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POINTWISE MULTIPLIERS FOR CAMPANATO
SPACES ON GAUSS MEASURE SPACES

LIGUANG LIU and DACHUN YANG

Abstract. In this paper, the authors characterize pointwise multipliers for

Campanato spaces on the Gauss measure space (Rn, | · |, γ), which includes

BMO(γ) as a special case. As applications, several examples of the pointwise

multipliers are given. Also, the authors give an example of a nonnegative func-

tion in BMO(γ) but not in BLO(γ).

§1. Introduction

The pioneering work on the characterizations of pointwise multipliers on

BMOφ(T
n) and the Hardy space H1(Tn) was due to Janson [14], where T

n

is the n-dimensional torus and BMOφ(T
n) is the function space defined by

using the mean oscillation and some growth function φ. Specifically, when

n = 1, the same characterizations as in [14] of the pointwise multipliers

on BMO(T) and H1(T) have been obtained by Stegenga [37], which were

further used to study the boundedness of the Toeplitz operator on H1(T).

Later, Nakai and Yabuta [30] extended Janson’s results to the n-dimensional

Euclidean space R
n. In particular, they proved that g is a pointwise mul-

tiplier on BMO(Rn) (viz., the multiplication gf ∈ BMO(Rn) for all f ∈
BMO(Rn)) if and only if g ∈ L∞(Rn)∩BMOlog(Rn), where g ∈BMOlog(Rn)

means that g ∈ L1
loc(R

n) and that
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‖g‖BMOlog(Rn)

:= sup
B⊂Rn

| log rB|+ log(e+ |cB|)
|B|

∫
B

∣∣∣g(x)− 1

|B|

∫
B
g(z)dz

∣∣∣dx <∞,

where cB and rB represent, respectively, the center and the radius of the

ball B and where the supremum is taken over all balls of Rn. Observe that,

as BMO(Rn) is a translation-invariant space but BMOlog(Rn) is not, the

multipliers considered in [30] are not assumed to be norm bounded. In [31],

the results of [30] were also generalized to spaces of homogeneous type in

the sense of Coifman and Weiss (see [3], [4]). (For the characterization of

pointwise multipliers on other function spaces such as Lorentz and Orlicz–

Lebesgue spaces, we refer the reader to [22], [27]–[29], [39], [13], and their

references.) It should be mentioned that the class of pointwise multipliers

for BMO(Rn) has been used by Lerner [16] to solve a conjecture of Dien-

ing [5] on the boundedness of the Hardy–Littlewood maximal operators

on the variable Lebesgue spaces. Also, by invoking the results of [30] and

[31] on pointwise multipliers, Lin, Nakai, and Yang in [17] constructed a

nonnegative function in BMO(Rn) but not in BLO(Rn), which shows that

the results obtained in [17] on the boundedness of the Lusin area and the

g∗λ functions indeed improve the known corresponding results even on R
n.

Recently, Ky [15] further proved that the space BMOlog(Rn) is the dual of

some Musielak–Orlicz Hardy space H log(Rn).

The main aim of this article is to study characterizations of pointwise

multipliers for Campanato spaces on the Gauss measure space, namely, the

Euclidean space Rn endowed with the Euclidean distance | · | and the Gauss

measure γ, where, for all x ∈R
n,

dγ(x) := π−n/2e−|x|2 .

Notice that the Gauss measure space is not a space of homogeneous type (see

[3], [4]); namely, there does not exist a positive constant C such that γ(2B)≤
Cγ(B) for all open balls B in R

n. From a viewpoint of self-adjointness,

we see that γ is a natural measure associated to the Ornstein–Uhlenbeck

operator L :=−Δ/2 + x · ∇. The operator L behaves like the “Laplacian”

on the Gauss measure space. But the kernels of singular integrals associated

with L, such as Riesz transforms, satisfy the standard Calderón–Zygmund

kernel estimates∣∣K(x, y)
∣∣≤ Cη

|x− y|n and
∣∣∂xK(x, y)

∣∣+ ∣∣∂yK(x, y)
∣∣≤ Cη

|x− y|n+1
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only on the region {(x, y) ∈ R
n × R

n : 0 < |x − y| < ηmin{1,1/|x|}} with

fixed η ∈ (0,∞); the positive constant Cη increases exponentially to infinity

as η→∞. In the last few decades, there has been a huge amount of litera-

ture on analysis over the Gauss measure space and the Ornstein–Uhlenbeck

operator L, with the emphasis on the boundedness on Lp(γ) with p ∈ [1,∞)

of singular integrals associated with L (see, e.g., [6], [7], [10], [11], [8], [9],

[33], [32], [35], [38]) or with the Ornstein–Uhlenbeck semigroup (see, e.g.,

[12], [26], [34]).

A recent breakthrough on this subject was due to Mauceri and Meda [23],

in which the Hardy spaceH1(γ) and its dual space BMO(γ) were introduced

and the boundedness of singular integrals associated with L on these func-

tion spaces was established. The theory of [23] relies on the introduction of

a class of admissible balls on which the measure γ is doubling. To recall the

definitions of BMO(γ) and H1(γ), we begin with some notation and notions

used in [23]. Define m(x) := min{1,1/|x|} for all x ∈R
n. For any a ∈ (0,∞),

denote by Ba the set of all balls B in R
n such that rB ≤ am(cB), where cB

and rB denote the center and the radius of B, respectively. Balls in Ba are

called admissible balls with scale a. If B ∈ Ba and x ∈B, then

(1.1) (a+ 1)−1m(x)≤m(cB)≤ (a+ 1)m(x)

and

(1.2) e−a2−2a ≤ e|cB |2−|x|2 ≤ e2a

(see [19, Lemma 2.1], [23, Proposition 2.1]). Consequently, for all B ∈ Ba,

(1.3) π−n/2e−a2−2a ≤ γ(B)

e−|cB |2rnB
≤ π−n/2e2a.

This inequality implies that γ is doubling on the admissible class Ba; that

is, there exists a positive constant K such that, for all balls B ∈ Ba,

(1.4) γ(2B)≤Kγ(B) (locally doubling property).

A function f ∈ L1(γ) is said to be in the space BMO(γ) provided that

‖f‖BMO(γ) := ‖f‖L1(γ) + sup
B∈Ba

1

γ(B)

∫
B

∣∣f(x)− fB
∣∣dγ(x)<∞,
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where, above and in what follows,

(1.5) fB :=
1

γ(B)

∫
B
f(y)dγ(y).

It was proved in [23, Remark 4.3] that, for all p ∈ (1,∞),

‖f‖BMO(γ) ∼ ‖f‖L1(γ) + sup
B∈Ba

[ 1

γ(B)

∫
B

∣∣f(x)− fB
∣∣p dγ(x)]1/p

with implicit constants depending only on a, p, and n. The predual of

BMO(γ) is the atomic Hardy space H1(γ) (see [23, Theorem 5.2]). Atoms of

H1(γ) are either the constant function 1, or a function a ∈ L1(γ) supported

on a ball B ∈ B1 such that ‖a‖L∞(γ) ≤ [γ(B)]−1 and
∫
B a(x)dγ(x) = 0. Then,

the atomic Hardy space H1(γ) is defined to be the space of all functions g ∈
L1(γ) that admit decompositions of the form g =

∑∞
k=1 λkak, where {ak}∞k=1

are atoms of H1(γ) and {λk}∞k=1 ⊂ C satisfying that
∑∞

k=1 |λk|<∞. The

norm ‖g‖H1(γ) of g is defined to be the infimum of
∑∞

k=1 |λk| over all decom-

positions of g as above. (For further investigations related to the H1(γ)-

BMO(γ) theory developed in [23], see [2], [1], [20], [21], [24], [25].)

In [18], the notion of BMO(γ) was extended to the Morrey and Cam-

panato spaces, and the boundedness of singular integrals associated with L
was investigated. Let us recall the notions of Morrey and Campanato spaces

on the Gauss measure space in [18], as follows.

Definition 1.1. Let a ∈ (0,∞), let p ∈ [1,∞), and let κ ∈ (−∞,1]. Any

locally integrable function f is said to be in the space Cp,κ
Ba

(γ) provided that

‖f‖Cp,κ
Ba

(γ) := sup
B∈Ba

{ 1

[γ(B)]1−κ

∫
B

∣∣f(x)− fB
∣∣p dγ(x)}1/p

<∞,

where fB is as in (1.5). Moreover, the Campanato space Lp,κ
Ba

(γ) is defined

to be the collection of all f ∈ L1(γ)∩ Cp,κ
Ba

(γ). For each f ∈ Lp,κ
Ba

(γ), define

‖f‖Lp,κ
Ba

(γ) := ‖f‖L1(γ) + ‖f‖Cp,κ
Ba

(γ).

If a = 1, we write Cp,κ
Ba

(γ) and Lp,κ
Ba

(γ) simply as Cp,κ(γ) and Lp,κ(γ),

respectively.

Remark 1.1. For a ∈ (0,∞), instead of Ba, we consider the collection

of admissible cubes Qa, which consists of cubes Q with sides parallel to
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the axes, the center cQ, and the side length 	Q ≤ am(cQ). For p ∈ [1,∞)

and κ ∈ (−∞,1], we define the spaces Cp,κ
Qa

(γ), Lp,κ
Qa

(γ) and the (semi)norms

‖ · ‖Cp,κ
Ba

(γ) and ‖ · ‖Cp,κ
Qa

(γ) as in Definition 1.1 but with balls B ∈ Ba therein

replaced by cubes Q ∈ Qa. It is proved in Proposition 2.1 below that the

(semi)norms ‖ · ‖Cp,κ
Ba

(γ) and ‖ · ‖Cp,κ
Qa

(γ) are equivalent and that they are both

independent of the choice of a.

In what follows, we write Cp,κ
Ba

(γ) or Cp,κ
Qa

(γ) simply as Cp,κ(γ), and we

write Lp,κ
Ba

(γ) or Lp,κ
Qa

(γ) simply as Lp,κ(γ), if it causes no confusion.

Definition 1.2. Let p ∈ [1,∞), and let κ ∈ (−∞,1]. A function g is called

a pointwise multiplier on Lp,κ(γ) if, for all f ∈ Lp,κ(γ), the multiplication fg

belongs to Lp,κ(γ) and ‖fg‖Lp,κ(γ) ≤C‖f‖Lp,κ(γ) for some positive constant

C independent of f .

Notice that, for p ∈ [1,∞) and κ ∈ (0,1] ∩ (0, p), it was proved in [18,

Theorem 3.7] that the spaces Lp,κ(γ) and Mp,κ(γ) coincide with equivalent

norms, where the Morrey space Mp,κ(γ) is defined to be the space of all

functions f ∈ L1(γ) satisfying that

‖f‖Mp,κ(γ) := sup
B∈B1

[ 1

[γ(B)]1−κ

∫
B

∣∣f(x)∣∣p dγ(x)]1/p <∞.

For characterizations of pointwise multipliers on Lp,κ(γ) with κ ∈ (0,1]∩
(0, p), we have the following result, whose proof is given in Section 4 below.

Theorem 1.1. Let p ∈ [1,∞), and let κ ∈ (0,1]∩ (0, p). Then, a function

g is a pointwise multiplier on Mp,κ(γ) if and only if g ∈ L∞(γ). Moreover,

the operator norm of g, which is denoted by ‖g‖Mp,κ→Mp,κ , is comparable

to ‖g‖L∞(γ).

Let p ∈ [1,∞). Notice that Lp,0(γ) is exactly the space BMO(γ) intro-

duced in [23, p. 281]. Also, for κ ∈ [−p/n,0), it is proved in Proposition 2.3

below that Cp,κ(γ) = Lip−κ/p(γ) with equivalent seminorms. Here, for any

β ∈ (0,1/n], the Lipschitz space Lipβ(γ) is defined to be the collection of all

locally integrable functions f such that

‖f‖Lipβ(γ) := sup
B∈B1

x,y∈B

|f(x)− f(y)|
[γ(B)]β

<∞.

But, when κ ∈ (−∞,−p/n), the space Cp,κ(γ) consists only of almost every-

where constant functions (see also Proposition 2.3 below). Thus, it makes
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sense to consider only pointwise multipliers on Lp,κ(γ) with κ ∈ [−p/n,0].

The main result is as follows.

Theorem 1.2. Let p ∈ [1,∞), and let κ ∈ [−p/n,0]. Then, a function g is

a pointwise multiplier on Lp,κ(γ) if and only if g ∈ L∞(γ)∩Lp,κ
Ψκ

(γ), where

the space Lp,κ
Ψκ

(γ) is defined to be the collections of all g ∈ Lp
loc(γ) such that

‖g‖Lp,κ
Ψκ

(γ) := sup
B∈B1

Ψκ(B)
[ 1

γ(B)

∫
B

∣∣g(x)− gB
∣∣p dγ(x)]1/p <∞,

and Ψκ(B) is given by setting, for all B ∈ B1,

(1.6) Ψκ(B) =

{
|cB|2 + ln 2

rB
, κ= 0,

[m(cB)
rB

]−nκ/p, κ ∈ [−p/n,0).

Moreover, the operator norm of g, which is denoted by ‖g‖Mp,κ(γ)→Mp,κ(γ),

is comparable to ‖g‖L∞(γ) + ‖g‖Lp,κ
Ψκ

(γ).

The proof of Theorem 1.2 is given in Section 4 below, based on some

technical lemmas presented in Sections 2 and 3.

Remark 1.2.

(i) For all p ∈ [1,∞) and κ ∈ [−p/n,0], by Theorem 1.2, we easily see that

C∞
c (Rn) functions are pointwise multipliers on Lp,κ(γ).

(ii) The following fact is obvious: if g ∈ L∞(γ) satisfies that there exists

a positive constant C such that, for all balls B ∈ B1 and almost all

x, y ∈B, ∣∣g(x)− g(y)
∣∣≤ C

|cB|2 + ln 2
rB

,

then g is a pointwise multiplier on BMO(γ).

(iii) For p ∈ [1,∞) and κ ∈ [−p/n,0), the space Lp,κ
Ψκ

(γ) is indeed a “Lips-

chitz” space. For any α ∈ (0,∞), the space Λ̇α(γ) is defined to be the

collection of all functions g such that

‖g‖Λ̇α(γ)
:= sup

|x−y|≤m(x),x �=y

|g(x)− g(y)|
(1 + |x|+ |y|)α|x− y|α <∞.

It is proved in Proposition 2.4 below that Lp,κ
Ψκ

(γ) = Λ̇−nκ/p(γ) with

equivalent seminorms.
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From Theorem 1.2 and the fact that the dual space of H1(γ) is BMO(γ),

we immediately deduce the following conclusion. The details are omitted.

Corollary 1.1. The following three statements are equivalent:

(i) g is a pointwise multiplier on the space BMO(γ);

(ii) g is a pointwise multiplier on the space H1(γ);

(iii) g ∈ L∞(γ)∩BMOlog(γ), where

‖g‖BMOlog(γ) := sup
B∈B1

|cB|2 + ln 2
rB

γ(B)

∫
B

∣∣g(x)− gB
∣∣dγ(x)<∞.

Moreover, the operator norm of g is comparable to ‖g‖L∞(γ)+ ‖g‖BMOlog(γ).

In particular, functions in C∞
c (Rn) are pointwise multipliers on BMO(γ)

and H1(γ).

By Corollary 1.1, we see that, if f ∈ H1(γ) and g ∈ C∞
c (Rn), then

fg ∈ H1(γ). This is known to be true for the classical local Hardy space

h1(Rn) but false for the classical Hardy space H1(Rn). In this sense, H1(γ)

is local, and hence Corollary 1.1 has independent interest.

This article is organized as follows. In Section 2, we present some prop-

erties of the Campanato space, including its relations with the Lipschitz

space, and also show that the space Lp,κ
Ψκ

(γ) is indeed some “Lipschitz”

space when κ ∈ [−p/n,0). Some auxiliary lemmas are established in Sec-

tion 3. Theorems 1.1 and 1.2 are proved in Section 4. In Section 5, we

give some examples of pointwise multipliers of the space BMO(γ). Particu-

larly, in Example 5.4 below, applying Theorem 1.2, we find a nonnegative

function which lies in BMO(γ) but not in BLO(γ). This further implies

that {f ∈ BLO(γ) : f ≥ 0} is a proper subset of BMO(γ). Recall that it

was proved in [19, Theorem 4.1] that the maximal singular integral T ∗

is bounded from L∞(γ) to {f ∈ BLO(γ) : f ≥ 0}. We further know, from

Example 5.4, that this result indeed improves the boundedness of T ∗ from

L∞(γ) to BMO(γ).

We point out that this paper was inspired by the work of Nakai and

Yabuta in [30] and [31]. However, due to the nondoubling property of the

Gauss measure, we need several key properties of the Gauss measure devel-

oped in [23, Proposition 2.1, Lemma 5.1] and [18, Section 3.2], for example,

the locally doubling property of admissible balls, and the geometric proper-

ties of maximal balls and their mothers. In particular, we need the following

property. Given any two admissible balls being far away from each other,
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there exists a sequence of maximal balls connecting them, and the measure

of each ball in this sequence has an estimate from below (see [18, Section 3.2]

or Lemma 3.1 below).

Finally, we set some conventions. Let N := {1,2, . . .}. Denote by C a

positive constant independent of the main parameters involved, which may

vary at different occurrences. We use f � h or h� f to denote f ≤ Ch or

h≥Cf , respectively. If f � h� f , we write f ∼ h.

§2. Properties of Campanato spaces

For any cube Q ⊂ R
n and p ∈ [1,∞], denote by Lp

0(Q;γ) the collection

of all φ ∈ Lp(γ) such that suppφ⊂Q and
∫
Q φ(x)dγ(x) = 0. The following

proposition is proved in the spirit of [23, Proposition 2.4].

Proposition 2.1. Let 0< b < a <∞, let p ∈ [1,∞), and let κ ∈ (−∞,1].

Then

‖f‖Cp,κ
Ba

(γ) ∼ ‖f‖Cp,κ
Qa

(γ) ∼ ‖f‖Cp,κ
Qb

(γ) ∼ ‖f‖Cp,κ
Bb

(γ),

with implicit positive constants depending only on n,a, b, p, and κ. Con-

sequently, the spaces Lp,κ
Ba

(γ) = Lp,κ
Qa

(γ) = Lp,κ
Qb

(γ) = Lp,κ
Bb

(γ) with equivalent

norms.

Proof. By a reexamination of the proof of [23, Lemma 2.3], we see that

there exist a positive constant C and a nonnegative integer N , depending

only on n, p, a, and b, such that for any cube Q in Qa and function φ ∈
Lp′

0 (Q;γ), there exist at most N subcubes {Q1, . . . ,QN} in the admissible

class Qb and N functions {φ1, . . . , φN} in Lp′

0 (Q;γ), with supports contained

in {Q1, . . . ,QN}, respectively, such that

φ=
N∑
j=1

φj , ‖φj‖Lp(γ) ≤C‖φ‖Lp(γ), and
1

C
γ(Q)≤ γ(Qj)≤ γ(Q).

The rest of the proof is parallel to that of [23, Proposition 2.4], and the

details are left to the reader.

The following estimate is needed in the proofs of Proposition 2.3 and

Lemma 3.2 below.
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Proposition 2.2. Let p ∈ [1,∞), and let κ ∈ (−∞,0]. If f ∈ Cp,κ(γ),

then for all B,B′ ∈ B1 with cB = cB′ and rB < rB′ , it holds that

|fB − fB′ | ≤

⎧⎨
⎩
C[1 + ln

rB′
rB

]‖f‖Cp,κ(γ), κ= 0,

C[
rB
rB′ ]

nκ/p ‖f‖Cp,κ(γ)

[γ(B)]κ/p
, κ ∈ (−∞,0),

(2.1)

where C is a positive constant depending only on p,κ, and n.

Proof. We show (2.1) by considering the following two cases: rB ≥ rB′/2

and rB < rB′/2.

Case 1: rB ≥ rB′/2. In this case, we have B ⊂B′ ⊂ 2B, and hence γ(B)∼
γ(B′) by (1.4). From this and Hölder’s inequality, we deduce that

|fB − fB′ | ≤ 1

γ(B)

∫
B

∣∣f(x)− fB′
∣∣dγ(x)� ‖f‖Cp,κ(γ)

[γ(B)]κ/p
,(2.2)

which implies that (2.1) holds.

Case 2: rB < rB′/2. In this case, we choose j0 ≥ 1 such that 2j0rB ≤ rB′ <

2j0+1rB . For j ∈ {1, . . . , j0}, let Bj :=B(cB,2
jrB). Write

|fB − fB′ | ≤
j0−1∑
j=0

|fBj − fBj+1 |+ |fBj0
− fB′ |.

For all j ∈ {1, . . . , j0 − 1}, by rBj = rBj+1/2 and (2.2), we conclude that

(2.3) |fBj − fBj+1 |�
‖f‖Cp,κ(γ)

[γ(Bj)]κ/p
.

Similarly, |fBj0
− fB′ | has the same upper bound as in (2.3). Thus, by sum-

ming the inequalities (2.3), we know that

|fB − fB′ |�
j0∑
j=0

‖f‖Cp,κ(γ)

[γ(Bj)]κ/p
�

‖f‖Cp,κ(γ)

[γ(B)]κ/p

j0∑
j=0

1

2jnκ/p
,

where we used the fact that γ(Bj)∼ 2jnγ(B). Then, applying 2j0 ∼ rB′/rB ,

we see that (2.1) holds for the case rB < rB′/2. Hence, we conclude the

proof of Proposition 2.2.

Using Propositions 2.1 and 2.2, we now establish the coincidence between

Cp,κ(γ) and Lip−κ/p(γ) for p ∈ [1,∞) and κ ∈ [−p/n,0).
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Proposition 2.3. Let p ∈ [1,∞). Then, the following hold:

(i) when κ ∈ [−p/n,0), Cp,κ(γ) = Lip−κ/p(γ) with equivalent seminorms;

(ii) when κ ∈ (−∞,−p/n), Cp,κ(γ) consists only of functions which are con-

stant almost everywhere.

Proof. For κ ∈ [−p/n,0), it is easy to see that Lip−κ/p(γ) ⊂ Cp,κ(γ) by

their definitions. Also, when κ ∈ (−∞,−p/n), it is obvious that almost

everywhere constant functions belong to Cp,κ(γ).

Let f ∈ Cp,κ(γ) with κ ∈ (−∞,0). For any B ∈ B1 and almost every

x, y ∈B, by the differential theorem of integrals, we see that

∣∣f(x)− f(y)
∣∣= lim

j→∞
|fB(x,2−jrB) − fB(y,2−jrB)|

≤ lim
j→∞

[
|fB(x,2−jrB) − fB(x,rB)|(2.4)

+ |fB(x,rB) − fB(y,rB)|+ |fB(y,rB) − fB(y,2−jrB)|
]
.

From Proposition 2.2 and γ(B(x,2−jrB))∼ 2−jnγ(B), we deduce that

(2.5) |fB(x,2−jrB) − fB(x,rB)|�
‖f‖Cp,κ(γ)

[γ(B(x,2−jrB))]κ/p
1

2jnκ/p
�

‖f‖Cp,κ(γ)

[γ(B)]κ/p
.

Likewise, for almost every y ∈B, we have

|fB(y,2−jrB) − fB(y,rB)|�
‖f‖Cp,κ(γ)

[γ(B)]κ/p
.(2.6)

For all x, y ∈B, we observe that B(x, rB)⊂ 2B, B(y, rB)⊂ 2B, and hence,

by (1.2) and (1.3), γ(B) ∼ γ(B(x, rB)) ∼ γ(B(y, rB)). From these and

Proposition 2.1, it follows that

|fB(x,rB) − fB(y,rB)| ≤ |fB(x,rB) − f2B|+ |f2B − fB(y,rB)|

�
‖f‖Cp,κ(γ)

[γ(B)]κ/p
.(2.7)

Inserting (2.5), (2.6), and (2.7) into (2.4), and using (1.3), we see that, for

almost every x, y ∈B ∈ Ba,

∣∣f(x)− f(y)
∣∣� ‖f‖Cp,κ(γ)

[γ(B)]κ/p
∼ ‖f‖Cp,κ(γ)e

κ|cB |2/pr−nκ/p
B ,(2.8)
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which implies that f ∈ Lip−κ/p(γ) when κ ∈ [−p/n,0). Meanwhile, when

κ ∈ (−∞,−p/n), from (2.8) one deduces that the derivative of f is 0 for

almost every x ∈B, and hence f is a constant function almost everywhere.

This finishes the proof of Proposition 2.3.

Proposition 2.4. Let p ∈ [1,∞), and let κ ∈ [−p/n,0). Then, Lp,κ
Ψκ

(γ) =

Λ̇−nκ/p(γ) with equivalent seminorms, where Ψκ is as in (1.6).

Proof. Using the fact that m(x)−1 ∼ 1 + |x| ∼ 1 + |y| ∼ m(y)−1 when

x, y ∈R
n and |x− y| ≤m(x), we conclude that g ∈ Λ̇−nκ/p(γ) if and only if,

for all x, y ∈B ∈ B1,

(2.9)
∣∣g(x)− g(y)

∣∣� [ rB

m(cB)

]−nκ/p
.

It is obvious that any function g that satisfies (2.9) implies that g ∈ Lp,κ
Ψκ

(γ).

Thus, Λ̇−nκ/p(γ)⊂Lp,κ
Ψκ

(γ). The converse follows from an argument similar

to the second part of the proof of Proposition 2.3; the details are left to the

reader. This finishes the proof.

§3. Some auxiliary lemmas

In this section, we establish some technical lemmas to be used in the

proof of Theorem 1.2. We begin with recalling some notions from [23]. A ball

B ∈ B1 is said to be maximal if rB =m(cB). For any maximal ball B ∈ B1

such that 0 /∈ B, denote by M(B) the maximal ball in B1 centered at a

point on the segment [0, cB ] = {tcB : t ∈ [0,1]} such that the boundary of

M(B) contains cB . The ball M(B) is called the mother of B. Then, for any

maximal ball B ∈ B1 that satisfies that 0 /∈B, we have

(3.1)
1

3
M(B)⊂B ⊂ 3M(B) and γ

(
M(B)

)
∼ γ(B)

with implicit positive constants depending only on n (see [18]).

For notational convenience, we let M0(B) := B for any maximal ball

B ∈ B1. If 0 /∈M(B), then we consider the mother of M(B) and denote it

by M2(B). Thus, there exists a chain of maximal balls, B,M(B),M2(B),

. . . ,Mk(B), with the property that M j(B) is the mother of M j−1(B) for j ∈
{1, . . . , k}, and Mk(B) � 0. The following lemma concerning the properties

of such chains of maximal balls was proved in [18, Section 3.2].
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Lemma 3.1. Let B be a maximal ball in B1, and let {ai}i∈N be the

sequence recursively defined by a0 := 1 and ai+1 := ai+1/ai for i ∈N∪{0}.
Then, the following hold:

(i) for all j ∈N,
√
2j ≤ aj ≤

√
3j;

(ii) if aj ≤ |cB | < aj+1 for some j ∈ N, then either |cM(B)| ≤ 2 or aj−1 ≤
|cM(B)|< aj ;

(iii) if aj ≤ |cB|< aj+1 for some j ∈N, then γ(B)∼ e−a2j j−n/2;

(iv) if |cB| > 2 and {Mk(B)}k0k=0 is a chain of maximal balls in B1, with

the property that Mk(B) is the mother of Mk−1(B) for k ∈ {1, . . . , k0},
where k0 is the smallest integer such that |cMk0 (B)| ≤ 2, then for all

k ∈ {1, . . . , k0}, γ(B)� e−2kγ(Mk(B)).

Here the implicit positive constants in (i)–(iv) depend only on n.

From Lemma 3.1, we deduce the following estimate.

Lemma 3.2. Let p ∈ [1,∞), and let κ ∈ [−p/n,0]. Then there exists a

positive constant C such that, for all f ∈ Lp,κ(γ) and B ∈ B1,

|fB| ≤C
[
‖f‖L1(γ) +Ψκ(B)

[
γ(B)

]−κ/p‖f‖Cp,κ(γ)

]
.(3.2)

Proof. To prove this lemma, we consider the following two cases: |cB| ≤ 2

and |cB|> 2.

Case 1: |cB| ≤ 2. In this case, we have m(cB) ≥ 1/2 and B(cB,1) ∈ B2.

Combining this with (2.1) and (1.6) implies that

|fB − fB(cB ,1)|�

⎧⎨
⎩
[1 + ln 1

rB
]‖f‖Cp,κ(γ), κ= 0,

[rB]
nκ/p ‖f‖Cp,κ(γ)

[γ(B)]κ/p
, κ ∈ (−p/n,0).

Noticing that γ(B(cB,1))∼ 1, we have

|fB(cB ,1)| ≤
1

γ(B(cB,1))

∫
B(cB ,1)

∣∣f(x)∣∣dγ(x)� ‖f‖L1(γ).

Adding these two estimates and using (1.6) and (1.1), we obtain (3.2).

Case 2: |cB|> 2. In this case, m(cB) = 1/|cB| and B0 :=B(cB,1/|cB |) is
a maximal ball in B1. Since the sequence {aj}∞j=0 in Lemma 3.1 is increas-

ing to infinity and a1 = 2, there exists some j0 ∈ N such that aj0 ≤ |cB| <
aj0+1. Notice that j0 ∼ |cB|2 by Lemma 3.1(i). For j ∈ {0, . . . , j0}, let Bj :=
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M j(B0). Then, Bj+1 is the mother of Bj . Write

(3.3) |fB| ≤ |fB − fB0 |+
j0−1∑
j=0

|fBj − fBj+1 |+ |fBj0
|.

If rB =m(cB) = 1/|cB |, then B =B0 and |fB − fB0 |= 0; otherwise, Propo-

sition 2.2 implies that

(3.4) |fB − fB0 |�

⎧⎨
⎩
[1 + ln m(cB)

rB
]‖f‖Cp,κ(γ), κ= 0,

[
rB

m(cB)
]nκ/p

‖f‖Cp,κ(γ)

[γ(B)]κ/p
, κ ∈ (−∞,0).

According to Lemma 3.1(ii), for all j ∈ {0, . . . , j0}, we have

(3.5) aj0−j ≤ |cBj |< aj0+1−j .

Specifically, it holds that |cBj0
|< a1 = 2 and γ(Bj0)∼ 1, which implies that

|fBj0
|� ‖f‖L1(γ).(3.6)

For j ∈ {0, . . . , j0 − 1}, since Bj+1 is the mother of the ball Bj and they

are both maximal balls in B1, we apply (3.1) to conclude that Bj ⊂ 3Bj+1,

Bj+1 ⊂ 3Bj , and γ(Bj)∼ γ(Bj+1). Then, by Hölder’s inequality, (1.4), and

Proposition 2.1, we further see that

j0−1∑
j=0

|fBj − fBj+1 | ≤
j0−1∑
j=0

[
|fBj − f3Bj+1 |+ |f3Bj+1 − fBj+1 |

]

� ‖f‖Cp,κ(γ)

j0−1∑
j=0

1

[γ(Bj)]κ/p
.

In particular, when κ= 0, we have

(3.7)

j0−1∑
j=0

|fBj − fBj+1 |� ‖f‖Cp,κ(γ)j0 � ‖f‖Cp,κ(γ)|cB|2.

When κ < 0, from (3.5) and Lemma 3.1(i), (iii), we infer that
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j0−1∑
j=0

|fBj − fBj+1 |� ‖f‖Cp,κ(γ)

j0−1∑
j=0

[
e−(aj0−j)

2
(j0 − j)n/2

]|κ|/p

� ‖f‖Cp,κ(γ)

j0∑
j=1

[e−2jjn/2]|κ|/p(3.8)

�
[ rB

m(cB)

]nκ/p ‖f‖Cp,κ(γ)

[γ(B)]κ/p
.

Inserting the estimates (3.4), (3.6), (3.7), and (3.8) into (3.3), we see that

(3.2) holds also when |cB|> 2. This finishes the proof of Lemma 3.2.

In the next two lemmas, we construct two examples of functions in the

space Lp,κ(γ) with κ ∈ [−p/n,1] and κ �= p. These two examples are used to

prove the necessity of Theorem 1.2.

Lemma 3.3. Let p ∈ [1,∞), let κ ∈ [−p/n,1], and let κ �= p. Given any

ball B ∈ B1, define

f(x) := max
{
0,

∫ 4m(cB)

|x−cB |

1

[e−|cB |2tn]κ/p
dt

t

}
, x ∈R

n.

Then, there exists a positive constant C, independent of the ball B, such

that

(i) if κ ∈ [−p/n,0), then ‖f‖Lp,κ(γ) ≤C and f(x)≥CΨκ(B)/[γ(B)]κ/p for

all x ∈B;

(ii) if κ= 0, then ‖f‖BMO(γ) ≤C and f(x)≥C ln(2/rB) for all x ∈B;

(iii) if κ ∈ (0,1]∩ (0, p), then ‖f‖Lp,κ(γ) ≤C and f(x)≥C/[γ(B)]κ/p for all

x ∈B.

Proof. Recall that Ψκ(B) = (m(cB)/rB)
−nκ/p when κ ∈ [−n/p,0). For all

x ∈B, since |x− cB|< rB , it follows that

f(x)≥
∫ 4m(cB)

|x−cB |

1

[e−|cB |2tn]κ/p
dt

t
∼ 1

[γ(B)]κ/p

∫ 4m(cB)

rB

|x−cB |
rB

s−nκ/p−1 ds

�

⎧⎪⎪⎨
⎪⎪⎩
(m(cB)

rB
)−nκ/p 1

[γ(B)]κ/p
, κ < 0,

ln 2
rB

, κ= 0,
1

[γ(B)]κ/p
, κ > 0,

which implies the second conclusions of (i), (ii), and (iii).
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To show the remaining conclusions of (i), (ii), and (iii), we first show that

‖f‖L1(γ) � 1. Observing that suppf ⊂ B(cB,4m(cB)) and using Fubini’s

theorem, we find that

‖f‖L1(γ) =

∫
B(cB ,4m(cB))

[∫ 4m(cB)

|x−cB |

1

[e−|cB |2tn]κ/p
dt

t

]
dγ(x)

=

∫ 4m(cB)

0

γ(B(cB, t))

[e−|cB |2tn]κ/p
dt

t
.

For all t ∈ [0,4m(cB)], we see that B(cB, t) ∈ B4, and hence γ(B(cB, t)) ∼
e−|cB |2tn by (1.3). Also, notice that 4m(cB) ≤ 4. We continue the above

estimate and conclude that

‖f‖L1(γ) ∼
∫ 4m(cB)

0
e−(1−κ/p)|cB |2tn(1−κ/p)−1 dt�

∫ 4

0
tn(1−κ/p)−1 dt� 1,

where the last step is due to the fact that n(1−κ/p)> 0 for all κ ∈ [−p/n,1]

and κ �= p. This proves that f ∈ L1(γ). Thus, to prove the first conclusions

of (i), (ii), and (iii), we need only to show that ‖f‖Cp,κ(γ) � 1.

The proof of the remaining part of (i) can be quite simple by using Propo-

sition 2.3. Indeed, when κ ∈ [−p/n,0), applying the trivial inequality∣∣max{0, a} −max{0, b}
∣∣≤ |a− b| for all a, b ∈R,(3.9)

we conclude that, when κ ∈ [−p/n,0), for any ball B ∈ B1 and x, y ∈B, it

holds that

∣∣f(x)− f(y)
∣∣≤ ∣∣∣∫ |x−cB |

|y−cB |

1

[e−|cB |2tn]κ/p
dt

t

∣∣∣∼ 1

[γ(B)]κ/p

∣∣∣∫
|x−cB |

rB

|y−cB |
rB

s−nκ/p ds

s

∣∣∣
� 1

[γ(B)]κ/p
,

which implies that ‖f‖Lip−κ/p(γ)
� 1. Hence, ‖f‖Cp,κ(γ) � 1 by Proposi-

tion 2.3. This completes the proof of (i).

We treat (ii) and (iii) in a unified way. When κ ∈ [0,1] and κ �= p, to show

that ‖f‖Cp,κ(γ) � 1, it suffices to show that, for any B′ ∈ B1, there exists

some AB′ ∈C such that

(3.10)
{ 1

[γ(B′)]1−κ

∫
B′

∣∣f(x)−AB′
∣∣p dγ(x)}1/p

≤C,

where C is a positive constant independent of B and B′. To this end, we

consider the following two cases: |cB − cB′ | ≤ 2rB′ and |cB − cB′ |> 2rB′ .
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Case 1: |cB − cB′ | ≤ 2rB′ . In this case, choose

AB′ := max
{
0,

∫ 4m(cB)

rB′

1

[e−|cB |2tn]κ/p
dt

t

}
.

For all x ∈ B′, we have |x− cB| ≤ |x− cB′ |+ |cB′ − cB|< 3rB′ . Since here

|cB − cB′ | ≤ 2rB′ and B′ ∈ B1, by (1.2) and (1.3), we will then see that we

have e−|cB |2(rB′)n ∼ e−|cB′ |2(rB′)n ∼ γ(B′). Combining these with (3.9), we

conclude that, for all x ∈B′,∣∣f(x)−AB′
∣∣≤ ∣∣∣∫ |x−cB |

rB′

1

[e−|cB |2tn]κ/p
dt

t

∣∣∣≤ ∫ 3rB′

rB′

1

[e−|cB |2tn]κ/p
dt

t

� 1

[γ(B′)]κ/p
,

which implies that (3.10) holds when |cB − cB′ | ≤ 2rB′ .

Case 2: |cB − cB′ |> 2rB′ . In this case, choose

AB′ := max
{
0,

∫ 4m(cB)

|cB−cB′ |

1

[e−|cB |2tn]κ/p
dt

t

}
.

For all x ∈B′, using (3.9) and |cB − cB′ |/2≤ |x− cB| ≤ (3/2)|cB − cB′ |, we
know that ∣∣f(x)−AB′

∣∣≤ ∣∣∣∫ |x−cB |

|cB−cB′ |

1

[e−|cB |2tn]κ/p
dt

t

∣∣∣
(3.11)

� rB′

e−|cB |2κ/p|cB − cB′ |nκ/p+1
.

If x ∈ B′ and |f(x)− AB′ | �= 0, then either we have |x − cB| < 4m(cB) or

|cB − cB′ | < 4m(cB); whatever the case, we have e−|cB |2 ∼ e−|x|2 ∼ e−|cB′ |2

by (1.1) and (1.2). By this, (3.11), and the facts that γ(B′) ∼ e−|cB′ |2rnB′

and that nκ/p+ 1> 0, we see that

the left-hand side of (3.10)�
{ 1

[γ(B′)]−κ

r pB′

e−|cB |2κ|cB − cB′ |nκ+p

}1/p

�
{ rB′

|cB − cB′ |
}nκ/p+1

� 1,

which completes the proofs of (ii) and (iii), as well the proof of Lemma 3.3.

Lemma 3.4. Given any ball B ∈ B1, we are able to define

h(x) := |x|2 +max{0, ln 4m(cB)
|x−cB | } for all x ∈ Rn. Then we have positive con-
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stant C, independent of the ball B, such that ‖h‖BMO(γ) ≤ C and h(x) ≥
C(|cB|2 + ln(2/rB)) for all x ∈B.

Proof. For all x ∈ R
n, let h1(x) := |x|2 and h2(x) := max{0, ln 4m(cB)

|x−cB | }.
Observe that ‖h2‖BMO(γ) � 1 by Lemma 3.3(ii). It is easy to see that h1 ∈
L1(γ). For all B′ ∈ B1, by the fact that rB′ ≤ m(cB′) ≤ 1/|cB′ |, we have

rB′ |cB′ | ≤ 1, and hence, for all x, y ∈B′,∣∣h1(x)− h1(y)
∣∣≤ |x− y||x+ y|< 2rB′

(
|x− cB′ |+ |y− cB′ |+ 2|cB′ |

)
≤ 8.

This further implies that ‖h1‖BMO(γ) � 1. Thus, ‖h‖BMO(γ) � 1.

For all B ∈ B1 and x ∈ B, observing that 1 + |x|2 ∼ 1 + |cB|2, we apply

Lemma 3.3(ii) to deduce that h(x) � |cB |2 + ln(2/rB). This concludes the

proof of the lemma.

The proof for the following lemma is essentially given by Nakai and

Yabuta in [31, Lemma 3.4] (see also [30, Lemma 3.3], [37, p. 582]). We

omit the details.

Lemma 3.5. Suppose that p ∈ [1,∞) and that κ ∈ (−∞,1]. If f ∈ Cp,κ(γ)

and g ∈ L∞(γ), then fg ∈ Cp,κ(γ) if and only if

F (f, g) := sup
B∈B1

|fB|
[ 1

[γ(B)]1−κ

∫
B

∣∣g(x)− gB
∣∣p dγ(x)]1/p <∞.

In this case, |‖fg‖Cp,κ(γ) − F (f, g)| ≤ 2‖f‖Cp,κ(γ)‖g‖L∞(γ).

§4. Proofs of Theorems 1.1 and 1.2

The main aim of this section is to prove Theorems 1.1 and 1.2 by using

the lemmas established in the previous sections.

Proof of Theorem 1.1. Let p ∈ [1,∞), and let κ ∈ (0,1] ∩ (0, p). If g ∈
L∞(γ), then for any f ∈ Mp,κ(γ), it is obvious that fg ∈ Mp,κ(γ) and

‖fg‖Mp,κ(γ) ≤ ‖g‖L∞(γ)‖f‖Mp,κ(γ).

Conversely, suppose that g is a pointwise multiplier on Mp,κ(γ). Then,

for any B ∈ B1, letting f (associated to B) be the function defined in

Lemma 3.3, we apply Lemma 3.3(iii) to conclude that

[ 1

γ(B)

∫
B
|g(x)|p dγ(x)

]1/p
�
[ 1

γ(B)

∫
B
|f(x)g(x)|p dγ(x)

]1/p
� ‖fg‖Mp,κ(γ) � ‖g‖Mp,κ(γ)→Mp,κ(γ).
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Further, the differential theorem of integrals implies that ‖g‖L∞(γ) �
‖g‖Mp,κ(γ)→Mp,κ(γ). This concludes the proof of Theorem 1.1.

Proof of Theorem 1.2. To show the sufficiency, we need to prove that, for

any functions g ∈ L∞(γ)∩Lp,κ
Ψκ

(γ) and f ∈ Lp,κ(γ),

(4.1) ‖gf‖Lp,κ(γ) � ‖f‖Lp,κ(γ)

[
‖g‖L∞(γ) + ‖g‖Lp,κ

Ψκ
(γ)

]
.

Indeed, it is obvious that ‖gf‖L1(γ) ≤ ‖f‖L1(γ)‖g‖L∞(γ). For all balls B ∈ B1,

applying Lemma 3.2 and the fact that Ψκ(B)[γ(B)]−κ/p � 1, we have

|fB|
[ 1

[γ(B)]1−κ

∫
B

∣∣g(x)− gB
∣∣p dγ(x)]1/p

� ‖f‖Lp,κ(γ)Ψκ(B)
[ 1

γ(B)

∫
B

∣∣g(x)− gB
∣∣p dγ(x)]1/p

� ‖f‖Lp,κ(γ)‖g‖Lp,κ
Ψκ

(γ).

From this and Lemma 3.5, it follows that

‖fg‖Cp,κ(γ) � ‖f‖Lp,κ(γ)

[
‖g‖L∞(γ) + ‖g‖Lp,κ

Ψκ
(γ)

]
.

Therefore, (4.1) holds, which proves the sufficiency part.

Now we show the necessary part for the case κ ∈ [−p/n,0). For any

B ∈ B1, let f be the function (associated to B) defined as in Lemma 3.3.

With such an f , by Lemmas 3.3(i) and 3.2 and the fact that Ψκ(B)� 1, we

conclude that[ 1

γ(B)

∫
B

∣∣g(x)∣∣p dγ(x)]1/p

� 1

Ψκ(B)

[ 1

[γ(B)]1−κ

∫
B

∣∣f(x)g(x)∣∣p dγ(x)]1/p

�
[ 1

[γ(B)]1−κ

∫
B

∣∣f(x)g(x)− (fg)B
∣∣p dγ(x)]1/p + |(fg)B|

Ψκ(B)[γ(B)]−κ/p

� ‖fg‖Lp,κ(γ) � ‖g‖Lp,κ(γ)→Lp,κ(γ).

From this and the differential theorem of integrals, it follows that g ∈ L∞(γ)

and that

(4.2) ‖g‖L∞(γ) � ‖g‖Lp,κ(γ)→Lp,κ(γ).
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Moreover, for any B ∈ B1, with f as in Lemma 3.3, since f, fg ∈ Lp,κ(γ)

and g ∈ L∞(γ), we apply Lemmas 3.3(i) and 3.5 to conclude that

Ψκ(B)
[ 1

γ(B)

∫
B

∣∣g(x)− gB
∣∣p dγ(x)]1/p

� |fB|
[ 1

[γ(B)]1−κ

∫
B

∣∣g(x)− gB
∣∣p dγ(x)]1/p

� ‖fg‖Lp,κ(γ) + ‖f‖Lp,κ(γ)‖g‖L∞(γ)

� ‖g‖Lp,κ(γ)→Lp,κ(γ).

Then, taking the supremum over all B ∈ B1, we see that

(4.3) ‖g‖Lp,κ
Ψκ

(γ) � ‖g‖Lp,κ(γ)→Lp,κ(γ).

Combining (4.2) and (4.3) implies that g ∈ L∞(γ)∩Lp,κ
Ψκ

(γ) and hence proves

the necessary part for the case κ ∈ [−p/n,0).

To prove the necessary part for the case κ= 0, we notice that the above

arguments remain valid if we replace the function f therein with the function

h as in Lemma 3.4. The details are omitted. This concludes the proof of

Theorem 1.2.

§5. Some examples

The main aim of this section is to present some examples of the class of

pointwise multipliers on BMO(γ). First, we apply Remark 1.2(ii) to con-

struct a function which is a pointwise multiplier on BMO(γ) but has an

oscillation at infinity.

Example 5.1. Let f(x) := sin ln(1 + |x|) for all x ∈ R
n. Then, f is a

pointwise multiplier on BMO(γ).

Proof. Clearly, f ∈ L∞(γ). For all B ∈ B1 and x, y ∈B, by the mean value

theorem, we have∣∣f(x)− f(y)
∣∣= ∣∣sin ln(1 + |x|

)
− sin ln

(
1 + |y|

)∣∣
≤ sup

ξ∈B

| cos ln(1 + |ξ|)||x− y|
1 + |ξ| � rB

1 + |cB|
,

where the last step holds because 1+ |ξ| ∼ 1+ |cB | for all ξ ∈B ∈ B1. Then,

from rB|cB| ≤ 1 and rB ln(2/rB) � 1, it follows that, for all B ∈ B1 and
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x, y ∈B, ∣∣f(x)− f(y)
∣∣[|cB|2 + ln

2

rB

]
� 1,

which, combined with Remark 1.2(ii), implies that f is a pointwise multiplier

on BMO(γ).

The next example shows that a function with polynomial decay at infinity

of order greater than 1 is a pointwise multiplier on BMO(γ).

Example 5.2. Let φ be a function supported on {x ∈R
n : |x| ≥ 3/2} such

that φ,∇φ ∈ L∞(γ). For any given α≥ 1, define gα(x) := φ(x)/|x|α for all

x ∈Rn. Then gα is a pointwise multiplier on BMO(γ).

Proof. By the support condition of φ, we know that ‖gα‖L∞(γ) �
‖φ‖L∞(γ). Fix B ∈ B1, and fix x, y ∈ B. Again, by the support condition

of φ, we see that if |gα(x)− gα(y)| �= 0, then either |x| ≥ 3/2 or |y| ≥ 3/2

and that, whatever the case, it holds that 1/2< |cB | ∼ |x| ∼ |y|. Hence, by

the mean value theorem, we have

∣∣gα(x)− gα(y)
∣∣≤ |φ(x)− φ(y)|

|x|α +
∣∣φ(y)∣∣∣∣∣ 1

|x|α − 1

|y|α
∣∣∣

≤
‖∇φ‖L∞(γ)|x− y|

|x|α + ‖φ‖L∞(γ)
||x|α − |y|α|
|x|α|y|α � rB

|cB|α
.

Further, by α ≥ 1, |cB | > 1/2, rB ≤ 1, and rB|cB| ≤ 1, we see that then

(rB/|cB|α)[|cB|2 + ln(2/rB)]� 1. This and Remark 1.2(ii) imply that gα is

a pointwise multiplier on BMO(γ).

The following example is partly motivated by [30], which is needed for

constructing a nonnegative function that lies in BMO(γ) but not in BLO(γ)

in Example 5.4 below.

Example 5.3. For all x ∈R
n, define

g(x) :=

∫ 2

min{1,|x|}

1

ln 2
min{1,t}

dt

t
.

Then g, sing, cosg ∈ BMOlog(γ) and hence are pointwise multipliers on

BMO(γ).
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Proof. Notice that g(x) = 1− ln ln2 + ln ln(2/|x|) when |x|< 1 and that

g(x) = 1 when |x| ≥ 1.

First we show that g ∈BMOlog(Rn). If B ∈ B1 with |cB| ≥ 2, then g(x) = 1

for all x ∈B, and consequently, (1/γ(B))
∫
B |g(x)−gB|dγ(x) = 0. If |cB |< 2,

then |cB|2 + ln(2/rB) ∼ ln(2/rB) by using ln(2/rB) ≥ ln 2. Thus, to show

that g ∈BMOlog(γ), we need only to prove that

(5.1) sup
B∈B1,|cB |<2

ln 2
rB

γ(B)

∫
B

∣∣g(x)− gB
∣∣dγ(x)<∞.

Consider the ball B ∈ B1 such that |cB|< 2. Observing that, by (1.3),

(5.2)
1

γ(B)

∫
B

∣∣g(x)− gB
∣∣dγ(x)∼ 1

|B|

∫
B

∣∣g(x)− gLB
∣∣dx,

where gLB := (1/|B|)
∫
B g(y)dy, we see that (5.1) holds, provided that

sup
B∈B1,|cB |<2

B∩B(0,1) �=∅

ln 2
rB

|B|

∫
B

∣∣g(x)− gLB
∣∣dx <∞.(5.3)

Because (5.3) was implicitly proved in [36, Theorem 2] (see also [30, Lem-

ma 2.4]), g ∈BMOlog(γ).

Noticing that | sina− sin b| ≤ |a− b| for all a, b ∈R, we easily see that

1

γ(B)

∫
B

∣∣sing(x)− (sing)B
∣∣dγ(x)≤ 2

γ(B)

∫
B

∣∣g(x)− gB
∣∣dγ(x).

From this and g ∈BMOlog(Rn), it follows that sing ∈BMOlog(γ). Likewise,

we have cosg ∈BMOlog(γ). This finishes the proof.

Recall that the space BLO(γ) on the Gauss measure space was introduced

in [19] and the boundedness of maximal singular integrals from L∞(γ) to

BLO(γ) was also obtained. A locally integrable function f is said to be in

the space BLO(γ) if

‖f‖BLO(γ) := ‖f‖L1(γ) + sup
B∈B1

[ 1

γ(B)

∫
B
f(y)dγ(y)− essinf

x∈B
f(x)

]
<∞.

It was proved in [19, Remark 2.1(iii)] that BLO(γ) is a proper subspace of

BMO(γ). The following example further shows that nonnegative functions

in BMO(γ) may not belong to BLO(γ). This tells us that the maximal

singular integral operators map L∞(γ) to {f ∈ BLO(γ) : f ≥ 0} is strictly

contained in BMO(γ) by noting that they are nonnegative.
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Example 5.4. Let g be the function defined in Example 5.3. Consider

n = 1, and define f(x) := | sing(x) ln(2/|x|)χ|x|≤2(x)| for all x ∈ R. Then,

f ∈BMO(γ), but f /∈BLO(γ).

Proof. Let h(x) := ln(2/|x|)χ|x|≤2(x) for all x ∈ R. It is easy to see that

h ∈BMO(γ) by (5.2) and that h ∈BMO(R). From Example 5.3, we deduce

that sing is a pointwise multiplier on BMO(γ), and hence f ∈ BMO(γ) by

using Theorem 1.2.

Next we show that f /∈ BLO(γ). In Example 5.3, it was proved that

when |x| < 1, g(x) = 1 − ln ln2 + ln ln(2/|x|), which is strictly decreasing

and positive on (0, e−1). Thus, we choose a strictly decreasing sequence

{rk}∞k=10 ⊂ (0,1) such that (π/4)k = g(rk) and limk→∞ rk = 0. Based on the

proof of [17, Proposition 2.1], we see that, for each m ∈N,

1

r8m+3 − r8m+4

∫
(r8m+4,r8m+3)

[
f(x)− essinf

y∈(r8m+4,r8m+3)
f(y)

]
dx

≥ 1

2

√
2 ln(2/r8m+3)

2
,

which tends to ∞ as m→∞. Notice that all the intervals (r8m+4, r8m+3)

belong to the admissible class B1 and that, for any m ∈N,

1

γ((r8m+4, r8m+3))

∫
(r8m+4,r8m+3)

[
f(x)− essinf

y∈(r8m+4,r8m+3)
f(y)

]
dγ(x)

∼ 1

r8m+3 − r8m+4

∫
(r8m+4,r8m+3)

[
f(x)− essinf

y∈(r8m+4,r8m+3)
f(y)

]
dx.

Therefore, f /∈BLO(γ). This finishes the proof of Example 5.4.
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