
Nagoya Math. J. 219 (2015), 65–86
DOI 10.1215/00277630-2887835

A MCSHANE-TYPE IDENTITY FOR CLOSED
SURFACES

YI HUANG

Abstract. We prove a McShane-type identity: a series, expressed in terms of
geodesic lengths, that sums to 2π for any closed hyperbolic surface with one
distinguished point. To do so, we prove a generalized Birman–Series theorem
showing that the set of complete geodesics on a hyperbolic surface with large
cone angles is sparse.

Introduction

In his Ph.D. dissertation, McShane [6] obtained the following beautiful

identity summed over the collection C of all simple closed geodesics on a

hyperbolic 1-cusped torus S1,1:

∑
γ∈C

1

1 + exp �γ
=

1

2
,

where �γ denotes the hyperbolic length of the closed geodesic γ. By doubling

both sides, these summands may be interpreted in terms of probability: cut-

ting S1,1 along any simple closed geodesic γ ∈ C gives us a pair of pants Pγ ,

and 2
1+exp �γ is the chance that a geodesic shooting out from the cusp in S1,1

hits itself before leaving Pγ . These probabilities sum to 1 since the Birman–

Series theorem (see [1]) on the sparsity of complete geodesics informs us that

almost all geodesics are self-intersecting. In subsequent articles (see [7], [8]),

this work was extended to include identities at the Weierstrass point of the

1-cusped torus and for surfaces with more cusps and genera.

Mirzakhani in [10] then generalized these identities to hyperbolic surfaces

with geodesic boundary and used them to unfold the volume of a mod-

uli space of bordered Riemann surfaces over topologically simpler moduli

spaces. In so doing, she obtained explicit recursions for the Weil–Petersson
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volumes of these moduli spaces. She then used symplectic reduction to inter-

pret these volumes as intersection numbers [11] and derived a new proof for

(most of) Witten’s conjecture [17].

Almost concurrently, Tan, Wong, and Zhang [15] independently derived

Mirzakhani’s generalized McShane identities for bordered surfaces. They

also obtained such identities for hyperbolic surfaces with cone points with

angles less than or equal to π, extending the Birman–Series sparsity theo-

rem out of necessity. In particular, they observed that the cone point iden-

tities are analytic continuations of the geodesic boundary identities, where

real boundary lengths are replaced with imaginary ones. Their cone-angle

constraint is because certain pairs of pants fail to exist for angles greater

than π.

Until fairly recently, the only McShane identity known for a closed hyper-

bolic surface was the following result taken from [9]: let A be the set of all

pairs (γ1, γ2) of disjoint simple closed geodesics on a genus-2 surface S2 so

that γ1 is separating and γ2 is nonseparating; then

∑
(γ1,γ2)∈A

arctanexp
(
−�γ1

4
− �γ2

2

)
=

3π

2
.(1)

As with their cusped-case cousins, these sums may be interpreted by

classifying geodesic arcs emanating from the images of the six Weierstrass

points in the quotient surface of S2 under its hyperelliptic involution. During

a 2010 conference lecture at the National University of Singapore, Tan [13]

outlined how one might obtain such identities for closed surfaces with one

marked point by shooting out in opposite directions at the same speed from

a fixed point. Although the relevant summands for such an identity are

hard to obtain (see [14]), Luo and Tan [4] have computed the integral over

the entire surface as one varies the marked point. The resulting identity is

expressed in terms of dilogarithms—much like Bridgeman’s orthospectrum

identity in [2].

In this article, we deduce an identity for closed hyperbolic surfaces S

equipped with a marked point p of the form

∑
P∈HP(S,p)

Gap(P ) = 2π,
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where the function Gap depends on the geometry of immersed half-pants

on S and is given by

2arcsin
( cosh( �γ2 )

cosh(
�γp
2 )

)
− 2arcsin

( sinh( �γ2 )

sinh(
�γp
2 )

)

for an embedded pair of pants with length �γp zipper and length �γ cuff.

The main difference between this identity and its predecessors is that we

categorize geodesics emanating from p by the lasso-induced geodesic half-

pants in which they lie. This is all made possible by first extending the

Birman–Series theorem.

We often implicitly invoke existence proofs for unique geodesic represen-

tatives of an essential homotopy class on a hyperbolic surface. One version

that suits our purposes may be found in [12, Lemma 7.3], which essentially

states that, even for hyperbolic surfaces with large cone-angles, such a geo-

desic representative still exists and is unique but may be broken at cone

points with angle greater than or equal to π. Moreover, although we invoke

the Gauss–Bonnet theorem at times, in practice all we need to know is that

geodesic monogons and bigons do not exist in the hyperbolic world and that

the area of a geodesic triangle is equal to π minus its three internal angles.

§1. Birman–Series theorem

Our extended Birman–Series theorem on the sparsity of geodesics may

be stated as follows.

Theorem 1. Given any complete finite-volume hyperbolic surface S with

a finite collection C of cone points, fix an integer k. Then the points con-

stituting all complete hyperbolic geodesics possibly broken at C with at most

k intersections is nowhere dense on S and has Hausdorff dimension 1.

An immediate corollary of the collection of complete simple geodesics on

S being Hausdorff dimension 1 is that it has Lebesgue measure 0.

Our extended result differs from previous ones like [1] and [15] in that

we allow for cone angles and broken geodesics. In particular, the fact that

a cone point with angle 2π is equivalent to a marked point gives us the

following corollary.

Corollary 2. Given a complete finite-volume hyperbolic surface S and a

countable collection of points C ⊂ S, the set of points which lie on geodesics
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broken at finitely many points in C with finitely many self-intersections has

Lebesgue measure 0.

For our purposes, we require the following corollary of the Birman–Series

theorem.

Corollary 3. Consider the usual length 2π Borel measure on the unit

tangent space of p ∈ S—thought of as the space of directions from p. Almost

every direction from p projects to a geodesic that is self-intersecting.

Our proof of the Birman–Series theorem is organized as follows.

1. Take a geodesic polygonal fundamental domain R with the restricted

covering map π : R → S. Show that the number of isotopy classes of

n-segmented geodesic arcs on S with endpoints on π(∂R) grows polyno-

mially in n.

2. Show that, with respect to n, an exponentially decreasing neighborhood

of any representative of such an isotopy class will cover all other repre-

sentatives of the same class.

3. By increasing n, we prove that the area covered by such geodesic arcs is

bounded by a polynomial divided by an exponential and must tend to 0,

and we use this to obtain the desired results.

1.1. Notation and proof

Most of our proof is taken from the original Birman–Series paper, with

minor modifications in presentation. Throughout the proof, we assume that

intersections are counted with multiplicities. This does not affect the actual

result because a complete nonclosed geodesic with infinitely many self-

intersections at only finitely many points cannot exist.

For our purposes, a hyperbolic surface S with a finite set of cone points C

may be thought of as a topological surface equipped with a smooth constant

curvature −1 Riemannian metric on the open set S−C, such that the local

geometry of a neighborhood around each p ∈C may be modeled by taking

an angle θp wedge in the hyperbolic plane and radially identifying the two

straight edges of this wedge. We call θp the cone angle at p. A precise

definition may be found in [5] and [16].

Let S be a hyperbolic surface with cone points C, and let R be a hyper-

bolic polygonal fundamental domain for S such that the covering map

π : R → S surjects the vertices of R onto C. That such a polygon exists

is a simple exercise in applying [12, Lemma 7.3], bearing in mind that R

might not embed in the hyperbolic plane.
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Figure 1: An example of a simple diagram (shaded).

Let Jk denote the set of geodesic arcs with at most k self-intersections on

S which start and end on π(∂R), and let Jk(n) be the subset of geodesics γ

in Jk cut into n intervals by π(∂R). Moreover, let [Jk] denote the equivalence

classes of Jk with respect to isotopies that leave invariant each connected

component of π(∂R) \C. Define [Jk(n)] similarly.

Finally, given [γ] ∈ [Jk] representing some geodesic arc γ ∈ Jk, the restric-

tion to R of all lifts of γ to the universal cover of S constitutes a set of

geodesic segments. Each segment corresponds to an element of Jk(1),
† and

we call the ordered set of isotopy arc classes obtained in this way a diagram

on R. In particular, we call elements of [J0] simple diagrams (see Figure 1).

Informed readers may notice that this definition of a diagram differs slightly

from those found in [1] and [15].

The following two lemmas are slight generalizations of [1, Lemmas 2.5,

3.1] and [15, Lemmas 8.2, 8.3]. In Lemma 4, by tweaking the definition

of diagrams to allow segments running between the vertices of π(∂R), we

enable our results to extend to broken geodesics. In Lemma 5, we introduce

Gauss–Bonnet-based arguments to cover a concern that arises when a cone

angle is greater than π.

Lemma 4. The number of elements in [Jk(n)] is bounded above by a

polynomial in n.

Proof. By construction, a diagram identifies under the covering map to

give an element of [Jk]. Therefore, the cardinality of [Jk(n)] is bounded

above by the number of types of diagrams composed of n segments. Simple

diagrams may be specified by saying which segment we start on and which

we end on, as well as how many of each type of segment there is. Let m

denote the number of sides of R, since there are
(
2m
2

)
types of segments

† The k is not used here.
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(with respect to the appropriate isotopies):

Card
[
J0(n)

]
≤ n2

((2m
2

)
+ n− 1

n− 1

)
=: P (n).(2)

For nonsimple diagrams, merely specifying the starting and ending segments

and the number of each type of segment is insufficient to recover the diagram

because there is a degree of freedom for how these segments intersect. In

particular, having specified how many of each type of segment there is, if

we arbitrarily label these segments from 1 to n, then knowing whether two

segments intersect is sufficient to recover the data of the whole diagram.

Since two segments may intersect at most once, we see that the degree of

freedom introduced by this flexibility in intersection is bounded above by

the number of ways of picking k intersections out of all the types of possible

intersections:
(
n
2

)
. Therefore,

Card
[
Jk(n)

]
≤ P (n)

((n
2

)
k

)
,(3)

and hence the number of elements in [Jk(n)] is bounded by a polynomial

in n.

Lemma 5. The length of a geodesic arc γ ∈ Jk(n) grows at least linearly

in n for n sufficiently large. That is,

�γ ≥ αn.

Proof. Let m denote the number of sides of R, and let γ̄ be the geodesic

arc given by m(2k+1) consecutive segments of a geodesic γ ∈ Jk. It suffices

to show that one of these m(2k + 1) segments of γ̄ is of length at least ρ,

because we can take α = ρ
2m(2k+1) . Assign ρ as the length of the shortest

geodesic joining two nonadjacent edges of R. Since hyperbolic monogons

and bigons do not exist, the only way that one might have a segment of

length less than ρ in R is to travel between two adjacent edges. Assume

that all m(2k+1) segments of γ̄ are projections of arcs which join adjacent

edges in R. Hence, γ̄ spirals at least 2k + 1 times around a cone point c

and intersects some edge e ∈ π(∂R) at least 2k + 1 times. Cutting along

e and γ̄ yields a hyperbolic triangle with internal angle θ at c, and the

Gauss–Bonnet theorem tells us that θ < π. But this is precisely what has
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previously been covered by Birman–Series (θ = 0) and by Tan, Wong, and

Zhang in [15, Section 7] (0 < θ < π), who showed that this would result

in the existence of k + 1 intersections on γ, thereby giving us the desired

contradiction.

Lemma 6. Given γ1, γ2 ∈ Jk(2n+ 1) representing the same isotopy class

in [Jk(2n+ 1)], let δ1 and δ2 denote their respective middle (i.e., nth) seg-

ments. Then, for n large enough, δ1 lies within a ce−αn neighborhood of δ2.

Proof. Since γ1 and γ2 are homotopic and unbroken geodesics, they have

at most one intersection, and the strip between them will not contain any

cone points. Hence, we can develop this thin region locally in H. Cutting this

strip at the shared starting point/edge of the γi, we obtain a (potentially

self-intersecting) geodesic polygon with two long sides given by γi and the

remaining two short sides with length bounded by the longest edge in R.

Since this setup is now independent of cone points, the analogous result—

the original Birman–Series paper [1, Lemma 3.2]—gives us the desired com-

putation that an αn-long hyperbolic polygon will have a ce−αn-thin waist

region.

Finally, we prove Theorem 1. Our arguments are taken from [1, Section 4].

Proof. First select one geodesic representative for each class in [Jk(2n+

1)] and denote this collection of nth segments of these geodesics by Fn.

Let Sk denote the collection of points which lie on a complete hyperbolic

geodesic on S with at most k intersections. Any x ∈ Sk lies on some arc

γ ∈ Jk and hence on the middle segment of the corresponding (2n − 1)-

segmented subarc of γ denoted by γ̄ ∈ Jk(2n − 1). But, by Lemma 6, we

know that x must lie in a ce−αn neighborhood of any representative of [γ̄]

in [Jk(2n−1)]. Therefore, the ce−αn neighborhood of Fn covers Sk. Since the

cardinality of Fn is bounded by a polynomial Pk(n) and the length of each

segment in Fn is at most diam(R), the closure of the ce−αn neighborhood

of Fn has measure bounded by c′e−αnP (n), where c′ is determined by c and

diam(R). Thus, Sk lies in the intersection of a collection of closed sets with

arbitrarily small measure and must be nowhere dense.

To obtain that Sk is Hausdorff dimension 1, we first note that its dimen-

sion must be at least 1 because it contains geodesics. On the other hand,

we can cover the ce−αn neighborhood of Fn with �diam(R)/(2ce−αn)� balls

of radius 2ce−αn to show that the Hausdorff content Cd
H(Sk) = 0 for d= 1.

Therefore, the Hausdorff dimension of Sk is bounded above by 1.
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§2. Closed surface identity

In this section, we first introduce the notion of lasso-induced hyperbolic

half-pants. Several small lemmas then lead to the proof of our main theorem.

2.1. The geometry of half-pants

A thrice-punctured sphere endowed with a hyperbolic metric so that each

of its boundary components is a cone point, a cusp, or a closed geodesic is

called a hyperbolic pair of pants. For each boundary component β, there is

a unique shortest geodesic arc starting and ending at β which cannot be

homotoped into the boundary. We call this geodesic the zipper with respect

to β.

We call any connected components obtained by cutting a pair of pants

along one of its three zippers a pair of hyperbolic half-pants, and we call its

nonzipper closed boundary component its cuff. Any pair of half-pants may

be obtained by gluing together two orientation-reversing isometric hyper-

bolic polygons (see Figure 2). Gluing this isometry with its inverse induces

an orientation-reversing involution on a pair of half-pants.

Henceforth, all half-pants P relevant to our purposes result from cutting

a pair of pants, with one cone-pointed boundary C and two geodesic bound-

aries, along the zipper ζ with respect to C. Given any pair of half-pants P ,

there are precisely two simple complete geodesic rays r1, r2 starting at C

and spiraling arbitrarily close to the cuff of our half-pants. Because of the

reflection isometry of P , the angle at C between ζ and r1 is the same as

that between ζ and r2; we call this the spiral angle of P at C (see Figure 3).

Lemma 7. Given a pair of hyperbolic half-pants P with (ex-)cone-point

boundary C, zipper ζ, and cuff γ, its spiral angle is

arcsin
(cosh( �γ2 )
cosh( �ζ2 )

)
− arcsin

(sinh( �γ2 )
sinh( �ζ2 )

)
.(4)

Figure 2: A dissected pair of half-pants.
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Proof. By cutting P along the shortest geodesic from C to γ and then

the shortest geodesic between ζ and γ, we decompose P into two isometric

quadrilaterals with three right angles. For either quadrilateral, let its acute

angle be of magnitude θ1; then

sin(θ1) cosh
(�ζ
2

)
= cosh

(�γ
2

)
(5)

(see, e.g., [3, Theorem 2.3.1]). By considering one lift of this quadrilateral to

the universal cover P̃ ⊂H of the half-pants P with an appropriate lift of ri
(see Figure 4), we see that the gap angle is given by θ1–θ2. For the triangle

bounded by the depicted lifts of ri, γ and the shortest geodesic from C to γ,

sin(θ2) cosh(dH(C,γ)) = 1,(6)

Figure 3: A shaded spiral-angle region.

Figure 4: The universal cover of P .
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and for the quadrilateral comprising half of the half-pants P ,

cosh(dH(C,γ)) sinh
(�γ
2

)
= sinh

(�ζ
2

)
(7)

(see, e.g., [3, Theorems 2.3.1 and 2.2.2]). Putting (5), (6), and (7) together,

we obtain the magnitude of the cone angle.

Lemma 8. Given a pair of half-pants P embedded in some surface S

labeled as above, the segment of any geodesic ray projecting from C up to

its first self-intersection lies completely in P if and only if it projects within

one of the two spiral angles of ζ.

Proof. We see from the universal cover of P that any geodesic α launched

within a spiral angle of ζ must intersect ζ since it cannot intersect ri without

a bigon forming. Any lift of the segment ᾱ of α up to its first intersection

with ζ will, along with the lifts of ζ, bound a polygonal region in P̃ . Then

consider a different lift of ᾱ starting from within this polygon: by the mini-

mality of the intersection time of ᾱ with ζ, this different lift cannot intersect

the sides of our polygon corresponding to ζ. Thus, we see that α intersects

itself before leaving P via ζ, giving us the if part of the claim.

On the other hand, any geodesic β launched outside of either spiral angle

regions will first intersect γ at some angle φ > 0. If two lifts of β, denoted by

β1 and β2, intersect before leaving P̃ , then β1, β2, and γ bound a hyperbolic

triangle. The Gauss–Bonnet theorem then tells us that the angles, measured

clockwise, between the βi and γ differ by at least φ. We now have two distinct

values for the angle at which β first intersects γ; this contradiction gives us

the desired converse.

2.2. Lassos and lasso-induced hyperbolic half-pants

Let α be a geodesic ray shooting out from p. By the Birman–Series the-

orem, α is almost always self-intersecting, and we call the geodesic segment

of α, up to its first self-intersection, the lasso of α. Further, we call the

segment from p to the intersection point of a lasso its spoke, and we call the

simple closed geodesic broken at the intersection point of a lasso its loop. A

lasso emanating from p naturally determines an immersed pair of half-pants

(see Figure 5) on S as follows.

Lemma 9. The lasso of any nonsimple geodesic ray emanating from p

induces and is contained in an isometrically immersed pair of half-pants.
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Figure 5: The leftmost three figures are examples of

lasso-induced half-pants, whereas the last is not.

Proof. The closed path obtained by traversing the length of the lasso

of α and back along its spoke is a representative of a simple element of

π1(S,p). Let γp be its unique geodesic representative on the surface S with

the condition that γp must begin and end at p; the fact that such a curve

exists may be obtained from curve-shortening arguments or by considering

the universal cover of S. Note that it is possible for γp to be self-intersecting,

although it is locally geodesic everywhere except at its endpoints.

Let γ denote the unique simple geodesic representative of [γp] ∈ π1(S) on

the closed surface S. These two geodesics γp and γ are homotopic in S and

bound the immersed image ι(P ) of a pair of half-pants P .

We need now to show that our lasso is contained in ι(P ). This is a nat-

ural consequence of an adapted version of a curve-shortening procedure

attributed to Semmler (see [3, Appendix]) but can also be seen as follows.

Consider the universal cover of the loop of our lasso developed in H, and

add in all lifts of the spoke of our lasso adjoining this infinite quasigeodesic.

The convex (hyperbolic) hull of this shape in H is a universal cover for P ;

therefore, our lasso must lie within P and hence within ι(P ).

We say that an immersed pair of half-pants is lasso induced at p if it

is induced by the lasso of a geodesic ray emanating from p. Topologically,

there are three types of lasso-induced half-pants ι(P ):

1. if γp is simple and does not intersect γ, then ι(P ) is embedded;

2. if γp self-intersects but does not intersect γ, then ι(P ) is a thrice-holed

sphere;

3. if γp is simple but does intersect γ, then ι is a torus with a hole.

We call the respective images of the cuff or zipper of P under the iso-

metric immersion ι the cuff or zipper of ι(P ). The case where γp is not

simple and intersects γ does not arise because the spoke of the lasso is then

forced to intersect its loop at least twice (counted with multiplicity), thereby

contradicting the definition of a lasso.
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2.3. The main theorem

There are 2π directions emanating from p, and the extended Birman–

Series theorem tells us that almost all geodesics shot out from p will be self-

intersecting. Lemma 9 tells us that the set of all self-intersecting geodesic

rays emanating from p may be partitioned based on which lasso-induced

pair of half-pants it induces, and this produces a partition of 2π.

Lemma 8 then says that for each embedded pair of half-pants P , there

are

2arcsin
( cosh( �γ2 )

cosh(
�γp
2 )

)
− 2arcsin

( sinh( �γ2 )

sinh(
�γp
2 )

)

directions from p that shoot out geodesics whose lassos lie in P . Since P is

topologically an annulus, each such lasso must induce P .

In the case that a lasso-induced pair of half-pants P is not embedded, it

is possible for a lasso to lie within P but not to be launched within one of

its spiral-angle regions. Fortunately, such lassos cannot induce P because

their loops have nonzero algebraic intersection with the cuff of P—which is

necessarily homotopic to the loop of any lasso that induces P . Therefore,

the spiral angle does not undercount the lassos which induce P . However, it

is also possible for a lasso contained in P to not induce P . This means that

the spiral angle overcounts the lassos which induce P , and we need only

to compute and subtract the angle of the regions corresponding to these

noninducing lassos to produce a McShane-type identity.

Theorem 10. Given a closed hyperbolic surface S with marked point

p, let HP(S,p) denote the collection of half-pants lasso induced at p. We

define the real function Gap : HP(S,p) → [0, π] to output the gap angle

of the directions from p that shoot out geodesics whose lassos lie in P .

Then,

∑
P∈HP(S,p)

Gap(P ) = 2π.(8)

We close this section by defining and proving the Gap function in terms of

explicit length parameters on the input pairs of lasso-induced half-pants P .

For embedded pairs of half-pants P ∈ HP(S,p), we know from previ-

ous discussions that the gap angle is double the spiral-angle, as given

by (4).
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Figure 6: The parameter n is −1 in this case because it goes

against the orientation on the cuff in which τ is increasing.

When P is topologically a thrice-holed torus, we need two pieces of geo-

metric information from P to define its gap angle. First, we must know the

position of p ∈ P , which we specify using two parameters τ and δ: we know

that P is the isometric immersion of a unique pair of half-pants P̃ . There

are two preimages for p in P̃ , and there is a unique way to reach the preim-

age of p on the interior of P̃ by launching orthogonally from the cuff of P̃

as per the dotted line on the left in Figure 6. We set τ ∈ [0, �γ) to parame-

terize the position of the launching point on the cuff, so that the point on

the cuff which orthogonally projects to the tip of the zipper is set to 0; the

parameter δ then denotes the distance between the interior preimage of p

and the cuff of P̃ .

The second piece of information we require counts (with sign) how many

times the tip of the zipper of P wraps around itself. Specifically, consider

the unique shortest geodesic β between the boundary/zipper preimage of

p in P̃ and the cuff of P̃ (see Figure 6, shaded area). We define n to be

the number of times ι(β) intersects itself, signed to be positive if β shoots

out from p in the same direction that τ is increasing, and negative in the

direction that τ is decreasing (see Figure 6). Specifying these parameters

does not specify the whole geometry of P .
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Given this setup, if P is topologically a thrice-holed sphere and n = 0,

then the gap angle of P is

Gap(P ) = Gap(�γ, �γp, τ, δ,n= 0)

= max
{
Θ
(
δ, τ,arccosh

( sinh( �γ2 )

sinh(
�γp
2 )

))
− arcsin

( sinh( �γ2 )

sinh(
�γp
2 )

)
,0
}

(9)

+max
{
Θ
(
δ, �γ − τ,arccosh

( sinh( �γ2 )

sinh(
�γp
2 )

))

− arcsin
( sinh( �γ2 )

sinh(
�γp
2 )

)
,0
}
,

where Θ(x, y, z) is defined by

Θ(x, y, z)

=
1

2
arccos

( 2(cosh(x) cosh(y) sinh(z)− sinh(x) cosh(z))2

(cosh(x) cosh(y) cosh(z)− sinh(x) sinh(z))2 − 1
− 1

)
.

And if n 	= 0, then the gap angle of P is

Gap(P ) = Gap(�γ, �γp, τ, δ,n) = Θ
(
δ, |n�γ − τ |,arccosh

( sinh( �γ2 )

sinh(
�γp
2 )

))

−max
{
arcsin

( sinh( �γ2 )

sinh(
�γp
2 )

)
,(10)

Θ
(
δ, |n�γ − τ | − �γ,arccosh

( sinh( �γ2 )

sinh(
�γp
2 )

))}
.

For the case when P is topologically a one-holed torus, the parameters τ

and δ are similarly defined. The gap angle is

Gap(P ) = Gap(�γ, �γp, τ, δ)

= 2arcsin
( cosh( �γ2 )

cosh(
�γp
2 )

)
−Θ

(
δ, �γ

⌈Ψ− τ

�γ

⌉
+ τ,arccosh

( sinh( �γ2 )

sinh(
�γp
2 )

))
(11)

−Θ
(
δ, �γ

⌈Ψ− (�γ − τ)

�γ

⌉
+ �γ − τ,arccosh

( sinh( �γ2 )

sinh(
�γp
2 )

))
,
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Figure 7: Defining the Θ function.

where Ψ is given by

Ψ=
1

2
log

( cosh2(δ)

sinh2( �γ2 )
− cosh2(δ)

sinh2(
�γp
2 )

)
.

2.4. Gap-angle calculations

One trigonometric identity that we employ in this section that is not

given in [3], but may be derived from techniques outlined in [3, Chapter 2],

relates to the Θ function:

Θ(x, y, z) =
1

2
arccos

( 2(cosh(x) cosh(y) sinh(z)− sinh(x) cosh(z))2

(cosh(x) cosh(y) cosh(z)− sinh(x) sinh(z))2 − 1
− 1

)
,

where Θ measures one of the nonright angles as drawn in Figure 7.

Since we have already covered the case when a lasso-induced pair of half-

pants P is embedded, we commence with the case where P is a thrice-

holed sphere with twisting number n = 0. One way of thinking about a

nonembedded pair of half-pants is to treat it as a pair of half-pants P with

a small triangular wedge 
 marked out on P (as illustrated in Figure 8),

indicating where the P overlaps itself. A geodesic launched from p ∈ P

within the spiral-angle regions induces a lasso which induces P unless it

meets itself prematurely in 
. And any geodesic that meets 
 prior to

self-intersecting normally must self-intersect prematurely since hyperbolic

bigons do not exist. Therefore, the condition of meeting 
 prior to self-

intersecting classifies all geodesics which need to be discounted from the

spiral angle to obtain the gap angle. Let’s consider this on the universal

cover, as shown in Figure 8.

Geodesics launched from a lift of p which hit the nearest lifts of 
 result

in geodesics which prematurely intersect and hence are excluded from the

gap angle of P . However, launched geodesics which meet other lifts of 

without meeting the adjacent ones must intersect itself (hence forming a
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Figure 8: The universal cover of a pair of lasso-induced half-pants

homeomorphic to a thrice-holed sphere for n= 0.

Figure 9: Hyperbolic quadrilaterals from the universal cover of P .

P -inducing lasso) prior to hitting 
, and so we see that our gap angle is

given by the shaded areas in Figures 8 and 9.

Therefore, the angle region is given by

Θ
(
δ, τ,arccosh

( sinh( �γ2 )

sinh(
�γp
2 )

))
+Θ

(
δ, �γ − τ,arccosh

( sinh( �γ2 )

sinh(
�γp
2 )

))
.

Subtract the angle corresponding to launched geodesics which leave P via

its cuff before intersecting itself (not counting premature intersections). This

gives us the n= 0 term, modulo the introduction of maximum functions to
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Figure 10: The universal cover of a pair of lasso-induced

half-pants homeomorphic to a thrice-holed sphere for n 	= 0.

account for the case when one of the spiral regions is completely blocked off

by 
.

For n 	= 0, we first note that one of our spiral-angle regions is completely

blocked off by the overlapping triangle 
. When looked at on the universal

cover of P , the geodesics which must again be discounted from the spiral

angle regions are those that meet the nearest lifts of 
. However, we need

to bear in mind that it is possible for an adjacent lift of 
 to lie outside

the spiral-angle region. Combining these facts yields the n 	= 0 gap angle,

shaded in red in Figure 10.

Finally, we consider the case when P is topologically a one-holed torus.

As before, a necessary condition for geodesics launched within the spiral

regions to self-intersect prematurely is to enter 
. And as before, this is

a sufficient condition because of the impossibility of bigons and because

geodesics launched within the spiral region meet the cuff of P precisely

once prior to self-intersecting. (They meet the cuff once due 
 intruding

on P via the cuff.) Let us consider the universal cover in this case (see

Figure 11).

Since we may choose geodesics in the spiral regions which spiral arbitrarily

closely to the cuff of P , there must be geodesics in the spiral regions which

meet the triangular region. Within a single spiral region, as we vary the
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Figure 11: The universal cover of a pair of lasso-induced

half-pants homeomorphic to a one-holed torus.

projection angle from launching almost parallel to the zipper of P to the

infinite simple geodesic that spirals around the cuff, there is a phase-shift

geodesic (green) for each spiral region that intersects 
 in such a way that

all geodesics prior to it self-intersect normally, and all those that come after

it self-intersect prematurely. This phase-shift geodesic hits the tip of 
;

that is, it must hit p. The lifts of 
 that meet a chosen lift of one of the

two phase-shift geodesics is also the first one that intersects the lift of the

infinite simple spiraling geodesic (blue) bounding the relevant spiral region.

Figure 11, right side, then enables us to calculate the desired gap angle.

§3. Discussion

Most of our analysis, including the trigonometry, is reasonably easily

adapted to the context of hyperbolic surfaces with geodesic boundaries

and small cone angles. Specifically, a doubling construction may be used

to extend our generalized Birman–Series theorem to all bordered hyper-

bolic surfaces. Then, accounting for the fact that some of the angle measure

shot from a small cone-angled point p will now be taken up by geodesics

which hit a boundary component, we can obtain a McShane identity with
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different summands depending on whether the relevant pair of half-pants

has interior or exterior cuffs. In particular, we obtain the following porism.

Porism 11. Consider a finite-area hyperbolic surface S with a single cone

point p of angle θp ≤ π and possibly with cusps, geodesic boundaries, and

other cone points. Let HP int(S,p) and HPext(S,p) be, respectively, the col-

lection of embedded half-pants on S with cuffs γ, as well as zipper ζ starting

and ending at p. Then

∑
P∈HP int(S,p)

arcsin
(cosh( �γ2 )
cosh( �ζ2 )

)
− arcsin

(sinh( �γ2 )
sinh( �ζ2 )

)

(12)

+
∑

P∈HPext(S,p)

arcsin
(cosh( �γ2 )
cosh( �ζ2 )

)
=

θp
2
,

where �γ is the hyperbolic length of γ if it is a closed geodesic, 0 if γ is a

cusp, and i times the angle at γ if it is a cone point.

In particular, if θp ≥ 2π, then (8) holds true when we replace π with 1
2θp.

On the other hand, when θp ≤ π, our identity is equivalent to what is already

known. The existence of pairs of pants in this scenario means that each of

our half-pants in HP(S,p) is paired with precisely one other, such that they

join to give an embedded pair of pants in S with one boundary given by p

and the other two labeled as γ1 and γ2. The (possibly imaginary) lengths

of γ1 and γ2, along with θp, completely determine the geometry of this pair

of pants. In particular, the length of the zipper ζ may be calculated using

the relation

cosh2
(�ζ
2

)
=

cosh2( �γ12 ) + cosh2( �γ22 ) + 2cos(
θp
2 ) cosh(

�γ1
2 ) cosh( �γ22 )

sin2(
θp
2 )

.(13)

Substituting this into our summands yields the main theorem of Tan, Wong,

and Zhang’s [15] generalization of McShane’s identity to cone surfaces. In

fact, up to taking a limit or replacing certain geodesic lengths with complex-

ified ones, many previously known McShane identities are an incarnation of

the above porism. As an example, we derive [15, Theorem 1.16] using alge-

braic manipulation.
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Proof. Given a pair of half-pants P1 with cuff and zipper given, respec-

tively, by γ1 and ζ, the half-pants P1 must be adjoined with a pair of

half-pants P2 with cuff and zipper given, respectively, by γ2 and ζ as no

cone angles exceed π by assumption. If P is exterior, we take γ2 to be the

exterior cuff; then the summand associate to P is

arcsin
(cosh( �γ12 )

cosh( �ζ2 )

)
− arcsin

(sinh( �γ12 )

sinh( �ζ2 )

)
+ arcsin

(cosh( �γ22 )

cosh( �ζ2 )

)
.(14)

By converting arcsin into arctan and substituting in (13), we obtain

arcsin
(cosh( �γ12 )

cosh( �ζ2 )

)
= arctan

( sin(
θp
2 ) cosh(

�γ1
2 )

cos(
θp
2 ) cosh(

�γ1
2 ) + cosh( �γ22 )

)
,

arcsin
(sinh( �γ12 )

sinh( �ζ2 )

)
= arctan

( sin(
θp
2 ) sinh(

�γ1
2 )

cos(
θp
2 ) cosh(

�γ1
2 ) + cosh( �γ22 )

)
.

Expressing arctan in terms of natural logarithms then gives us

arcsin
(cosh( �γ12 )

cosh( �ζ2 )

)
=

1

2i
log

( exp(
iθp
2 ) cosh( �γ12 ) + cosh( �γ22 )

exp(
−iθp
2 ) cosh( �γ12 ) + cosh( �γ22 )

)
.

Hence, (14) becomes the summand in [15, Theorem 1.16]:

θp
2

− arctan
( sin(

θp
2 ) sinh(

�γ1
2 )

cos(
θp
2 ) cosh(

�γ1
2 ) + cosh( �γ22 )

)
.

On the other hand, if P is interior, then its associated summand is

∑
k=1,2

arcsin
(cosh �γk

2

cosh �ζ
2

)
− arcsin

(sinh( �γk2 )

sinh( �ζ2 )

)
.(15)

Converting everything to logarithms and replacing �ζ using (13) as above

yields

1

2i
log exp(iθp)

(cosh( �γ1−iθp
2 ) + cosh( �γ22 )

cosh(
�γ1+iθp

2 ) + cosh( �γ22 )

)(cosh( �γ2−iθp
2 ) + cosh( �γ12 )

cosh(
�γ2+iθp

2 ) + cosh( �γ12 )

)

=
1

i
log exp

( iθp
2

)(cosh( �γ1−iθp
2 ) + cosh( �γ22 )

cosh(
�γ2+iθp

2 ) + cosh( �γ12 )

)
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=
1

i
log

( exp(
iθp
2 ) + exp( �γ1+�γ2

2 )

exp(
−iθp
2 ) + exp( �γ1+�γ2

2 )

)

= 2arctan
( sin(

θp
2 )

cos(
θp
2 ) + exp( �γ1+�γ2

2 )

)
,

which is precisely the summand for interior pairs of pants for hyperbolic

surfaces with small cone angles.
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