (2π)−n dξ, and where F (u) is a polyno-

mial vanishing of order k ≥ 2 at u= 0, namely,

(1.3) F (u) =
N∑
j=2

Fju
j , Fj ∈C.
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For P an operator with constant coefficients, that is, a p(ξ) polynomial,

or the more general Fourier multiplier, equations of the form (1.1) arise

frequently in mathematical physics in the theory of solitary waves for non-

linear evolution equations. Relevant examples are equations in the realm of

wave motions featuring both dispersion and diffusion processes, long inter-

nal waves and the interface between two fluids of different densities, and

semilinear Schrödinger equations. Let us recall, in short, the case x ∈ R:

starting from an evolution equation of the form vt + (Pv)x = F (v)x, with

t≥ 0, solitary waves are solutions of the form v(t, x) = u(x−ct), c > 0. Look-

ing for these types of solutions, one is indeed reduced to studying the elliptic

equation (1.1).

There are no general methods for deriving the existence of such special

solutions, and in the known examples special features like conservation laws

and/or the presence of symmetries play a fundamental role. On the other

hand, it is natural to study regularity and behavior at infinity of these types

of waves in order to have a global knowledge of their profile. In the funda-

mental papers [5] and [6], Bona and Li proved that if p(ξ) is analytic on R,

then every solution u ∈ L∞(R) of (1.1) such that u(x) → 0 for x → ±∞
exhibits an exponential decay of the form e−ε|x|, ε > 0 for |x| → ∞, and

extends to a holomorphic function in a strip of the form {z ∈C : |�z|< T}
for some T > 0. The research efforts in [5] and [6] were motivated by the

applications to the study of decay and analyticity of solitary waves for KdV-

type, long-wave-type, and Schrödinger-type equations. In [4] and [9], we

proved similar results in arbitrary dimension for analytic pseudodifferen-

tial operators, deriving sharp estimates in the frame of the Gelfand–Shilov

spaces of type S (see [19]), which give simultaneous information on the expo-

nential decay at infinity and the Gevrey-analytic regularity on R
n. Recently,

the results on the holomorphic extensions have been refined in [11] and [12].

Here we want to consider the case when p(ξ) is only finitely smooth

at ξ = 0. Namely, the symbol p(ξ) is assumed to be a sum of positively

homogeneous terms, and we are interested in the nonlocal case; that is,

at least one of these terms is not a polynomial, hence p(ξ) is only finitely

smooth at the origin. In this case, the functional analytic machinery and

the pseudodifferential calculus used in the above-mentioned papers are not

applicable. Motivation for this type of study comes from two directions. The

first is the presence of several nonlinear models in the theory of solitary

waves in which the symbol of the linear part presents singularities or finite

smoothness at ξ = 0. The most celebrated equation in this category is the



DECAY ESTIMATES FOR SOLUTIONS OF NONLOCAL SEMILINEAR EQUATIONS 177

so-called Benjamin–Ono equation (0.1) (see [2], [3], [22], [25], [28]), which

will be considered in detail in Section 2.

Another more general issue comes from the novelty with respect to the

general theory on decay and regularity estimates for linear and nonlinear

elliptic equations in R
n (besides [4]–[6], [9], [11], and [12], see, e.g., [1], [10],

[13], [26], [24], and [29]). In fact, we are not aware of any result for general

semilinear elliptic equations of the form (1.1) in the case of finitely smooth

symbols. As a first step, in this paper we will focus on the decay of the

solutions with the purpose of treating analytic regularity and holomorphic

extensions in a future work. With respect to the case of smooth or analytic

symbols, a finite smoothness of the symbol of the linear part of (1.1) may

determine the loss of the rapid or exponential decay observed in all the

above-mentioned publications. This fact is confirmed by several examples

(see Section 2 below). As a novelty, we can prove that in this new situation

the solutions of (1.1) present at least an algebraic decay at infinity whose

rate depends on the dimension n and on the regularity of the symbol p(ξ).

This decay will be proved in terms of estimates in the weighted Sobolev

spaces

Hs,t(Rn) :=
{
u ∈ S ′(Rn) : ‖u‖s,t =

∥∥〈x〉t〈D〉su
∥∥
L2(Rn)

<∞
}
, s, t ∈R,

where 〈x〉= (1+ |x|2)1/2 and 〈D〉s denotes the multiplier with symbol 〈ξ〉s.
Note that, for t = 0,Hs,0(Rn) coincides with the standard Sobolev space

Hs(Rn). We will denote as standard by ‖ · ‖s the norm ‖ · ‖s,0. (We refer the

reader to [13] for a detailed presentation of the properties of these spaces.)

Let us now detail the class of operators p(D) to which our results apply.

We will consider Fourier multipliers with symbols of the type

(1.4) p(ξ) = p0 +
h∑

j=1

pmj (ξ),

where p0 ∈ C and pmj (ξ) ∈ C∞(Rn \ 0) are (positively) homogeneous sym-

bols of order mj , that is, pmj (λξ) = λmjp(ξ) for λ > 0, with 0<m1 <m2 <

· · ·<mh =M . We assume that M ≥ 1 and that the following global ellip-

ticity condition holds:

(1.5) inf
ξ∈Rn

(
〈ξ〉−M

∣∣p(ξ)∣∣)> 0.

Since p(0) = p0, condition (1.5) implies in particular that p0 
= 0.
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Moreover, set

(1.6) m := min{mj : pmj is not polynomial}.

We will call m the singularity index of p(ξ). When the set in the right-

hand side of (1.6) is empty, then P = p(D) is a partial differential operator

with constant coefficients, and we go back to the above-mentioned results

of exponential decay.

Our main result is the following.

Theorem 1.1. Let m ∈R with [m]> n/2, and let P be an operator with

symbol p(ξ) of the form (1.4) and (1.6) satisfying the assumption (1.5).

Assume that u is a solution of (1.1) such that u ∈Hs,εo(Rn) for some s >

n/2 and for some εo > 0. Then, u ∈ C∞(Rn), and for every α ∈ N
n and

ε > 0 we have

∂αu ∈Hs,|α|+m+n/2−ε(Rn);

that is, the following estimate holds:

(1.7)
∥∥〈x〉m+n/2−εxβ∂αu

∥∥
s
<∞

for every α,β ∈ N
n, with |β| ≤ |α|. Under the same assumptions on p(D)

and u, the same result holds for solutions of the equation

(1.8) p(D)u= f + F (u),

where f is a given smooth function satisfying (1.7).

We observe that the second part of Theorem 1.1 turns out to be new also

for linear equations, that is, when F (u) = 0 in (1.8), whereas the first part is

trivial in this case since the homogeneous equation p(D)u= 0 admits only

the solution u = 0, the nonlinearity being essential to produce nontrivial

solutions when f = 0. Note also that the estimate (1.7) implies that

(1.9)
∥∥〈x〉m+n/2−εu

∥∥
L2 <∞.

Unfortunately, by our methods we are not able to prove the stronger result

(1.10)
∥∥| · |m+nu

∥∥
L∞(Rn)

<∞.

Such pointwise estimates have been obtained in [25] for a class of Benjamin–

Ono-type equations and are satisfied by the solutions of other similar models

described in Section 2 (see also [15], [14], and [20] for further results on

algebraic decay at infinity for dispersive equations).
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Remark 1. In Theorem 1.1, we assume that u ∈Hs,εo(Rn) for some s >

n/2 and for some εo > 0. This is a technical condition needed in our general

setting for the proof of Lemma 4.1. In some special cases the assumption can

be weakened (see, e.g., [25, Theorem 4] for the generalized Benjamin–Ono

equation).

Also, the condition [m] > n/2 is technical. It is used in the inductive

scheme in Section 4, but it does not seem necessary for the validity of the

estimate (1.9) (see Example 3 and Remark 3 in Section 2).

§2. Examples

This section is devoted to the analysis of some examples of nonlocal semi-

linear equations whose solutions admit algebraic decay of the form (1.9).

In particular, we will test our decay estimates on these models. The first

and more important example is given by the Benjamin–Ono equation in

hydrodynamics.

Example 1. The Benjamin–Ono equation, introduced in [3] and [28],

describes 1-dimensional internal waves in stratified fluids of great depth. It

reads as follows:

(2.1) ∂tv+H(∂2
xv) + 2v∂xv = 0, t ∈R, x ∈R,

where H(D) stands for the Hilbert transform, that is, the Fourier multiplier

operator of order 0 with symbol −i sign ξ:

(2.2) H(D)u(x) =
1

π
P.V.

∫
R

u(y)

x− y
dy =

∫
R

eixξ(−i sign ξ)û(ξ)d−ξ.

There exists a large number of articles dealing with existence, uniqueness,

and time asymptotics for the initial value problem related to the equation

(2.1) and its generalizations in various functional settings (see, e.g., [7], [8],

[17], [23], [25], [27], [30], [32]). Concerning the solitary waves u(x−ct), c > 0,

they satisfy the nonlocal elliptic equation (0.1) which corresponds to (1.1)

for p(ξ) = |ξ|+ c and F (u) = u2. In [3], Benjamin found the solution

(2.3) u(x) =
2c

1 + c2x2
, x ∈R

(see (2.11) in Remark 2 for the easy computation). Later, Amick and Toland

[2] proved that, apart from translations, the function (2.3) is the only solu-

tion of (0.1) which tends to 0 for |x| →∞. Note that u(x) in (2.3) exhibits
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a quadratic decay at infinity like |x|−2, satisfying (1.9) with m = 1, n = 1.

(For other results and generalizations in higher dimension, see [25].)

The next example is not related to applicative problems and shows that

polynomial terms pmj (ξ) in the expression of p(ξ) have no influence on the

rate of decay.

Example 2. In dimension n= 1, consider the equation

(2.4) −u′′ + 3|D|u+ 3u= 8u3,

where |D| is as before the Fourier multiplier with symbol |ξ|, ξ ∈ R. Note

that the linear part of (2.4) is globally elliptic, that is, (1.5) is satisfied.

Moreover, the order is M = 2 and the singularity index is m= 1. We have

the following result.

Proposition 2.1. The equation (2.4) admits the solution

(2.5) u(x) =
1

1 + x2
, x ∈R.

Proof. We will check that the Fourier transforms of the left- and right-

hand sides of (2.4) coincide for u(x) as in (2.5). To this end, we recall (see,

e.g., [31, (VII, 7;23), p. 260] or [18, (9), p. 187]) that

(2.6) F
((
1 + |x|2

)−λ)
(ξ) =

2πn/2

Γ(λ)

( |ξ|
2

)λ−n/2
Kλ−n/2

(
|ξ|

)
,

where x, ξ ∈Rn and where Γ denotes the standard Euler function; arguing in

the distribution sense, we may allow any λ > 0. The functions Kν(x), ν ∈R,

x ∈ R \ 0, are the modified Bessel functions of second type (for definitions

and properties, see, e.g., [16], [33]). We recall in particular that

Kν(x) =K−ν(x), ν ∈R, x 
= 0,(2.7)

Kν+1(x) =
2ν

x
Kν(x) +Kν−1(x), ν ∈R, x 
= 0.(2.8)

From (2.7), (2.8), we have

K3/2(x) =
(1

x
+ 1

)
K1/2(x), x 
= 0,(2.9)

K5/2(x) =
( 3

x2
+

3

x
+ 1

)
K1/2(x), x 
= 0.(2.10)
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Let us then prove that (2.5) is a solution of (2.4). In fact, from (2.6) and

(2.10), we have

8F(u3) = 8F
(
(1 + x2)−3

)
= 8

√
π
( |ξ|
2

)5/2
K5/2

(
|ξ|

)
= 2

√
π
(
ξ2 + 3|ξ|+ 3

)( |ξ|
2

)1/2
K1/2

(
|ξ|

)
=

(
ξ2 + 3|ξ|+ 3

)
F

(
(1 + x2)−1

)
= F

(
D2u+ 3|D|u+ 3u

)
.

Remark 2. The method used in the proof of Proposition 2.1 can also be

applied to the Benjamin–Ono equation and gives an easy alternative proof

that the function u(x) in (2.3) is a solution of (0.1), say, for c= 1. In fact,

from (2.6) and (2.9) we easily obtain

F(u2) = 4F
(
(1 + x2)−2

)
= 8

√
π
( |ξ|
2

)3/2
K3/2

(
|ξ|

)
= 4

√
π
(
|ξ|+ 1

)( |ξ|
2

)1/2
K1/2(x)(2.11)

= 2
(
|ξ|+ 1

)
F

(
(1 + x2)−1

)
= F

(
|D|u+ u

)
.

Note that, by (2.8), we may calculate inductively KN/2(x) for any odd

integer N in terms of K1/2(x). This allows us to produce other similar

examples, with higher-order M , with m= 1 and higher-order nonlinearity.

Solutions are still of the form u(x) = 1
1+x2 .

By the same argument, we obtain the following example in higher dimen-

sion.

Example 3. In dimension n= 3, consider the equation

(2.12) −Δu+ 3
√
−Δu+ 3u= 24u2,
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where
√
−Δ denotes the Fourier multiplier with symbol |ξ|. Note that the

linear part of (2.12) is globally elliptic, that is, (1.5) is satisfied and the

singularity index is m= 1. The equation (2.12) admits the solution

(2.13) u(x) =
1

(1 + |x|2)2 , x ∈R
3,

which satisfies (1.7), (1.9), and (1.10) for m= 1 and n= 3. As a matter of

fact, arguing as in the proof of Proposition 2.1, we have

24F(u2) = 24F
((
1 + |x|2

)−4)
= 8π3/2

( |ξ|
2

)5/2
K5/2

(
|ξ|

)
=

(
|ξ|2 + 3|ξ|+ 3

)
F

((
1 + |x|2

)−2)
= F(−Δu+ 3

√
−Δu+ 3u).

Remark 3. Note, however, that in (2.12) the condition [m]> n/2 is not

satisfied since m= 1 and n= 3. This seems to confirm the technical nature

of this assumption and the fact that it is not really necessary for the validity

of (1.7) and (1.9). Moreover, the examples in this section seem to confirm the

optimality of the estimates (1.7), (1.9), and also the more general conjecture

u(x) =O(|x|−m−n) for the solutions of (1.1).

§3. Commutator identities and estimates

In this section we prove some commutator identities for Fourier multi-

pliers which will be used in the proof of our result. We first state a simple

but crucial assertion on the compensation of the singularities at ξ = 0 for

homogeneous symbols.

Lemma 3.1. Let p(ξ) be of the form (1.4) satisfying (1.5), and let m be

defined by (1.6). Then the following estimates hold:

(3.1) sup
ξ∈Rn

|Dσ
ξ (ξ

γ̃Dγ
ξ p(ξ))|

|p(ξ)| <+∞, γ, γ̃, σ ∈N
n, |γ|= |γ̃|, |σ| ≤ [m].

Proof. Since |γ̃|= |γ|, then Dσ
ξ (ξ

γ̃Dγ
ξ p(ξ)) is a sum of terms with homo-

geneity of order mj − |σ|. Since mj ≤M , we have mj − |σ| ≤M . Moreover,
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in the nonpolynomial case, in view of the assumptions |σ| ≤ [m],mj ≥m,

we have mj − |σ| ≥m− [m]≥ 0. Therefore, for some C > 0, we have∣∣Dσ
ξ

(
ξγ̃Dγ

ξ p(ξ)
)∣∣≤C〈ξ〉M , ξ ∈R

n.

Hence (3.1) follows from (1.5).

Remark 4. In Lemma 3.1, and often in the rest of this article, we con-

sider higher-order derivatives of the nonpolynomial terms Dγ
ξ pmj (ξ). These

derivatives should be performed in the distribution sense, possibly pro-

ducing δ distribution or its derivatives at the origin. However, in all the

expressions, multiplication by monomials ξα appears as well, so that on

the whole we will always obtain a distribution h ∈ S ′(Rn) homogeneous of

order larger than −n. Then δ contributions are cancelled. Strictly speaking,

the distribution h ∈ S ′(Rn) can be identified in this case with the function

h|Rn\0 ∈ C∞(Rn \ 0) ∩ L1
loc(R

n). (Let us refer, e.g., to [18, Chapter 1, Sec-

tion 3.11] for a detailed explanation.) Summing up, in Lemma 3.1 and in

the rest of this article we may limit ourselves to argue in classical terms,

that is, on the pointwise definition of derivatives.

Proposition 3.2. Let p(D) be a Fourier multiplier defined by a homo-

geneous symbol p(ξ) of order m≥ 0, and let α,β ∈N
n with |β| ≤ |α|. Then,

for every u ∈ S(Rn), we have the identity

xβp(D)Dαu= p(D)(xβDαu)
(3.2)

+
∑

0�=γ≤β

∑
α̃,β̃

|β̃|≤|α̃|<|α|

Cαβγα̃β̃γ̃D
γ̃ ◦ (Dγ

ξ p)(D)(xβ̃Dα̃
xu),

where for every γ in the sums above, γ̃ denotes a multi-index depending on

α,β, α̃, β̃, γ and satisfying the condition |γ̃|= |γ| and Cαβγα̃β̃γ̃ are suitable

constants.

Proof. We can write

xβp(D)Dαu=
∑
γ≤β

(
β

γ

)∫
Rn

∫
Rn

ei(x−y)ξ(x− y)γp(ξ)yβ−γDα
y u(y)dy d̄ξ

= p(D)(xβDαu)

+
∑

0�=γ≤β

(
β

γ

)∫
Rn

∫
Rn

Dγ
ξ (e

i(x−y)ξ)p(ξ)yβ−γDα
y u(y)dy d̄ξ.
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Integration by parts with respect to y and ξ gives∫
Rn

∫
Rn

Dγ
ξ (e

i(x−y)ξ)p(ξ)yβ−γDα
y u(y)dy d̄ξ

=

∫
Rn

∫
Rn

Dγ
ξ (−Dy)

α(ei(x−y)ξyβ−γ)p(ξ)u(y)dy d̄ξ

=
∑
δ≤α

δ≤β−γ

(−1)|γ|(−i)|δ|
(
α

δ

)
(β − γ)!

(β − γ − δ)!

×
∫
Rn

∫
Rn

ei(x−y)ξξα−δ(Dγ
ξ p)(ξ)y

β−γ−δu(y)dy d̄ξ.

Now let γ̃ be a multi-index such that γ̃ ≤ α− δ and |γ̃|= |γ|. Such a multi-

index exists since |γ| ≤ |β − δ| ≤ |α− δ| in the sums above. Then, write

ei(x−y)ξξα−δ = ξγ̃(−Dy)
α−δ−γ̃ei(x−y)ξ

and integrate by parts again with respect to y. We obtain∫
Rn

∫
Rn

ei(x−y)ξξα−δ(Dγ
ξ p)(ξ)y

β−γ−δu(y)dy d̄ξ

=

∫
Rn

∫
Rn

ei(x−y)ξξγ̃(Dγ
ξ p)(ξ)D

α−δ−γ̃
y

(
yβ−γ−δu(y)

)
dy d̄ξ

=
∑

θ≤α−δ−γ̃

θ≤β−γ−δ

(−i)|θ|
(
α− δ− γ̃

θ

)
(β − γ − δ)!

(β − γ − δ − θ)!

×
∫
Rn

∫
Rn

ei(x−y)ξξγ̃(Dγ
ξ p)(ξ)y

β−γ−δ−θDα−γ̃−δ−θ
y u(y)dy d̄ξ,

which gives (3.2).

Proposition 3.3. Let q(D) be a Fourier multiplier defined by a homoge-

neous symbol q(ξ) of order m> 0. Then, for every ρ ∈N
n with |ρ|<m+ n

and for every v ∈ S(Rn), the following identity holds:

(3.3) xρq(D)v = q(D)(xρv) +
∑

0�=σ≤ρ

(
ρ

σ

)
(−1)|σ|(Dσ

ξ q)(D)(xρ−σv).
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Proof. Note that the condition |σ| <m+ n and the homogeneity imply

that Dσ
ξ q(ξ) ∈ L1

loc(R
n). Then, integrating by parts, we have

xρq(D)v =

∫
Rn

(Dρ
ξe

ixξ)q(ξ)v̂(ξ) d̄ξ

=
∑
σ≤ρ

(
ρ

σ

)
(−1)|σ|

∫
Rn

eixξDσ
ξ q(ξ)D

ρ−σ
ξ v̂(ξ) d̄ξ

from which (3.3) follows.

For fixed s ∈ R, we will denote by Hs
1(R

n) the space of all u ∈ S ′(Rn)

such that

‖u‖Hs
1
:=

∥∥〈D〉su
∥∥
L1 <∞.

The next result states some useful estimates for singular operators, that is,

operators with symbol q(ξ)→∞ for ξ → 0.

Lemma 3.4. Let q(ξ) ∈ C∞(Rn \ 0) be a homogeneous symbol of order

μ ∈ (−n/2,0), and let ϕ ∈C∞
o (Rn) such that ϕ(ξ) = 1 for |ξ| ≤ 1. Consider

the operator

Hϕ,qv(x) :=
(
(ϕq)(D)v

)
(x)

=

∫
Rn

∫
Rn

ei(x−y)ξϕ(ξ)q(ξ)v(y)dy d̄ξ, v ∈ S(Rn).

Then we have

(3.4) ‖Hϕ,qv‖Hs ≤Cs‖v‖Hs
1
.

Proof. Observe that we can write ϕ(ξ)q(ξ) = q(ξ)− (1−ϕ(ξ))q(ξ). Since

q(ξ) is a homogeneous distribution of order μ, then its inverse Fourier trans-

form is a homogeneous distribution of order −n− μ. On the other hand, it

is immediate to check that the inverse Fourier transform of (1− ϕ(ξ))q(ξ)

is rapidly decreasing. Then we have∣∣F−1
ξ→x

(
ϕ(ξ)q(ξ)

)
(x)

∣∣≤C〈x〉−n−μ.

Since μ > −n/2, the estimate above implies that F−1
ξ→x(ϕ(ξ)q(ξ))(x) ∈

L2(Rn). Hence, writing

Hϕ,qv(x) =
(
F−1
ξ→x

(
ϕ(ξ)q(ξ)

)
∗ v

)
(x),

the estimate (3.4) follows as a consequence of the Young inequality.
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Now we address the case of commutation with fractional powers.

Lemma 3.5. Let q(ξ) be a smooth positively homogeneous symbol of order

μ, let r ∈ (0,1), and let ϕ ∈C∞
o (Rn) such that ϕ(ξ) = 1 for |ξ| ≤ 1. If μ−r >

−n/2, then for every v ∈ S(Rn) we have

(3.5)
∥∥[
〈x〉r,Hϕ,q

]
v
∥∥
s
≤Cs‖v‖Hs

1
.

If, moreover, μ− r > 0, then

(3.6)
∥∥[
〈x〉r,Hϕ,q

]
v
∥∥
s
≤Cs‖v‖s.

Proof. Writing explicitly the commutator, we have

[
〈x〉r,Hϕ,q

]
v =

∫
Rn

∫
Rn

ei(x−y)ξ
(
〈x〉r − 〈y〉r

)
ϕ(ξ)q(ξ)v(y)dy d̄ξ.

By the homogeneity properties of q(ξ), arguing as in the proof of Lemma 3.4,

we have that the kernel K(x, y) of the operator above satisfies the estimates∣∣K(x, y)
∣∣≤C〈x− y〉−n−μ+r

and the same estimates hold for all the derivatives. In particular, if μ− r >

−n/2, then by the Young inequality, the operator [〈x〉r,Hϕ,q] maps contin-

uously L1(Rn) into L2(Rn), whereas if μ− r > 0, it is bounded on L2(Rn).

Similarly, one can treat the derivatives and obtain Sobolev continuity and

the estimates (3.5) and (3.6). The lemma is then proved.

§4. Proof of the main result

In this section we prove Theorem 1.1. We can assume without loss of

generality that F (u) = uk for some integer k ≥ 2 and that p(ξ) is of the

form (1.4) with h= 1,m=m1 =M ; that is, p(ξ) = p0+ pm(ξ) with pm(ξ) a

nonpolynomial positively homogeneous function of order m with [m]> n/2.

The extension to the general case is obvious. We first give a preliminary

result.

Lemma 4.1. Under the assumptions of Theorem 1.1, we have u ∈
Hs+1,1(Rn).

Proof. We first prove that u ∈Hs+1(Rn), that is, that Dju ∈Hs(Rn) for

every j ∈ {1, . . . , n}. Differentiating (1.8), we obtain

P (Dju) =Djf +Dju
k.
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The assumption (1.5) and the condition M ≥ 1 imply that P is invertible

with symbol 1/p(ξ), and the operator P−1 ◦Dj is bounded on Hs(Rn). Then

we have

Dju= P−1(Djf) + P−1(Dju
k),

and since uk ∈Hs(Rn) by Schauder’s estimates, we obtain

‖Dju‖s ≤Cs

(
‖f‖s + ‖u‖ks

)
<∞.

Starting from the assumption 〈x〉εou ∈Hs(Rn), we now prove by a boot-

strap argument that u ∈Hs,1(Rn), that is, 〈x〉u ∈Hs(Rn). First, let ε1 <

min{εo,1 − εo}, so that εo + ε1 < 1. Multiplying both sides of (1.8) by

〈x〉εo+ε1 and introducing commutators, we have

P
(
〈x〉εo+ε1u

)
=

[
P, 〈x〉εo+ε1

]
u+ 〈x〉εo+ε1f + 〈x〉εo+ε1uk

and then

(4.1) 〈x〉εo+ε1u= P−1
[
P, 〈x〉εo+ε1

]
u+ P−1

(
〈x〉εo+ε1f

)
+ P−1

(
〈x〉εo+ε1uk

)
.

Now we write explicitly the commutator

[
P, 〈x〉εo+ε1

]
u=

∫ ∫
ei(x−y)ξ

(
〈y〉εo+ε1 − 〈x〉εo+ε1

)
pm(ξ)u(y)dy d−ξ.

Let ϕ ∈C∞
o (Rn) such that ϕ(ξ) = 1 for |ξ| ≤ 1. Then we can decompose the

commutator as [
P, 〈x〉εo+ε1

]
u=Q1u(x) +Q2u(x),

where

Q1u(x) =

∫ ∫
ei(x−y)ξ

(
〈y〉εo+ε1 − 〈x〉εo+ε1

)
ϕ(ξ)pm(ξ)u(y)dy d−ξ

and

Q2u(x) =

∫∫
ei(x−y)ξ

(
〈y〉εo+ε1 − 〈x〉εo+ε1

)(
1−ϕ(ξ)

)
pm(ξ)u(y)dy d−ξ.

By Lemma 3.5 with q(ξ) = pm(ξ), μ = m, and r = εo + ε1, since 0 <

εo + ε1 < 1 and the condition [m]> n/2 implies that m≥ 1, we have m−
εo − ε1 > 0. Then Q1 is bounded on Hs(Rn), and then the same is true for

P−1 ◦Q1. On the other hand, Q2 is an operator with smooth amplitude of
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order m. Then by the classical theory (see [13], [21]), we have that P−1 ◦Q2

is bounded on Hs(Rn). In conclusion, we have∥∥P−1
[
P, 〈x〉εo+ε1

]
u
∥∥
s
≤Cs‖u‖s <∞.

Moreover, by Schauder’s lemma we have, since ε1 < εo,∥∥P−1
(
〈x〉εo+ε1uk

)∥∥
s
≤Cs

∥∥〈x〉εo+ε1uk
∥∥
s
≤C ′

s

∥∥〈x〉εou∥∥2

s
· ‖u‖k−2

s <∞.

Hence∥∥〈x〉εo+ε1u
∥∥
s
≤Cs

(∥∥〈x〉εo+ε1f
∥∥
s
+ ‖u‖s +

∥∥〈x〉εou∥∥2

s
· ‖u‖k−2

s

)
<∞.

Then 〈x〉εo+ε1u ∈Hs(Rn). Possibly iterating this argument a finite number

of times, we obtain 〈x〉εu ∈ Hs(Rn) for every ε ∈ (0,1). To obtain that

u ∈Hs,1(Rn), we need a further step. Of course, it is sufficient to show that

xhu ∈Hs(Rn) for any h= 1, . . . , n. Arguing as in (4.1), we have

‖xhu‖s ≤Cs

(∥∥P−1[P,xh]u
∥∥
s
+

∥∥P−1(xhf)
∥∥
s
+

∥∥P−1(xhu
k)

∥∥
s

)
.

Now, P−1[P,xh] is the Fourier multiplier with symbol
(Dξh

p)(ξ)

p(ξ) which is

bounded on Hs(Rn). Moreover,∥∥P−1(xhu
k)

∥∥
s
≤Cs‖xhuk‖s ≤C ′

s

∥∥〈x〉uk∥∥
s
≤C ′′

s

∥∥〈x〉1/2u∥∥2

s
· ‖u‖k−2

s <∞

by the previous step. Then we obtain that xhu ∈Hs(Rn), h= 1, . . . , n, that

is, that u ∈Hs,1(Rn). Finally, we prove that xhDju ∈Hs(Rn) for every h, j ∈
{1, . . . , n}, that is, that u ∈Hs+1,1(Rn). Starting from (1.8) and arguing as

before, we get

xhDju= P−1(xhDjf) + P−1(xhDju
k) + P−1[P,xh]Dju.

Clearly we have ‖P−1(xhDjf)‖s <∞. Moreover,∥∥P−1(xhDju
k)

∥∥
s
≤ Cs

(∥∥P−1 ◦Dj(xhu
k)

∥∥
s
+

∥∥P−1[xh,Dj ]u
k
∥∥
s

)
≤ C ′

s

(∥∥〈x〉uk∥∥
s
+ ‖uk‖s

)
≤C ′′

s

∥∥〈x〉u∥∥
s
· ‖u‖k−1

s <∞.

Concerning the commutator, we can readily repeat the argument used before

and obtain that ∥∥P−1[P,xh]Dju
∥∥
s
≤Cs‖Dju‖s <∞.

The lemma is then proved.
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Proof of Theorem 1.1. We divide the proof into two steps.

Step 1. Let us set

kcr =max{j ∈N : j <m+ n/2}
(4.2)

=

{
[m+ n/2] if m+ n/2 /∈N,

m+ n/2− 1 if m+ n/2 ∈N.

We first prove that u ∈C∞(Rn) and Dαu ∈Hs,|α|+kcr(Rn) for every α ∈N
n.

This is equivalent to showing that, for every fixed α,β, ρ ∈N
n, with |β| ≤ |α|

and |ρ| ≤ kcr, we have x
ρ+βDαu ∈Hs(Rn). This will be proved by induction

on |ρ+α|. For |ρ+α|= 1, the assertion is given by Lemma 4.1. Assume now

that xρ+βDαu ∈Hs(Rn) for |ρ| ≤ kcr, |β| ≤ |α|, and |ρ+ α| ≤ N for some

positive integer N , and let us prove the same for |ρ+ α|=N + 1. We first

apply xβDα to both sides of (1.8) and introduce commutators. We obtain

P (xβDαu) = xβDαf + xβDαuk − [xβDα, P ]u.

By Proposition 3.2, we get

P (xβDαu) = xβDαf + xβDαuk

(4.3)
−

∑
0�=γ≤β

∑
α̃,β̃

|β̃|≤|α̃|<|α|

Cαβγα̃β̃γ̃D
γ̃ ◦ (Dγ

ξ pm)(D)(xβ̃Dα̃u),

where |γ̃|= |γ|. We now multiply both sides of (4.3) by xρ and write

P (xρ+βDαu) = xρP (xβDαu) + [P,xρ](xβDαu).

We have, by Proposition 3.3,

P (xρ+βDαu) = xρ+βDαf + xρ+βDαuk

−
∑

0�=σ≤ρ

(
ρ

σ

)
(−1)|σ|(Dσ

ξ pm)(D)(xρ−σ+βDαu)(4.4)

−
∑

0�=γ≤β

∑
α̃,β̃

|β̃|≤|α̃|<|α|

Cαβγα̃β̃γ̃x
ρDγ̃ ◦ (Dγ

ξ pm)(D)(xβ̃Dα̃u).
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Applying again Proposition 3.3 with q(ξ) = ξγ̃Dγ
ξ pm(ξ) and resetting the

sums, we obtain for new constants Cαβγα̃β̃γ̃ρσ

P (xρxβDαu)

= xρ+βDαf + xρ+βDαuk

(4.5)
+

∑
γ≤β,σ≤ρ,|σ|≤[m]

∑
|β̃|≤|α̃|≤|α|

|α|−|α̃|+|σ|>0

Cαβγα̃β̃γ̃ρσp
γ,γ̃,σ
m (D)(xρ−σ+β̃Dα̃u)

+
∑

γ≤β,σ≤ρ,|σ|>m

∑
|β̃|≤|α̃|≤|α|

|α|−|α̃|+|σ|>0

Cαβγα̃β̃γ̃ρσp
γ,γ̃,σ
m (D)(xρ−σ+β̃Dα̃u),

where pγ,γ̃,σm (D) is the Fourier multiplier with symbol pγ,γ̃,σm (ξ) =

Dσ
ξ (ξ

γ̃Dγ
ξ pm(ξ)). Note that if |σ| ≤ [m], then Dσ

ξ (ξ
γ̃Dγ

ξ pm(ξ)) is well defined

and locally bounded on R
n (see Lemma 3.1). If |σ| > m, then m − |σ| ≥

m− kcr >−n/2, and then in particular pγ,γ̃,σm (ξ) ∈ L1
loc(R

n) and it defines a

homogeneous distribution of orderm−|σ|. Now let ϕ ∈C∞
o (Rn) with ϕ(ξ) =

1 for |ξ| ≤ 1. For |σ|>m, we can write pγ,γ̃,σm (ξ) = pγ,γ̃,σm,1 (ξ)+pγ,γ̃,σm,2 (ξ), where

pγ,γ̃,σm,1 (ξ) = (1 − ϕ(ξ))pγ,γ̃,σm (ξ) and pγ,γ̃,σm,2 (ξ) = ϕ(ξ)pγ,γ̃,σm (ξ). Then we can

invert P and take Sobolev norms. We get

‖xρ+βDαu‖s ≤
∥∥P−1(xρ+βDαf)

∥∥
s
+

∥∥P−1(xρ+βDαuk)
∥∥
s

+
∑

γ≤β,σ≤ρ,|σ|≤[m]

∑
|β̃|≤|α̃|≤|α|

|α|−|α̃|+|σ|>0

|Cαβγα̃β̃γ̃ρσ|

·
∥∥P−1 ◦ pγ,γ̃,σm (D)(xρ−σ+β̃Dα̃u)

∥∥
s

+
∑

γ≤β,σ≤ρ,|σ|>m

∑
|β̃|≤|α̃|≤|α|

|α|−|α̃|+|σ|>0

|Cαβγα̃β̃γ̃ρσ|(4.6)

·
∥∥P−1 ◦ pγ,γ̃,σm,1 (D)(xρ−σ+β̃Dα̃u)

∥∥
s

+
∑

γ≤β,σ≤ρ,|σ|>m

∑
|β̃|≤|α̃|≤|α|

|α|−|α̃|+|σ|>0

|Cαβγα̃β̃γ̃ρσ|

·
∥∥P−1 ◦ pγ,γ̃,σm,2 (D)(xρ−σ+β̃Dα̃u)

∥∥
s
,
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where pγ,γ̃,σm,j (D), j = 1,2, denote the operators associated to the symbols

pγ,γ̃,σm,j (ξ), j = 1,2. We want to estimate the five terms in the right-hand side

of (4.6). The first is finite by assumption. Concerning the nonlinear term, if

ρ= β = 0, by the boundedness of P−1 ◦Dj , j = 1, . . . , n, using the Leibniz

formula and Schauder’s estimates, we get

‖P−1Dαuk‖s ≤ Cs‖Dα−ejuk‖s
≤ Csα‖u‖ks+|α|−1 <∞

by the inductive assumption. If ρ+ β 
= 0, we can write

xρ+βDαuk = kxρ+βuk−1Dαu

+ xρ+β
∑

α1+···+αk=α

|αj |<|α| ∀j

α!

α1! · · ·αk!
Dα1u× · · · ×Dαku.

Moreover, since |β| ≤ |α|, we can write β = β1 + · · ·+ βk for some βj satis-

fying |βj | ≤ |αj |, j = 1, . . . , k. Then we have, for some � ∈ {1, . . . , n}:

‖xρ+βDαuk‖s ≤ Cs,α

(
‖xρ+β−e�Dαu‖s · ‖x�u‖s · ‖u‖k−2

s

+
∑

α1+···+αk=α

|αj |<|α| ∀j

‖xρ+β1Dα1u‖s ·
k∏

j=2

‖xβjDαju‖s
)

<∞

by the inductive assumption. The third and fourth terms in the right-

hand side of (4.6) can be easily estimated inductively observing that, by

Lemma 3.1, the operators P−1 ◦pγ,γ̃,σm (D) with |σ| ≤ [m] and P−1 ◦pγ,γ̃,σm,1 (D)

are both bounded on Hs(Rn) and that |β̃| ≤ |α̃| and |ρ− σ + α̃| < |ρ+ α|
since |α| − |α̃|+ |σ|> 0. Concerning the last term, the estimate is more del-

icate since we have to deal with singular operators. Nevertheless, we can

apply Lemma 3.4 with q(ξ) = pγ,γ̃,σm (ξ) and μ=m− |σ| ≥m− kcr >−n/2.

We obtain

∥∥P−1 ◦ pγ,γ̃,σm,2 (D)(xρ−σ+β̃Dα̃u)
∥∥
s
≤Cs‖xρ−σ+β̃Dα̃u‖Hs

1
.
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Moreover,

(4.7) ‖xρ−σ+β̃Dα̃u‖Hs
1
≤Cs

∥∥〈x〉|ρ|−1+|β̃|Dα̃u
∥∥
s
.

As a matter of fact, we have, for some k ∈ {1, . . . , n}:

‖xρ−σ+β̃Dα̃u‖L1 ≤ C
∥∥〈x〉−|σ|+1〈x〉|ρ|−1+|β̃|Dα̃u

∥∥
L1

≤ C
∥∥〈x〉−|σ|+1

∥∥
L2 ·

∥∥〈x〉|ρ|−1+|β̃|Dα̃u
∥∥
L2(4.8)

≤ C ′∥∥〈x〉|ρ|−1+|β̃|Dα̃u
∥∥
L2 ,

by the Hölder inequality, as the condition |σ|>m implies that |σ| ≥ [m] +

1 > n/2 + 1 and this gives 〈x〉−|σ|+1 ∈ L2(Rn). Similar estimates can be

proved for the derivatives and give (4.7). In conclusion, we obtain

∥∥P−1 ◦ pγ,γ̃,σm,2 (D)(xρ−σ+β̃Dα̃u)
∥∥
s
≤ Cs

∥∥〈x〉|ρ|−1+|β̃|Dα̃u
∥∥
s
<∞

by the inductive assumption.

Step 2. Now let τ be the fractional part, that is, 0 < τ < 1, kcr + τ <

m + n/2. To conclude the proof, we need to prove that 〈x〉τxρ+βDαu ∈
Hs(Rn) for every ρ,α,β ∈N

n with |β| ≤ |α| and |ρ| ≤ kcr. Starting from the

identity (4.5), multiplying both sides by 〈x〉τ and introducing commutators,

we obtain

P
(
〈x〉τxρ+βDαu

)
=

[
P, 〈x〉τ

]
(xρ+βDαu) + 〈x〉τP (xρ+βDαu)

=
[
P, 〈x〉τ

]
(xρ+βDαu) + 〈x〉τxρ+βDαf + 〈x〉τxρ+βDαuk

+
∑

γ≤β,σ≤ρ,|σ|≤[m]

∑
|β̃|≤|α̃|≤|α|

|α|−|α̃|+|σ|>0

Cαβγα̃β̃γ̃ρσp
γ,γ̃,σ
m (D)

(
〈x〉τxρ−σ+β̃Dα̃u

)

(4.9)
+

∑
γ≤β,σ≤ρ,|σ|≤[m]

∑
|β̃|≤|α̃|≤|α|

|α|−|α̃|+|σ|>0

Cαβγα̃β̃γ̃ρσ

[
〈x〉τ , pγ,γ̃,σm (D)

]
(xρ−σ+β̃Dα̃u)

+
∑

γ≤β,σ≤ρ,|σ|>[m]

∑
|β̃|≤|α̃|≤|α|

|α|−|α̃|+|σ|>0

Cαβγα̃β̃γ̃ρσp
γ,γ̃,σ
m,1 (D)

(
〈x〉τxρ−σ+β̃Dα̃u

)
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+
∑

γ≤β,σ≤ρ,|σ|>[m]

∑
|β̃|≤|α̃|≤|α|

|α|−|α̃|+|σ|>0

Cαβγα̃β̃γ̃ρσ

[
〈x〉τ , pγ,γ̃,σm,1 (D)

]
(xρ−σ+β̃Dα̃u)

+
∑

γ≤β,σ≤ρ,|σ|>[m]

∑
|β̃|≤|α̃|≤|α|

|α|−|α̃|+|σ|>0

Cαβγα̃β̃γ̃ρσ〈x〉
τpγ,γ̃,σm,2 (D)(xρ−σ+β̃Dα̃u).

At this point we can apply P−1 to both sides of (4.9) and take Sobolev

norms. We already know that P−1 and P−1 ◦ pγ,γ̃,σm (D) for |σ| ≤ [m] and

P−1[P, 〈x〉τ ] are bounded on Hs(Rn). Moreover, we recall that pγ,γ̃,σm,1 (D) is a

Fourier multiplier with smooth symbol of negative order; then it is bounded

on Hs(Rn). For the same reason, since τ < 1, we have that [〈x〉τ , pγ,γ̃,σm,1 (D)]

is a pseudodifferential operator with smooth and bounded symbol; then it

is also bounded on Hs(Rn). We obtain∥∥〈x〉τxρ+βDαu
∥∥
s

≤Cs

(
‖xρ+βDαu‖s +

∥∥〈x〉τxρ+βDαf
∥∥
s
+

∥∥〈x〉τxρ+βDαuk
∥∥
s

)
+

∑
γ≤β,σ≤ρ,|σ|≤[m]

∑
|β̃|≤|α̃|≤|α|

|α|−|α̃|+|σ|>0

Csαβγα̃β̃γ̃ρσ ·
∥∥〈x〉τxρ−σ+β̃Dα̃u

∥∥
s

+
∑

γ≤β,σ≤ρ,|σ|≤[m]

∑
|β̃|≤|α̃|≤|α|

|α|−|α̃|+|σ|>0

Csαβγα̃β̃γ̃ρσ

(4.10)
·
∥∥[
〈x〉τ , pγ,γ̃,σm (D)

]
xρ−σ+β̃Dα̃u

∥∥
s

+
∑

γ≤β,σ≤ρ

|σ|>m

∑
|β̃|≤|α̃|≤|α|

|α|−|α̃|+|σ|>0

Csαβγα̃β̃γ̃ρσ

∥∥〈x〉τxρ−σ+β̃Dα̃u
∥∥
s

+
∑

γ≤β,σ≤ρ

|σ|>m

∑
|β̃|≤|α̃|≤|α|

|α|−|α̃|+|σ|>0

Csαβγα̃β̃γ̃ρσ‖x
ρ−σ+β̃Dα̃u‖s

+
∑

γ≤β,σ≤ρ

|σ|>m

∑
|β̃|≤|α̃|≤|α|

|α|−|α̃|+|σ|>0

Csαβγα̃β̃γ̃ρσ

∥∥〈x〉τpγ,γ̃,σm,2 (D)(xρ−σ+β̃Dα̃u)
∥∥
s
,

where Csαβγα̃β̃γ̃ρσ are positive constants. Let us now estimate the terms in

the right-hand side of (4.10). The first is finite by the previous step of the
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proof, the second by assumption. Concerning the nonlinear term, we can

write as before

〈x〉τxρ+βDαuk

= kxρ+βDαu · 〈x〉τu · uk−2

+
∑

α1+···+αk=α

|αj |<|α|

α!

α1! · · ·αk!
xρ+β1Dα1u · 〈x〉τxβ2Dα2u ·

k∏
j=3

xβjDαju,

where |βj | ≤ |αj |, j = 1, . . . , k, and the last product does not appear if k = 2.

Then we have the estimate

∥∥〈x〉τxρ+βDαuk
∥∥
s

≤Cs‖xρ+βDαu‖s ·
∥∥〈x〉τu∥∥

s
· ‖u‖k−2

s

+
∑

α1+···+αk=α

|αj |<|α|

α!

α1! · · ·αk!

∥∥xρ+β1Dα1u
∥∥
s
·
∥∥〈x〉τxβ2Dα2u

∥∥
s

·
k∏

j=3

‖xβjDαju‖s

≤Cs‖u‖s+|α|,kcr+|α| ·
∥∥〈x〉τu∥∥

s
· ‖u‖k−2

s +Csα‖u‖ks+|α|,kcr+|α| <∞,

since τ < 1≤ kcr. To estimate the fourth term, we observe that, since |α| −
|α̃|+ |σ|> 0, then, if σ 
= 0, we have

∥∥〈x〉τxρ−σ+β̃Dα̃u
∥∥
s
≤Cs

∥∥〈x〉|ρ|+|β̃|Dα̃u
∥∥
s
<∞.

If σ = 0, then |α| − |α̃|> 0 so that |β̃|+ 1≤ |α̃|+ 1≤ |α|. Hence

∥∥〈x〉τxρ+β̃Dα̃u
∥∥
s
≤ Cs

∥∥〈x〉|ρ|+|β̃|+1Dα̃u
∥∥
s

≤ C ′
s‖u‖s+|α|,kcr+|α| <∞

by the previous step. The fifth term is more delicate to estimate. After

cutting off the amplitude of the commutator, we can apply Lemma 3.5

with r = τ, q(ξ) = pγ,γ̃,σm (ξ), μ=m− |σ|, and since m− |σ| − τ >−n/2, the
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operator [〈x〉τ , pγ,γ̃,σm (D)] can be written as the sum of a bounded operator

on Hs(Rn) and a continuous operator Hs
1(R

n)→Hs(Rn). Hence we have

∥∥[
〈x〉τ , pγ,γ̃,σm (D)

]
xρ−σ+β̃Dα̃u

∥∥
s
≤ Cs

(
‖xρ−σ+β̃Dα̃u‖s + ‖xρ−σ+β̃Dα̃u‖Hs

1

)
≤ C ′

s

∥∥〈x〉|ρ|+|β̃|Dα̃u
∥∥
s
<∞

by the Hölder inequality, since |σ|> n/2. The sixth and the seventh term in

the right-hand side of (4.10) are obviously finite. Concerning the last term,

we can write

〈x〉τpγ,γ̃,σm,2 (D)(xρ−σ+β̃Dα̃u) = pγ,γ̃,σm,2 (D)
(
〈x〉τxρ−σ+β̃Dα̃u

)
−

[
pγ,γ̃,σm,2 (D), 〈x〉τ

]
(xρ−σ+β̃Dα̃u)

and apply Lemmas 3.4 and 3.5 with q(ξ) = pγ,γ̃,σm (ξ), r = τ,μ=m− |σ|. We

obtain ∥∥〈x〉τpγ,γ̃,σm,2 (D)(xρ−σ+β̃Dα̃u)
∥∥
s

≤Cs

∥∥〈x〉τxρ−σ+β̃Dα̃u
∥∥
Hs

1
≤C ′

s

∥∥〈x〉τ−|σ|〈x〉|ρ|+|β̃|Dα̃u
∥∥
Hs

1

≤C ′′
s

∥∥〈x〉|ρ|+|β̃|Dα̃u
∥∥
s
<∞,

arguing as in the proof of (4.8). The theorem is then proved.
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[31] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966. MR 0209834.

[32] T. Tao, Global well-posedness of the Benjamin-Ono equation in H1(R), J. Hyperbolic

Differ. Equ. 1 (2004), 27–49. MR 2052470. DOI 10.1142/S0219891604000032.

[33] G. N. Watson, A treatise on the theory of Bessel functions, reprint of the 2nd ed.,

Cambridge University Press, Cambridge, 1958. MR 1349110.

Marco Cappiello

Dipartimento di Matematica

Università di Torino

10123 Torino

Italy

marco.cappiello@unito.it

Todor Gramchev

Dipartimento di Matematica e Informatica
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Università di Torino

10123 Torino

Italy

luigi.rodino@unito.it

mailto:luigi.rodino@unito.it

	Introduction
	Examples
	Commutator identities and estimates
	Proof of the main result
	Acknowledgments
	References
	Author's Addresses

