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THE STRUCTURE OF SALLY MODULES AND
BUCHSBAUMNESS OF ASSOCIATED GRADED RINGS

KAZUHO OZEKI

To Shiro Goto on the occasion of his sixty-fifth birthday

Abstract. Let A be a Noetherian local ring with the maximal ideal m, and
let I be an m-primary ideal in A. This paper examines the equality on Hilbert

coefficients of I first presented by Elias and Valla, but without assuming that A

is a Cohen–Macaulay local ring. That equality is related to the Buchsbaumness
of the associated graded ring of I.

§1. Introduction and the statement of main results

Throughout this paper, let A denote a Noetherian local ring with the

maximal ideal m, and let d= dimA> 0. For simplicity, we assume that the

residue class field A/m is infinite. Let I be an m-primary ideal in A, and

suppose that I contains a parameter ideal Q = (a1, a2, . . . , ad) of A as a

reduction—that is, Q⊆ I—and that the equality In+1 =QIn holds true for

some (and hence any) integer n� 0. Let �A(M) denote, for an A-moduleM ,

the length of M . Then we have integers {ei(I)}0≤i≤d such that the equality

�A(A/I
n+1) = e0(I)

(
n+ d

d

)
− e1(I)

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)ded(I)

holds true for all integers n� 0, which we call the Hilbert coefficients of A

with respect to I .

Let

R=R(I) :=A[It] and T =R(Q) :=A[Qt]⊆A[t]

denote, respectively, the Rees algebras of I and Q. Put F = T/IT , and let

R′ =R′(I) :=A[It, t−1]⊆A[t, t−1]
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and

G=G(I) :=R′/t−1R′ ∼=
⊕
n≥0

In/In+1.

Following Vasconcelos [23], we then define

S = SQ(I) := IR/IT ∼=
⊕
n≥1

In+1/QnI

and call it the Sally module of I with respect to Q.

In the case where A is a Cohen–Macaulay local ring, we have the inequal-

ity

2e0(I)− e1(I)≤ 2�A(A/I) + �A(I/I
2 +Q)

which is given in [3, Theorem 2.1] and [11, Proposition 2.1], and they

showed that the equality 2e0(I)− e1(I) = 2�A(A/I) + �A(I/I
2 +Q) holds

true if and only if I3 = QI2 and Q ∩ I2 = QI . When this is the case, the

associated graded ring G of I is Cohen–Macaulay. Thus, the ideal I with

2e0(I)− e1(I) = 2�A(A/I) + �A(I/I
2 +Q) has nice properties. The purpose

of this paper is to extend their results without assuming that A is a Cohen–

Macaulay ring.

In an arbitrary Noetherian local ring A, the inequality

2e0(I)− e1(I) + e1(Q)≤ 2�A(A/I) + �A(I/I
2 +Q)

holds true (see [18, Theorem 2.4], [1, Theorem 3.1]). It seems natural to ask

what happens on the ideals I satisfying the equality 2e0(I)−e1(I)+e1(Q) =

2�A(A/I) + �A(I/I
2 +Q).

Corso in [1] conjectured that the associated graded ring G(m) of the

maximal ideal m is a Buchsbaum ring if A is a Buchsbaum local ring and

if the equality 2e0(m)− e1(m) + e1(Q) = v(A)− d+ 2 holds true for m and

a reduction Q of m, where v(A) denotes the embedding dimension of A,

and he gave a positive answer to this conjecture in 1-dimensional cases.

We should note that Rossi and Valla [18, Theorem 2.1] generalized this

result in 1-dimensional Buchsbaum module cases. The current author, in

[16, Theorem 1.2], gave an affirmative answer to Corso’s conjecture for the

case where A is a Buchsbaum local ring with an arbitrary dimension.

To state the results of this article, let us consider the following four con-

ditions.

(C0) The sequence a1, a2, . . . , ad is a d-sequence in A in the sense of Huneke

[13].
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(C1) The sequence a1, a2, . . . , ad is a d+-sequence in A; that is, for all

integers n1, n2, . . . , nd ≥ 1, the sequence an1
1 , an2

2 , . . . , and
d forms a d-

sequence in any order.

(C2) We have (a1, a2, . . . , ǎi, . . . , ad) :A ai ⊆ I for all 1≤ i≤ d.

(C3) We have depthA> 0.

These conditions (C0), (C1), (C2), and (C3) are naturally satisfied when A

is a Cohen–Macaulay local ring. Condition (C1) (resp., condition (C2)) is

always satisfied if A is a Buchsbaum local ring (resp., I =m). Here we notice

that condition (C1) is equivalent to saying that our local ring A is a general-

ized Cohen–Macaulay ring; that is, all the local cohomology modules Hi
m(A)

(i �= d) of A with respect to the maximal ideal m are finitely generated, and

the parameter ideal Q is standard. In other words, the equality

�A(A/Q)− e0(Q) =

d−1∑
i=0

(
d− 1

i

)
· �A

(
Hi

m(A)
)

holds true. Hence, condition (C1) is independent of the choice of a minimal

system {ai}1≤i≤d of generators of the parameter ideal Q. We note here

that condition (C2) is also independent of the choice of a minimal system

{ai}1≤i≤d of generators of Q.

Let us now state our own result. The main result of this article is the

following Theorem 1.1, which generalizes the results of [3, Theorem 2.1]

and [11, Theorem 2.2] given in the case where A is a Cohen–Macaulay local

ring, because ei(Q) = 0 for all 1≤ i≤ d. We notice that, thanks to condition

(C1), the Hilbert coefficients ei(Q) of Q are given by the formula

(−1)iei(Q) =

⎧⎪⎨
⎪⎩
e0(Q) if i= 0,

�A(H
0
m(A)) if i= d,∑d−i

j=1

(
d−i−1
j−1

)
�A(H

j
m(A)) if 1≤ i≤ d− 1,

and one has the equality �A(A/Q
n+1) =

∑d
i=0(−1)iei(Q)

(
n+d−i
d−i

)
for all n≥ 0

(see [19, Korollar 3.2]), so that the {ei(Q)}1≤i≤d are independent of the

choice of the reduction Q of I and so are invariants of A. Here, W =H0
m(A)

denotes the 0th local cohomology modules of A with respect to m, and

Hi
M (G) denotes the ith local cohomology modules of G with respect to the

graded maximal ideal M =mT + T+ of T .

Theorem 1.1. Suppose that conditions (C1) and (C2) are satisfied. Then

the following two conditions are equivalent:
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(1) 2e0(I)− e1(I) + e1(Q) = 2�A(A/I) + �A(I/I
2 +Q);

(2) I3 ⊆QI2 +W , (Qn +W ) ∩ (In+1 +W ) =QnI +W for all n≥ 1, and

(a1, a2, . . . , ǎi, . . . , ad) :A ai ⊆ I2 +Q for all 1≤ i≤ d.

When this is the case, we have I2 ⊇W , and the following assertions also

hold true.

(i) For all n ∈ Z,

[
H0

M (G)
]
n
∼=

⎧⎨
⎩
W/I3 ∩W if n= 2,

In ∩W/In+1 ∩W if n≥ 3,

(0) otherwise.

Hence, [H0
M (G)]2 ∼=W/I3 ∩W , [H0

M (G)]3 ∼= I3 ∩W , and [H0
M (G)]n =

(0) for all n �= 2,3 if A is a Buchsbaum local ring.

(ii) We have

Hi
M (G) =

[
Hi

M (G)
]
2−i

∼=Hi
m(A)

for all 1≤ i≤ d− 1.

(iii) The a-invariant

a(G) := max
{
n ∈ Z

∣∣ [Hd
M (G)

]
n
�= (0)

}
of G is at most 2− d.

(iv) We have e2(I) = e1(Q) + e2(Q)− e0(I) + e1(I) + �A(A/I) if d≥ 2.

(v) We have ei(I) = ei−2(Q) + 2ei−1(Q) + ei(Q) for all 3≤ i≤ d.

(vi) The associated graded ring G is a Buchsbaum ring with the Buchsbaum

invariant I(G) = I(A) if A is a Buchsbaum local ring.

The key of the proof of Theorem 1.1 is the use of the Sally module S of

I with respect to Q. In [16], the author used some techniques of [1] and [2]

concerning the Sally module SQ(m) of the maximal ideal m with respect to

a reduction Q of m and gave the Buchsbaumness of the associated graded

ring G(m) of m satisfying the equality 2e0(m)−e1(m)+e1(Q) = v(A)−d+2

in a Buchsbaum local ring (A,m). In this paper, to prove Theorem 1.1, we

will make some improvements to the techniques of [1] and [2] for the case

where I is an m-primary ideal (not necessary maximal ideal).

We are now in a position to briefly explain how we organized this paper.

We prove Theorem 1.1 in Sections 4 and 5. In Section 2, we summarize some

auxiliary results on Sally modules for later use in this article. In Section 3,

we introduce some techniques of Sally modules which are key for the proof

of Theorem 1.1. In Section 4 we give a proof of the equivalence of conditions
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(1) and (2) in Theorem 1.1, and in Section 5 we give the last assertions in

Theorem 1.1. In Section 6, we give one example of an m-primary ideal I

with 2e0(I) − e1(I) + e1(Q) = 2�A(A/I) + �A(I/I
2 + Q) in a Buchsbaum

local ring (A,m).

In what follows, unless otherwise specified, let A be a Noetherian local

ring with maximal ideal m, and let d= dimA> 0. Assume that the residue

class field A/m of A is infinite. Let I be an m-primary ideal in A, and put

Q= (a1, a2, . . . , ad) a parameter ideal of A which forms a reduction of I . We

put

R=A[It], T =A[Qt], R′ =A[It, t−1],

G=R′/t−1R′, and F = T/IT.

We denote by Hi
m(∗) (i ∈ Z) the ith local cohomology functor of A

with respect to m. Let I(A) =
∑d−1

i=0

(
d−1
i

)
�A(H

i
m(A)) denote the Buchsbaum

invariant of A. Let M =mT +T+ be the unique graded maximal ideal in T .

We denote by Hi
M (∗) (i ∈ Z) the ith local cohomology functor of T with

respect to M , and we let I(G) =
∑d−1

i=0

(
d−1
i

)
�G(H

i
M (G)) be the Buchsbaum

invariant of G. Let L be a graded T -module. We denote by L(α), for each

α ∈ Z, the graded T -module whose grading is given by [L(α)]n = [L]α+n for

all n ∈ Z. Let μA(I) denote the number of a minimal system of generators

of I .

§2. The structure of Sally modules

In our proof of Theorem 1.1, we need some structure theorems of Sally

modules.

The purpose of this section is to summarize some auxiliary results on

Sally modules, which we need throughout this paper (see [7], [8], and [23]

for the detailed proofs).

Remark 2.1 (see [7], [8], [23]). We notice that S is a finitely generated

graded T -module and that m� · S = (0) for some integer �� 0. Since R is a

module finite extension of the graded ring T and since m=
√
Q, dimT S ≤ d.

The following assertions also follow:

(1) S = (0) if and only if I2 =QI ,

(2) IS = (0) if and only if In+2 ⊆QnI for all n≥ 0.

Lemma 2.2. Suppose that conditions (C0) and (C2) are satisfied. Then

F = T/IT ∼= (A/I)[X1,X2, . . . ,Xd]
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as graded A-algebras, where (A/I)[X1,X2, . . . ,Xd] denotes the polynomial

ring with d indeterminates over the Artinian local ring A/I.

Proof. See [8, Proposition 2.2].

Let us note the following lemma. We notice that Serre’s condition (S2) on

T is automatically satisfied, once both conditions (C1) and (C3) are satisfied

(see [21, Theorem 6.2]).

Lemma 2.3. Suppose that conditions (C0), (C2), and (C3) are satisfied.

Assume that the ring T satisfies Serre’s condition (S2). Then AssTS ⊆
{mT}, whence dimT S = d if S �= (0).

Proof. See [8, Lemma 2.3].

Proposition 2.4. Suppose that conditions (C0) and (C2) are satisfied.

Then

�A(A/I
n+1) = e0(I)

(
n+ d

d

)
−
{
e0(I) + e1(Q)− �A(A/I)

}(n+ d− 1

d− 1

)

+

d∑
i=2

(−1)i
{
ei−1(Q) + ei(Q)

}(n+ d− i

d− i

)
− �A(Sn)

for all n≥ 0.

Proof. Our condition (C0) implies that �A(A/Q
n+1) =

∑d
i=0 ei(Q)

(
n+d−i
d−i

)
for all n≥ 0 (see [9, Proposition 3.4]). Hence, by [8, Proposition 2.4], we get

a required condition.

Put s= dimT S ≤ d. Then we write

�A(Sn) = e0(S)

(
n+ s− 1

s− 1

)
− e1(S)

(
n+ s− 2

s− 2

)
+ · · ·+ (−1)s−1es−1(S)

for all n� 0 with integers {ei(S)}0≤i≤s−1. Then by Proposition 2.4 we get

the following result, which is also given in [18, Proposition 6.2].

Corollary 2.5. Suppose that conditions (C0) and (C2) are satisfied, and

put s= dimT S. Then we have the following.

(1) Suppose that s= d. Then

(i) e1(I) = e0(I) + e1(Q)− �A(A/I) + e0(S) and

(ii) ei(I) = ei−1(Q) + ei(Q) + ei−1(S) for all 2≤ i≤ d.

(2) Suppose that s < d. Then
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(i) e1(I) = e0(I) + e1(Q)− �A(A/I),

(ii) ei(I) = ei−1(Q) + ei(Q) for 2≤ i≤ d− s, and

(iii) ei(I) = ei−1(Q) + ei(Q) + (−1)d−sei−d+s−1(S) for all d− s+ 1 ≤
i≤ d.

We need the following lemma.

Lemma 2.6. Suppose that conditions (C1) and (C2) are satisfied. Then,

for each 0≤ i≤ d, we have

[
Hi

M (IT )
]
n
∼=

⎧⎨
⎩
H0

m(A) if i= n= 0,

Hi−1
m (A) if 3≤ i≤ d, 2− i≤ n≤−1,

(0) otherwise

for all n ∈ Z. Hence IT is a generalized Cohen–Macaulay T -module with

dimT IT = d+ 1.

Recall that, once condition (C1) is satisfied, all the local cohomology

modules {Hi
m(A)}0≤i≤d−1 of A are finitely generated (see [21, Theorem 2.1]).

Proof of Lemma 2.6. Taking the local cohomology functor Hi
M (∗) to the

exact sequence

0→ IT → T → F → 0,

we have isomorphisms Hi
M (IT )∼= Hi

M (T ) of graded T -modules for 0≤ i≤
d− 1, and the exact sequence

0→Hd
M (IT )→Hd

M (T )→Hd
M (F )

of local cohomology modules, because F ∼= (A/I)[X1,X2, . . . ,Xd] is the poly-

nomial ring over A/I by Lemma 2.2.

Then since [Hd
M (T )]n = (0) for all n≤ 1−d by [21, Theorem 6.2] and since

[Hd
M (F )]n = (0) for all n≥ 1− d, we have Hd

M (IT )∼=Hd
M (T ) as graded T -

modules. Therefore, by [21, Theorem 6.2], we get the required assertion.

For a graded T -module L,

g-depthM L := sup
{
� ∈ Z

∣∣M ⊆
√
AnnT Hi

M (L) for all i < �
}

denotes the generalized depth of L with respect to M (see [12, Section 2]).

Then we have the following result which concerns a relationship between

the generalized depth of Sally modules S and associated graded rings G

of I .
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Proposition 2.7. Suppose that conditions (C1), (C2), and (C3) are sat-

isfied. Assume that S �= (0), and put s= g-depthM S. Then g-depthM G=

s−1 if s < d, and S is a generalized Cohen–Macaulay T -module if and only

if g-depthM G≥ d− 1.

Proof. Recall that s≤ dimT S = d by Lemma 2.3. Because IT is a gener-

alized Cohen–Macaulay T -module with dimT IT = d+ 1 by Lemma 2.6, it

follows from the exact sequence

(a) 0→ IT → IR→ S → 0

that g-depthM IR ≥ d if s= d, and g-depthM IR= s if s < d. Since A is a

generalized Cohen–Macaulay ring with dimA= d, from the exact sequence

(b) 0→ IR(−1)→R→A→ 0

it follows that g-depthM R≥ d if s= d and that g-depthM R= g-depthM IR

if s < d. Therefore, the exact sequence

(c) 0→ IR→R→G→ 0

implies that g-depthM G≥ d−1 if s= d. If s < d, then g-depthM R= s, and

so by [12, Proposition 3.2] we get g-depthM G= s− 1.

Suppose that g-depthM G≥ d− 1. Then g-depthM R≥ d by [12, Proposi-

tion 3.2], whence by the exact sequence (c) we have g-depthM IR≥ d, and

so g-depthM S ≥ d by the exact sequence (a). Therefore, S is a generalized

Cohen–Macaulay T -module.

§3. Preliminary steps for the proof

In this section, we introduce some techniques, being inspired by [1] and

[2], which play a crucial role throughout this paper. Let us begin with the

following.

Lemma 3.1. Assume that I �Q, and put μ= μA(I/Q). Then there exists

an exact sequence

T (−1)μ
φ→R/T → S(−1)→ 0

as graded T -modules.

Proof. Let us write I =Q+ (x1, x2, . . . , xμ), and let

φ : T (−1)μ →R/T
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denote a homomorphism of graded T -modules with φ(α1, α2, . . . , αμ) =∑μ
i=1αixit ∈R/T for αi ∈ T and 1≤ i≤ μ, where αixit denotes the image

of αixit in R/T . Then we have

Cokerφ=R/It · T + T ∼=R+/It · T

as graded T -modules. Then two isomorphisms

R+
t̂−1

→ IR(−1) and It · T t̂−1

→ IT (−1)

of graded T -modules induce the isomorphism R+/It · T ∼= (IR/IT )(−1) of

gradedT -modules. Therefore, Cokerφ∼= S(−1) as graded T -modules, whence

we get a required exact sequence.

Tensoring the exact sequence of Lemma 3.1 with A/I , we get an exact

sequence

(i) 0→Kerφ→ F (−1)μ
φ→R/IR+ T → (S/IS)(−1)→ 0

of graded T -modules, where φ=A/I ⊗ φ.

Furthermore, tensoring the exact sequence

0→ [Kerφ]1 → F μ
0 → [R/IR+ T ]1 → 0

with F , we get the following commutative diagram:

([Kerφ]1 ⊗ F )(−1)→ (F μ
0 ⊗ F )(−1)→ ([R/IR+ T ]1 ⊗ F )(−1)→ 0⏐⏐�ϕ1

⏐⏐�ϕ2

⏐⏐�ϕ3

0→ Kerφ → F (−1)μ → Imφ → 0

of graded T -modules. Then, since the map ϕ2 is bijective, we have an exact

sequence

(ii) 0→K(1) →
(
[R/IR+ T ]1 ⊗ F

)
(−1)

ϕ3→ Imφ→ 0

of graded T -modules, where K(1) =Kerϕ3.

We also have an exact sequence

(iii) 0→K(2) → F
i→G→R/IR+ T → 0
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of graded T -modules induced by tensoring the canonical exact sequence

0→ T
i
↪→R→R/T → 0

of graded T -modules with A/I , where i = A/I ⊗ i and K(2) = Ker i. Put

K(3) = IS.

Notice that dimT K(i) ≤ d for all 1 ≤ i ≤ 3, because K(1) and K(2) are

embedded into ([R/IR+T ]1⊗F )(−1) and F , respectively, and dimT S ≤ d

by Remark 2.1.

We then have the following inequality, which is proved by [18, Theo-

rem 4.1] and [1, Theorem 3.1].

Proposition 3.2. We have

2e0(I)− e1(I) + e1(Q)≤ 2�A(A/I) + �A(I/I
2 +Q).

Proof. When I = Q, the required inequality is automatically satisfied.

Therefore, we may assume that I �Q. We then have

�A
(
[R/IR+ T ]n

)
= �A

(
[Imφ]n

)
+ �A

(
[S/IS]n−1

)
,

�A
(
[Imφ]n

)
= �A

([
[R/IR+ T ]1 ⊗ F

]
n−1

)
− �A

(
[K(1)]n

)
for all n≥ 0 by the exact sequences (i) and (ii), and we have

�A
(
[S/IS ]n−1

)
= �A(Sn−1)− �A

(
[K(3)]n−1

)
for all n≥ 0. Therefore, by the exact sequence (iii) we have

�A(I
n/In+1) = �A(Gn) = �A(Fn) + �A

(
[R/IR+ T ]n

)
− �A

(
[K(2)]n

)
= �A(Fn) +

{
�A

(
[Imφ]n

)
+ �A

(
[S/IS]n−1

)}
− �A

(
[K(2)]n

)
= �A(Fn) +

{
�A

([
[R/IR+ T ]1 ⊗ F

]
n−1

)
− �A

(
[K(1)]n

)}
+
{
�A(Sn−1)− �A

(
[K(3)]n−1

)}
− �A

(
[K(2)]n

)
for all n ≥ 0. Because F is a homomorphic image of the polynomial ring

(A/I)[X1,X2, . . . ,Xd] over A/I , we have

�A
([
[R/IR+ T ]1 ⊗ F

]
n−1

)
≤ �A(I/I

2 +Q)

(
n− 1 + d− 1

d− 1

)
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for all n≥ 0. Therefore, since dimT K(i) ≤ d for all 1≤ i≤ 3, we have{
e0(I)≤ �A(A/I) + �A(I/I

2 +Q) + e0(S) if dimT S = d,

e0(I)≤ �A(A/I) + �A(I/I
2 +Q) if dimT S ≤ d− 1.

Hence, because e1(I)− e0(I)− e1(Q)+ �A(A/I)≥ e0(S) if dimT S = d by [1,

Proposition 2.8] and [18, Corollary 6.1], and because e1(I)− e0(I)− e1(Q)+

�A(A/I)≥ 0 by [6, Theorem 3.1], we have

e0(I)≤ �A(A/I) + �A(I/I
2 +Q) +

{
e1(I)− e0(I)− e1(Q) + �A(A/I)

}
.

Thus, we get the required inequality.

We then have the following.

Lemma 3.3. Suppose that conditions (C0) and (C2) are satisfied, and

assume that I �Q. Then we have

�A(I
n/In+1) =

{
�A(A/I) + �A(I/I

2 +Q)
}(n+ d− 1

d− 1

)

− �A(I/I
2 +Q)

(
n+ d− 2

d− 2

)

+ �A(Sn−1)− �A
(
[K(1)]n

)
− �A

(
[K(2)]n

)
− �A

(
[K(3)]n−1

)
for all n≥ 0.

Proof. By the same argument as in the proof of Proposition 3.2, we have

�A(I
n/In+1) = �A(Fn) + �A

([
[R/IR+ T ]1 ⊗ F

]
n−1

)
+ �A(Sn−1)

− �A
(
[K(1)]n

)
− �A

(
[K(3)]n−1

)
− �A

(
[K(2)]n

)
for all n≥ 0. Since conditions (C0) and (C2) are satisfied, F ∼= (A/I)[X1,X2,

. . . ,Xd] is the polynomial ring over A/I by Lemma 2.2, whence [R/IR +

T ]1 ⊗ F ∼= (I/I2 +Q)⊗ (A/I)[X1,X2, . . . ,Xd]. Therefore, we have

�A(Fn) = �A(A/I)

(
n+ d− 1

d− 1

)

and

�A
([
[R/IR+ T ]1 ⊗ F

]
n−1

)
= �A(I/I

2 +Q)

(
n+ d− 2

d− 1

)
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for all n≥ 0. Hence, we have

�A(I
n/In+1) = �A(A/I)

(
n+ d− 1

d− 1

)
+ �A(I/I

2 +Q)

(
n+ d− 2

d− 1

)

+ �A(Sn−1)− �A
(
[K(1)]n

)
− �A

(
[K(3)]n−1

)
− �A

(
[K(2)]n

)
= �A(A/I)

(
n+ d− 1

d− 1

)

+ �A(I/I
2 +Q)

{(
n+ d− 1

d− 1

)
−
(
n+ d− 2

d− 2

)}

+ �A(Sn−1)− �A
(
[K(1)]n

)
− �A

(
[K(3)]n−1

)
− �A

(
[K(2)]n

)
=
{
�A(A/I) + �A(I/I

2 +Q)
}(n+ d− 1

d− 1

)

− �A(I/I
2 +Q)

(
n+ d− 2

d− 2

)

+ �A(Sn−1)− �A
(
[K(1)]n

)
− �A

(
[K(3)]n−1

)
− �A

(
[K(2)]n

)
for all n≥ 0.

Recall that dimT K(i) ≤ d for 1≤ i≤ 3, and put

Γ = {i | 1≤ i≤ 3,dimT K(i) = d}.

Then, by Lemma 3.3, we get the following result.

Lemma 3.4. Suppose that conditions (C0) and (C2) are satisfied, and

assume that I �Q. Then we have

2e0(I)− e1(I) + e1(Q) = 2�A(A/I) + �A(I/I
2 +Q)−

∑
i∈Γ

e0(K
(i)),

where e0(K
(i)) denotes the multiplicity of the graded T -module K(i) for 1 ≤

i≤ 3.

Proof. By Lemma 3.3, we have⎧⎪⎪⎨
⎪⎪⎩
e0(I) = �A(A/I) + �A(I/I

2 +Q) + e0(S)−
∑

i∈Γ e0(K
(i))

if dimT S = d,

e0(I) = �A(A/I) + �A(I/I
2 +Q)−

∑
i∈Γ e0(K

(i))

if dimT S ≤ d− 1.



THE STRUCTURE OF SALLY MODULES 109

Meanwhile, since{
e1(I)− e0(I)− e1(Q) + �A(A/I) = e0(S) if dimT S = d,

e1(I)− e0(I)− e1(Q) + �A(A/I) = 0 if dimT S ≤ d− 1

by Corollary 2.5 (see also [1, Theorem 2.8]), we have

e0(I) = �A(A/I) + �A(I/I
2 +Q)

+
{
e1(I)− e0(I)− e1(Q) + �A(A/I)

}
−
∑
i∈Γ

e0(K
(i)).

Thus, we get the required equality.

In our proof of Theorem 1.1, we need the following.

Proposition 3.5. Suppose that conditions (C1), (C2), and (C3) are sat-

isfied. Assume that I �Q. Then the following three conditions are equiva-

lent:

(1) we have 2e0(I)− e1(I) + e1(Q) = 2�A(A/I) + �A(I/I
2 +Q);

(2) there exist exact sequences

0→
(
(I/I2 +Q)⊗ F

)
(−1)→R/IR+ T → S(−1)→ 0

and

0→ F →G→R/IR+ T → 0

of graded T -modules; and

(3) K(i) = (0) for all 1≤ i≤ 3.

Proof. Because of the fact that conditions (C1), (C2), and (C3) are satis-

fied, F ∼= (A/I)[X1,X2, . . . ,Xd] is a polynomial ring over A/I by Lemma 2.2,

whence [R/IR+ T ]1 ⊗ F ∼= (I/I2 +Q)⊗ (A/I)[X1,X2, . . . ,Xd].

(1)⇒ (3) We have AssT K(1) ⊆ {mT} by the exact sequence (ii), because

[R/IR+ T ]1 ⊗ F is a maximal Cohen–Macaulay F -module. We also have

AssT K(i) ⊆ {mT} for all 2≤ i≤ 3 by the exact sequence (iii) and Lemma 2.3.

Hence, dimT K(i) = d if K(i) �= (0) for each 1≤ i≤ 3. Then we have∑
i∈Γ

e0(K
(i)) =

{
2�A(A/I) + �A(I/I

2 +Q)
}
−
{
2e0(I)− e1(I) + e1(Q)

}
= 0

by Lemma 3.4. Therefore, dimT K(i) < d, whence K(i) = (0) for all 1≤ i≤ 3.

(3)⇒ (2) This is obvious by the exact sequences (i), (ii), and (iii).
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(2)⇒ (1) By our assertion, we have

�A(I
n/In+1) = �A(Fn) + �A

(
[R/IR+ T ]n

)
= �A(Fn) +

{
�A

([
(I/I2 +Q)⊗ F

]
n−1

)
+ �A(Sn−1)

}
for all n≥ 0. Then, by the same argument as in the proof of Lemma 3.4, we

get 2e0(I)− e1(I) + e1(Q) = 2�A(A/I) + �A(I/I
2 +Q), as required.

We get the following corollary by Proposition 3.5.

Corollary 3.6. Suppose that conditions (C1), (C2), and (C3) are satis-

fied. Assume that 2e0(I)− e1(I) + e1(Q) = 2�A(A/I) + �A(I/I
2 +Q). Then

we have the following:

(1) In+2 ⊆QnI for all n≥ 0,

(2) Qn ∩ In+1 =QnI for all n≥ 0,

(3) depthG> 0, and

(4) (a1, a2, . . . , ǎi, . . . , ad) : ai ⊆ I2 +Q for all 1≤ i≤ d.

Proof. Suppose that I = Q. Then assertions (1) and (2) are naturally

satisfied. Since �A(A/Q) = e0(Q) holds true, the base local ring A is Cohen–

Macaulay. Therefore, assertions (3) and (4) are also satisfied. Thus, we may

assume that I �Q.

(1) By Proposition 3.5, we see that IS =K(3) = (0). Hence, In+2 ⊆QnI

for all n≥ 0 by Remark 2.1.

(2) We see thatK(2) = (0) by Proposition 3.5. Therefore, because [K(2)]n ∼=
[Qn ∩ In+1]/QnI for n≥ 0, we have Qn ∩ In+1 =QnI for all n≥ 0.

(3) We have exact sequences

0→ F →G→R/IR+ T → 0

and

0→
(
(I/I2 +Q)⊗ F

)
(−1)→R/IR+ T → S(−1)→ 0

of graded T -modules by Proposition 3.5. Since conditions (C1), (C2), and

(C3) are satisfied, we have F ∼= (A/I)[X1,X2, . . . ,Xd] by Lemma 2.2, whence

(I/I2 +Q)⊗ F ∼= (I/I2 +Q)⊗ (A/I)[X1,X2, . . . ,Xd], and AssT S ⊆ {mT}
by Lemma 2.3. Thus, we have depthG> 0 by the depth lemma.

(4) Take x ∈ (a1, a2, . . . , ǎi, . . . , ad) : ai for 1 ≤ i ≤ d, and write aix =∑
1≤j≤d,j �=i ajxj with xj ∈ A for 1 ≤ j ≤ d, j �= i. Then we have x,xj ∈ I
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for all 1≤ j ≤ d, j �= i by our condition (C2). Let us look at the monomor-

phism (
(I/I2 +Q)⊗ F

)
(−1)→R/IR+ T

given by the composition map with ϕ3 : ((I/I
2 +Q)⊗ F )(−1)→ Imφ and

the inclusion Imφ→R/IR+ T ; so for simplicity, we say ϕ3. Put

g = x⊗ ait−
∑

1≤j≤d,j �=i

xj ⊗ ajt ∈ (I/I2 +Q)⊗ F,

where x, xj denote the images of x, xj in I/I2 +Q and ait, ajt denote the

images of ait, ajt in F , respectively. Then we have

ϕ3(g) = xait2 −
∑

1≤j≤d,j �=i

xjajt2 = 0

because aix =
∑

1≤j≤d,j �=i ajxj . Therefore, g = x ⊗ ait −
∑

1≤j≤d,j �=i xj ⊗
ajt= 0 since ϕ3 is monomorphism. Then because (I/I2+Q)⊗F ∼= (I/I2+

Q)⊗(A/I)[a1t, a2t, . . . , adt], we get x= 0, whence x ∈ I2+Q, as required.

§4. Proof of the main theorem: Part 1

The purpose of this section is to give a proof of the equivalence of condi-

tions (1) and (2) in Theorem 1.1. Let us note the following.

Lemma 4.1. Suppose that d ≥ 2. Let a ∈ Q\mQ be a superficial ele-

ment with respect to I and Q. Let A = A/(a), let I = I/(a), and let Q =

Q/(a). Then 2e0(I)− e1(I) + e1(Q) = 2�A(A/I) + �A(I/I
2 +Q) if and only

if 2e0(I)− e1(I) + e1(Q) = 2�A(A/I) + �A(I/I
2
+Q).

Proof. We have ei(I) = ei(I) and ei(Q) = ei(Q) for 0 ≤ i ≤ d − 2, and

we have ed−1(I) = ed−1(I) + (−1)d�A((0) :A a) and ed−1(Q) = ed−1(Q) +

(−1)d�A((0) :A a). Hence, 2e0(I) − e1(I) + e1(Q) = 2e0(I) − e1(I) + e1(Q).

Meanwhile, we have 2�A(A/I) + �A(I/I
2 +Q) = 2�A(A/I) + �A(I/I

2
+Q).

Therefore, we get the required equivalence.

Lemma 4.2. Put C = A/W . Then 2e0(I)− e1(I) + e1(Q) = 2�A(A/I) +

�A(I/I
2 + Q) if and only if 2e0(IC) − e1(IC) + e1(QC) = 2�A(C/IC) +

�A(IC/I2C +QC) and I2 +Q⊇W .

Proof. Since ei(I) = ei(IC) and ei(Q) = ei(QC) for all 0≤ i≤ d− 1, and

ed(I) = ed(IC) + (−1)d�A(W ) and ed(Q) = ed(QC) + (−1)d�A(W ), we have

2e0(I)− e1(I) + e1(Q) = 2e0(IC)− e1(IC) + e1(QC).
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Assume that 2e0(I) − e1(I) + e1(Q) = 2�A(A/I) + �A(I/I
2 + Q). Then,

since 2e0(IC) − e1(IC) + e1(QC) ≤ 2�A(C/IC) + �A(IC/I2C + QC) by

Proposition 3.2, and �A(C/IC) ≤ �A(A/I) and �A(IC/I2C + QC) ≤
�A(I/I

2 +Q), we have

2e0(I)− e1(I) + e1(Q) = 2e0(IC)− e1(IC) + e1(QC)

≤ 2�A(C/IC) + �A(IC/I2C +QC)

≤ 2�A(A/I) + �A(I/I
2 +Q)

= 2e0(I)− e1(I) + e1(Q).

Therefore, equalities

2e0(IC)− e1(IC) + e1(QC) = 2�A(C/IC) + �A(IC/I2C +QC),

�A(C/IC) = �A(A/I), and �A(IC/I2C + QC) = �A(I/I
2 + Q) hold true.

Then we have I ⊇ W since �A(A/I +W ) = �A(C/IC) = �A(A/I). Hence,

because

�A(I/I
2 +Q+W ) = �A(IC/I2C +QC) = �A(I/I

2 +Q),

we get I2 +Q⊇W .

Suppose that 2e0(IC)− e1(IC) + e1(QC) = 2�A(C/IC) + �A(IC/I2C +

QC) and I2 +Q⊇W . Then we have �A(A/I) = �A(C/IC) and �A(I/I
2 +

Q) = �A(IC/I2C +QC), so that

2e0(I)− e1(I) + e1(Q) = 2e0(IC)− e1(IC) + e1(QC)

= 2�A(C/IC) + �A(IC/I2C +QC)

= 2�A(A/I) + �A(I/I
2 +Q),

as required.

We are now in a position to prove the implication (2) ⇒ (1) of Theo-

rem 1.1.

Proof of (2)⇒ (1) of Theorem 1.1. Put C =A/W . Then we have I3C =

QI2C and QnC ∩ In+1C = QnIC for all n ≥ 1. Since condition (C1) is

satisfied, we have (a1, a2, . . . , ǎi, . . . , ad)C : ai ⊆ I2C +QC for all 1≤ i≤ d.

Therefore, passing to the ring C, we may assume that condition (C3) is

satisfied by Lemma 4.2, because W ⊆ (a1, a2, . . . , ǎi, . . . , ad) : ai ⊆ I2+Q for
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1≤ i≤ d. Then since I3 =QI2 and Qn ∩ In+1 =QnI for all n≥ 1, we have

K(3) = IS = (0) and K(2) = (0).

We have to show that K(1) = (0), and notice that [K(1)]n = (0) for all

n≤ 1. Assume thatK(1) �= (0). Let n≥ 2 as the least integer so that [K(1)]n �=
(0), and take 0 �= g ∈ [K(1)]n = [Kerϕ3]n. Put

Γ′=
{
(α1, α2, . . . , αd) ∈ Zd

∣∣∣ α1 ≥ 1, αi ≥ 0 for 2≤ i≤ d and

d∑
i=1

αi = n− 1
}
,

Γ′′=
{
(0, β2, . . . , βd) ∈ Zd

∣∣∣ βi ≥ 0 for 2≤ i≤ d and
d∑

i=2

βi = n− 1
}
.

Then since

Γ′ ∪ Γ′′ =
{
(α1, α2, . . . , αd) ∈ Zd

∣∣∣ αi ≥ 0 for 1≤ i≤ d and

d∑
i=1

αi = n− 1
}
,

we may write

g =
∑

α∈Γ′∪Γ′′

xα ⊗ (a1t)α1(a2t)α2 · · · (adt)αd

=
∑
α∈Γ′

xα ⊗ (a1t)α1(a2t)α2 · · · (adt)αd +
∑
β∈Γ′′

xβ ⊗ (a2t)β2 · · · (adt)βd

∈ (I/I2 +Q)⊗ Fn−1,

with xα, xβ ∈ I , where xα and xβ denote the images of xα and xβ in I/I2+

Q, and (a1t)α1(a2t)α2 · · · (adt)αd and (a2t)β2 · · · (adt)βd denote the images

of (a1t)
α1(a2t)

α2 · · · (adt)αd and (a2t)
β2 · · · (adt)βd in Fn−1, respectively. We

then have

ϕ3(g) =
∑
α∈Γ′

xαa
α1
1 aα2

2 · · ·aαd
d tn +

∑
β∈Γ′′

xβa
β2
2 · · ·aβd

d tn = 0,

where xαa
α1
1 aα2

2 · · ·aαd
d tn and xβa

β2
2 · · ·aβd

d tn denote the images of xαa
α1
1 aα2

2

· · ·aαd
d tn and xβa

β2
2 · · ·aβd

d tn in [R/IR+ T ]n, respectively.

Then because∑
α∈Γ′

xαa
α1
1 aα2

2 · · ·aαd
d +

∑
β∈Γ′′

xβa
β2
2 · · ·aβd

d ∈ In+1 +Qn,
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In+1 +Qn =Qn−1I2 +Qn ⊆ a1Q
n−2I2 + a1Q

n−1 + (a2, a3, . . . , ad)
n−1,

and
∑

β∈Γ′′ xβa
β2
2 · · ·aβd

d ∈ (a2, a3, . . . , ad)
n−1, there exist q ∈ Qn−2I2 and

q′ ∈Qn−1 such that

a1 ·
{∑
α∈Γ′

xαa
α1−1
1 aα2

2 · · ·aαd
d + q+ q′

}

=
∑
α∈Γ′

xαa
α1
1 aα2

2 · · ·aαd
d + a1q+ a1q

′ ∈ (a2, a3, . . . , ad)
n−1.

Therefore, since (a2, a3, . . . , ad)
n−1 : a1 ⊆ (a2, a3, . . . , ad)

n−2 ·((a2, a3, . . . , ad) :
a1) by [8, Lemma 3.5] and (a2, a3, . . . , ad) : a1 ⊆ I2 +Q, we have∑

α∈Γ′

xαa
α1−1
1 aα2

2 · · ·aαd
d + q+ q′ ∈ (a2, a3, . . . , ad)

n−2 · (I2 +Q),

and hence ∑
α∈Γ′

xαa
α1−1
1 aα2

2 · · ·aαd
d ∈ In +Qn−1,

by the choices of q, q′. Hence, we get
∑

α∈Γ′ xα⊗ (a1t)α1−1(a2t)α2 · · · (adt)αd ∈
[K(1)]n−1 = (0), whence

g =
∑
β∈Γ′′

xβ ⊗ (a2t)β2 · · · (adt)βd .

Therefore, g = 0 by the symmetry among the elements ait, because, for

all 1 ≤ i ≤ d, we have In+1 + Qn = Qn−1I2 + Qn ⊆ aiQ
n−2I2 + aiQ

n−1 +

(a1, a2, . . . , ǎi, . . . , ad)
n−1, (a1, a2, . . . , ǎi, . . . , ad)

n−1 : ai ⊆ (a1, a2, . . . , ǎi, . . . ,

ad)
n−2 ·((a1, a2, . . . , ǎi, . . . , ad) : ai) by [8, Lemma 3.5], and (a1, a2, . . . , ǎi, . . . ,

ad) : ai ⊆ I2 + Q. But this is a contradiction. Thus, we get K(1) = (0) as

required. Consequently, the required equality 2e0(I)− e1(I) = 2�A(A/I) +

�A(I/I
2 +Q) holds true by Proposition 3.5.

In the rest of Section 4, we must show the implication (1)⇒ (2) of The-

orem 1.1. Suppose that conditions (C1) and (C2) are satisfied, and assume

that 2e0(I) − e1(I) + e1(Q) = 2�A(A/I) + �A(I/I
2 + Q). Put C = A/W ;

then we have 2e0(IC)−e1(IC)+e1(QC) = 2�A(C/IC)+ �A(IC/I2C+QC)

and W ⊆ I2 +Q by Lemma 4.2. Therefore, passing to the ring C, we get

(Qn+W )∩ (In+1+W ) =QnI +W for all n≥ 1 and (a1, a2, . . . , ǎi, . . . , ad) :

ai ⊆ I2+Q for all 1≤ i≤ d by Corollary 3.6. Thus, the implication (1)⇒ (2)

in Theorem 1.1 has been proven modulo the following Theorem 4.3.
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Theorem 4.3. Suppose that conditions (C1) and (C2) are satisfied, and

assume that 2e0(I) − e1(I) + e1(Q) = 2�A(A/I) + �A(I/I
2 + Q). Then we

have I3 ⊆QI2 +W and I2 ⊇W .

Proof. We put C = A/W ; then all conditions (C1), (C2), and (C3) are

satisfied for the ring C and the ideals IC and QC. We then have 2e0(IC)−
e1(IC) + e1(QC) = 2�A(C/IC) + �A(IC/I2 + QC) and I2 + Q ⊇ W by

Lemma 4.2.

Take w ∈W ⊆ I2 +Q, and write w = i+ q with i ∈ I2 and q ∈Q. Then

we have q = −i ∈ QC ∩ I2C = QIC by Corollary 3.6(2), where q and −i

denote the images of q and −i in C, respectively. Hence,

q ∈QI +W ∩Q=QI

because W ∩Q= (0) by condition (C1) (see [21, Corollary 2.3]). Therefore,

w = i+ q ∈ I2, whence W ⊆ I2.

In the rest of our proof of Theorem 4.3, we have to show that I3 ⊆
QI2 +W . Passing to the ring C, we may assume that all conditions (C1),

(C2), and (C3) are satisfied. Put f1 = a1t ∈R. Then, since depthG> 0 by

Corollary 3.6(3), we may assume that f1 is a regular element of G.

We proceed by induction on d. Suppose that d= 1. Since I3 ⊆QI ⊆ (a1)

by Corollary 3.6(1) and f1 = a1 is G-regular, we have I3 = I3 ∩ (a1) = a1I
2.

We may assume that d ≥ 2 and that our assertion holds true for d− 1.

We put A=A/(a1), I = IA, and Q=QA, and notice that conditions (C1)

and (C2) are satisfied for the ring A and the ideals I and Q. Then we have

2e0(I) − e1(I) + e1(Q) = 2�A(A/I) + �A(I/I
2
+Q) by Lemma 4.1. Hence,

the hypothesis of induction on d says that

I
3 ⊆QI

2
+H0

m(A)

holds true. Therefore, we have

I3 ⊆QI2 +
[
(a1) :Q

]
because a1, a2, . . . , ad forms a d-sequence on A. Take x ∈ I3 ⊆QI2 + [(a1) :

Q], and write x= y+ z with y ∈QI2 and z ∈ [(a1) :Q]. Then we have

z = x− y ∈
[
(a1) :Q

]
∩ I3 ⊆

[
(a1) :Q

]
∩Q= (a1),

because I3 ⊆QI by Corollary 3.6(1) and a1, a2, . . . , ad forms a d-sequence

on A. Therefore, since f1 = a1t is a G-regular element, we have z ∈ (a1) ∩
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I3 = a1I
2. Thus, we get x= y+ z ∈QI2, whence I3 =QI2. This completes

the proof of Theorem 4.3 and proof of the equivalence of Theorem 1.1,

conditions (1) and (2), as well.

§5. Proof of the main theorem: Part 2

The purpose of this section is to prove the last assertions in Theorem 1.1.

To begin with, we note the following.

Remark 5.1. Assume that I2 ⊆ Q and that 2e0(I) − e1(I) + e1(Q) =

2�A(A/I) + �A(I/I
2 +Q). Then A is a Cohen–Macaulay ring and I2 =QI ,

so S = (0) by Remark 2.1. Hence, G is a Cohen–Macaulay ring, and the

a-invariant a(G) of G is at most 1− d.

Proof. Since I2 ⊆Q, we have �A(I/I
2 +Q) = �A(I/Q). We then have

{
2�A(A/I) + �A(I/I

2 +Q)
}
−
{
2e0(I)− e1(I) + e1(Q)

}
=
{
2�A(A/I) + �A(I/Q)

}
− 2e0(I) + e1(I)− e1(Q)

≥ �A(A/I) + �A(A/Q)− 2e0(I)

+
{
e0(I) + e1(Q)− �A(A/I)

}
− e1(Q)

= �A(A/Q)− e0(I) = �A(A/Q)− e0(Q)≥ 0

because e1(I)≥ e0(I)+ e1(Q)− �A(A/I) by [6, Theorem 3.1]. Therefore, we

have �A(A/Q) = e0(Q), whence the base local ring A is Cohen–Macaulay.

Then we have I2 =Q ∩ I2 =QI by Corollary 3.6(2). Thus, G is a Cohen–

Macaulay ring with a(G)≤ 1− d.

We divide the proof of the last assertions in Theorem 1.1 into a few steps.

Let us begin with the following.

Theorem 5.2. Suppose that conditions (C1) and (C2) are satisfied, and

assume that 2e0(I)− e1(I)+e1(Q) = 2�A(A/I)+ �A(I/I
2+Q). Then G is a

generalized Cohen–Macaulay ring, and S is a generalized Cohen–Macaulay

T -module.

Proof. When I2 ⊆ Q, then G is a Cohen–Macaulay ring and S = (0)

by Remark 5.1. Therefore, we may assume that I2 � Q; hence S �= (0).

We put C = A/W . Then all conditions (C1), (C2), and (C3) are satisfied

for the ring C and the ideals IC and QC. We have 2e0(IC) − e1(IC) +
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e1(QC) = 2�A(C/IC) + �A(IC/I2C +QC) by Lemma 4.2. Let us consider

the canonical epimorphism

G
ϕ−→G(IC)

of graded rings. Then, since depthG(IC)> 0 by Corollary 3.6, it is easy to

see that Kerϕ∼=H0
M (G). Hence, we have Hi

M (G)∼=Hi
M (G(IC)) as graded

T -modules for all i≥ 1. Thus, passing to the ring C, we may assume that

condition (C3) is satisfied.

By Proposition 3.5, we have exact sequences

(†1) 0→
(
(I/I2 +Q)⊗ F

)
(−1)→R/IR+ T → S(−1)→ 0,

(†2) 0→ F →G→R/IR+ T → 0

of graded T -modules. Applying the local cohomology functor Hi
M (∗) to the

exact sequences (†1) and (†2), we get monomorphisms

Hi
M (G) ↪→Hi

M (R/IR+ T ) ↪→Hi
M (S)(−1)

of local cohomology modules for 0 ≤ i ≤ d− 1 because F ∼= (A/I)[X1,X2,

. . . ,Xd] is a polynomial ring over A/I by Lemma 2.2, whence (I/I2+Q)⊗F

is a maximal Cohen–Macaulay F -module. Then we have s ≤ g-depthM G,

where s = g-depthM S. Therefore, s = g-depthM G = d by Proposition 2.7.

The following Proposition 5.3 will give proofs of Theorem 1.1, assertions

(i), (ii), and (iii).

Proposition 5.3. Suppose that conditions (C1) and (C2) are satisfied,

and assume that 2e0(I)− e1(I) + e1(Q) = 2�A(A/I) + �A(I/I
2 +Q). Then

we have the following.

(1) For all n ∈ Z,

[
H0

M (G)
]
n
∼=

⎧⎨
⎩
W/I3 ∩W if n= 2,

In ∩W/In+1 ∩W if n≥ 3,

(0) otherwise.

(2) We have Hi
M (G) = [Hi

M (G)]2−i
∼=Hi

m(A) for 1≤ i≤ d− 1.

(3) We have a(G)≤ 2− d.
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Proof. When I2 ⊆Q, then G is a Cohen–Macaulay ring with a(G)≤ 1−d

by Remark 5.1. Hence, we may assume that I2 �⊆ Q, whence S �= (0). Let

C = A/W . Then all conditions (C1), (C2), and (C3) are satisfied for the

ring C and the ideals IC and QC. We have 2e0(IC)− e1(IC) + e1(QC) =

2�A(C/IC) + �A(IC/I2C +QC) by Lemma 4.2.

Condition (1). Let us consider the canonical epimorphism

G
ϕ−→G(IC)

of graded rings. Then, for each n ∈ Z, we have

[Kerϕ]n ∼= In ∩W/In+1 ∩W,

so that Kerϕ is a finitely graded module because In∩W = (0) for all n� 0.

Therefore, H0
M (G) = Kerϕ since depthG(IC)> 0. Then because W ⊆ I2 by

Theorem4.3,wehave [H0
M (G)]n = (0) forn= 0,1 and [H0

M (G)]2 =W/I3 ∩W .

Conditions (2) and (3).We proceed by induction on d. Passing to the ring

C, we may assume that condition (C3) is satisfied. Then, since depthG> 0

by Corollary 3.6(3), we may take f1 = a1t as G-regular.

Suppose that d = 1; then I3 = a1I
2 by Theorem 4.3. Take the exact

sequence

0→G/f1G→H1
M (G)(−1)

f1→H1
M (G)→H1

M (G/fG)

of local cohomology modules. Then we have a1(G) ≤ 1 because G/f1G ∼=
A/I ⊕ I/(I2 +Q)⊕ I2/QI .

Assume that d≥ 2 and that our assertion holds true for d−1. We put A=

A/(a1), I = IA, and Q=QA; then conditions (C1) and (C2) are satisfied for

the ring A and the ideals I and Q. Then we have 2e0(I)− e1(I) + e1(Q) =

2�A(A/I)+ �A(I/I
2
+Q) by Lemma 4.1. By the hypothesis of induction on

d, we get

ad−1

(
G(I)

)
:= max

{
n ∈ Z

∣∣ [Hd−1
M

(
G(I)

)]
n
�= (0)

}
≤ 2− (d− 1) = 3− d

and

Hi
M

(
G(I)

)
=
[
Hi

M

(
G(I)

)]
2−i

∼=Hi
m(A)

for all 1 ≤ i ≤ d − 2. Since I3 = QI2 by Theorem 4.3 and condition (C1)

is satisfied, we have I
n ∩ H0

m(A) ⊆ Q ∩ H0
m(A) = (0) for all n ≥ 3 by [21,

Corollary 2.3]. Therefore, we have
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H0
M

(
G(I)

)
=
[
H0

M

(
G(I)

)]
2
∼=H0

m(A)

by assertion (1).

Because f1 = a1t forms G-regular element, we have G/f1G∼=G(I). Apply

local cohomology functors Hi
M (∗) to the canonical exact sequences

0→G(−1)
f1→G→G(I)→ 0

of graded rings and look at the derived long exact sequence

0→H0
M

(
G(I)

)
→H1

M (G)(−1)
f1→H1

M (G)→H1
M

(
G(I)

)
→ · · ·

· · · →Hi−1
M

(
G(I)

)
→Hi

M (G)(−1)
f1→Hi

M (G)→Hi
M

(
G(I)

)
→ · · ·(�)

· · · →Hd−1
M

(
G(I)

)
→Hd

M (G)(−1)
f1→Hd

M (G)→ 0

of local cohomology modules.

Setting a= a(G) in the exact sequence (�) shows that[
Hd

M (G)(−1)
]
a+1

=
[
Hd

M (G)
]
a

(
�= (0)

)
is a homomorphic image of [Hd−1

M (G(I))]a+1. Hence, a+1≤ a(G(I))≤ 3−d,

whence a≤ 2− d.

Because Hi−1
M (G(I)) = [Hi−1

M (G(I))]3−i for all 1≤ i≤ d− 1, we get mono-

morphisms

0→
[
Hi

M (G)
]
n−1

→
[
Hi

M (G)
]
n

for all n ≥ 4− i by the exact sequence (�), whence [Hi
M (G)]n = (0) for all

n≥ 3− i.

On the other hand, since Hi
M (G(I)) = [Hi

M (G(I))]2−i for all 1≤ i≤ d−2,

we get epimorphisms [
Hi

M (G)
]
n−1

→
[
Hi

M (G)
]
n
→ 0

for all n≤ 1− i by the exact sequence (�). Therefore, since G is a generalized

Cohen–Macaulay ring by Theorem 5.2, we have [Hi
M (G)]n = (0) for all 1≤

i≤ d− 2 and n≤ 1− i. Thus, Hi
M (G) = [Hi

M (G)]2−i for all 1≤ i≤ d− 2.

Then because

0→
[
Hd−1

M (G)
]
n−1

→
[
Hd−1

M (G)
]
n

for all n≤ 2−d, to prove Hd−1
M (G) = [Hd−1

M (G)]3−d it is enough to show that

[Hd−1
M (G)]2−d = (0).
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Thanks to Proposition 3.5, we have exact sequences

(†1) 0→
(
(I/I2 +Q)⊗ F

)
(−1)→R/IR+ T → S(−1)→ 0,

(†2) 0→ F →G→R/IR+ T → 0

of graded T -modules so that applying local cohomology functors Hi
M (∗), we

get monomorphisms[
Hd−1

M (G)
]
2−d

↪→
[
Hd−1

M (R/IR+ T )
]
2−d

↪→
[
Hd−1

M (S)
]
1−d

because F ∼= (A/I)[X1,X2, . . . ,Xd] is the polynomial ring over A/I by

Lemma 2.2, whence (I/I2 + Q) ⊗ F is a maximal Cohen–Macaulay F -

module.

We now need the following claim.

Claim 1. For each 1≤ i≤ d−1, we have [Hi
M (IR)]n = (0) for all n≤ 2−i

and n< 0.

Proof. Let 1≤ i≤ d− 1. Look at the exact sequence

Hi−1
M (G)→Hi

M (IR)→Hi
M (R)

of local cohomology modules which is induced by the exact sequence

0→ IR→R→G→ 0

of graded T -modules. Then, since Hi−1
M (G) = [Hi−1

M (G)]3−i by the above

argument, we have monomorphisms[
Hi

M (IR)
]
n
↪→

[
Hi

M (R)
]
n

for all n≤ 2− i. We also have isomorphisms[
Hi

M (R)
]
n
∼=
[
Hi

M (IR)
]
n−1

for all n < 0, which are induced by the exact sequence

0→ IR(−1)→R→A→ 0

of graded T -modules so that[
Hi

M (IR)
]
n
↪→

[
Hi

M (R)
]
n
∼=
[
Hi

M (IR)
]
n−1

for all n≤ 2− i and n< 0.
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Therefore, since Hi
M (R) is finitely graded (because G is a generalized

Cohen–Macaulay ring by Theorem 5.2, so is R by [21, Proposition 6.1]),

so is Hi
M (IR). Consequently, we get [Hi

M (IR)]n = (0) for all n≤ 2− i and

n< 0.

We now look at the exact sequence[
Hd−1

M (IR)
]
1−d

→
[
Hd−1

M (S)
]
1−d

→
[
Hd

M (IT )
]
1−d

of local cohomology modules induced by the canonical exact sequence

0→ IT → IR→ S → 0

of graded T -modules. Then, since [Hd
M (IT )]1−d = (0) by Lemma 2.6 and

[Hd−1
M (IR)]1−d = (0) by Claim 1, we have [Hd−1

M (S)]1−d = (0), whence

[Hd−1
M (G)]2−d = (0). Thus, we get Hd−1

M (G) = [Hd−1
M (G)]3−d.

In the rest of our proof of Proposition 5.3, we have to show that

[Hi
M (G)]2−i

∼= Hi
m(A) for 1 ≤ i ≤ d − 1. Because conditions (C1) and (C3)

are satisfied, we have the canonical exact sequence

(�′) 0→A
a1→A→A→ 0

and a1H
1
m(A) = (0) by [21, Theorem 2.5]. Then applying the local cohomol-

ogy functor Hi
m(∗) to the exact sequence (�′), we have H0

m(A)∼=H1
m(A) (see

[10, Lemma 2.6], [21, Proof of Lemma 1.7]). Therefore, we get

H1
M (G) =

[
H1

M (G)
]
1
∼=
[
H0

M

(
G(I)

)]
2
∼=H0

m(A)∼=H1
m(A)

by the exact sequence (�).

Suppose that 2 ≤ i ≤ d− 1. Applying local cohomology functors Hi
M (∗)

to exact sequences (†1) and (†2), we get monomorphisms[
Hi

M (G)
]
2−i

↪→
[
Hi

M (R/IR+ T )
]
2−i

↪→
[
Hi

M (S)
]
1−i

.

Now take the exact sequence[
Hi

M (IR)
]
1−i

→
[
Hi

M (S)
]
1−i

→
[
Hi+1

M (IT )
]
1−i

induced by the exact sequence

0→ IT → IR→ S → 0.
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Then, because [Hi
M (IR)]1−i = (0) by Claim 1 and [Hi+1

M (IT )]1−i
∼= Hi

m(A)

by Lemma 2.6, we get

Hi
M (G) =

[
Hi

M (G)
]
2−i

↪→Hi
m(A)

for 2≤ i≤ d− 1. Then because

I(A)≤ I(G) =

d−1∑
i=1

(
d− 1

i

)
�G

(
Hi

M (G)
)
≤

d−1∑
i=1

(
d− 1

i

)
�A

(
Hi

m(A)
)
= I(A)

(see [5, Proposition 3.2], [21, Corollary 5.2]), we get �G(H
i
M (G)) = �A(H

i
m(A))

for 1≤ i≤ d− 1. Thus, Hi
M (G) = [Hi

M (G)]2−i
∼=Hi

m(A) for all 1≤ i≤ d− 1.

This completes the proof of Proposition 5.3.

Thanks to Proposition 5.3, we can explore the structure of the Sally

module S of the ideals I with respect to Q satisfying 2e0(I)−e1(I)+e1(Q) =

2�A(A/I) + �A(I/I
2 +Q) as follows.

Corollary 5.4. Suppose that S �= (0) and that conditions (C1), (C2),

and (C3) are satisfied. Assume that 2e0(I) − e1(I) + e1(Q) = 2�A(A/I) +

�A(I/I
2 +Q). Then we have

(1) e0(S) = e0(I)− �A(A/I)− �A(I/I
2 +Q),

(2) e1(S) = e1(I)− e0(I) + �A(A/I),

(3) ei(S) = ei−1(Q) + ei(Q) for 2≤ i≤ d− 1,

(4) Hi
M (S) = [Hi

M (S)]1−i
∼=Hi

m(A) for 1≤ i≤ d− 1, and

(5) the a-invariant a(S) of S is at most 1− d.

Proof. Recall that dimT S = d by Lemma 2.3.

(1), (2), and (3) By Lemma 3.3 and Proposition 3.5, we have

�A(Sn−1) = �A(I
n/In+1)−

{
�A(A/I) + �A(I/I

2 +Q)
}(n+ d− 1

d− 1

)

+ �A(I/I
2 +Q)

(
n+ d− 2

d− 2

)

for all n≥ 0. On the other hand, we have
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�A(Sn−1)

=

d−1∑
i=0

(−1)iei(S)

(
n− 1 + d− 1− i

d− 1− i

)

=

d−2∑
i=0

(−1)iei(S)

(
n− 1 + d− 1− i

d− 1− i

)
+ (−1)d−1ed−1(S)

=

d−2∑
i=0

(−1)iei(S)

{(
n+ d− 1− i

d− 1− i

)
−
(
n+ d− 2− i

d− 2− i

)}
+ (−1)d−1ed−1(S)

=
d−1∑
i=0

(−1)iei(S)

(
n+ d− 1− i

d− 1− i

)
−

d−1∑
i=1

(−1)i−1ei−1(S)

(
n+ d− 1− i

d− 1− i

)

= e0(S)

(
n+ d− 1

d− 1

)
+

d−1∑
i=1

(−1)i
{
ei(S) + ei−1(S)

}(n+ d− 1− i

d− 1− i

)

for all n� 0 so that

e0(S) = e0(I)−
{
�A(A/I) + �A(I/I

2 +Q)
}
,

e1(S) + e0(S) = e1(I)− �A(I/I
2 +Q),

ei(S) + ei−1(S) = ei(I) for 2≤ i≤ d− 1.

Then we have

e1(S) = e1(I)− �A(I/I
2 +Q)− e0(S)

= e1(I)− �A(I/I
2 +Q)−

{
e0(I)− �A(A/I)− �A(I/I

2 +Q)
}

= e1(I)− e0(I) + �A(A/I),

and, because ei(I) = ei−1(Q) + ei(Q) + ei−1(S) for all 2 ≤ i ≤ d by Corol-

lary 2.5, we have

ei(S) = ei(I)− ei−1(S)

=
{
ei−1(Q) + ei(Q) + ei−1(S)

}
− ei−1(S) = ei−1(Q) + ei(Q)

for all 2≤ i≤ d− 1.



124 K. OZEKI

(4) Thanks to Proposition 3.5, we have exact sequences

(†1) 0→
(
(I/I2 +Q)⊗ F

)
(−1)→R/IR+ T → S(−1)→ 0,

(†2) 0→ F →G→R/IR+ T → 0

of graded T -modules. Then because F ∼= (A/I)[X1,X2, . . . ,Xd] is a poly-

nomial ring over A/I by Lemma 2.2 so that (I/I2 +Q)⊗ F is a maximal

Cohen–Macaulay F -module, we obtain

Hi
M (G)∼=Hi

M (R/IR+ T )∼=Hi
M (S)(−1)

as graded T -modules for 0 ≤ i ≤ d − 2. Therefore, since Hi
M (G) =

[Hi
M (G)]2−i

∼=Hi
m(A) by Proposition 5.3(2), we get Hi

M (S) = [Hi
M (S)]1−i

∼=
Hi

m(A) for 1≤ i≤ d− 2.

Let us look at the exact sequences

(†1)′ 0→Hd−1
M (R/IR+ T )→Hd−1

M (S)(−1)→Hd
M

(
(I/I2 +Q)⊗ F

)
(−1),

(†2)′ 0→Hd−1
M (G)→Hd−1

M (R/IR+ T )→Hd
M (F )

of local cohomology modules induced by the exact sequences (†1) and (†2).
Then because Hd−1

M (G) = [Hd−1
M (G)]3−d by Proposition 5.3(2) and

[Hd
M (F )]n = (0) for all n >−d, we get [Hd−1

M (R/IR+ T )]n = (0) for all n≥
4− d by the exact sequence (†2)′. Then since [Hd

M ((I/I2+Q)⊗F )(−1)]n =

(0) for all n≥ 2−d and by the exact sequence (†1)′, we obtain [Hd−1
M (S)]n =

(0) for all n≥ 3− d.

From the exact sequence

Hd−1
M (IR)→Hd−1

M (S)→Hd
M (IT )

of local cohomology modules induced by the exact sequence

0→ IT → IR→ S → 0

of graded T -modules, it follows that Hd−1
M (S) = [Hd−1

M (S)]2−d because

[Hd
M (IT )]n = (0) for all n ≤ 1 − d by Lemma 2.6 and [Hd−1

M (IR)]n = (0)

for all n≤ 1− d < 0 by Claim 1 in our proof of Theorem 5.3. Therefore, we

get isomorphisms

Hd−1
M (S)∼=

[
Hd−1

M (S)
]
2−d

∼=
[
Hd−1

M (G)
]
3−d

∼=Hd−1
m (A)

by the exact sequences (†1)′, (†2)′, and Proposition 5.3(2).

(5) Since a(G)≤ 2− d by Proposition 5.3(3), we get a(S)≤ 1− d by the

exact sequences (†1) and (†2).

We are now in a position to prove the last assertions in Theorem 1.1.



THE STRUCTURE OF SALLY MODULES 125

Proof of the last assertions in Theorem 1.1. Assertion (i). Thanks to

Proposition 5.3(1), we may assume that A is a Buchsbaum ring. Then since

I3 ⊆QI2+W by Theorem 4.3 and m ·W = (0), I4 =QI3 holds true. There-

fore, In ∩W ⊆ Q ∩W = (0) for all n ≥ 4 by [21, Corollary 2.3]. Thus, we

get the required assertions by Proposition 5.3(1).

Assertions (ii), (iii). See Proposition 5.3(2),(3).

Assertions (iv), (v). When I2 ⊆ Q, then A is a Cohen–Macaulay local

ring and I2 =QI holds true by Remark 5.1. Then we have e1(I) = e0(I)−
�A(A/I) and ei(I) = 0 for 2≤ i≤ d (see [14, Theorem 2.1], [7, Corollary 2.3]),

and ei(Q) = 0 for all 1 ≤ i ≤ d, whence our assertions hold true. Thus, we

may assume that I2 ⊆ /Q, whence S �= (0).

Put C = A/W . Then all conditions (C1), (C2), and (C3) are satisfied

for the ring C and the ideals IC and QC, and we have ei(I) = ei(IC),

ei(Q) = ei(QC) for all 0≤ i≤ d− 1, ed(I) = ed(IC)+ (−1)d�A(W ), ed(Q) =

ed(QC) + (−1)d�A(W ), and �A(A/I) = �A(C/IC). We also have 2e0(IC)−
e1(IC)+ e1(QC) = 2�A(C/IC)+ �A(IC/I2C+QC) by Lemma 4.2, whence

passing to the ring C, we may assume that condition (C3) is satisfied.

Thanks to Corollary 5.4, we have

e1(S) = e1(I)− e0(I) + �A(A/I) and ei(S) = ei−1(Q) + ei(Q)

for all 2≤ i≤ d− 1. Therefore, by Corollary 2.5, we have

e2(I) = e1(Q) + e2(Q) + e1(S) = e1(Q) + e2(Q) + e1(I)− e0(I) + �A(A/I),

ei(I) = ei−1(Q) + ei(Q) + ei−1(S) = ei−2(Q) + 2ei−1(Q) + ei(Q)

for all 3≤ i≤ d.

Assertion (vi). We proceed by induction on d. Suppose that d= 1. Then

since m ·W , we have M ·H0
M (G) = (0) by assertion (i). Thus, G is a Buchs-

baum ring (see [20, I. Proposition 2.12]).

Assume that d ≥ 2 and that our assertion holds true for d − 1. Put

C = A/W . Then all conditions (C1), (C2), and (C3) are satisfied for the

ring C and the ideals IC and QC, and we have 2e0(IC)−e1(IC)+e1(QC) =

2�A(C/IC)+�A(IC/I2C+QC) by Lemma 4.2. Thenwe have depthG(IC)>

0 and

Hi
M

(
G(IC)

)
=
[
Hi

M

(
G(IC)

)]
2−i

∼=Hi
m(C)

for 1≤ i≤ d− 1 by assertion (ii).

Let D = C/a1C, and put f = a1t. Then f is a G(IC)-regular element,

and all conditions (C1) and (C2) are satisfied for the ring D and the ideals
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ID and QD. We also have 2e0(ID) − e1(ID) + e1(QD) = 2�A(D/ID) +

�A(ID/I2D+QD) by Lemma 4.1.

Then the hypothesis of induction on d says that G(ID) is a Buchsbaum

ring. Because f = a1t is a G(IC)-regular element, G(ID)∼=G(IC)/fG(IC),

and fHi
M (G(IC)) = (0) for 1≤ i≤ d− 1, G(IC) is also a Buchsbaum ring

by [20, I. Proposition 2.19]. Furthermore, the kernel of the graded homo-

morphism G→G(IC) coincides with H0
M (G). Thus, we get that G/H0

M (G)

is a Buchsbaum ring.

Let V =m+ It⊆R. Then, because the residue class field A/m is infinite,

we may choose a system of generators ξ1, ξ2, . . . , ξ� of V such that {ξi}i∈Λ
form a system of parameters for GM for any subset Λ⊆ {1,2, . . . , �} with d

elements. In order to prove the Buchsbaumness of G, it is enough to show

that (
{ξi}i∈Λ

)
G∩H0

M (G) = (0)

for any Λ stated above (see [20, I. Proposition 2.22]).

We may take Λ = {1,2, . . . , d} for simplicity, and let ξi = xi−bit with xi ∈
m and bi ∈ I for 1≤ i ≤ d. Put q= (b1, b2, . . . , bd). Since (ξ1, ξ2, . . . , ξd)G+

mG= (b1t, b2t, . . . , bdt)G+mG, b1t, b2t, . . . , bdt forms a system of parameters

for G/mG. Hence, q= (b1, b2, . . . , bd) is a reduction of I . Then we have that

condition (C1) is satisfied for the ideal q = (b1, b2, . . . , bd) by our assump-

tion that A is a Buchsbaum local ring. Since the Castelnuovo–Mumford

regularity

regG(IC) :=max
{
n+ i

∣∣ [Hi
M

(
G(IC)

)]
n
�= (0), i, n ∈ Z

}
of G(IC) is at most 2 by assertions (i) and (ii), we get I3C = qI2C, whence

I3 ⊆ qI2 +W (see [22, Proposition 3.2]).

Let gi = bit for 1≤ i≤ d. We then have the following claim.

Claim 2. We have that g1, g2, . . . , gd is standard on G.

Proof. Since G is a generalized Cohen–Macaulay ring with I(G) = I(A)

by assertions (i) and (ii), we have

I(G)≥ �G
(
G/(g1, g2, . . . , gd)G

)
− e0(g1, g2, . . . , gd;G)

≥ �A(A/q)− e0(q) = I(A) = I(G),

where e0(g1, g2, . . . , gd;G) denotes the multiplicity of G with respect to

(g1, g2, . . . , gd)G. Therefore, I(G) = �G(G/(g1, g2, . . . , gd)G) − e0(g1, g2, . . . ,

gd;G), whence g1, g2, . . . , gd is standard on G (see [21, Theorem 2.1]).
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Take anyϕ ∈ (ξ1, ξ2, . . . , ξd)G∩H0
M (G). Thenwe canwriteϕ=w2t2 +w3t3

with w2 ∈W and w3 ∈W ∩ I3 by assertion (i), where w2t2 +w3t3 denotes

the image of w2t
2 +w3t

3 ∈R in G.

Let us write ϕ =
∑d

i=1 ξiηi with ηi ∈ R for 1 ≤ i ≤ d, where ηi denotes

the image of ηi in G. Taking N � 0, we write ηi =
∑N

j=0 ηij t
j with ηij ∈ Ij

for 0≤ j ≤N and 1≤ i≤ d. Then we may express ηij ∈ qIj−1 for 3≤ j ≤N

and 1 ≤ i ≤ d, because ξi ∈ mA[t], I3 ⊆ qI2 +W , and m ·W = (0). Then

since we have

w2t2 +w3t3 =
d∑

i=1

ξiηi

=

d∑
i=1

ξi

( N∑
j=0

ηij t
j
)

=

N∑
j=0

d∑
i=1

(xi − bit)ηij t
j

=

N∑
j=0

d∑
i=1

xiηij t
j −

N∑
j=0

d∑
i=1

biηij t
j+1

=
d∑

i=1

xiηi0 +
N∑
j=1

d∑
i=1

(xiηij − biηij−1)t
j −

d∑
i=1

biηiN t
N+1

in G, we get the following equations:

w2 −
d∑

i=1

(xiηi2 − biηi1) ∈ I3,

w3 −
d∑

i=1

(xiηi3 − biηi2) ∈ I4,

d∑
i=1

(xiηij − biηij−1) ∈ Ij+1 for 4≤ j ≤N,

and

d∑
i=1

biηiN ∈ IN+2.
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Let us now look at the second equality,

w3 −
d∑

i=1

(xiηi3 − biηi2) ∈ I4 = qI3.

Then because xiηi3 ∈mI3 ⊆m(qI2+W )⊆ q and condition (C1) is satisfied,

w3 ∈ q∩W = (0) by [21, Corollary 2.3], whence w3 = 0.

It is now enough to show that w2 ∈ I3. We need the following claim.

Claim 3. There exist elements y
(j)
αβ ∈ Ij for 2≤ j ≤N and 1≤ α< β ≤ d

such that
d∑

i=1

bi

(
ηij +

∑
α<i

xαy
(j)
αi

−
∑
i<β

xβy
(j)
iβ

)
∈ Ij+2.

Proof of Claim 3. We proceed by descending induction on j. When j =

N , we may take y
(j)
αβ = 0 for all 1≤ α< β ≤ d.

Assume that j ≤N − 1 and that our assertion holds true for j +1. Then

by the hypothesis of induction j there exist elements y
(j+1)
αβ ∈ Ij+1 for all

1≤ α< β ≤ d such that

d∑
i=1

bi

(
ηij+1 +

∑
α<i

xαy
(j+1)
αi

−
∑
i<β

xβy
(j+1)
iβ

)
∈ Ij+3.

Then since xi ∈ m and xiy
(j+1)
αβ ∈ xiI

j+1 ⊆ xi(qI
j + W ) = xiqI

j , we may

take y
(j+1)
αβ ∈ qIj for all 1≤ α< β ≤ d. Put

v
(j+1)
i = ηij+1 +

∑
α<i

xαy
(j+1)
αi

−
∑
i<β

xβy
(j+1)
iβ

for 1≤ i≤ d. Let K• =K•(g1, g2, . . . , gd;G) be the Koszul complex with the

differential maps ∂p :Kp →Kp−1, and let T1, T2, . . . , Td be the free basis of

K1. Put σ =
∑d

i=1 v
(j+1)
i tj+1Ti. We then have

∂1(σ) =
d∑

i=1

giv
(j+1)
i tj+1 =

( d∑
i=1

biv
(j+1)
i

)
tj+2 = 0
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in G because
∑d

i=1 biv
(j+1)
i ∈ Ij+3. On the other hand, since v

(j+1)
i ∈ qIj we

have σ ∈ (g1, g2, . . . , gd)K1. Hence, σ ∈ (g1, g2, . . . , gd)K1 ∩ Z1(K) = B1(K)

because g1, g2, . . . , gd forms a d-sequence on G by Claim 2, where Z1(K) :=

Ker∂1 and B1(Z) := Im∂2. Therefore, there exist elements y
(j)
αβ ∈ Ij for

1≤ α< β ≤ d such that

∂2

(∑
α<β

y
(j)
αβ t

jTα ∧ Tβ

)
= σ.

Then we have

σ = ∂2

(∑
α<β

y
(j)
αβ t

jTα ∧ Tβ

)

=
∑
α<β

gαy
(j)
αβ t

jTβ −
∑
α<β

gβy
(j)
αβ t

jTα

=
∑
α<β

bαy
(j)
αβ t

j+1Tβ −
∑
α<β

bβy
(j)
αβ t

j+1Tα

=

d∑
i=1

(∑
α<i

bαy
(j)
αi −

∑
i<β

bβy
(j)
iβ

)
tj+1Ti.

Hence, we have

v
(j+1)
i tj+1 =

(∑
α<i

bαy
(j)
αi −

∑
i<β

bβy
(j)
iβ

)
tj+1

in G so that

v
(j+1)
i −

(∑
α<i

bαy
(j)
αi

−
∑
i<β

bβy
(j)
iβ

)
∈ Ij+2

for all 1≤ i≤ d. Then since
∑d

i=1 xiv
(j+1)
i =

∑d
i=1 xiηij+1 , we have the fol-

lowing:

d∑
i=1

xi

(
v
(j+1)
i −

∑
α<i

bαy
(j)
αi

−
∑
i<β

bβy
(j)
iβ

)
∈ Ij+2

=

d∑
i=1

xiv
(j+1)
i −

( d∑
i=1

∑
α<i

xibαy
(j)
αi

−
d∑

i=1

∑
i<β

xibβy
(j)
iβ

)
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=

d∑
i=1

xiηij+1 −
( d∑
i=1

∑
i<β

xβbiy
(j)
iβ

−
d∑

i=1

∑
α<i

xαbiy
(j)
αi

)

=

d∑
i=1

xiηij+1 −
d∑

i=1

bi

(∑
i<β

xβy
(j)
iβ

−
∑
α<i

xαy
(j)
αi

)
.

Therefore, because
∑d

i=1(xiηij+1 − biηij ) ∈ Ij+2, we get

d∑
i=1

bi

(
ηij +

∑
α<i

xαy
(j)
αi

−
∑
i<β

xβy
(j)
iβ

)
∈ Ij+2,

as required.

Thanks to Claim 3, there exist elements y
(2)
αβ ∈ I2 for 1≤ α < β ≤ d such

that
d∑

i=1

bi

(
ηi2 +

∑
α<i

xαy
(2)
αi

−
∑
i<β

xβy
(2)
iβ

)
∈ I4.

Put

vi = v
(2)
i = ηi2 +

∑
α<i

xαy
(2)
αi

−
∑
i<β

xβy
(2)
iβ

for 1≤ i≤ d. Then we have
∑d

i=1 bivi ∈ I4 = qI3. Therefore, there exist v′i ∈
I3 with 1≤ i≤ d such that

∑d
i=1 bivi =

∑d
i=1 biv

′
i, whence we get

∑d
i=1 bi(vi−

v′i) = 0. Then for each 1≤ i≤ d we have

vi − v′i ∈
[
(b1, b2, . . . , b̌i, . . . , bd) : bi

]
=
[
(b1, b2, . . . , b̌i, . . . , bd) :m

]
so that xi(vi − v′i) ∈ q. Since xiv

′
i ∈mI3 ⊆m(qI2 +W )⊆ q, we get xivi ∈ q.

On the other hand, since
∑d

i=1 xivi =
∑d

i=1 xiηi2 , we have

d∑
i=1

(xiηi2 − biηi1) =
d∑

i=1

(xivi − biηi1) ∈ q.

Put q =
∑d

i=1(xiηi2 − biηi1); then because w2 − q ∈ I3 ⊆ qI2 +W , we may

write w2 − q = q′ +w′ with q′ ∈ qI2 and w′ ∈W . Then as w2 −w′ = q+ q′ ∈
q ∩ W = (0) by [21, Corollary 2.3], we get q = −q′ ∈ qI2. Thus, because

w2 − q ∈ I3, we get w2 ∈ I3. This completes the proof of assertion (vi) and

that of Theorem 1.1 as well.
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§6. An example

In this section, we construct one example of an m-primary ideal I which

satisfies 2e0(I)− e1(I)+ e1(Q) = 2�A(A/I)+ �A(I/I
2 +Q) in a Buchsbaum

local ring. Our goal is the following.

Theorem 6.1. Let � > 0 and d ≥ 2 be integers. Then there exists an

m-primary ideal I in a Buchsbaum local ring (A,m) such that

d= dimA, Hi
m(A) = (0) for i �= 1, d, �A

(
H1

m(A)
)
= �,

and

2e0(I)− e1(I) + e1(Q) = 2�A(A/I) + �A(I/I
2 +Q)

for some reduction Q= (a1, a2, . . . , ad) of I.

To construct the necessary example we need some techniques which are

due to [4, Section 6]. Let us begin with the following.

Let m,� > 0, and d≥ 2 be integers. Let

U = k
[
{Xi}1≤i≤m,{Yj}1≤j≤�,{Vjk}1≤j≤�,1≤k≤d,{Zk}1≤k≤d

]
be the polynomial ring with m+ �+ �d+ d indeterminates over an infinite

field k, and let

a=
(
{Xi}1≤i≤m,{Yj}1≤j≤�,{Vjk}1≤j≤�,1≤k≤d

)
·
(
{Xi}1≤i≤m,{Yj}1≤j≤�

)
+ (VjkVj′k′ | 1≤ j, j′ ≤ �,1≤ k, k′ ≤ d, j �= j′ or k �= k′)

+ (V 2
jk
− YjZk | 1≤ j ≤ �,1≤ k ≤ d).

We put C = U/a and denote the images of Xi, Yj , Vjk , and Zk in C by xi,

yj , vjk , and ak, respectively. Then dimC = d, since
√
a = (Xi, Yj , Vjk | 1 ≤

i ≤ m,1 ≤ j ≤ �,1 ≤ k ≤ d). Let M = C+ := (xi, yj , vjk , ak | 1 ≤ i ≤ m,1 ≤
j ≤ �,1 ≤ k ≤ d) be the graded maximal ideal in C. Let Λ be a subset of

{1,2, . . . ,m}. We put

q= (ai | 1≤ i≤ d)

and

JΛ = q+ (xα | α ∈ Λ)+ (vjk | 1≤ j ≤ �,1≤ k ≤ d).
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Then M2 = qM, J2
Λ = qJΛ + q(y1, y2, . . . , y�), and J3

Λ = qJ2
Λ, whence q is a

reduction of both M and JΛ, and a1, a2, . . . , ad is a homogeneous system of

parameters for the graded ring C.

Let B = CM, and let n=MB denote the maximal ideal of B. We then

have the following.

Theorem 6.2. The following assertions hold true:

(1) B is a Cohen–Macaulay local ring with dimB = d;

(2) e0(qB) = e0(JΛB) =m+ �d+ �+ 1;

(3) e1(JΛB) = e0(JΛB)− �B(B/JΛB) + �= Λ+ �d+ �, where Λ denotes

the number of elements of the set Λ;

(4) ei(JΛB) = 0 for all 2≤ i≤ d;

(5) G(JΛB) is a Buchsbaum ring with depthG(JΛB) = 0 and I(G(JΛB)) =

�d; and

(6) R(JΛB) and R′(JΛB) are Buchsbaum rings with I(R(JΛB)) =

I(R′(JΛB)) = �d.

We divide the proof of Theorem 6.2 into a few steps. Let us begin with

the following.

Proposition 6.3. Let p= (Xi | 1≤ i≤m) + (Yj | 1≤ j ≤ �) + (Vjk | 1≤
j ≤ �,1≤ k ≤ d) in U . Then �Cp

(Cp) =m+ �d+ �+ 1.

Proof. Let Ũ = U [{1/Zk}1≤k≤d], and put k̃ = k[{Zk}1≤k≤d,{1/Zk}1≤k≤d]

in Ũ . Let X ′
i = Xi/Z1 (1 ≤ i ≤ m), Y ′

j = Yj/Z1 (1 ≤ j ≤ �), and V ′
jk

=

Vjk/Z1 (1 ≤ j ≤ �, 1 ≤ k ≤ d). Then {X ′
i}1≤i≤m, {Y ′

j }1≤j≤�, and

{V ′
jk
}1≤j≤�,1≤k≤d are algebraically independent over k̃,

Ũ = k̃
[
{X ′

i}1≤i≤m,{Y ′
j }1≤j≤�,{V ′

jk
}1≤j≤�,1≤k≤d

]
,

and

aŨ = ({X ′
i}1≤i≤m,{Y ′

j }1≤j≤�,{V ′
jk
}1≤k≤d) · ({X ′

i}1≤i≤m,{Y ′
j }1≤j≤�)

+ (V ′
jk
V ′
j′
k′
| 1≤ j, j′ ≤ �,1≤ k, k′ ≤ d, j �= j′ or k �= k′)

+
(Z1

Zk
V ′2
jk

− Y ′
j

∣∣∣ 1≤ j ≤ �,1≤ k ≤ d
)
.
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Let W = k̃[{X ′
i}1≤i≤m,{V ′

jk
}1≤j≤�,1≤k≤d] in Ũ , and let

b= (X ′
i, V

′
jk
| 1≤ i≤m,1≤ j ≤ �,1≤ k ≤ d) · (X ′

i, V
′2
j1 | 1≤ i≤m,1≤ j ≤ �)

+ (V ′
jk
V ′
j′
k′
| 1≤ j, j′ ≤ �,1≤ k, k′ ≤ d, j �= j′ or k �= k′)

+
(Z1

Zk
V ′2
jk

− V ′2
j1

∣∣∣ 1≤ j ≤ �,2≤ k ≤ d
)

in W . Then, substituting Y ′
j with V ′2

j1
in Ũ for 1≤ j ≤ �, we get the isomor-

phism

Ũ/aŨ ∼= U :=W/b

of k̃-algebras, under which the prime ideal pŨ/aŨ corresponds to the prime

ideal P/b of U , where P =W+ := (X ′
i, V

′
jk
| 1≤ i≤m,1≤ j ≤ �,1≤ k ≤ d).

Then, since b+ (V ′2
j1

| 1≤ j ≤ �) = P 2 and

�WP

((
b+ (V ′2

j1 | 1≤ j ≤ �)
)
WP /bWP

)
= �,

we get

�UP
(UP ) = �WP

(WP /P
2WP ) + �WP

((
b+ (V ′2

j1 | 1≤ j ≤ �)
)
WP /bWP

)
= (m+ �d+ 1) + �.

Thus, �Cp
(Cp) = �UP

(UP ) =m+ �d+ �+ 1.

We have by the associative formula of multiplicity that

e0(q) = �Cp
(Cp) · eC/pC

0

(
(q+ pC)/pC

)
=m+ �d+ �+ 1

because p =
√
a and C/pC = U/p = k[Zk | 1 ≤ k ≤ d]. On the other hand,

we have

C/q= k
[
{Xk}1≤k≤m,{Yj}1≤j≤�,{Vjk}1≤j≤�,1≤k≤d

]
/c2,

where

c= (Xi, Yj , Vjk | 1≤ i≤m,1≤ j ≤ �,1≤ k ≤ d).

Thus, e0(q) = �C(C/q) = m + �d + � + 1, so that C is a Cohen–Macaulay

ring.

Proposition 6.4. We have �C(J̃Λ/JΛ) = �, J̃2
Λ = qJ̃Λ, and J̃n

Λ = Jn
Λ for

all n≥ 2. Here J̃Λ =
⋃

�>0[J
�+1
Λ : J �

Λ] denotes the Ratliff–Rush closure of JΛ
(see [17]).
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Proof. Let K = JΛ + (y1, y2, . . . , y�). Then �C(K/JΛ) = � and K2 = qK =

J2
Λ. Therefore, K̃ = K because K2 = qK, while we have K̃ = J̃Λ because

K2 = J2
Λ. We also have J̃n

Λ = qn−2J̃2
Λ = qn−2K2 = Jn

Λ for all n≥ 2. Thus, we

get the required assertions.

We are now in a position to finish the proof of Theorem 6.2.

Proof of Theorem 6.2. Because J̃ΛB = J̃ΛB, we get �A(J̃ΛB/JΛB) = �

and J̃ΛB
2
= q(J̃ΛB) by Proposition 6.4. Hence, we have

e1(JΛB) = e1(J̃ΛB) = e0(J̃ΛB)− �B(B/J̃ΛB)

= e0(JΛB)− �B(B/JΛB) + �B(J̃ΛB/JΛB)

= e0(JΛB)− �B(B/JΛB) + �

and ei(JΛB) = ei(J̃ΛB) = 0 for all 2≤ i≤ d by [14, Theorem 2.1]. Since

C/JΛ ∼= k[Xi, Yj | 1≤ i≤m,1≤ j ≤ �]/c′,

where c′ = (Xi, Yj | 1 ≤ i ≤ m,1 ≤ j ≤ �)2 + (Xα | α ∈ Λ), we have �B(B/

JΛB) = �C(C/JΛ) =m+ �+ 1− Λ. Hence, e1(JΛB) = Λ+ �d+ � because

e0(JΛB) = e0(qB) =m+ �d+ �+ 1. This gives the proof of assertions (1),

(2), (3), and (4).

Assertions (5) and (6). Since J̃ΛB
2
= qJ̃ΛB, R′(J̃ΛB) is a Cohen–Macaulay

ring. We put W ′ =R′(J̃ΛB)/R′(JΛB) and look at the exact sequence

0→R′(JΛB)→R′(J̃ΛB)→W ′ → 0(∗′)

of graded R′(JΛB)-modules. Observe that W ′ = [W ′]1 = J̃ΛB/JΛB because

J̃ΛB
n
= (JΛB)n for all n≥ 2 by Proposition 6.4, whence we have �B(W

′) = �.

Let N = (n,R(JΛB)+, t
−1)R′(JΛB) be the unique graded maximal ideal

of R′(JΛB). Then since R′(J̃ΛB) is a Cohen–Macaulay ring, applying local

cohomology functors Hi
N (∗) to the exact sequence (∗′) yields Hi

N (R′(JΛB)) =

(0) for all i �= 1, d+1, and H1
N (R′(JΛB)) =W ′. Then because nW ′ = n(J̃ΛB/

JΛB) = (0), we have nH1
N (R′(JΛB)) = (0). Thus, R′(JΛB) is a Buchsbaum

ring with the Buchsbaum invariant

I
(
R′(JΛB)

)
=

d∑
i=0

(
d

i

)
�B

(
Hi

N

(
R′(JΛB)

))
= d · �B(W ′) = �d,
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whence so is the graded ring G(JΛB) = R′(JΛB)/t−1R′(JΛB). We simi-

larly have that R(JΛB) is a Buchsbaum ring with I(R(JΛB)) = �d, because

R(J̃ΛB) is a Cohen–Macaulay ring and R(J̃ΛB)/R(JΛB)∼= J̃ΛB/JΛB. This

completes the proof of Theorem 6.2.

Let us now consider the following.

Put J = J{1,2,...,m}B, and put A= k+ J . Then A is a local k-subalgebra

of B with maximal ideal m = J , and B is a module finite extension of A,

because �A(B/A) = �A(B/J)− 1 = �. Hence, A is a Noetherian local ring

with dimA = dimB = d by Eakin–Nagata’s theorem (see [15]). We fix a

subset Λ of {1,2, . . . ,m} and put

I = JΛB and Q= (a1, a2, . . . , ad)A.

Then I is an m-primary ideal in A and Q is a parameter ideal in A and a

reduction of I . We then have the following.

Theorem 6.5. The following assertions hold true.

(1) Here A is a Buchsbaum local ring with Hi
m(A) = (0) for all i �= 1, d and

H1
m(A)∼=B/A, whence �A(H

1
m(A)) = �;

(2) e0(I) =m+ �d+ �+ 1;

(3) e1(I) = Λ+ �d+ �;

(4) ei(I) = 0 for 2≤ i≤ d− 1 and ed(I) = (−1)d+1�;

(5) 2e0(I)− e1(I) + e1(Q) = 2�A(A/I) + �A(I/I
2 +Q);

(6) G(I) is a Buchsbaum ring with Hi
M (G(I)) = (0) for all i �= 1, d, and

H1
M (G(I)) = [H1

M (G(I))]1 ∼=H1
m(A)∼=B/A.

Before giving the proof of Theorem 6.5, let us note the following.

Lemma 6.6. We have [(a1, a2, . . . , ǎi, . . . , ad)A :A ai]⊆ I for all 1≤ i≤ d,

whence condition (C2) is satisfied for the ring A and the ideals I and Q.

Proof. Take x ∈ [(a1, a2, . . . , ǎi, . . . , ad)A :A ai], then aix ∈ (a1, a2, . . . , ǎi,

. . . , ad)A⊆ (a1, a2, . . . , ǎi, . . . , ad)B. Then since B is a Cohen–Macaulay ring

and a1, a2, . . . , ad forms a system of parameters for B, we have x ∈ (a1, a2,

. . . , ǎi, . . . , ad)B ⊆ JΛB = I , as required.

Proof of Theorem 6.5. Assertion (1). Look at the canonical exact se-

quence

0→A→B →B/A→ 0
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of A-modules. Then since B is a Cohen–Macaulay ring and �A(B/A) =

�A(B/J) − 1 = �, we get Hi
m(A) = (0) for all i �= 1, d and H1

m(A) ∼= B/A.

Because mB = J ⊆ A, we have mH1
m(A) = (0), whence A is a Buchsbaum

local ring (see [20, I. Proposition 2.12]).

Assertions (2), (3), and (4). Since �A(B/A) = �A(B/J)− 1 = �, dimA=

dimB = d≥ 2, and

�A(A/I
n+1) = �A(B/Jn+1

Λ B)− �A(B/A)

for all n≥ 0, we have e0(I) = e0(JΛB) =m+ �d+ �+ 1, e1(I) = e1(JΛB) =

Λ + �d + �, ei(I) = ei(JΛB) = 0 for 2 ≤ i ≤ d − 1, and ed(I) = ed(JΛB) +

(−1)d+1�A(B/A) = (−1)d+1� by Theorem 6.2.

Assertion (5). Because I2 +Q= qB, we have

�A(A/I
2 +Q) = �A(B/I2 +Q)− �A(B/A)

= �A(B/qB)− �A(B/A)

= {m+ �+ �d+ 1} − �

=m+ �d+ 1.

Then because �A(A/I) = �A(B/JΛB)− �A(B/A) =m+1− Λ and e1(Q) =

−h1(A) = −�A(B/A) = −� by [19, Korollar 3.2], we get 2e0(I) − e1(I) +

e1(Q) = 2�A(A/I) + �A(I/I
2 +Q), as required.

Assertion (6). The ring G(I) is a Buchsbaum ring with Hi
M (G(I)) = (0)

for all i �= 1, d and H1
M (G(I)) = [H1

M (G(I))]1 ∼= B/A by assertions (1) and

(5), Lemma 6.6, and Theorem 1.1. This completes the proof of Theorem 6.5.
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