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DE RHAM COHOMOLOGY OF LOCAL COHOMOLOGY
MODULES: THE GRADED CASE

TONY J. PUTHENPURAKAL

Abstract. Let K be a field of characteristic zero, and let R=K[X1, . . . ,Xn].
Let An(K) = K〈X1, . . . ,Xn, ∂1, . . . , ∂n〉 be the nth Weyl algebra over K. We
consider the case when R and An(K) are graded by giving degXi = ωi and
deg∂i =−ωi for i= 1, . . . , n (here ωi are positive integers). Set ω =

∑n
k=1 ωk.

Let I be a graded ideal in R. By a result due to Lyubeznik the local coho-
mology modules Hi

I(R) are holonomic (An(K))-modules for each i≥ 0. In this
article we prove that the de Rham cohomology modules H∗(∂;H∗

I (R)) are con-
centrated in degree −ω; that is, H∗(∂;H∗

I (R))j = 0 for j �=−ω. As an applica-
tion when A = R/(f) is an isolated singularity, we relate Hn−1(∂;H1

(f)(R))

to Hn−1(∂(f);A), the (n − 1)th Koszul cohomology of A with respect to
∂1(f), . . . , ∂n(f).

LetK be a field of characteristic zero, and let R=K[X1, . . . ,Xn]. We con-

sider R graded with degXi = ωi for i= 1, . . . , n; here ωi are positive integers.

Set m= (X1, . . . ,Xn). Let I be a graded ideal in R. The local cohomology

modules H∗
I (R) are clearly graded R-modules. Let An(K) =K〈X1, . . . ,Xn,

∂1, . . . , ∂n〉 be the nth Weyl algebra over K. By a result due to Lyubeznik

(see [3, Section 2.2.d]), the local cohomology modules H i
I(R) are holonomic

(An(K))-modules for each i≥ 0. We can consider An(K) graded by giving

deg∂i =−ωi for i= 1, . . . , n.

Let N be a graded left (An(K))-module. Now ∂ = ∂1, . . . , ∂n are pair-

wise commuting K-linear maps, so we can consider the de Rham com-

plex K(∂;N). Notice that the de Rham cohomology modules H∗(∂;N) are

in general only graded K-vector spaces. They are finite-dimensional if N is

holonomic (see [1, Chapter 1, Theorem 6.1]). In particular, H∗(∂;H∗
I (R))

are finite-dimensional graded K-vector spaces.

Our first result is as follows.
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Theorem 1. Let I be a graded ideal in R. Set ω =
∑n

i=1ωi. Then the de

Rham cohomology modules H∗(∂1, . . . , ∂n;H∗
I (R)) are concentrated in degree

−ω; that is,

H∗(∂1, . . . , ∂n;H∗
I (R)

)
j
= 0, for j �=−ω.

We give an application of Theorem 1. Let f be a homogeneous polynomial

in R, with A = R/(f) an isolated singularity; that is, AP is regular for

all homogeneous prime ideals P �= m. Let H i(∂(f);A) be the ith Koszul

cohomology of A with respect to ∂1(f), . . . , ∂n(f). We show the following.

Theorem 2 (with hypotheses as above). There exists a filtration F =

{Fν}ν≥0 consisting of K-subspaces of Hn−1(∂;H1
(f)(R)) with Fν =Hn−1(∂;

H1
(f)(R)) for ν � 0, Fν ⊇ Fν−1, and F0 = 0 and injective K-linear maps

ην :
Fν

Fν−1
→Hn−1

(
∂(f);A

)
(ν+1)deg f−ω

.

The techniques used in this theorem are generalized in [6] to show that

H i(∂;H1
(f)(R)) = 0 for 1< i < n− 1 and H1(∂;H1

(f)(R))∼=K. There is no

software to compute de Rham cohomology of an (An(K))-module M . As an

application of Theorem 2, we prove the following.

Example 0.1. Let R = K[X1, . . . ,Xn], and let f = X2
1 + X2

2 + · · · +
X2

n−1 +Xm
n with m≥ 2. Then

(1) if m is odd, then Hn−1(∂;H1
(f)(R)) = 0;

(2) if m is even, then

(a) if n is odd, then Hn−1(∂;H1
(f)(R)) = 0, and

(b) if n is even, then dimK Hn−1(∂;H1
(f)(R))≤ 1.

We now describe in brief the contents of this article. In Section 1 we dis-

cuss a few preliminaries that we need. In Section 2 we introduce the concept

of generalized Eulerian modules. In Section 3 we give a proof of Theorem 1.

In Section 4 we give an outline of proof of Theorem 2. In Section 5 we prove

Theorem 2. In Section 6 we give a proof of Example 0.1.

§1. Preliminaries

In this section we discuss a few preliminary results that we need.

Remark 1.1. Although all the results are stated for de Rham cohomology

of an (An(K))-module M , we will actually work with de Rham homology.
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Note that Hi(∂,M) = Hn−i(∂,M) for any (An(K))-module M . Let S =

K[∂1, . . . , ∂n]. Consider it as a subring of An(K). Then note that Hi(∂,M)

is the ith Koszul homology module of M with respect to ∂.

1.2. Let M be a holonomic (An(K))-module. Then for the case where i=

0,1, the de Rham homology modules Hi(∂n,M) are holonomic (An−1(K))-

modules (see [1, Theorem 6.2]).

The following result is well known (see [2, Corollary 1.6.13]).

Lemma 1.3. Let ∂ = ∂r, ∂r+1, . . . , ∂n, and let ∂ ′ = ∂r+1, . . . , ∂n. Let M be

a left (An(K))-module. For each i≥ 0 there exists an exact sequence

0→H0

(
∂r;Hi(∂

′;M)
)
→Hi(∂;M)→H1

(
∂r;Hi−1(∂

′;M)
)
→ 0.

§2. Generalized Eulerian modules

Consider the Eulerian operator

En = ω1X1∂1 + ω2X2∂2 + · · ·+ ωnXn∂n.

If r ∈R is homogeneous, then recall that Enr = (deg r) · r. Note that degree

of En is zero.

Let M be a graded (An(K))-module. If m is homogeneous, we set |m|=
degm. We say that M is Eulerian (An(K))-module if Enm = |m| ·m for

each homogeneous m ∈M . This notion was discovered by Ma and Zhang

(see their excellent paper [4]). They prove that local cohomology modules

H∗
I (R) are Eulerian (An(K))-modules (see [4, Theorem 5.3]). In fact, they

prove this when R is standard graded. The same proof can be adapted to

prove the general case.

It can easily be seen that if M is an Eulerian (An(K))-module, then so

are each graded submodule and graded quotient of M . However, extensions

of Eulerian modules need not be Eulerian (see [4, Remark 3.6]). To rectify

this, we introduce the following notion. A graded (An(K))-module M is

said to be generalized Eulerian if for a homogeneous element m of M there

exists a positive integer a (here a may depend on m) such that(
En − |m|

)a
m= 0.

We now prove that the class of generalized Eulerian modules is closed under

extensions.
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Proposition 2.1. Let 0 → M1
α1−→ M2

α2−→ M3 → 0 be a short

exact sequence of graded (An(K))-modules. Then the following are equiv-

alent:

(1) M2 is generalized Eulerian,

(2) M1 and M3 are generalized Eulerian.

Proof. The assertion (1) =⇒ (2) is clear. We prove (2) =⇒ (1). Let

m ∈M2 be homogeneous. Because M3 is generalized Eulerian, we have(
En − |m|

)b
α2(m) = 0 for some b≥ 1.

Set v2 = (En − |m|)bm ∈ M2. Because α2 is (An(K))-linear, we get

α2(v2) = 0. So v2 = α1(v1) for some v1 ∈ M1. Note that deg v1 =

deg v2 = |m|. Because M1 is generalized Eulerian, we have(
En − |m|

)a
v1 = 0 for some a≥ 1.

Because α1 is (An(K))-linear, we get (En − |m|)av2 = 0. It follows that(
En − |m|

)a+b
m= 0.

IfM is a graded (An(K))-module, then for l ∈ Z the moduleM(l) denotes

the shift of M by l; that is, M(l)n =Mn+l for all n ∈ Z. The following result

was proved for Eulerian (An(K))-modules in [4, Remark 2.5].

Proposition 2.2. Let M be a nonzero generalized Eulerian (An(K))-

module. Then for l �= 0, the module M(l) is not a generalized Eulerian

(An(K))-module.

Proof. Suppose that M(l) is a generalized Eulerian (An(K))-module for

some l �= 0. Let m ∈M be homogeneous of degree r and nonzero. Because

M is generalized Eulerian (An(K))-module, we have

(En − r)am= 0 for some a≥ 1.

We may assume that (En− r)a−1m �= 0. Now m ∈M(l)r−l. Because M(l) is

generalized Eulerian, we get

(En − r+ l)bm= 0 for some b≥ 1.

Notice that

0 = (En − r+ l)bm=
(
lb +

b∑
i=1

(b
i

)
lb−i(En − r)i

)
m.
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Multiply the term on the left by (En − r)a−1. We obtain

lb(En − r)a−1m= 0.

Because l �= 0, we get (En − r)a−1m= 0, a contradiction.

§3. Proof of Theorem 1

In this section we prove Theorem 1. Notice that H i
I(R) are Eulerian

(An(K))-modules for all i≥ 0. Hence, Theorem 1 follows from the following

more general result.

Theorem 3.1. Let M be a generalized Eulerian (An(K))-module. Then

Hi(∂;M) is concentrated in degree −ω =−
∑n

k=1ωk.

Before proving Theorem 3.1, we need to prove a few preliminary results.

Proposition 3.2. Let M be a generalized Eulerian (An(K))-module.

Then for i= 0,1, the (An−1(K))-modules Hi(∂n;M)(−ωn) are generalized

Eulerian.

Proof. Clearly, Hi(∂n;M)(−ωn) are (An−1(K))-modules for i= 0,1. We

have an exact sequence of (An−1(K))-modules

0→H1(∂n;M)→M(ωn)
∂n−→M →H0(∂n;M)→ 0.

Note that H1(∂n;M)(−ωn)⊂M . Let ξ ∈H1(∂n;M)(−ωn) be homogeneous.

As M is generalized Eulerian, we have(
En − |ξ|

)a
ξ = 0 for some a≥ 1.

Notice that En = En−1+ωnXn∂n. Also note that Xn∂n commutes with En−1.

Thus,

0 =
(
En−1 − |ξ|+ ωnXn∂n

)a
ξ =

((
En−1 − |ξ|

)a
+ (∗)Xn∂n

)
ξ.

Because ∂nξ = 0, we get (En−1 − |ξ|)aξ = 0. It follows that H1(∂n;M)(−ωn)

is a generalized Eulerian (An−1(K))-module.

Let ξ ∈H0(∂n;M)(−ωn) be homogeneous of degree r. Then ξ = α+∂nM ,

where α ∈Mr−ωn . Because M is generalized Eulerian, we get

(En − r+ ωn)
aα= 0 for some a≥ 1.
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Notice that En = En−1 + ωnXn∂n = En−1 + ωn∂nXn − ωn, so En − r + ωn =

En−1 − r+ ωn∂nXn. Notice that ∂nXn commutes with En−1. Thus,

0 = (En−1 − r+ ωn∂nXn)
aα= (En−1 − r)aα+ ∂n · ∗α.

Going mod ∂nM , we get

(En−1 − r)aξ = 0.

It follows thatH0(∂n;M)(−ωn) is a generalized Eulerian (An−1(K))-module.

Remark 3.3. If M is Eulerian, then the same proof shows that

Hi(∂n;M)(−ωn) is an Eulerian (An−1(K))-module for i= 0,1. However, as

the proof of the following theorem shows, we can prove only that

H1(∂n−1, ∂n;M)(−ωn−1−ωn) is a generalized Eulerian (An−1(K))-module.

Proposition 3.4. Let M be a generalized Eulerian (An(K))-module. Let

∂ = ∂i, ∂i+1, . . . , ∂n; here i≥ 2. Then for each j ≥ 0 the de Rham homology

module

Hj(∂;M)
(
−

n∑
k=i

ωk

)
is a generalized Eulerian (Ai−1(K))-module.

Proof. We prove this result by descending induction on i. For i= n, the

result holds by Proposition 3.2. Set ∂ ′ = ∂i+1, . . . , ∂n. By induction hypoth-

esis Hj(∂
′;M)(−

∑n
k=i+1ωk) is generalized Eulerian (Ai(K))-module. By

Proposition 3.2 again, for l= 0,1 and for each j ≥ 0,

Hl

(
∂i;Hj(∂

′;M)
(
−

n∑
k=i+1

ωk

))
(−ωi) =Hl

(
∂i;Hj(∂

′;M)
)(

−
n∑

k=i

ωk

)
is generalized Eulerian. By Lemma 1.3 we have the exact sequence

0→H0

(
∂i;Hj(∂

′;M)
)
→Hj(∂;M)→H1

(
∂i;Hj−1(∂

′;M)
)
→ 0.

The modules at the left and right end become generalized Eulerian after

shifting by −
∑n

k=iωk. By Proposition 2.1 it follows that for each j ≥ 0 the

de Rham homology module

Hj(∂;M)
(
−

n∑
k=i

ωk

)
is a generalized Eulerian (Ai−1(K))-module.
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We now consider the case when n= 1.

Proposition 3.5. Let M be a generalized Eulerian (A1(K))-module.

Then for l= 0,1 the modules Hl(∂1;M) are concentrated in degree −ω1.

Proof. We have an exact sequence of K-vector spaces

0→H1(∂1;M)→M(ω1)
∂1−→M →H0(∂1;M)→ 0.

Let ξ ∈H1(∂1;M)(−ω1) be homogeneous and nonzero. Because ξ ∈M , we

have (
ω1X1∂1 − |ξ|

)a
ξ = 0 for some a≥ 1.

Notice that (ω1X1∂1 − |ξ|)a = (∗)∂1 + (−1)a|ξ|a. Because ∂1ξ = 0, we get

(−1)a|ξ|aξ = 0. Because ξ �= 0, we get |ξ| = 0. It follows that H1(∂1;M) is

concentrated in degree −ω1.

Let ξ ∈ H0(∂1,M) be nonzero and homogeneous of degree r. Let ξ =

α+ ∂1M , where α ∈Mr. Because M is generalized Eulerian, we get

(ω1X1∂1 − r)aα= 0 for some a≥ 1.

Notice that ω1X1∂1 = ω1∂1X1 − ω1, so we have

0 =
(
ω1∂1X1 − (r+ ω1)

)a
α=

(
∂1 ∗+(−1)a(r+ ω1)

a
)
α.

In M/∂1M , we have (−1)a(r + ω1)
aξ = 0. Because ξ �= 0, we get r = −ω1.

It follows that H0(∂1;M) is concentrated in degree −ω1.

We now give the following.

Proof of Theorem 3.1. Set ∂ ′ = ∂2, . . . , ∂n. By Proposition 3.4, Nj =

Hj(∂
′;M)(−

∑n
k=2ωk) is a generalized Eulerian (A1(K))-module, for each

j ≥ 0. We use exact sequence in Lemma 1.3 and shift it by −
∑n

k=2ωk to

obtain an exact sequence

0→H0(∂1,Nj)→Hj(∂;M)
(
−

n∑
k=2

ωk

)
→H1(∂1,Nj−1)→ 0

for each j ≥ 0. By Proposition 3.5, the modules on the left and right of the

above exact sequence are concentrated in degree −ω1. It follows that for

each j ≥ 0 the K-vector space Hj(∂;M) is concentrated in degree −ω =

−
∑n

k=1ωk.
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§4. Outline of proof of Theorem 2

The proof of Theorem 2 is a bit long and has a lot of technical details.

For the convenience of the reader, we give an outline of the proof.

4.1. By [5, Lemma 2.7], we have H1(∂,Rf )∼=H1(∂,H
1
(f)(R)). Thus, it is

sufficient to work with H1(∂,Rf ) in order to prove Theorem 2. We consider

elements of Rm
f as column vectors. For x ∈Rm

f , we write x= (x1, . . . , xm)′;
here ′ indicates “transpose”.

4.2. Let ξ ∈Rm
f \Rm. The element (a1/f

i, a2/f
i, . . . , am/f i)′, with aj ∈R

for all j, is said to be a normal form of ξ if

(1) ξ = (a1/f
i, a2/f

i, . . . , am/f i)′,
(2) f does not divide aj for some j, and

(3) i≥ 1.

It can easily be shown that the normal form of ξ exists and is unique (see

Proposition 5.1). Let (a1/f
i, a2/f

i, . . . , am/f i)′ be the normal form of ξ. Set

L(ξ) = i. Notice that L(ξ)≥ 1.

4.3. Construction of a function θ : Z1(∂,Rf ) \Rn →H1(∂(f);A)

Let ξ ∈ Z1(∂,Rf ) \Rn. Let (a1/f
i, a2/f

i, . . . , an/f
i)′ be the normal form

of ξ. Thus, we have
∑n

j=1 ∂/∂Xj(aj/f
i) = 0, so we have

1

f i

( n∑
j=1

∂aj
∂Xj

)
− i

f i+1

( n∑
j=1

aj
∂f

∂Xj

)
= 0.

It follows that

f divides

n∑
j=1

aj
∂f

∂Xj
.

Thus, (a1, . . . , an)
′ ∈ Z1(∂(f);A). We set

θ(ξ) =
[
(a1, . . . , an)

′] ∈H1

(
∂(f);A

)
.

Remark 4.4. It can be shown that if ξ ∈ Z1(∂,Rf )−ω is nonzero, then

ξ /∈Rn (see Section 5.2). If L(ξ) = i, then by Section 5.3 we have

θ(ξ) ∈H1

(
∂(f);A

)
(i+1)deg f−ω

.
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The next result uses the fact that A is an isolated singularity.

Proposition 4.5. If ξ ∈B1(∂,Rf )−ω is nonzero, then θ(ξ) = 0.

4.6. Let ξ ∈Rm
f . We define L(f) as follows.

Case 1: ξ ∈Rm
f \Rm. Let (a1/f

i, a2/f
i, . . . , am/f i)′ be the normal form

of ξ. Set L(ξ) = i. Notice that L(ξ)≥ 1 in this case.

Case 2: ξ ∈Rm \ {0}. Set L(ξ) = 0.

Case 3: ξ = 0. Set L(ξ) =−∞.

The following properties of the function L can be easily verified.

Proposition 4.7 (with hypotheses as above). Let ξ, ξ1, ξ2 ∈Rm
f , and let

α,α1, α2 ∈K. Then we have the following:

(1) if L(ξ1)<L(ξ2), then L(ξ1 + ξ2) = L(ξ2);

(2) if L(ξ1) = L(ξ2), then L(ξ1 + ξ2)≤ L(ξ2);

(3) L(ξ1 + ξ2)≤max{L(ξ1),L(ξ2)};
(4) if α ∈K∗, then L(αξ) = L(ξ);

(5) L(αξ)≤ L(ξ) for all α ∈K;

(6) L(α1ξ1 + α2ξ2)≤max{L(ξ1),L(ξ2)};
(7) let ξ1, . . . , ξr ∈Rm

f , and let α1, . . . , αr ∈K. Then

L
( r∑
j=1

αjξj

)
≤max

{
L(ξ1),L(ξ2), . . . ,L(ξr)

}
.

4.8. We now use the fact that H1(∂,Rf ) is concentrated in degree −ω =

−
∑n

k=1ωk. Thus,

H1(∂,Rf ) =H1(∂,Rf )−ω =
Z1(∂,Rf )−ω

B1(∂,Rf )−ω
.

Let x ∈H1(∂,Rf ) be nonzero. Define

L(x) =min
{
L(ξ)

∣∣ x= [ξ], where ξ ∈ Z1(∂,Rf )−ω

}
.

It can be shown that L(x)≥ 1. If x= 0, then set

L(0) =−∞.
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We now define a function

θ̃ : H1(∂,Rf )→H1

(
∂(f);A

)
x �→

{
θ(ξ) if x �= 0, x= [ξ], and L(x) = L(ξ),

0 if x= 0.

It can be shown that θ̃(x) is independent of choice of ξ (see Proposition 5.6).

Also note that if L(x) = i, then θ̃(x) ∈H1(∂(f);A)(i+1)deg f−ω.

4.9. We now construct a filtration F = {Fν}ν≥0 of H1(∂,Rf ). Set

Fν =
{
x ∈H1(∂,Rf )

∣∣ L(x)≤ ν
}
.

In Section 5, we prove the following.

Proposition 4.10. We have the following:

(1) Fν is a K subspace of H1(∂,Rf ),

(2) Fν ⊇Fν−1 for all ν ≥ 1,

(3) Fν =H1(∂,Rf ) for all ν � 0,

(4) F0 = 0.

Let G =
⊕

ν≥1Fν/Fν−1. For ν ≥ 1, we define

ην :
Fν

Fν−1
→H1

(
∂(f);A

)
(ν+1)deg f−ω

,

ξ �→
{
0 if ξ = 0,

θ̃(x) if ξ = x+Fν−1 is nonzero.

It can be shown that ην(ξ) is independent of choice of x (see Proposi-

tion 5.10). Finally we prove the following result.

Theorem 4.11 (with notation as above). For all ν ≥ 1,

(1) ην is K-linear, and

(2) ην is injective.

§5. Proof of Theorem 2

In this section we give a proof of Theorem 2 with all details. The reader

is advised to read the preceding section before reading this section.

We first prove the following.
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Proposition 5.1. Let ξ ∈Rm
f \Rm. Then a normal form of ξ exists and

is unique.

Proof. Existence: Let ξ ∈ Rm
f \Rm. Let ξ = (b1/f

i1 , b2/f
i2 , . . . , bm/f im)′

with f � bj if bj �= 0. Note that ij ≤ 0 is possible. Let

ir =max{ij | ij ≥ 1 and bj �= 0}.

Notice that ir ≥ 1. Then

ξ =
(b1f ir−i1

f ir
,
b2f

ir−i2

f ir
, . . . ,

bmf ir−im

f ir

)′
.

Note that f � br. Thus, the expression above is a normal form of ξ.

Uniqueness: Let (a1/f
i, . . . , am/f i)′ and (b1/f

r, . . . , bm/f r)′ be two nor-

mal forms of ξ. We first assert that i < r is not possible, for if this holds, then

because aj/f
i = bj/f

r, we get bj = ajf
r−i, so f | bj for all j, a contradiction.

A similar argument shows that i > r is not possible, so i= r. Thus, aj = bj
for all j. Thus, the normal form of ξ is unique.

5.2. Let ξ ∈ Z1(∂,Rf )−ω be nonzero. Let ξ = (ξ1, . . . , ξn)
′. Note that

ξ ∈
(
Rf (ω1)⊕Rf (ω2)⊕ · · · ⊕Rf (ωn)

)
−ω

.

It follows that

ξj ∈ (Rf )−
∑

k �=j ωk
.

It follows that ξ ∈Rn
f \Rn.

5.3. Let (a1/f
i, . . . , an/f

i)′ be the normal form of ξ. Then

degaj = ideg f −
∑
k �=j

ωk.

In particular, going mod f , we get

aj ∈A(−deg f + ωj)(i+1)deg f−ω.

Notice that deg∂f/∂Xj = deg f − ωj . It follows that

(a1, . . . , an)
′ ∈ Z1

(
∂(f);A

)
(i+1)deg f−ω

.

Thus, θ(ξ) ∈H1(∂(f);A)(i+1)deg f−ω.
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5.4. Let K=K(∂;Rf ) be the de Rham complex on Rf written homolog-

ically, so

K= · · · →K3
φ3−→K2

φ2−→K1
φ1−→K0 → 0.

Here K0 =Rf , K1 =
⊕n

k=1Rf (ωk),

K2 =
⊕

1≤i<j≤n

Rf (ωi + ωj), and K3 =
⊕

1≤i<j<l≤n

Rf (ωi + ωj + ωl).

Let K′ =K(∂(f);A) be the Koszul complex on A with respect to ∂f/∂X1,

. . . , ∂f/∂Xn. Thus,

K′ = · · · →K′
3

ψ3−→K′
2

ψ2−→K′
1

ψ1−→K′
0 → 0.

Here K′
0 =A, K′

1 =
⊕n

k=1A(−deg f + ωk),

K′
2 =

⊕
1≤i<j≤n

A(−2deg f + ωi + ωj), and

K′
3 =

⊕
1≤i<j<l≤n

A(−3deg f + ωi + ωj + ωl).

We now prove Proposition 4.5.

Proof of Proposition 4.5. Let u ∈ B1(∂;Rf )−ω be nonzero. Let ξ ∈
(K2)−ω be homogeneous, with φ2(ξ) = u. Let ξ = (ξij | 1≤ i < j ≤ n)′. Notice

that

ξij ∈Rf (ωi + ωj)−ω = (Rf )−
∑

k �=i,j ωk
.

It follows that ξ ∈R
(n2)
f \R(n2). Set

c=min
{
j
∣∣ j = L(ξ) where φ2(ξ) = u and ξ ∈ (K2)−ω is homogeneous

}
.

Notice that c≥ 1. Let ξ ∈ (K2)−ω be such that L(ξ) = c and φ2(ξ) = u. Let

(bij/f
c | 1≤ i < j ≤ n)′ be the normal form of ξ. Let u= (u1, . . . , un)

′. Then
for l= 1, . . . , n,

ul =
∑
i<l

∂

∂Xi

(bil
f c

)
−
∑
j>l

∂

∂Xj

(blj
f c

)
.

So

ul =
f

f c+1

(∑
i<l

∂(bil)

∂Xi
−
∑
j>l

∂(blj)

∂Xj

)
+

c

f c+1

(
−
∑
i<l

bil
∂f

∂Xi
+
∑
j>l

blj
∂f

∂Xj

)
.
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Set

vl = c
(
−
∑
i<l

bil
∂f

∂Xi
+
∑
j>l

blj
∂f

∂Xj

)
.

Therefore,

ul =
f ∗+vl
f c+1

.

Claim. f � vl for some l. First assume the claim. Then ((f ∗+v1)/f
c+1,

. . . , (f ∗+vn)/f
c+1)′ is the normal form of u. Thus,

θ(u) =
[
(v1, . . . , vn)

′]= [
ψ2(−cb)

]
= 0.

We now prove our claim. Suppose, if possible, that f | vl for all l. Then

ψ2(−cb) = (v1, . . . , vl)
′ = 0,

so −cb ∈ Z2(∂(f);A). Because H2(∂(f);A) = 0, we get −cb ∈ B2(∂(f);A).

Thus, −cb= ψ3(γ). Here

γ = (γijl | 1≤ i < j < l≤ n)′.

Thus,

(5.4.1) −cbij =
∑

k<i<j

γkij
∂f

∂Xk
−

∑
i<k<j

γikj
∂f

∂Xk
+

∑
i<j<k

γijk
∂f

∂Xk
+ αijf.

We need to compute the degree of γijl. Note that ξ ∈ (K2)−ω, so

bij
f c

∈
(
Rf (ωi + ωj)

)
−ω

.

It follows that

(5.4.2) deg bij = cdeg f − ω+ ωi + ωj .

It can be easily checked that

b ∈ (K′
2)(c+2)deg f−ω,

so

γ ∈ (K′
3)(c+2)deg f−ω.
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It follows that

(5.4.3) degγijl = (c− 1)deg f − ω+ ωi + ωj + ωl.

We first consider the case when c = 1. Then by (5.4.1), we have αij = 0.

Also,

degγijl =−ω+ ωi + ωj + ωl < 0 if n> 3,

so if n > 3, we get γijl = 0. Thus, b= 0, so ξ = 0, a contradiction.

We now consider the case when n= 3. Note that γ = γ123 is a constant.

Thus,

b=
(
γ

∂f

∂X3
,−γ

∂f

∂X2
, γ

∂f

∂X3

)′
.

A direct computation yields u= 0, a contradiction.

We now consider the case when c≥ 2. Notice that by (5.4.1), we have

−cbij
f c

=
1

f c

∑
k<i<j

γkij
∂f

∂Xk
− 1

f c

∑
i<k<j

γikj
∂f

∂Xk
+

1

f c

∑
i<j<k

γijk
∂f

∂Xk
+

αij

f c−1
.

Notice that
γkij∂f/∂Xk

f c
=

∂

∂Xk

(γkij/(1− c)

f c−1

)
− ∗

f c−1
.

Put

γ̃∗ =
1

c(c− 1)
γ∗.

Thus, we obtain

bij
f c

=
∑

k<i<j

∂

∂Xk

( γ̃kij
f c−1

)
−

∑
i<k<j

∂

∂Xk

( γ̃ikj
f c−1

)
+

∑
i<j<k

∂

∂Xk

( γ̃ijk
f c−1

)
+

b̃ij
f c−1

.

Set

δ =
( γ̃ijl
f c−1

∣∣∣ 1≤ i < j < l≤ n
)

and ξ̃ =
( b̃ij
f c−1

∣∣∣ 1≤ i < j ≤ n
)
.

Then

ξ = φ3(δ) + ξ̃,

so we have u= φ2(ξ) = φ2(ξ̃). This contradicts choice of c.
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5.5. By Theorem 3.1 we have

H1(∂;Rf ) =H1(∂;Rf )−ω =
Z1(∂;Rf )−ω

B1(∂;Rf )−ω
.

Let x ∈H1(∂;Rf ) be nonzero. Define

L(x) =min
{
L(ξ)

∣∣ x= [ξ], where ξ ∈ Z1(∂,Rf )−ω

}
.

Let ξ = (ξ1, . . . , ξn)
′ ∈ Z1(∂,Rf )−ω be such that x= [ξ], so ξ ∈ (K1)−ω. Thus,

ξi ∈Rf (+ωi)−ω, so if ξ �= 0, then ξ ∈Rn
f \Rn. It follows that L(ξ)≥ 1. Thus,

L(x)≥ 1.

We now define a function

θ̃ : H1(∂,Rf )→H1

(
∂(f);A

)
,

x �→
{
θ(ξ) if x �= 0, x= [ξ], and L(x) = L(ξ),

0 if x= 0.

Proposition 5.6 (with hypotheses as above). The element θ̃(x) is inde-

pendent of the choice of ξ.

Proof. Suppose that x = [ξ1] = [ξ2] is nonzero and that L(x) = L(ξ1) =

L(ξ2) = i. Let (a1/f
i, . . . , an/f

i)′ be the normal form of ξ1, and let (b1/f
i,

. . . , bn/f
i)′ be the normal form of ξ2. It follows that ξ1 = ξ2 + δ, where

δ ∈B1(∂;Rf )−ω. By Proposition 4.7(1), we get j = L(δ)≤ i. Let (c1/f
j , . . . ,

cn/f
j)′ be the normal form of δ. We consider two cases.

Case 1: j < i. Then note that ak = bk + f i−jck for k = 1, . . . , n. It follows

that

θ(ξ1) =
[
(a1, . . . , an)

]
=
[
(b1, . . . , bn)

]
= θ(ξ2).

Case 2: j = i. Then note that ak = bk + ck for k = 1, . . . , n. It follows that

θ(ξ1) = θ(ξ2) + θ(δ).

However, by Proposition 4.5, θ(δ) = 0, so θ(ξ1) = θ(ξ2). Thus, θ̃(x) is inde-

pendent of choice of ξ.
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5.7. We now construct a filtration F = {Fν}ν≥0 of H1(∂,Rf ). Set

Fν =
{
x ∈H1(∂,Rf )

∣∣ L(x)≤ ν
}
.

We prove the following proposition.

Proposition 5.8. We have the following:

(1) Fν is a K subspace of H1(∂;Rf ),

(2) Fν ⊇Fν−1 for all ν ≥ 1,

(3) Fν =H1(∂;Rf ) for all ν � 0,

(4) F0 = 0.

Proof. (1) Let x ∈ Fν , and let α ∈K. Then by Proposition 4.7,

L(αx)≤ L(x)≤ ν,

so αx ∈ Fν .

Let x,x′ ∈ Fν be nonzero. Let ξ, ξ′ ∈ Z1(∂;Rf ) be such that x= [ξ], x′ =
[ξ′] and L(x) = L(ξ), L(x′) = L(ξ′). Then x+ x′ = [ξ + ξ′]. It follows that

L(x+ x′)≤ L(ξ + ξ′)≤max
{
L(ξ),L(ξ′)

}
≤ ν.

Note that the second inequality follows from Proposition 4.7. Thus,

x+ x′ ∈ Fν .

(2) This is clear.

(3) Let B = {x1, . . . , xm} be a K-basis of H1(∂;Rf ) =H1(∂;Rf )−ω. Let

c=max
{
L(xi)

∣∣ i= 1, . . . ,m
}
.

We claim that

Fν =H1(∂;Rf ) for all ν ≥ c.

Fix ν ≥ c. Let ξi ∈ Z1(∂;Rf )−ω be such that xi = [ξi] and L(xi) = L(ξi) for

i= 1, . . . ,m.

Let u ∈H1(∂;Rf ). Say that u=
∑m

i=1αixi for some α1, . . . , αm ∈K. Then

u= [
∑m

i=1αiξi]. It follows that

L(u)≤ L
( m∑
i=1

αixi

)
≤max

{
L(ξi)

∣∣ i= 1, . . . ,m
}
= c≤ ν.

Here the second inequality follows from Proposition 4.7, so u ∈ Fν . Thus,

Fν =H1(∂;Rf ).

(4) If x ∈H1(∂;Rf ) is nonzero, then L(x)≥ 1. It follows that F0 = 0.
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5.9. Let G =
⊕

ν≥1Fν/Fν−1. For ν ≥ 1 we define

ην :
Fν

Fν−1
→H1

(
∂(f);A

)
(ν+1)deg f−ω

,

u �→
{
0 if u= 0,

θ̃(x) if u= x+Fν−1 is nonzero.

Proposition 5.10 (with hypotheses as above). The element ην(u) is

independent of choice of x.

Proof. Suppose that u= x+Fν−1 = x′+Fν−1 is nonzero. Then x= x′+y,

where y ∈ Fν−1. Because u �= 0, we have x,x′ ∈ Fν \Fν−1, so L(x) = L(x′) =
ν. Say that x= [ξ], x′ = [ξ′] and that y = [δ], where ξ, ξ′, δ ∈ Z1(∂;Rf ) with

L(ξ) = L(ξ′) = ν and L(δ) = L(y) = k ≤ ν− 1. Thus, we have ξ = ξ′+ δ+α,

where α ∈B1(∂;Rf )−ω. Let L(α) = r. Note that r ≤ ν.

Let (a1/f
ν , . . . , an/f

ν)′, (a′1/f
ν , . . . , a′n/f

ν)′, (b1/f
k, . . . , bn/f

k)′, and

(c1/f
r, . . . , cn/f

r)′ be normal forms of ξ, ξ′, δ, and α, respectively. Thus,

we have

aj = a′j + fν−kbj + fν−rcj for j = 1, . . . , n.

Case 1: r < ν. In this case we have aj = a′j in A for each j = 1, . . . , n, so

θ(ξ) = θ(ξ′). Thus, θ̃(x) = θ̃(x′).
Case 2: r = ν. In this case notice that aj = a′j + cj in A for each j =

1, . . . , n, so θ(ξ) = θ(ξ′) + θ(α). However, θ(α) = 0 as α ∈B1(∂;Rf )−ω (see

Proposition 4.5). Thus, θ̃(x) = θ̃(x′).

Note that neither θ nor θ̃ is linear. However, we prove the following.

Proposition 5.11 (with notation as above). For all ν ≥ 1, ην is

K-linear.

Proof. Let u,u′ ∈ Fν/Fν−1. We first show that ην(αu) = αην(u) for all

α ∈K. We have nothing to show if α= 0 or if u= 0, so assume that α �= 0

and that u �= 0. Say that u = x + Fν−1. Then αu = αx + Fν−1. Because

θ̃(αx) = αθ̃(x), we get the result.

Next we show that ην(u+ u′) = ην(u) + ην(u
′). We have nothing to show

if u or u′ is zero. Next we consider the case when u+u′ = 0. Then u=−u′,
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so ην(u) =−ην(u
′). Thus, in this case

ην(u+ u′) = 0 = ην(u) + ην(u
′).

Now consider the case when u, u′ are nonzero and u+u′ is nonzero. Say that

u= x+Fν−1 and that u′ = x′ +Fν−1. Note that because u+ u′ is nonzero,
x+ x′ ∈ Fν \ Fν−1. Let x = [ξ], and let x′ = [ξ′], where ξ, ξ′ ∈ Z1(∂;Rf )−ω

and L(ξ) = L(ξ′) = ν. Then x + x′ = [ξ + ξ′]. Note that L(ξ + ξ′) ≤ ν by

Proposition 4.7. But L(x+x′) = ν, so L(ξ+ξ′) = ν. Let (a1/f
ν , . . . , an/f

ν)′,
(a′1/f

ν , . . . , a′n/f
ν)′ be normal forms of ξ and ξ′, respectively. Note that

((a1+a′1)/f
ν , . . . , (an+a′n)/f

ν)′ is the normal form of ξ+ ξ′. It follows that

θ(ξ + ξ′) = θ(ξ) + θ(ξ′). Thus, θ̃(x+ x′) = θ̃(x) + θ̃(x′). Therefore,

ην(u+ u′) = ην(u) + ην(u
′).

Finally we have the main result of this section.

Proof of Theorem 2. Let ν ≥ 1. By Proposition 5.11, we know that ην is

a linear map of K-vector spaces. We now prove that ην is injective.

Suppose, if possible, that ην is not injective. Then there exists nonzero

u ∈ Fν/Fν−1 with ην(u) = 0. Say that u= x+Fν−1. Also, let x= [ξ], where

ξ ∈ Z1(∂;Rf )−ω and L(ξ) = L(x) = ν. Let (a1/f
ν , . . . , an/f

ν)′ be the normal

form of ξ. Thus, we have

0 = ην(u) = θ̃(x) = θ(ξ) =
[
(a1, . . . , an)

′].
It follows that (a1, . . . , an)

′ = ψ2(b), where b= (bij | 1≤ i < j ≤ n)′. It follows
that, for l= 1, . . . , n,

al =
∑
i<l

bil
∂f

∂Xi
−
∑
l>j

blj
∂f

∂Xj
.

Then it follows that for l= 1, . . . , n we have the following equation in R:

(5.11.1) al =
∑
i<l

bil
∂f

∂Xi
−
∑
l>j

blj
∂f

∂Xj
+ dlf,

for some dl ∈R. Note that (5.11.1) is of homogeneous elements in R. Thus,

we have the following:

(5.11.2)
al
fν

=

∑
i<l bil

∂f
∂Xi

fν
−

∑
l>j blj

∂f
∂Xj

fν
+

dl
fν−1

.
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We consider two cases.

Case 1: ν ≥ 2. Set b̃ij =−bil/(c− 1). Then note that

bil
∂f
∂Xi

fν
=

∂

∂Xi

( b̃il
fν−1

)
− ∗

fν−1
.

By (5.11.2) we have, for l= 1, . . . , n,

al
fν

=
∑
i<l

∂

∂Xi

( b̃il
fν−1

)
−
∑
l<j

∂

∂Xj

( b̃lj
fν−1

)
+

cl
fν−1

.

Put ξ′ = (c1/f
ν−1, . . . , cn/f

ν−1)′, and put δ = (b̃ij/f
ν−1 | 1 ≤ i < j ≤ n).

Then we have

ξ = φ2(δ) + ξ′,

so we have x= [ξ] = [ξ′]. This yields L(x)≤ L(ξ′)≤ ν − 1. This is a contra-

diction.

Case 2: ν = 1. Note that ξ ∈ (K1)−ω. Thus, for l= 1, . . . , n we have

al
f

∈
(
Rf (ωl)

)
−ω

.

It follows that

degal = deg f −
∑
k �=l

ωk.

Also note that deg∂f/∂Xi = deg f−ωi. By comparing degrees in (5.11.1) we

get al = 0 for all l. Thus, ξ = 0, so x= 0. Therefore, u= 0, a contradiction.

§6. Example 0.1

Let R=K[X1, . . . ,Xn], and let f =X2
1 + · · ·+X2

n−1 +Xm
n , with m≥ 2.

Set A=R/(f). In this section we compute H1(∂;H
1
(f)(R)).

6.1. We give ωi = degXi = m for i = 1, . . . , n − 1, and we give ωn =

degXn = 2. Note that f is a homogeneous polynomial in R of degree 2m.

Also note that ω =
∑n

k=1ωk = (n− 1)m+ 2.
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6.2. First note that the Jacobian ideal J of f is primary to the unique

graded maximal ideal of R. It follows that A is an isolated singularity. Note

that J = (X1, . . . ,Xn−1,X
m−1
n ). Let Hi(J ;A) be the ith Koszul homology

of A with respect to J .

Proposition 6.3. The Hilbert series, P (t), of H1(J ;A) is

P (t) =
m−2∑
k=0

t2m+2k.

Proof. It is easily verified that X1, . . . ,Xn−1 is an A-regular sequence. Set

B =A/(X1, . . . ,Xn−1)A=
K[Xn]

(Xm
n )

=K ⊕KXn ⊕X2
n ⊕ · · · ⊕KXm−1

n .

Note that we have an exact sequence

0→H1(J ;A)→B
(
−2(m− 1)

) Xm−1
n−−−−→B.

It follows that H1(J ;A) =XnB(−2(m− 1)). The result follows.

6.4. By Theorem 2 there exists a filtration F = {Fν}ν≥0 consisting of

K-subspaces ofH1(∂;H
1
(f)(R)) with Fν =Hn−1(∂;H1

(f)(R)) for ν � 0, Fν ⊇
Fν−1, and F0 = 0 and injective K-linear maps

ην :
Fν

Fν−1
−→H1

(
∂(f);A

)
(ν+1)deg f−ω

.

Notice that

(ν + 1)deg f − ω = (ν + 1)2m− (n− 1)m− 2 = (2ν − n+ 3)m− 2.

If ην �= 0, then by Proposition 6.3 it follows that

(2ν − n+ 3)m− 2 = 2m+ 2j for some j = 0, . . . ,m− 2.

Thus, we obtain

(6.4.1) 2νm= (n− 1)m+ 2(j + 1).

It follows that m divides 2(j+1). Because 2(j+1)≤ 2m− 2, it follows that

2(j + 1) =m. Thus, m is even.
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6.5. Say that m= 2r. Then by (6.4.1) we have

2νr = (n− 1)r+ r,

so ν = n/2. It follows that n is even. Furthermore, note that ην = 0 for

ν �= n/2 and that if ν = n/2 then by (6.3) dimFn/2/Fn/2−1 ≤ 1. It follows

that in this case dimH1(∂;H
1
(f)(R))≤ 1.

6.6. In conclusion we have the following:

(1) if m is odd, then Hn−1(∂;H1
(f)(R)) = 0;

(2) if m is even, then

(a) if n is odd then Hn−1(∂;H1
(f)(R)) = 0,

(b) if n is even then dimK Hn−1(∂;H1
(f)(R))≤ 1.

This proves Example 0.1.
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