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PROJECTIVE GEOMETRY IN CHARACTERISTIC ONE
AND THE EPICYCLIC CATEGORY

ALAIN CONNES and CATERINA CONSANI

Abstract. We show that the cyclic and epicyclic categories which play a key

role in the encoding of cyclic homology and the lambda operations, are obtained

from projective geometry in characteristic one over the infinite semifield ofmax-

plus integers Zmax. Finite-dimensional vector spaces are replaced by modules

defined by restriction of scalars from the one-dimensional free module, using the

Frobenius endomorphisms of Zmax. The associated projective spaces are finite

and provide a mathematically consistent interpretation of Tits’s original idea of

a geometry over the absolute point. The self-duality of the cyclic category and

the cyclic descent number of permutations both acquire a geometric meaning.

§1. Introduction

In this paper we establish a bridge between the combinatorial structure

underlying cyclic homology and the λ-operations on one side and the frame-

work of geometry in characteristic one on the other. The combinatorial sys-

tem supporting cyclic homology and the λ-operations is best encoded by the

cyclic category (see [3]) and its natural extension to the epicyclic category

(see [15], [2]), which play an important role in algebraic topology and alge-

braic K-theory (see [10]). In [8], we showed the relevance of cyclic homology

of schemes and the λ-operations for the cohomological interpretation of the

archimedean local factors of L-functions of arithmetic varieties, therefore

opening the road to applications of cyclic homology in arithmetic.

Mathematics in characteristic one has two algebraic incarnations: one

is provided by the theory of semirings and semifields† supporting tropical

geometry and idempotent analysis, while the other one is centered on the
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more flexible notions of hyperrings and hyperfields on which certain number-

theoretic constructions repose. In our recent work [4]–[9] we explained the

relevance of these two algebraic theories to promote the development of an

absolute geometry.

In this paper we provide the geometric meaning of the cyclic and the

epicyclic categories in terms of a projective geometry in characteristic one,

and we supply the relation of the above categories with the absolute point.

In Section 3 we show that the epicyclic category Λ̃ is isomorphic to a cat-

egory PF of projective spaces over the simplest infinite semistructure of

characteristic one, namely, the semifield F= Zmax := (Z∪{−∞},max,+) of

max-plus integers (which we will denote multiplicatively). The objects of PF

are projective spaces P(E) where the semimodules E over F are obtained

by restriction of scalars from the one-dimensional free semimodule using the

injective endomorphisms of F. These endomorphisms form the multiplicative

semigroup N×: for each integer n ∈N× the corresponding endomorphism is

the Frobenius Frn: Frn(x) := xn ∀x ∈ F. We denote by F(n) the semimodule

over F obtained from F by restriction of scalars using Frn ∈ End(F); then
for n≥ 0 the projective spaces P(F(n+1)) provide the complete collection of

objects of PF. The morphisms in PF are projective classes of semilinear maps

f of semimodules over F which fulfill the condition f−1({0}) = {0}. One also

derives the definition of a full (but not faithful) functor P : PF −→ Fin to

the category of finite sets which associates to a semimodule E over F the

quotient space P(E) = (E \ {0})/F× (see Remark 3.17(a)). If one restricts

the construction of the morphisms in PF to maps which are linear rather

than semilinear, one obtains a subcategory P1
F ⊂PF canonically isomorphic

to the cyclic category Λ: the inclusion functor P1
F ↪→PF corresponds to the

inclusion of the categories Λ⊂ Λ̃.

It is traditional to view the category of finite sets as the limit for q = 1 of

the category of finite-dimensional vector spaces over a finite field Fq, and the

symmetric group Sn as the limit case of the general linear group GLn(Fq).

There is, however, one feature of the category of finite-dimensional vector

spaces over a field which is not preserved by this analogy, namely, the self-

duality provided by transposition of linear maps. Indeed, the cardinality of

the set of maps HomFin(X,Y ) between two finite sets is a highly asymmetric

function of the sets, whereas for vector spaces over Fq the cardinality of

HomFq(E1,E2) is the symmetric function qn1n2 , for nj = dimEj (j = 1,2).

The geometric interpretation provided in this paper of the epi/cyclic cat-

egories and of the functor P refines and clarifies the above correspondence.
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In Section 4 we prove that the well-known self-duality of the cyclic cate-

gory is described by transposition of linear maps. On the other hand, the

failure of the extension of the property of self-duality to the epicyclic cate-

gory is explained by the fact that the transpose of a semilinear map fails to

be semilinear when the associated morphism of fields is not surjective. In

our construction, the semilinearity of the maps is encoded by the functor

Mod : PF −→ N× to the multiplicative monoid of natural numbers (viewed

as a small category with a single object) which associates to a morphism

f in PF the integer n ∈N× such that f(λx) = Frn(λ)x ∀λ ∈ F. The functor

Mod also provides, using the functor P : PF −→ Fin, a geometric interpreta-

tion of the cyclic descent number of arbitrary permutations as the measure

of their semilinearity (see Proposition 4.10).

One can finally formulate a mathematically consistent interpretation of

Tits’s original idea in [19, Section 13] of a geometry over the absolute point

which is provided in our construction by the data given by the category PF

(F= Zmax) and the functor P. Note that the cardinality of the set under-

lying the projective space P(F(n+1)) is n + 1 and that this integer coin-

cides with the limit, for q → 1, of the cardinality of the projective space

Pn(Fq) = P(Fn+1
q ). The fullness of the functor P shows in particular that

any permutation σ ∈ Sn+1 arises from a geometric morphism of projective

spaces over F.
Even though the above development of a (projective) geometry in char-

acteristic one is formulated in terms of algebraic semistructures, we show,

in Section 5, how one can obtain its counterpart in the framework of hyper-

structures by applying a natural functor −⊗B S, where S is the smallest

finite hyperfield of signs (see [6]) that minimally contains the smallest finite

idempotent semifield B. In [9] we have shown that by implementing the the-

ory of hyperrings and hyperfields, one can parallel successfully Fontaine’s

p-adic arithmetic theory of “perfection” and subsequent Witt extension by

combining a process of dequantization (to characteristic one) and a consec-

utive Witt construction (to characteristic zero). In view of the fact that this

dequantization process needs the framework of hyperstructures to be mean-

ingful, it seems evident that the arithmetical standpoint in characteristic one

requires a very flexible algebraic theory which encompasses semistructures.

On the other hand, several successful developments of the theory of semi-

rings in linear algebra and analysis show that the context of semistructures

is already adequate for many applications. The only reasonable conclusion

one can draw is that for the general development of mathematics in char-
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acteristic one, we ought to keep both constructions available and select the

most appropriate one in relation to the specific context in which each prob-

lem is formulated.

§2. The epicyclic category

In this section we show that the notion of archimedean set and related

category Arc (that we introduced in [7]) provides a natural framework for

the definition of the variants Λa (see [2], [10]) of the cyclic category Λ of [3]

and of the epicyclic category Λ̃ (originally due to Goodwillie). These cate-

gories are defined as full subcategories of categories Arc, Arca, and Arc �N×

which will be introduced in this section and whose objects are archimedean

sets. The full subcategories are obtained by restricting to objects whose

underlying ordered set is the set Z of integers with the usual total order.

2.1. The category Arc of archimedean sets

We recall from [7, Definition 5.9] the following notion.

Definition 2.1. An archimedean set is a pair (X,θ) of a nonempty,

totally ordered set X and an order automorphism θ ∈ AutX such that

θ(x)> x, ∀x ∈X , and fulfilling the following archimedean property:

∀x, y ∈X,∃n ∈N : y ≤ θn(x).

For each positive integer a ∈N, we introduce the following category Arca.

Definition 2.2. The objects of the category Arca are archimedean sets

(X,θ); the morphisms f : (X,θ)→ (X ′, θ′) in Arca are equivalence classes of

maps

f :X →X ′, f(x)≥ f(y) ∀x≥ y;

f
(
θ(x)

)
= θ′

(
f(x)

)
, ∀x ∈X,

(1)

where the equivalence relation identifies two such maps f and g if there

exists an integer m ∈ Z such that g(x) = θ′ma(f(x)), ∀x ∈X .

For a= 1, we drop the index 1: Arc1 =Arc coincides with the category of

archimedean sets.

Definition 2.3. For n ≥ 1, we denote by n̂ = (Z, θ) the archimedean

set where Z is endowed with the usual order, and the order automorphism

θ : Z→ Z is given by the translation θ(x) = x+ n.
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The archimedean set n̂ gives rise to the object [n− 1] of Λa; the shifted

indexing fits with the standard notation for the object [n] := {0, . . . , n} of

the simplicial category Δ.

Proposition 2.4. Let a ∈N. The full subcategory of Arca, whose objects

are the archimedean sets n̂= (Z, θ) for n≥ 1, is canonically isomorphic to

the a-cyclic category Λa considered in [2] and [10].

Proof. We fix a, and we let C be the full subcategory of Arca whose objects

are the archimedean sets n̂ for n≥ 1. There is an inclusion functor j : Δ ↪→C
that is the map [n] �→ n̂+ 1 on the objects of the simplicial category Δ and

on the morphisms f ∈HomΔ([n], [m]) defined as follows:

j(f)
(
x+ k(n+ 1)

)
= f(x) + k(m+ 1), ∀x ∈ [n], k ∈ Z.

One easily checks that j(f)−1([0,m]) = [0, n], since by construction one has

j(f)([0, n] + k(n+1))⊂ [0,m] + k(m+1), ∀k ∈ Z. Moreover, any morphism

φ ∈HomArca(n̂+ 1, m̂+ 1) such that φ−1([0,m]) = [0, n] is of the form j(f)

for a unique f ∈HomΔ([n], [m]). We introduce the cyclic permutation τ :

τ : Z→ Z, τ(x) = x− 1, ∀x ∈ Z.

Note that, for each n≥ 0, τ yields an element τn−1 ∈Cna =AutArca(n̂) (the

index n of τ is shifted by 1). The relation τnan−1 = id follows from the defi-

nition of the equivalence relation in Definition 2.2. Let φ ∈HomArca(n̂+ 1,

m̂+ 1) and I = [0,m] ⊂ Z. Then φ−1(I) is a finite interval J because φ is

increasing and φ(x)→±∞ when x→±∞. Moreover, since for k ∈ Z (vary-

ing) the translates I + k(m+ 1) form a partition of Z, the same statement

holds for their inverse images which are, in view of the periodicity property

of the maps in Arca, of the form J + k(n+1). Thus J = [u,u+ n] for some

u ∈ Z. It follows that there exist a unique f ∈HomΔ([n], [m]), an integer v

uniquely determined modulo (n+ 1)a, and a decomposition

(2) φ= j(f) ◦ τ vn .

This shows that the category C is an extension of the small simplicial cat-

egory Δ by means of a new generator τn of the cyclic group C(n+1)a, for

each n ≥ 0. Moreover, one checks, as for the cyclic category, the following

relations in terms of the face maps δj and degeneracies σj of Δ,
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τ (n+1)a
n = id,

τn ◦ σ0 = σn ◦ τ2n+1, τn ◦ σj = σj−1 ◦ τn+1, ∀j ∈ {1, . . . , n}

τn ◦ δ0 = δn, τn ◦ δj = δj−1 ◦ τn−1, ∀j ∈ {1, . . . , n}.

The uniqueness of the decomposition (2) shows that the above relations give

a presentation of C and thus that C is canonically isomorphic to the a-cyclic

category Λa considered in [2] and [10].

2.2. The correspondences Ψk

Let (X,θ) be an archimedean set, and let k > 0 be an integer. Then the

pair (X,θk) is also an archimedean set that we denote as

(3) Ψk(X,θ) := (X,θk).

A morphism f : (X,θ) → (X ′, θ′) in Arc fulfills (1) and hence one has

f(θk(x)) = θ′k(f(x)),∀x ∈ X (k > 0 fixed). Thus f defines a morphism

Ψk(f) ∈HomArc(Ψk(X,θ),Ψk(X
′, θ′)). However, the two maps f and θ′ ◦ f

(which define the same morphism in the category Arc) are in general no

longer equivalent as morphisms Ψk(X,θ)→Ψk(X
′, θ′). Thus, rather than a

functor, one derives more precisely a correspondence Ψk : Arc ��� Arc that

satisfies the following properties.

Proposition 2.5.

(i) Let h ∈HomArc((X,θ), (X ′, θ′)); then for a fixed positive integer k > 0

the set

Ψk(h) :=
{
Ψk(f)

∣∣ f ∈ h
}

is finite with exactly k elements (we write f ∈ h when f is in the

equivalence class of the morphism h).

(ii) Let g,h be composable morphisms in Arc; then one has

Ψk(g ◦ h) = Ψk(g) ◦Ψk(h) :=
{
u ◦ v

∣∣ u ∈Ψk(g), v ∈Ψk(h)
}
.

(iii) For any pair of positive integers k, k′: Ψk ◦Ψk′ =Ψkk′ .

Proof. (i) Let f : (X,θ)→ (X ′, θ′) be a morphism in Arc. Then the com-

posite θ′k ◦ f is equivalent to f in the set HomArc(Ψk(X,θ),Ψk(X
′, θ′)),

while the class of f in HomArc((X,θ), (X ′, θ′)) is represented by θ′m ◦ f , for
m ∈ Z. Thus Ψk(h) is the finite set of classes of θ

′m◦f , for m ∈ {0, . . . , k−1}.
These elements are pairwise inequivalent since the maps θ′m ◦f are pairwise

distinct for m ∈ Z.
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(ii) Let h ∈HomArc((X,θ), (X ′, θ′)), and let g ∈HomArc((X
′, θ′), (X ′′, θ′′)).

Let g′ ∈ g and h′ ∈ h be maps in the corresponding equivalence classes (ful-

filling (1)). Then g′ ◦h′ ∈ g◦h, and one also has by construction Ψk(g
′ ◦h′) =

Ψk(g
′)◦Ψk(h

′). By replacing h′ by θ′n ◦h′ and g′ by θ′′m ◦g′, one substitutes
z = g′ ◦ h′ with θ′′a ◦ z for a= n+m. Note that only the class of a modulo

k matters for the corresponding morphism: Ψk(X,θ)→Ψk(X
′′, θ′′).

(iii) For any morphism f : (X,θ)→ (X ′, θ′) in Arc, one easily checks that

Ψk ◦Ψk′(f) = Ψkk′(f).

2.3. Two functors Arca −→Arcb when b | a
The correspondences Ψk :Arc ���Arc are best described in terms of two

functors

P,Ψk :Arck −→Arc

which we now describe in slightly more general terms.

Let a, b ∈ N: when b | a, the functor P : Arca −→ Arcb is defined as the

natural forgetful functor. Namely, P is the identity on objects and associates

to an equivalence class (see Definition 2.2) of morphisms f ∈HomArca((X,θ),

(X ′, θ′)) the unique class it defines in HomArcb((X,θ), (X ′, θ′)).
The definition of Ψk given in Section 2.2 determines, for every integer

t > 0, a functor

(4) Ψk :Arckt −→Arct.

In fact the two maps f and θ′kt ◦ f , which define the same morphism in the

category Arckt, are equivalent as morphisms in the set HomArct(Ψk(X,θ),

Ψk(X
′, θ′)). One thus obtains the following commutative diagram where the

lower horizontal arrow is the correspondence Ψk:

Arck

Ψk
P

Arc
Ψk

Arc

2.4. The category Arc �N×

Proposition 2.5 describes an action of the multiplicative monoid N× by

correspondences on Arc. Next we define the category Arc �N× obtained as

the semidirect product of Arc by this action. Its objects are the same as



102 A. CONNES AND C. CONSANI

those of Arc. At the level of morphisms, instead, we adjoin, for each object

(X,θ) of Arc and each positive integer k, a new morphism

(5) ψk : Ψk(X,θ)→ (X,θ)

which fulfills the relations

(6) f ◦ψk = ψk ◦ g, ∀g ∈Ψk(f), ∀f ∈HomArc

(
(X,θ), (X ′, θ′)

)
and

(7) ψk ◦ψk′ = ψkk′ , ∀k, k′ > 0.

This construction is precisely achieved as follows.

Definition 2.6. The objects of the categoryArc�N× are the archimedean

sets (X,θ); the morphisms f : (X,θ)→ (X ′, θ′) in Arc �N× are equivalence

classes of maps

f :X →X ′, f(x)≥ f(y) ∀x≥ y;

∃k ∈N, f
(
θ(x)

)
= θ′k

(
f(x)

)
, ∀x ∈X,

(8)

where the equivalence relation identifies two such maps f and g if there

exists an integer m ∈ Z such that g(x) = θ′m(f(x)), ∀x ∈X .

We check that the equivalence relation is compatible with the composition

of maps in Arc �N×.
Let fj : (X,θ)→ (X ′, θ′) (j = 1,2) and g : (X ′, θ′)→ (X ′′, θ′′) be two mor-

phisms. One has f1 ∼ f2 ⇔ f2(x) = θ′m(f1(x)), ∀x ∈X and for some m ∈ Z.
It follows (since g fulfills (8)) that g ◦ f2(x) = g(θ′m(f1(x))) = θ′′kmg(f1(x)),

thus g ◦ f2 ∼ g ◦ f1.
The next proposition shows that the category Arc � N× has exactly the

expected properties of a semidirect product of Arc by the correspondences

Ψk.

Proposition 2.7.

(i) The category Arc is a subcategory of Arc �N×.
(ii) The map ρ : HomArc�N×((X,θ), (X ′, θ′))→N×, ρ(f) = k ∈N× such that

(8) holds, describes at the morphisms level a functor to the category

N× with a single object ∗, Hom(∗,∗) =N×,

ρ : (Arc �N×)−→N×.
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(iii) For any archimedean set (X,θ) and positive integer k, the identity map

idX determines a morphism ψk ∈ HomArc�N×(Ψk(X,θ), (X,θ)) which

fulfills the relations (6) and (7).

(iv) Every morphism f ∈HomArc�N×((X,θ), (X ′, θ′)) is of the form

f = ψk ◦ h, k = ρ(f), h ∈HomArc

(
(X,θ),Ψk(X

′, θ′)
)
.

Proof. (i) The categories Arc and Arc �N× share the same objects, and

by construction one has

HomArc

(
(X,θ), (X ′, θ′)

)
⊂HomArc�N×

(
(X,θ), (X ′, θ′)

)
.

(ii) Since the action of θ′ on X ′ is free, the value of k for which (8) holds

is uniquely determined. One also checks easily that ρ(f ◦ g) = ρ(f)ρ(g).

(iii) The identity map u = idX fulfills u ◦ θk = θk ◦ u, and thus defines

a morphism ψk in the set HomArc�N×(Ψk(X,θ), (X,θ)). By applying the

definition of the equivalence relation for morphisms as in Definition 2.6, one

has ψk ◦ θj ∼ ψk for all j ∈ Z. One thus obtains the equality f ◦ψk = ψk ◦ g,
∀g ∈Ψk(f). The relations (6) and (7) are easily verified.

(iv) Let f : (X,θ)→ (X ′, θ′) in Arc � N×. Then f gives an element h ∈
HomArc((X,θ),Ψk(X

′, θ′)) whose definition depends upon the choice of f

in its class. Replacing f by θ′j ◦ f has the effect of replacing h by θ′j ◦ h
whose class in HomArc((X,θ),Ψk(X

′, θ′)) depends only on the residue of j

modulo k.

Proposition 2.8. The full subcategory of Arc � N× whose objects are

the archimedean sets (Z, θ) (Z endowed with the usual order) is canonically

isomorphic to the epicyclic category Λ̃.

Proof. Let Sdk : Δ −→ Δ be the edgewise subdivision functor (see,

e.g., [2]) which maps the object [n − 1] to [kn − 1] and a morphism f ∈
HomΔ([m− 1], [n− 1]) to its k-fold concatenation

Sdk(f) = f ⊥ f ⊥ · · · ⊥ f ∈HomΔ

(
[km− 1], [kn− 1]

)
.

We recall (see [2, Definition 1.1]) that the epicyclic category Λ̃ is defined by

adjoining to the cyclic category Λ, new morphisms πk
n : [k(n+ 1)− 1]→ [n]

for n≥ 0, k ≥ 1, which fulfill the following relations:

(i) π1
n = idn, π

�
n ◦ πk

�(n+1)−1 = πk�
n ;

(ii) απk
m = πk

nSdk(α), for any α ∈HomΔ([m], [n]);

(iii) τnπ
k
n = πk

nτk(n+1)−1.
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In terms of the archimedean sets n̂ which we identify with [n − 1] (see

Definition 2.3), the map f ∈HomΔ([m− 1], [n− 1]) lifts uniquely to a map

f̃ : Z → Z such that f̃(x + m) = f̃(x) + n, ∀x ∈ Z. Notice that f̃ agrees

with f on {0,1, . . . ,m− 1}. Moreover, f̃ is a morphism of archimedean sets,

and the class of Ψk(f̃) is the same as the class of the k-fold concatenation

S̃dk(f). This shows that one obtains the required isomorphism of categories

by extending the isomorphism of Proposition 2.4 (for a = 1) to the full

subcategory of Arc�N× whose objects are the n̂, by mapping the morphism

ψk ∈HomArc�N×(Ψk(n̂), n̂) to πk
n−1.

Remark 2.9. The epicyclic category Λ̃ used in this paper is originally

due to T. Goodwillie and described in [2], but it does not correspond to the

notion of epicyclic space applied in [14].

2.5. The functor F : (Arc �N×)−→Sets

In the following we denote by μa the multiplicative group of ath roots

of unity in C. By Setsa we denote the category of sets endowed with a

free action of μa, and with morphisms given by μa-equivariant maps. For

(X,θ) ∈Obj(Arc), we consider the orbit space of the action of θa on X

Fa(X,θ) :=X/θaZ,

endowed with the free action of μa generated by the action of θ on Fa(X,θ).

Proposition 2.10.

(i) For a= 1, one has a functor F= F1 : (Arc �N×)−→Sets.

(ii) For any integer a > 1, one has a functor Fa :Arca −→Setsa.

Proof. (i) Let f : (X,θ)→ (X ′, θ′) be a morphism in Arc �N× (thus ful-

filling (8)). Then given two points x, y = θm(x) on the same orbit of the

action of θ on X , the points f(x) and f(y) = θ′km(f(x)) are on the same

orbit of the action of θ′ on X ′. This shows that F1 transforms a morphism

f ∈ HomArc�N×((X,θ), (X ′, θ′)) into a map of sets; this association is also

compatible with the composition of morphisms.

(ii) By definition of the equivalence relation as in Definition 2.2 for

f ∈ HomArca((X,θ), (X ′, θ′)), the induced map of sets X/θaZ → X ′/θ′aZ

is independent of the choice of f in its equivalence class. Moreover, the

equivariance condition (1) ensures that the induced map of sets is μa-

equivariant.
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We will now follow the effect of the functors P and Ψk as in Section 2.3

in terms of the categories Setsa. When b | a (a, b ∈ N), there is a canonical

inclusion μb ⊂ μa. With a= kb (k ∈N), the subgroup μb is the range of the

group endomorphism μa → μa, u �→ uk. This determines a natural restriction

functor

Res :Setsa −→Setsb

which does not alter the underlying set and restricts the action of the roots

of unity μa to the subgroup μb. This restriction functor corresponds to the

functor Ψk :Arca −→Arcb of (4), that is, the following diagram commutes:

Arca

Fa

Ψk
Arcb

Fb

Setsa
Res

Setsb

To check the commutativity of the above diagram, we note that the set

underlying Fb(Ψk(X,θ)) is the orbit space of the action of θkb on X and

that this coincides with the set underlying Fa(X,θ).

When a= kb, one also has an extension of scalars functor

−×μa μb :Setsa −→Setsb

which associates to an object Y of Setsa its quotient Y ×μa μb for the

action of the subgroup μk ⊂ μa. This functor corresponds to the functor

P :Arca −→Arcb, that is, the following diagram commutes:

Arca

Fa

P
Arcb

Fb

Setsa
−×μaμb

Setsb

Remark 2.11. It is customary to interpret the category Setsa as the

category of vector spaces over F1a , where F1a plays the role of the limit for

q→ 1 of the finite fields Fqa . However, this analogy has its limitations since,

for instance, the classical duality between vector spaces over fields does
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not apply here because, for vector spaces V and W over F1a of respective

dimensions n and m, the cardinality of the space of morphisms is

#
(
HomF1a

(V,W )
)
= (am)n,

which is not a symmetric function of n and m. In Section 4 we will explain

how the classical duality is restored for the cyclic category Λ using the frame-

work of projective geometry in characteristic one which we now describe.

§3. Λ̃ and projective geometry over the semifield Zmax

In ordinary projective geometry the maps between projective spaces

P(Ej) = (Ej \ {0})/K×
j over fields Kj (j = 1,2) are induced by semilin-

ear maps of vector spaces Ej (see [11]). Recall that a map f : E1 → E2

between two vector spaces is called semilinear if it is additive and if there

exists a homomorphism of fields σ :K1 →K2 such that f(λx) = σ(λ)f(x)

∀λ ∈K1 and ∀x ∈E1. This notion extends verbatim to the context of semi-

fields, where by a semifield we mean a commutative semiring K in which the

nonzero elements form a group under multiplication (see [12, Example 4.25,

p. 52]). Note that in a semiring the existence of an additive inverse is no

longer required (see [12, I]). Note, moreover, that homomorphisms of fields

are automatically injective, and we will require injectivity of σ :K1 →K2

in the context of semifields.

By a semimodule E over a semifield K we mean (see [12, Chapter 14],

[13, Chapter 5]) a commutative monoid (E,+) with additive identity 0 ∈E,

endowed with an action of K such that ∀λ,μ ∈K and ∀x, y ∈E, one has

λ(x+ y) = λx+ λy, (λ+ μ)x= λx+ μx,

(λμ)x= λ(μx), 0x= 0, 1x= x.
(9)

A map f : E1 → E2 between two semimodules over semifields Kj is called

semilinear if it is additive and if there exists an injective homomorphism of

semifields σ :K1 →K2 such that f(λx) = σ(λ)f(x) ∀λ ∈K1 and ∀x ∈ E1.

Two such maps f, f ′ are projectively equivalent when there exists λ ∈K2,

λ �= 0, such that f ′(x) = λf(x), ∀x ∈E1.

Definition 3.1. Let Proj be the category whose objects are pairs (K,E)

made by a semifield K and a semimodule E over K and whose morphisms

(K1,E1) → (K2,E2) are pairs (σ,h), where σ : K1 → K2 is an injective

semifield homomorphism and h is a projective class of additive semilinear
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maps f :E1 →E2 such that f−1({0}) = {0} and f(λx) = σ(λ)f(x) ∀λ ∈K1,

∀x ∈E1.

Proposition 3.2. The assignment which maps a pair (K,E) ∈Obj(Proj)

to the corresponding projective space (as set) P(E) := (E \ {0})/K× and a

morphism in Proj to the induced map of sets defines a covariant functor

P :Proj−→Sets.

Proof. Let f : E1 → E2 be a semilinear map such that f−1({0}) = {0}.
For x ∈E1 \ {0}, the class of f(x) ∈ (E2 \ {0})/K×

2 does not change if one

replaces x by λx for λ ∈K×
1 or if one replaces f by μf for μ ∈K×

2 .

The assignment which associates to an object (K,E) of Proj the semifield

K, and to a morphism (σ,h) the map σ (as in Definition 3.1), defines a

functor Mod from Proj to the category of semifields.

Definition 3.3. Let K be a semifield. We denote by PK the full subcat-

egory of Proj whose objects are semimodules over K. We denote by P1
K the

subcategory of PK with the same objects as PK and whose morphisms are

pairs (σ, f), where σ is the identity on K (i.e., morphisms in P1
K are given

by projective classes of linear maps).

Thus, by definition, the objects of PK are the objects X = (K,E) of

Proj such that Mod(X) = K and the morphisms α of P1
K are such that

Mod(α) = idK .

Next, we recall the most used definition of rank of a semimodule (see,

e.g., [12, Chapter 14, p. 153]), and we also introduce the notion of free rank

that generalizes, in the context of semistructures, the classical notion of the

largest cardinality of a free system.

Definition 3.4. Let E be a finitely generated semimodule over a semi-

field K.

(a) The rank rk(E) is the smallest positive integer n such that there exists

a set of generators of E of cardinality n.

(b) The free rank rk(E) is the largest positive integer n such that there

exists a free subsemimodule of E of rank n.

Following [1, Exercise 16, A II.181], one can show that if rk(E) and rk(E)

are both finite, then rk(E)≤ rk(E).
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3.1. The semifield B and the simplicial category Δ

Unlike the classical case of vector spaces over fields, a finitely generated

semimodule E over a semifield K is not necessarily isomorphic to Kn, for

some n. This change of behavior arises already in the simplest example of

the idempotent semifield K = B= ({0,1},+, ·). Here the term “idempotent”

means that x+x= x, ∀x ∈K, or equivalently that 1+1 = 1, which we view

as reflecting the fact that one works in characteristic one. It is known (see

[12, Chapter 4, Example 4.28]) that B is the only finite idempotent semifield.

Let E be a semimodule over B. Since 1 + 1 = 1 in B, it follows from

(9) that x+ x= x, ∀x ∈ E so that, as a monoid, E is idempotent, and we

will use the notation x+ y = x ∨ y for the sum of two elements of E. The

canonical preorder of the commutative monoid E, defined by (see [13, 3.3,

p. 12])

x≤ y ⇐⇒ ∃z ∈E, y = x∨ z,

is then an order relation (see [13, Proposition 3.4.5]), and moreover one has

x≤ y ⇐⇒ x∨ y = y.

The partially ordered set (E,≤) is a semilattice with a smallest element

0, and the join of any two elements x, y ∈ E is x ∨ y. Conversely, given a

semilattice X , one defines a semimodule X∨ over B by adjoining to X a

smallest element as follows.

Definition 3.5. Let X be a semilattice. One lets X∨ =X ∪ {0} be the

set endowed with the following binary operation ∨:

(10) x∨ y := join(x, y), ∀x, y ∈X, 0∨ x= x∨ 0 = x, ∀x ∈X∨.

It is easy to see that the last two equations of (9) uniquely define the

action of B on X∨ and that this action fulfills the other equations of (9)

since x∨ x= x, ∀x ∈X∨.

Definition 3.6 (see [13, p. 5]). A commutative monoid E is selective if

and only if one has x+ y ∈ {x, y}, ∀x, y ∈E.

By [13, Proposition 3.4.7], a commutative monoid is selective if and only

if it is idempotent and the canonical order is total.

The following statement determines a complete list of the finitely gener-

ated semimodules of free rank 1 over B and their categorical interpretation.
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Proposition 3.7.

(i) Let E be a B-semimodule. Then E is selective if and only if rk(E) = 1.

(ii) For each n ∈N, there exists a unique up to canonical isomorphism B-
semimodule E = B(n,1) such that rk(E) = n and rk(E) = 1. One has

B(n,1) =X∨ for X = {1, . . . , n} as a totally ordered set.

(iii) The following properties hold for the semimodules B(n,1):

(a) B(n,1) is of minimal cardinality among the B-semimodules of rank n;

(b) B(n,1) is a projective semimodule over B equal to the range of a

projection matrix P ∈Mn(B), P 2 = P ;

(c) the semiring of endomorphisms EndB(B(n,1)) is isomorphic to

PMn(B)P .

(iv) The simplicial category Δ is canonically isomorphic to the full subcat-

egory PB ⊂ PB whose objects are the semimodules B(n,1) and the mor-

phisms are (projective classes of) linear maps f such that f−1({0}) =
{0}.

Proof. (i) Let E be a B-semimodule such that rk(E) = 1. Then x ∨ y ∈
{x, y} for any two nonzero distinct elements x, y ∈ E, since otherwise one

could construct a free subsemimodule of E of rank 2. It follows that E is

selective. Conversely, if E is selective it does not contain a copy of B2 and

thus rk(E) = 1.

(ii) The rank of E =X∨ for X a totally ordered set is rk(E) = cardX .

Thus if rk(E) = n, one has E = B(n,1) =X∨ with X = {1, . . . , n} as a totally

ordered set.

(iii) We show that (a), (b), and (c) hold.

(a) The cardinality of B(n,1) is n+1 and is the minimal cardinality among

B-semimodules of rank n, since any such semimodule contains at least 0 and

the n generators. Let E be a B-semimodule of rank n, and assume that the

cardinality of E is n+1; then x∨y ∈ {x, y} for any x, y ∈E, since otherwise

one could remove x∨ y from the set of generators. Thus it follows that E is

selective, and thus E = B(n,1).

(b) One has

(11) B(n,1) = P (Bn), P =

⎛⎜⎜⎜⎜⎝
1 0 0 . . . 0

1 1 0 . . . 0

1 1 1 . . . 0

. . . . . . . . .

1 1 1 . . . 1

⎞⎟⎟⎟⎟⎠ ∈Mn(B), P 2 = P,



110 A. CONNES AND C. CONSANI

since the image P ({ej}) of the canonical basis {ej} of Bn is the decreasing

sequence P ({ej}) = {
∨

i≤j ei}. This shows that B(n,1) is a finitely generated

and projective semimodule of rank at most n. By (10) any subset of X =

{1, . . . , n} is stable under the binary operation ∨, and this shows that the

rank of X∨ is equal to n.

(c) The set of endomorphisms EndB(Bn) forms a semiring isomorphic

to the semiring of matrices Mn(B) (see [12]). Given T ∈ EndB(B(n,1)), the

composite T ◦ P defines an element of EndB(Bn).

(iv) There is a natural functor which associates to a totally ordered set X

the semimodule X∨ over B. The morphisms f ∈ HomB(X
∨, Y ∨) such that

f−1({0}) = {0} are the nondecreasing maps from X to Y . By applying this

construction to the skeleton of the category of totally ordered finite sets, we

obtain a functor from the simplicial category Δ to the category PB. This

functor is fully faithful and hence it defines an isomorphism of categories

Δ∼= PB.

Remark 3.8. (a) Claim (iv) of Proposition 3.7 does not change if one

replaces linear maps by projective classes of linear maps since B× = {1}. In
fact, since B has no nontrivial endomorphism, linearity and semilinearity

are equivalent notions in this context.

(b) The subsemimodules of rank k of X∨ are determined by the subsets

of X of cardinality k. Thus the cardinality of the set of subsemimodules of

rank k of B(n,1) is given by the binomial coefficient
(
n
k

)
. This is in agreement

with the limit, as q → 1, of the cardinality of the Grassmannian of vector

subspaces of dimension k in an n-dimensional vector space over the finite

field Fq.

(c) The free semimodule Bn has cardinality 2n which grows exponentially

with n, while the cardinality of B(n,1) is n+ 1 which is linear in n.

3.2. Semimodules over Zmax and archimedean sets

Let F= Zmax := (Z∪{−∞},max,+) be the semifield of tropical integers:

we will denote it multiplicatively, thus the elements of F are either 0 or a

power un for n ∈ Z, where u here is a symbol. The idempotent addition

∨ is such that un ∨ um = uk, with k = sup(n,m). The multiplication is the

usual one: unum = un+m. The semifield F is isomorphic to the subsemifield

of Rmax
+ generated by an arbitrary element greater than 1 of Rmax

+ . Here

Rmax
+ is the multiplicative version for Rmax := (R∪ {−∞},max,+).

In this section we interpret the category Arc and the functor F = F1 :

Arc−→Sets in terms of the category P1
F of semimodules over F= Zmax.
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An archimedean set (X,θ) defines a semimodule (X,θ)∨ over F as follows.

Proposition 3.9. Let (X,θ) be an archimedean set. Let (X,θ)∨ = (X ∪
{0}, θ) be endowed with the binary operation

(12) x∨ y := sup(x, y) ∀x, y ∈X, 0∨ x= x∨ 0 = x ∀x ∈X ∪ {0}.

The action of F on (X,θ)∨ given by

(13) unx := θn(x) ∀x ∈X,n ∈ Z, 0x= 0 ∀x ∈X ∪ {0},

endows (X,θ)∨ with the structure of semimodule over F.

Proof. The condition θ(x)> x, ∀x ∈X , of Definition 2.1 shows that

(a∨ b)x= ax∨ bx, ∀x ∈X ∪ {0}, a, b ∈ F.

Moreover, the linearity property

a(x∨ y) = ax∨ ay, ∀x, y ∈X ∪ {0}, a ∈ F

holds since θ is an order automorphism.

Proposition 3.10. There is a fully faithful functor ∨ : Arc −→ P1
F,

(X,θ) �→ (X,θ)∨ mapping morphisms in Arc to projective classes of linear

maps f such that f−1({0}) = {0}.
Proof. We know from Proposition 3.9 that if (X,θ) is an archimedean

set, then (X,θ)∨ is a semimodule over F. Next we show how to define the

functor f �→ f∨ on morphisms. Let f : (X,θ)→ (X ′, θ′) be a morphism in

Arc (thus fulfilling (1)); then we extend f at 0 by f(0) = 0 and obtain an

F-linear map f∨ : (X,θ)∨ → (X ′, θ′)∨. By construction, one has f−1({0}) =
{0}. Moreover, replacing f by θ′m ◦ f does not alter the projective class

of f∨ : (X,θ)∨ → (X ′, θ′)∨ since it replaces f∨ by umf∨. In this way one

obtains a functor Arc−→ P1
F. It is faithful by construction, so it remains to

show that it is full. Let h : (X,θ)∨ → (X ′, θ′)∨ be an F-linear map such that

h−1({0}) = {0}. Then the restriction of h to X defines a map f : (X,θ)→
(X ′, θ′) that fulfills (1). This shows the required surjectivity of the functor

on morphisms.

Remark 3.11. Any nonzero morphism h : (X,θ)∨ → (X ′, θ′)∨ fulfills

h−1({0}) = {0}. Indeed, assume that h−1({0}) contains an element x ∈X ;

then we prove that h(y) = 0 ∀y ∈X . The archimedean property shows that

for any y ∈X there exists an integer n such that y ≤ θn(x). It follows that

h(y)≤ θ′n(h(x)) = 0, and thus h(y) = 0.
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3.3. Geometric interpretation of the functor F1

In the above geometric terms, the functor F1 : Arc−→Sets is a special

case of the functor P :Proj−→Sets of Proposition 3.2; that is, the following

diagram commutes:

Arc

F1

∨ P1
F

P

Sets

One may wonder what geometric structure remains after passing from a

semimodule E to the set P(E). In ordinary projective geometry (where E

would be a vector space over a field), this structure is given by the map

(x, y) �→ �(x, y) which associates to a pair of distinct points of a projective

space the line determined by them. Then the axioms of projective geometry

characterize the obtained structures in the Desarguesian case.

In the above framework of projective geometry over F = Zmax, there is

a similar geometric structure: the “abstract circle” described by Moerdijk.

By definition an abstract circle C is given by the following data:

(14) C = (P,S,∂0, ∂1,0,1,∗,∪).

Here P and S are sets, ∂j : S → P are maps as well as P � x → 0x ∈ S

and P � x→ 1x ∈ S, ∗ : S → S is an involution, and ∪ is a partially defined

map from a subset of S × S to S. Here P plays the role of the set of

points of the geometry, while S plays the role of the set of lines, or rather

segments. In order to qualify as an abstract circle, the data (14) have to

fulfill certain axioms (see [7]). It follows from these axioms that given two

points x �= y ∈ P , there exists a unique segment s ∈ S such that ∂0(s) = x,

∂1(s) = y.

As shown in [7], there is a natural functor Q which associates to an object

(X,θ) of the category Arc an abstract circle X/θ and establishes in this way

an equivalence of categories.

The abstract circle X/θ = (P,S,∂0, ∂1,0,1,∗,∪) associated to an archime-

dean set (X,θ) is obtained as follows:

• P :=X/∼ is the orbit space for the action of Z on X given by powers of

θ, that is, P = P(E) := (E \ {0})/F× for E semimodule over F;
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• S is the orbit space for the action of Z on the set of pairs (x, y) ∈X2,

with x≤ y ≤ θ(x);

• ∂0(x, y) = x, ∂1(x, y) = y;

• 0x = (x,x), 1x = (x, θ(x));

• (x, y)∗ = (y, θ(x));

• (x, y)∪ (y, z) = (x, z), provided that x≤ y ≤ z ≤ θ(x).

It remains to be seen how to relax the conditions fulfilled by the mor-

phisms in the category of abstract circles so that the above discussion

extends to the category Arc �N× and the diagram below commutes:

Arc �N×

F

∨ PF

P

Sets

3.4. Restriction of scalars

In this section we implement the semigroup of endomorphisms of the

semifield F= Zmax to define a functor restriction of scalars for semimodules

E over F. To each integer n ∈ N× corresponds an endomorphism Frn ∈
End(F) given by Frn(x) := xn ∀x ∈ F. Moreover, one has the following.

Lemma 3.12. The map n �→ Frn is an isomorphism of semigroups: N× →
End(F) \ {ι}, where ι ∈ End(F) is the trivial endomorphism with range B⊂
F. Any injective endomorphism of F is equal to Frn for a unique n ∈N×.

Let E be a semimodule over F, and let n ∈ N×. Since Frn : F→ F is a

homomorphism of semifields, one can associate to E the semimodule Fn(E)

over F with the same underlying additive structure but with a redefined

multiplication by elements of F as follows:

λ.ξ := Frn(λ)ξ.

Since Frn is not surjective, this restriction of scalars fails to pass unambigu-

ously to projective classes of F-linear maps f with f−1({0}) = {0}. Indeed,
the ambiguity is retained by the group F×/Frn(F×)∼= μn.

3.5. Semilinear maps and Arc �N×

Next, we extend Proposition 3.10 to the category Arc �N×.
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Proposition 3.13. The functor ∨ :Arc �N× −→ PF, (X,θ) �→ (X,θ)∨, is
fully faithful.

Proof. Recall (see Definition 2.6) that the objects of the category Arc�N×

are archimedean sets, while the morphisms are equivalence classes of maps

which fulfill (8). The condition f(θ(x)) = θ′k(f(x)), ∀x ∈ X implies that

extending f by f(0) = 0, one obtains an F-semilinear map f∨ : (X,θ)∨ →
(X ′, θ′)∨, with f∨(λξ) = Frk(λ)f

∨(ξ) ∀λ ∈ F and ξ ∈ (X,θ)∨. Since any injec-

tive morphism σ : F→ F is equal to Frk for some k ∈N× (see Lemma 3.12),

the proof of Proposition 3.10 applies verbatim. It shows that the obtained

functor, from the category Arc �N× to the category of semimodules over F
with morphisms given by projective classes of semilinear maps f such that

f−1({0}) = {0}, is fully faithful.

3.6. The epicyclic category Λ̃ and projective geometry over

Zmax

We first investigate the structure of the semimodules E over F obtained

from the one-dimensional free semimodule by restriction of scalars using the

endomorphisms of F.

Proposition 3.14.

(i) The semimodules over F of the form (Z, θ)∨ (i.e., coming from archime-

dean sets of the form (Z, θ)) are obtained by restriction of scalars and

they are all of the form Fn(F) =: F(n), where the integer n ∈N is such

that θ(x) = x+ n, ∀x ∈ Z.
(ii) The functor P : PF →Sets, E −→ P(E), establishes a bijection between

the subsemimodules of F(n) and the subsets of P(F(n)).

(iii) Let E be a subsemimodule of F(n). Then E is isomorphic to F(k), where

k is the rank of E.

Proof. (i) The archimedean set n̂ = (Z, θ) with θ(x) = x+ n, ∀x ∈ Z, is
such that (Z, θ)∨ = Fn(F) as follows from the definition of the restriction of

scalars.

(ii) One has by construction P(E)⊂ P(F(n)), and this gives an injection

between the set of subsemimodules of F(n) and the set of subsets of P(F(n)).

To prove that this map is surjective, it is enough to show that given a subset

Y ⊂ P(F(n)) with k elements there exists a morphism f : F(k) → F(n) such

that the range of P(f) is Y . This statement will also prove (iii) provided that

f is an isomorphism with its range. From (i) one has F(n) = (Z, θ)∨, where
θ(x) = x+n ∀x ∈ Z. The subset {0, . . . , n−1} ⊂ Z is a fundamental domain
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for the action of θ and gives an identification P(F(n)) = {0, . . . , n− 1}. One

has Y = {y0, . . . , yk−1} ⊂ {0, . . . , n− 1}, where y0 < y1 < · · ·< yk−1. Let

f(x) := yx̄ + nE(x/k), ∀x ∈ Z,

where x̄ ∈ {0, . . . , n−1} is the residue of x modulo n, and E(z) is the integer

part of z ∈ R. Then f : Z→ Z is an increasing map and fulfills f(x+ k) =

f(x) + n ∀x ∈ Z. Thus f defines an injective morphism f : F(k) → F(n) such

that the range of P(f) is Y .

The next statement shows that the epicyclic category Λ̃ encodes projec-

tive geometry over the semifield F= Zmax, where the projective spaces P(E)

are constructed from the semimodules E = F(n) over F.

Theorem 3.15.

(i) The epicyclic category Λ̃ is canonically isomorphic to the full subcat-

egory PF ⊂ PF whose objects are obtained from the one-dimensional

free semimodule F= Zmax by restriction of scalars using the Frobenius

endomorphisms of F.
(ii) The cyclic category Λ⊂ Λ̃ is faithfully embedded as the subcategory P1

F ⊂
PF with the same objects of PF and whose morphisms are induced by

linear maps.

Proof. (i) The statement follows from Proposition 3.13, Proposition 2.8,

and Proposition 3.14. Thus the object [n−1] of Λ̃ corresponds canonically to

Fn(F) = F(n), and Proposition 3.13 determines the canonical isomorphism.

Statement (ii) follows from Proposition 3.10.

Next, we investigate how the inclusion Δ⊂ Λ of the simplicial category

into the cyclic category arises from extension of scalars from B to F= Zmax.

First, we need to relate the F-semimodule F(n) with the semimodule B(n,1)

(n ∈N). Both pairs (B,B(n,1)) and (F,F(n)) are objects of the category Proj

as in Definition 3.1.

Let ι : B→ F be the unique homomorphism of semifields. By construction

F(n) = (Z, θ)∨, where θ(x) = x+ n ∀x ∈ Z.
Let ιn : B(n,1) → F(n) be γ∨, where γ is the unique increasing map which

identifies the finite ordered set B(n,1) \{0} with the subset {0, . . . , n−1} ⊂ Z.

Proposition 3.16.

(i) The pair (ι, ιn) defines a morphism in Proj.
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(ii) Let f ∈ HomPB
(B(n,1),B(m,1)). Then there exists a unique f̃ ∈

HomP1
F

(F(n),F(m)) such that the following diagram commutes in Proj:

F(n) f̃
F(m)

B(n,1)

(ι,ιn)

f
B(m,1)

(ι,ιm)(15)

(iii) The functor PB −→P1
F, f �→ f̃ , corresponds to the canonical inclusion

Δ⊂ Λ.

Proof. (i) By construction ιn : B(n,1) → F(n) is additive and B-linear, thus
the pair (ι, ιn) defines a morphism (ι, ιn) ∈ HomProj((B,B(n,1)), (F,F(n)))

which is also represented for each k ∈ Z by the projectively equivalent pair

(ι, ukιn).

(ii) We identify B(n,1) \ {0} with the subset {0, . . . , n− 1} ⊂ Z. The mor-

phism f ∈ HomPB
(B(n,1),B(m,1)) is given by a unique nondecreasing map

(we still denote it by f ) f : {0, . . . , n − 1} → {0, . . . ,m − 1}. To prove the

existence of f̃ , one defines the map g : Z→ Z by

(16) g(j + kn) = f(j) + km, ∀j ∈ {0, . . . , n− 1}, k ∈ Z.

One then gets that g∨ ∈ HomP1
F

(F(n),F(m)) and that the diagram (15) is

commutative. This proves the existence of g = f̃ . To prove the uniqueness

of f̃ , note that every nonzero element of F(n) is of the form x= ukιn(y) for

some y ∈ B(n,1). Thus if the diagram (15), with h instead of f̃ , commutes in

Proj, there exists � ∈ Z such that h(j + kn) = f(j) + km+ �m ∀j ∈ {0, . . . ,
n− 1}, k ∈ Z, and this shows that h is in the same projective class as the

above g.

(iii) By construction g = f̃ fulfills (16), and this determines on the mor-

phisms the canonical embedding Δ⊂ Λ.

Remark 3.17. (a) When applied to the morphism (ι, ιn) ∈HomProj((B,
B(n,1)), (F,F(n))), the functor P of Proposition 3.2 determines a bijection

P(B(n,1))
P(ι,ιn)→ P(F(n)).



PROJECTIVE GEOMETRY IN CHARACTERISTIC ONE AND THE EPICYCLIC CATEGORY 117

Thus, as a set, the projective space does not change by implementing an

extension of scalars from B to F, and moreover it remains finite of cardinal-

ity n. One derives the definition of a full functor

P : PF −→ Fin, P(E) =
(
E \ {0}

)
/F×,

which associates to a semimodule E over F the finite quotient space (set)

P(E).

(b) It is important not to confuse the semimodule F(n) with the induced

module F⊗B B(n,1) that can be realized as the range P (Fn) of the projection

P as in (11) promoted to an element of Mn(F). There exists a unique map

φn : F × B(n,1) → F(n) = (Z, θ)∨ which vanishes whenever one of the two

arguments does so and is defined as follows:

φn : F×B(n,1) → F(n) = (Z, θ)∨,

φn(u
k, j) = θk(j) = j + kn, ∀j ∈ {0, . . . , n− 1}.

One has φn(x, i∨j) = φn(x, i)∨φn(x, j) ∀i, j ∈ {0, . . . , n−1} and x ∈ F. Also

φn(x ∨ y, i) = φn(x, i) ∨ φn(y, i) ∀i ∈ {0, . . . , n− 1} and x, y ∈ F. Moreover,

φn is F-linear; that is, one has φn(λx, j) = λφn(x, j) ∀λ ∈ F. Note that there

are more relations in F(n) than those holding in F⊗B B(n,1), for example,

the relation φ(1, i) ∨ φ(u, j) = φ(u, j) ∀i, j ∈ {0, . . . , n − 1}. The semimod-

ule F(n), when viewed as a semimodule over B, has free rank equal to 1

(rkB(F
(n)) = 1), while a similar conclusion fails to hold, as soon as n > 1,

for the semimodule B(n,1) ⊗B F.
As a set, F(n) is the smash product F ∧ B(n,1) and its additive structure

is given by the lexicographic order on the nonzero elements. One needs to

clarify in which sense this lexicographic smash product plays the role of the

tensor product ⊗ for B-semimodules of free rank 1.

Table 1 summarizes the geometric interpretation of the three categories

Δ⊂ Λ⊂ Λ̃ in terms of the geometric categories PB ⊂P1
F ⊂PF (F= Zmax).

3.7. The perfection of Zmax

Let Fpf =Qmax := (Q∪{−∞},max,+) be the subsemifield of Rmax
+ (writ-

ten multiplicatively) containing the (sub)semifield F= Zmax (generated by

the element u > 1 of Rmax
+ ) as well as all rational powers uα, α ∈Q.

Recall that a semifield K of characteristic one is called perfect when

the map x �→ xn is surjective ∀n ∈ N×. The map Frn : x �→ xn defines an
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Table 1

Projective geometry PB over B Simplicial category Δ∼= PB

Projective geometry P1
F over F (linear) Cyclic category Λ∼= P1

F

Projective geometry PF over F (semilinear) Epicyclic category Λ̃∼= PF

automorphism of K, and one obtains an action Fr of the multiplicative

group Q�
+ on K such that Frα =Frn ◦Fr−1

m for α= n/m.

The following statement summarizes the main properties of Fpf =Qmax.

Proposition 3.18.

(i) The semifield Fpf is perfect, contains F, and for any perfect semifield

K ⊃ F one derives a canonical homomorphism Fpf →K extending the

inclusion F⊂K.

(ii) Any finitely generated subsemifield of Fpf containing F is the inverse

image Fr−1
n (F) = Fr1/n(F) of F for some integer n ∈ N. For m,n ∈ N

one has Fr−1
n (F)⊂ Fr−1

m (F) if and only if n |m.

(iii) The intersection of the semifields Frm(F) ∀m ∈N is the semifield B.

Proof. (i) A semifield K of characteristic one is perfect if and only if its

multiplicative group K× is uniquely divisible. This fact implies (i) since

Q⊃ Z is the uniquely divisible closure of Z.

(ii) Let K ⊂ Fpf be a finitely generated subsemifield of Fpf containing F.

Since sums s=
∑

bj of elements of Fpf give one of the bj , the multiplicative

subgroup K× ⊂K is a finitely generated subgroup of (Fpf)× =Q, and thus

is of the form 1
nZ⊂Q. This implies (ii).

The proof of (iii) is immediate.

Remark 3.19. In a semifield K of characteristic one, x = 1 is the only

solution of the equation xn = 1 since the endomorphism Frn is injective.

It follows that for any proper extension K � Fpf , the group K×/Fpf× is

infinite and torsion-free. Indeed K× is torsion-free and the group (Fpf)× =Q

is divisible, thus K×/Fpf× is also torsion-free.
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§4. Duality

One key property of the cyclic category Λ is that it is anti-isomorphic to

itself, that is, one has a contravariant functor Λ−→ Λ, f �→ f t, that deter-

mines an isomorphism Λ ∼= Λop. In this section we show that this duality

corresponds to transposition of linear maps in the framework of projective

geometry in characteristic one as developed in Section 3.

4.1. Self-duality of Λ

Proposition 4.1.

(i) Let a, b > 0 be integers, and let f : Z→ Z be a nondecreasing map such

that f(x+ a) = f(x) + b for all x ∈ Z. Then there exists a unique map

f t : Z→ Z such that

(17) f(x)≥ y ⇐⇒ x≥ f t(y), ∀x, y ∈ Z.

Moreover, f t is nondecreasing and fulfills f t(x+ b) = f t(x) + a for all

x ∈ Z.
(ii) Let h ∈ HomΛ([n], [m]). Then the class of f t is independent of the

choice of f ∈ h and defines an element ht ∈HomΛ([m], [n]).

(iii) The association h �→ ht defines a contravariant functor Λ−→ Λ.

Proof. (i) The inverse image f−1(I) of an interval I ⊂ Z of length b is an

interval J of length a, since the translates I + kb form a partition of Z and

f−1(I + kb) = J + ka. It follows that f−1([y,∞)) is of the form [f t(y),∞)

for a uniquely defined map f t : Z→ Z. For y ≤ y′ one has f−1([y′,∞)) ⊂
f−1([y,∞)) and thus f t(y′)≥ f t(y), so that f is nondecreasing. Moreover,

the equality f−1(I + kb) = J + ka shows that f t(x+ b) = f t(x) + a ∀x ∈ Z.
(ii) Let f : Z → Z be as in (i). Let k ∈ Z and f ′ be given by f ′(x) =

f(x)−kb ∀x ∈ Z. Then one has for any interval I ⊂ Z of length b, f ′−1(I) =

f−1(I + kb) = J + ka. This shows that f ′t(y) = f t(y) + ka ∀y ∈ Z. Taking
a= n+ 1, b=m+ 1, and using (i), one obtains the required statement.

(iii) This follows from the equalities (f ◦ g)−1[y,∞) = g−1(f−1[y,∞)) =

g−1[f t(y),∞) = [gt(f t(y)),∞) which show that (f ◦ g)t = gt ◦ f t.

Let C be a small category, and let α be a map which assigns to each object

j of C an element α(j) ∈ AutC(j). We then denote by Ad(α) ∈ Aut(C) the

automorphism which is the identity on objects and is given on morphism

by

(18) Ad(α)(h) := α(j) ◦ h ◦ α(i)−1, ∀h ∈HomC(i, j).
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We call such automorphisms inner, and we endow the group Aut(C) of

automorphisms of C with the topology of pointwise convergence for the

discrete topology.

Proposition 4.2.

(i) The covariant functor Λ−→ Λ, which is the square of h �→ ht, is equiv-

alent to the identity by the natural transformation implemented by the

map [n] �→ τ ∈AutΛ([n]), τ(x) = x− 1 ∀x ∈ Z.
(ii) Let Ad(τ) ∈ Aut(Λ) be the inner automorphism obtained as in (18)

using the map [n] �→ τ ∈ AutΛ([n]). The action of the group Z on Λ:

j �→Ad(τ)j extends to a continuous action of the profinite completion

Ẑ, α : Ẑ→Aut(Λ).

(iii) An automorphism γ ∈Aut(Λ) belongs to α(Ẑ) if and only if it is inner

and its unique extension to Λ̃ as an inner automorphism fixes the ψk

of (5).

Proof. (i) Let h ∈ HomΛ([n], [m]), and let f ∈ h. Then f t ∈ ht so that

(17) holds. Using (17) one obtains f(x) < y ⇐⇒ x < f t(y) ∀x, y ∈ Z, or
equivalently f t(y)≥ x+1 ⇐⇒ y ≥ f(x)+1 ∀x, y ∈ Z. One also has f t(y)≥
x+1 ⇐⇒ y ≥ (f t)t(x+1) ∀x, y ∈ Z, which thus gives the equality (f t)t(x+

1) = f(x) + 1, ∀x ∈ Z.
(ii) Let z = (za)a∈N ∈

∏
a∈N Z/aZ. Then the map [n] �→ τ zn+1 ∈AutΛ([n])

implements an inner automorphism β(z) ∈Aut(Λ), and the map β :
∏

a∈N Z/
aZ → Aut(Λ) is a continuous group homomorphism. Composing β with

the natural inclusion Ẑ⊂
∏

a∈N Z/aZ, one obtains the required continuous

action α : Ẑ→Aut(Λ).

(iii) Let γ ∈Aut(Λ) be an inner automorphism. Then we claim that there

exists a unique z = (za)a∈N ∈
∏

a∈N Z/aZ such that γ = β(z). Indeed, since

every element of AutΛ([n]) is a power τ zn+1 , one gets the existence of z. The

uniqueness follows since the action of γ on HomΛ([0], [n]) uniquely deter-

mines zn+1 modulo n+1. For a pair n,k ∈N, one has ψk ∈HomArc�N×(Ψk(n̂),

n̂) and τaψk = ψkτ
b ⇐⇒ b≡ a modulo n. Thus the extension of the inner

automorphism γ = β(z) to Λ̃ fixes the ψk if and only if

(19) zb ≡ za modulo a, ∀b= ka.

In turn (19) characterizes the elements of the projective limit Ẑ= lim←−Z/aZ,
thus (iii) holds.
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4.2. Duality and transposition for semimodules

Next we describe the relation between the contravariant functor Λ−→Λ,

f �→ f t and the transposition of morphisms in linear algebra. Transposi-

tion is determined in a precise form by implementing the duality for B-
semimodules E with rkE = 1. Recall that for any such B-semimodule E,

the relation x≤ y ⇐⇒ x∨ y = y is a total order on E.

Proposition 4.3.

(i) Let E be a B-semimodule with rkE = 1. Then for any y ∈E, the fol-

lowing formula defines a linear form �y ∈HomB(E,B):

(20) �y(x) = 〈x, y〉B :=

{
0, if x≤ y,

1, if x > y.

(ii) For z, t ∈E, set z∧t := inf(z, t). The pairing (20) satisfies the following

bilinearity property:

(21) 〈x∨ y, z ∧ t〉B = 〈x, z〉B + 〈y, z〉B + 〈x, t〉B + 〈y, t〉B,

where + denotes the idempotent addition in B.
(iii) Let E be a B-semimodule with rkE = 1, and let rkE <∞. Let E∗ be

the set E endowed with the binary operation ∧ as in (ii). Then E∗ is a

B-semimodule with rkE∗ = 1, rkE∗ = rkE. Moreover, the map y �→ �y
defines a B-linear isomorphism E∗ ∼→HomB(E,B).

Proof. (i) One has �y(0) = 0 since 0 ≤ y, ∀y ∈ E. Moreover, for any

two elements x,x′ ∈ E the following equality holds: 〈x ∨ x′, y〉B = 〈x, y〉B +

〈x′, y〉B, since one of these elements is greater than y if and only if the largest

of the two is greater than y.

(ii) For y, z ∈ E, with y ∧ z := inf(y, z) one has 〈x, y ∧ z〉B = 〈x, y〉B +

〈x, z〉B,∀x ∈E. Indeed, inf(y, z)< x if and only if y < x or z < x.

(iii) We can view E as a finite totally ordered set. Then E∗ is the same

set but endowed with the opposite ordering so that the largest element of E

is the smallest in E∗, that is, the 0-element for E∗. It follows that rkE∗ = 1,

rkE∗ = rkE. The map E∗ →HomB(E,B), y �→ �y is B-linear by (21). It is

injective since �−1
y ({0}) = [0, y]. We show that it is also surjective. Let L ∈

HomB(E,B); then L(0) = 0 and L is a nondecreasing, so L−1({0}) = [0, y]

for some y ∈E, and thus L= �y.
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Proposition 4.3 shows that the duality of B-semimodules E with rkE = 1

and rkE <∞ behaves similarly to the duality holding for finite-dimensional

vector spaces over fields, and it produces in particular the transposition of

linear maps defined as follows. Let E∗ =HomB(E,B) and F ∗ =HomB(F,B):

HomB(E,F ) � f �→ f∗ ∈HomB(F
∗,E∗),

f∗(L) = L ◦ f, ∀L ∈HomB(F,B).

As a corollary of Proposition 3.7, one derives the following.

Proposition 4.4. The simplicial category Δ is canonically isomorphic

to the full subcategory of the category of B-semimodules whose objects are

the B(n,1) for n ≥ 1, and the morphisms are the linear maps f such that

f−1({0}) = {0}.

Although one has a canonical isomorphism (B(n,1))∗ ∼= B(n,1), the con-

dition f−1({0}) = {0} is not preserved by transposition. In the following

discussion we will show that the transposed of the above condition is under-

stood within the category J of intervals (i.e., totally ordered sets) I with

a smallest element bI ∈ I (bI ≤ a, ∀a ∈ I) and a largest element tI ∈ I (see

[18, VIII.8]).

The morphisms of the category J are

Hom≥(I, J) =
{
f : I → J

∣∣ x≤ y =⇒ f(x)≤ f(y), f(bI) = bJ , f(tI) = tJ
}
,

namely, nondecreasing maps preserving the two endpoints. Notice that given

a B-semimodule E with rk(E) = 1 and rk(E)<∞, the underlying ordered

set E≤ is an interval.

Proposition 4.5. Let f ∈ HomB(E,F ), with E,F , B-semimodules of

finite rank and free rank 1. Then

(i) f−1({0}) = {0} if and only if f∗ ∈Hom≤(F ∗
≤,E

∗
≤);

(ii) f ∈ Hom≤(E≤, F≤) if and only if f∗ ∈ HomB(F
∗,E∗) fulfills

(f∗)−1({0}) = {0};
(iii) the transposition of maps f �→ f∗ determines an isomorphism of Δop

with the full subcategory of J defined by the intervals of the form n∗ :=
{0,1, . . . , n+ 1}, for n≥ 0.

Proof. (i) Let E be a B-semimodule with rkE = 1 and rkE <∞. Then

HomB(E,B) is an interval whose largest element is the linear form τE :
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τE(x) = 1 ∀x ∈E, x �= 0. For f ∈HomB(E,F ) as in (i), one has f−1({0}) =
{0} if and only if τF ◦ f = τE . The smallest element of HomB(F,B) is the

linear form 0 which is automatically preserved by composition with any

f ∈HomB(E,F ).

(ii) One has f ∈Hom≤(E≤, F≤) if and only if f(tE) = tF , where tE (resp.,

tF ) is the largest element of E. This holds if and only if tE /∈ f−1([0, y])

∀y < tF , that is, if and only if (f∗)−1({0}) = {0}.
(iii) For n≥ 0, the dual semimodule (B(n+1,1))∗ is an interval of cardinality

n+2, and hence coincides with n∗. Transposition determines a contravariant

functor PB −→J .

In terms of the isomorphism E∗ →HomB(E,B), y �→ �y of Proposition 4.3,

the transposed f∗ of f ∈HomB(E,F ) replaces �y by �y ◦ f , for y ∈ F , and

hence is defined by the equation

(22)
〈
f(x), y

〉
B
=
〈
x, f∗(y)

〉
B
, ∀x ∈E,y ∈ F ∗.

Using the above notation, we obtain the following description for the

basic equation (17):

(23)
〈
y, f(x)

〉
B
=
〈
f t(y), x

〉
B
, ∀x, y ∈ Z.

This shows that, once interpreted in the framework of characteristic one,

the contravariant functor Λ−→Λ, f �→ f t, is simply inverse transposition.

Remark 4.6. At first, it might seem puzzling that the transposition

f �→ f∗ fulfills (f∗)∗ = f while the map f �→ f t of Proposition 4.5 is not

involutive. The reason for this behavior is that for a finite totally ordered set

E viewed as a B-semimodule, the dual E∗ is the same set but endowed with

the opposite order: x≤∗ y ⇐⇒ y ≤ x. By applying (22) one derives f∗(z)≤∗

t ⇐⇒ z ≤∗ (f∗)∗(t),∀z ∈ F ∗, t ∈ E∗ which is equivalent to t ≤ f∗(z) ⇐⇒
(f∗)∗(t)≤ z. This shows, using (22), that (f∗)∗ = f . When considering the

map f �→ f t of Proposition 4.5, one applies the same formula twice, while

taking into account the opposite order would provide the inverse of the map

f �→ f t. Since the negation of x ≤ y is x > y, that is, y + 1 ≤ x, for the

ordered set Z, the translation of 1 pops up and conjugates the map f �→ f t

with its inverse.

Next, we develop the above duality directly at the level of semimodules

over F = Zmax. Let (X,θ) be an archimedean set, and let E = (X,θ)∨ be
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the associated semimodule over F as in (12) and (13). The archimedean

property ensures that the following pairing is well defined with values in F:

(24) 〈x, y〉F := inf{v ∈ F | x≤ vy}, ∀x, y ∈E,y �= 0.

Proposition 4.7.

(i) Let (X,θ) be an archimedean set, and let E = (X,θ)∨ be the associated

semimodule over F (see Proposition 3.9). Let E∗ = (X ′, θ−1)∨, where
X ′ is the set X endowed with the opposite order. Then (24) defines a

bilinear pairing E ×E∗ → F.
(ii) Let X = Z, θ(x) = x+n, and let E, E∗ be the associated semimodules

over F as in (i). Then (24) determines an isomorphism

� :E∗ ∼→HomF(E,F), �y(x) := 〈x, y〉F, ∀x ∈E,y ∈E∗.

(iii) The contravariant functor f �→ f t from Λ to Λ is the inverse of trans-

position f �→ f∗:

HomF(E,F ) � f �→ f∗ ∈HomF(F
∗,E∗),

(25) 〈
f(x), y

〉
F =

〈
x, f∗(y)

〉
F, ∀x ∈E,y ∈ F ∗.

Proof. (i) For y ∈X , the archimedean property ensures that the set {v ∈
F | x ≤ vy} is nonempty ∀x ∈ E. Thus (24) is well defined and gives 0 ∈ F
only for x = 0 ∈ E. For 0 �= λ ∈ F, one has {v ∈ F | λx ≤ vy} = λ{v ∈ F |
x≤ vy}, which shows that 〈λx, y〉F = λ〈x, y〉F. For x≤ x′, one has {v ∈ F |
x′ ≤ vy} ⊂ {v ∈ F | x≤ vy}, thus 〈x, y〉F ≤ 〈x′, y〉F. This shows that the map

x �→ 〈x, y〉F ∈ F is F-linear. For x, y ∈ E and y �= 0, one has for 0 �= λ ∈ F:
〈x,λy〉F = λ−1〈x, y〉F, which corresponds to the F-linearity in E∗. Also one

has 〈x, y′〉F ≤ 〈x, y〉F for y ≤ y′ for y, y′ ∈E. This corresponds to the linearity

in E∗. Thus the pairing (24) is bilinear.

(ii) It follows from (i) that the map � :E∗ →HomF(E,F) is well defined

and linear. Let L ∈HomF(E,F). We show that there exists a unique y ∈E∗

with �y = L. This holds for L = 0, thus we can assume that L(x0) �= 0 for

some x0 ∈E. The archimedean property implies that the kernel of L, that

is, {x ∈ E | L(x) = 0}, is reduced to {0} since for any x ∈ E there exists

λ ∈ F with x≥ λx0 so that L(x)≥ λL(x0) �= 0. Replacing L by a multiple

μL for some μ �= 0, we can thus assume that L corresponds, at the level

of archimedean sets, to a nondecreasing map f : Z → Z with f(x + n) =

f(x)+1 ∀x ∈ Z and that f(0) = 0. One then has f(n) = 1, and f is uniquely
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determined by the element y ∈ [0, n− 1] such that f(x) = 0 ⇐⇒ x≤ y. We

show that L= �y; that is, that for any x ∈ Z, f(x) = g(x) where g(x) is the

smallest integer k ∈ Z such that x≤ y+kn. Since g(x+n) = g(x)+1, ∀x ∈ Z,
it is enough to prove that f(x) = g(x) for x ∈ [0, n− 1]. For x ∈ [0, y], one

gets g(x) = 0, since y−n < x≤ y. For x ∈ [0, n−1], x > y, one has g(x) = 1,

since y < x≤ y+n. This shows that L= �y for a unique y ∈ Z and thus that

the map � :E∗ →HomF(E,F) is bijective.
(iii) The equality

�B(x) =

{
0, if x≤ 1,

1, if x > 1,
∀x ∈ F

defines a linear form �B : F→ B. Moreover, for (X,θ) an archimedean set

and E = (X,θ)∨ the associated semimodule over F, one has

〈x, y〉B =�B
(
〈x, y〉F

)
, ∀x, y ∈E,y �= 0.

Indeed, x≤ y if and only if 1 ∈ {v ∈ F | x≤ vy}. By construction, the trans-

position HomF(E,F ) � f �→ f∗ ∈ HomF(F
∗,E∗) fulfills (25). Applying �B

to both sides of (25), one obtains〈
f(x), y

〉
B
=
〈
x, f∗(y)

〉
B
, ∀x ∈E,y ∈ F ∗,

and this shows, using (23), that (f∗)t = f .

Remark 4.8. Let (X,θ) be an archimedean set, and let E = (X,θ)∨ be

the associated semimodule over F. Let E∗ = (X ′, θ−1)∨, where X ′ is the

set X endowed with the opposite order. It is not true in general that the

archimedean sets (X,θ) and (X ′, θ−1) are isomorphic. But this holds for

archimedean sets of the form (Z, θ) as in Proposition 4.7(ii). The choice of

an isomorphism σ : (X,θ)→ (X ′, θ−1) yields the notion of quadratic form on

the associated semimodule E = (X,θ)∨ over F. One can then obtain, using

a choice of σ for (Z, θ), the analogue in the above setup of characteristic

one, of the geometries of type Bn and Dn. We will not pursue this line

here but only point out that it fits perfectly with the theory developed in

[19, Section 13] through the involution that σ determines on the associated

projective space P(E).
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4.3. Lift of permutations and cyclic descent number

Following a traditional point of view, the symmetric group Sn is inter-

preted as the limit for q → 1 of the general linear group GLn(Fq) over a

finite field Fq. Note that in the limit, the cardinality of the projective space

Pn−1(Fq) becomes n. In Proposition 2.10 we proved that F1 extends to a

functor F : Arc �N× −→Sets. When interpreted in terms of geometry over

the semifield F= Zmax, this functor associates to a semimodule E over F the

quotient set (E \{0})/F×. Now we restrict this functor to the epicyclic cate-

gory Λ̃, that is, to the semimodules F(n) obtained from the one-dimensional

free vector space F by restriction of scalars as explained in Theorem 3.15.

Note that since the semigroup of injective endomorphisms of F is canonically

isomorphic to N×, the functor Mod restricts to a functor Mod :PF −→N×,
where N× is viewed as a category with a single object.

Definition 4.9 (see [17, Section 4.6.1]). Let σ ∈ HomFin([n], [m]) be a

map of sets. Then the cyclic descent number of σ is defined to be

cdesc(σ) =#
{
j ∈ {0,1, . . . , n}

∣∣ σ(j + 1)< σ(j)
}
,

where we identify n+ 1∼ 0.

The following result provides a geometric interpretation of the cyclic

descent number of an arbitrary permutation as the measure of its semi-

linearity.

Proposition 4.10.

(i) The functor P : PF −→ Fin is full.

(ii) Let σ ∈HomFin([n], [m]). Then cdesc(σ) is the smallest integer k such

that there exists f ∈HomPF
(F(n),F(m)), Mod(f) = k with P(f) = σ.

(iii) Let σ ∈HomFin([n], [m]) with cdesc(σ) = k. Then there exists a unique

f ∈HomPF
(F(n),F(m)), Mod(f) = k such that P(f) = σ.

Proof. It is enough to prove (ii) and (iii). Let Uk be the set of f ∈
HomArc�N×([n], [m]), ρ(f) = k (see Proposition 2.7(ii)) such that F(f) = σ.

Using Theorem 3.15, it is enough to show that Uk =∅ for k < cdesc(σ) and

that if k = cdesc(σ), then Uk contains a single element. By construction (see

Definition 2.6), the elements of Uk are equivalence classes of nondecreasing

maps, modulo the addition of a constant multiple of m+ 1, f : Z→ Z such

that

(a) f(x+ (n+ 1)) = f(x) + k(m+ 1) ∀x ∈ Z,
(b) f(x) ∈ σ(x) + (m+ 1)Z ∀x ∈ {0,1, . . . , n,n+ 1}, σ(n+ 1) := σ(0).
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In each equivalence class there is a unique representative f such that

f(0) = σ(0): in the following we assume this normalization condition. We

let

c(x) =#
{
j ∈ {0,1, . . . , x− 1}

∣∣
σ(j + 1)< σ(j)

}
, ∀x ∈ {0,1, . . . , n,n+ 1},

(26)

where by convention we set σ(n + 1) := σ(0) so that c(n + 1) = cdesc(σ).

For x ∈ {0,1, . . . , n,n+1}, let b(x) ∈ Z such that f(x) = σ(x)+ (m+1)b(x).

One has b(0) = 0, and since f(1)≥ f(0), we get b(1)≥ c(1). More generally,

for j ∈ {0,1, . . . , n}, one obtains

f(j + 1)≥ f(j) =⇒ b(j + 1)− b(j)≥ c(j + 1)− c(j).

Indeed, one has (m+1)(b(j+1)− b(j))≥ (σ(j)−σ(j+1)) and this implies

Z � b(j + 1)− b(j)≥ σ(j)− σ(j + 1)

m+ 1
>−1.

If σ(j + 1)< σ(j), then b(j + 1)− b(j)≥ 1 = c(j + 1)− c(j).

The inequalities b(j+1)− b(j)≥ c(j+1)− c(j) for j ∈ {0,1, . . . , n} toget-

her with b(0) = c(0) = 0 show that b(n+1)≥ c(n+1). By (a) one has b(n+

1) = k, while c(n+1) = cdesc(σ). Thus Uk =∅ for k < cdesc(σ). Moreover,

for k = cdesc(σ), all the inequalities b(j + 1) − b(j) ≥ c(j + 1) − c(j) for

j ∈ {0,1, . . . , n} become equalities and we obtain

(27) f(x) = σ(x) + (m+ 1)c(x), ∀x ∈ {0,1, . . . , n},

which provides the required uniqueness, thus Uk contains at most one ele-

ment. Moreover, one easily checks that the function f defined by (27) on

{0,1, . . . , n} and extended by periodicity using (a) is nondecreasing and

belongs to Uk.

§5. Extension of scalars −⊗B S to hyperfields

The algebraic constructions discussed in the earlier sections for semifields

are in fact the positive part of a general picture that one can elaborate in

terms of hyperfields. The development of this translation into the frame-

work of hyperstructures allows one to link with the results of [9], where

it was shown that by implementing the theory of hyperstructures one can

parallel successfully Fontaine’s p-adic arithmetic theory of “perfection” and
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subsequent Witt extension by combining a process of dequantization (to

characteristic one) and a consecutive Witt construction (to characteristic

zero). It turns out that the semimodules implemented over the semifields B
and F of the last sections fulfill precisely the property (28) below that allows

one to apply the symmetrization process introduced in [16]. This procedure

associates to a commutative monoid M such that

∀x, y,u, v ∈M, x+ y = u+ v

=⇒ ∃z ∈M,

{
x+ z = u, z + v = y,

or x= u+ z, v = z + y

(28)

a hypergroup s(M), which is the universal solution to the embedding of M

into a hypergroup.

It is shown in [16] that the condition (28) is equivalent to the existence

of a common refinement of any two decompositions of an element of M as

a sum.

Let E be a semimodule over B. Then using the results of [16] one shows

that E, as a monoid, fulfills (28) if and only if rkE = 1. Moreover, in [16], it

is also proven that the hypergroup s(E), which is the universal solution to

the embedding of E into a hypergroup, coincides with the tensor product

E ⊗B S which we now describe in detail. Let E be a semimodule over B
such that rkE = 1. We denote by E ⊗B S the quotient of E × {±1} by the

equivalence relation that identifies (0,−1)∼ (0,1). We use the notation ±x

for the elements of E×{±1}, and we denote by x �→ |x| the projection from

E ⊗B S to E, so that |±x| := x. We endow E ⊗B S with the multivalued

binary operation (here we use the total order < of E)

(29) x� y =

⎧⎪⎨⎪⎩
x, if |x|> |y| or x= y;

y, if |x|< |y| or x= y;

[−x,x], if y =−x,

where the interval [−x,x] is defined to be the set {z ∈E ⊗B S | |z| ≤ |x|}.
The following lemma lists several properties inherent to the above-defined

tensor product.

Lemma 5.1. Let E,F be semimodules over B such that rkE = rkF = 1.
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(i) The tensor product E ⊗B S is a canonical hypergroup and a module

over S in the following sense:

λ(v � v′) = λv � λv′,

(λ+ λ′)v ⊂ λv � λ′v, ∀λ,λ′ ∈ S,∀v, v′ ∈E ⊗B S.
(30)

(ii) Let f : E → F be a morphism of B-semimodules. Then the following

formula defines a morphism of S-modules:

f ⊗B idS :E ⊗B S→ F ⊗B S, f ⊗B idS(±x) :=±f(x), ∀x ∈E.

(iii) Let ε : (E \ {0})→{±1} be a map of sets. Then the following defines

an automorphism ε̃ :E ⊗B S→E ⊗B S (as a module over S):

ε̃(±x) :=±ε(x)x, ∀x ∈E.

(iv) Let g ∈HomS(E ⊗B S, F ⊗B S) be a morphism of S-modules such that

g−1({0}) = {0}. Then there exists a unique pair (f, ε) of a morphism

of B-semimodules f : E → F and a map of sets ε : (E \ {0})→ {±1}
such that g = (f ⊗B idS) ◦ ε̃.

Proof. (i) We recall (see [6]) that the definition of a canonical hypergroup

H requires that H have a neutral element 0 ∈H (i.e., an additive identity)

and that the following axioms apply:

(1) x+ y = y+ x,∀x, y ∈H ;

(2) (x+ y) + z = x+ (y+ z),∀x, y, z ∈H ;

(3) 0 + x= x= x+ 0,∀x ∈H ;

(4) ∀x ∈H ∃!y(=−x) ∈H s.t. 0 ∈ x+ y;

(5) x ∈ y+ z =⇒ z ∈ x− y.

Axioms (1), (3), and (4) are easy to verify for E⊗B S. To check (2), note

that if among |x|, |y|, |z| only one, say, |x|, is strictly larger than the others,

then both sides of (2) give x. For |y| ≤ |x|, one has y � [−x,x] = [−x,x] since

y � [−x,x] contains [−y, y] and any z such that |y| < |z| ≤ |x|. It follows

that (2) holds when, among |x|, |y|, |z| two are equal and strictly larger

than the remaining one. Finally, when |x|= |y|= |z|, both sides give [−x,x]

except when x= y = z, in which case they both give x. The condition (5)

follows from the first four since both sides are equivalent to 0 ∈−x+ y+ z.

This shows that E⊗BS is a canonical hypergroup. Moreover, one has −x�

−y = −(x� y) ∀x, y ∈ E ⊗B S, which gives the first equality of (30). One
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finally checks that the second inclusion holds and is in general strict for

λ′ =−λ.

(ii) Let g : E ⊗B S → F ⊗B S be defined by g(±x) := ±f(x), ∀x ∈ E.

By construction, g(λx) = λg(x) ∀λ ∈ S and ∀x ∈ E ⊗B S. It remains to

check that g is a morphism of hypergroups, that is, that g(x� y)⊂ g(x)�

g(y) ∀x, y ∈ E ⊗B S. Since f is nondecreasing, |g(x)| ≤ |g(y)| if |x| ≤ |y|. If
|x| < |y| x � y = y, g(x � y) = g(y) ∈ g(x) � g(y) since v ∈ u � v when

|u| ≤ |v|. The only remaining case to consider is when y = −x. One has

g(x�−x) = g([−x,x])⊂ [−g(x), g(x)].

(iii) By construction, ε̃(λx) = λε̃(x) ∀λ ∈ S and ∀x ∈E⊗BS. It remains to

show that ε̃(x� y) = ε̃(x)� ε̃(y) ∀x, y ∈E⊗BS. In fact, one has |ε̃(x)|= |x|
∀x ∈E ⊗B S. Thus (29) shows the required equality when |x| �= |y| or when
x = y. The only remaining case is y = −x, and in that case the equality

follows from ε̃([−x,x]) = [−x,x].

(iv) The map f :E → F is uniquely determined by f(x) := |g(x)| ∀x ∈E.

Since g−1({0}) = {0}, this determines uniquely the map ε :E \ {0}→ {±1}
such that g = (f ⊗B idS) ◦ ε̃. It only remains to show that f is nonde-

creasing, that is, that x≤ y implies |g(x)| ≤ |g(y)|. Assume that x < y and

that |g(x)|> |g(y)|. By hypothesis, one has g(x� y)⊂ g(x)�g(y) ∀x, y ∈
E ⊗B S and this contradicts (29), which gives x� y = y and g(x)�g(y) =

g(x).

Applying Lemma 5.1 to the semifields F ⊂ Fpf (F = Zmax), one obtains

the corresponding hyperfields F⊗B S ⊂ Fpf ⊗B S. The hyperfield Fpf ⊗B S

is perfect and coincides with the perfection of F⊗B S. Using this functorial

construction, one can recast the results of the previous sections in terms of

hyperfields.

Finally, note that as a set, the projective space P(E) remains unchanged

after shifting to the framework of hyperfields since the multiplicative group

of, for example, F⊗B S, is simply the product of F× by the group of signs

{±1}= S×. Thus for a semimodule E over F, the following equality of sets

holds: (
(E ⊗B S) \ {0}

)
/(F⊗B S)× = P(E) =

(
E \ {0}

)
/F×.
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[11] C.-A. Faure and A. Frölicher, Morphisms of projective geometries and semilinear
maps, Geom. Dedicata 53 (1994), 237–262. MR 1311317. DOI 10.1007/BF01263998.

[12] J. S. Golan, Semirings and Their Applications, Kluwer Academic, Dordrecht, 1999.
MR 1746739. DOI 10.1007/978-94-015-9333-5.

[13] M. Gondran and M. Minoux, Graphs, Dioids and Semirings: New Models and Algo-
rithms, Oper. Res./Comput. Sci. Interfaces Ser. 41, Springer, New York, 2008.
MR 2389137.

[14] T. G. Goodwillie, Cyclic homology, derivations, and the free loop space, Topology 24
(1985), 187–215. MR 0793184. DOI 10.1016/0040-9383(85)90055-2.

[15] , personal communication to F. Waldhausen, August 10, 1987.
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