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SALLY’S QUESTION AND A CONJECTURE OF
SHIMODA

SHIRO GOTO, LIAM O’CARROLL,
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Abstract. In 2007, Shimoda, in connection with a long-standing question of
Sally, asked whether a Noetherian local ring, such that all its prime ideals differ-
ent from the maximal ideal are complete intersections, has Krull dimension at

most 2. In this paper, having reduced the conjecture to the case of dimension 3,

if the ring is regular and local of dimension 3, we explicitly describe a family of

prime ideals of height 2 minimally generated by three elements. Weakening the

hypothesis of regularity, we find that, to achieve the same end, we need to add

extra hypotheses, such as completeness, infiniteness of the residue field, and

the multiplicity of the ring being at most 3. In the second part of the paper, we

turn our attention to the category of standard graded algebras. A geometrical

approach via a double use of a Bertini theorem, together with a result of Simis,

Ulrich, and Vasconcelos, allows us to obtain a definitive answer in this setting.

Finally, by adapting work of Miller on prime Bourbaki ideals in local rings, we

detail some more technical results concerning the existence in standard graded

algebras of homogeneous prime ideals with an (as it were) excessive number of
generators.

§1. Introduction

It is by now a classic result that in a Noetherian local ring, the existence

of a uniform bound on the minimal number of generators of all its ideals

is equivalent to its Krull dimension being at most 1. In 1978, Sally (see

[Sa, p. 52]) extended this result in the following way. Let (R,m, k) be a

Noetherian local ring. Then there exists an integer N ≥ 1 such that the

minimal number of generators μ(I) of an ideal I is bounded above by N ,

for any ideal I of R, such that m is not an associated prime of I if and only if

dim(R), the Krull dimension of R, is at most 2. In particular, if dim(R)≤ 2,

then there exists a bound on the minimal number of generators of all its
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prime ideals. Sally then remarked that it is an open question whether the

converse is true (see [Sa, p. 53]). In other words, if (R,m, k) is a Noetherian

local ring such that there exists an integer N ≥ 1 such that μ(p)≤N , for

all prime ideals p of R, is then dim(R)≤ 2?

This question has remained open, and not much progress has been made

since that time. In 2007, Shimoda [Sh] asked whether a Noetherian local

ring, such that all its prime ideals different from the maximal ideal are

complete intersections, has Krull dimension at most 2. Observe that, if all

the primes other than the maximal ideal are complete intersections, then, in

particular, the cardinalities of their sets of minimal generators are bounded

above by the Krull dimension of the ring.

Though the question of Shimoda seems easier than that of Sally because

its hypothesis is at first sight much stronger, it has proved to be difficult to

answer.

For the sake of simplicity, we will call a Noetherian local ring (R,m, k)

a Shimoda ring if every prime ideal in the punctured spectrum is of the

principal class; that is, the minimal number of generators μ(p) of every

prime ideal p of R, p �=m, is equal to height(p).

We first observe that one can reduce the conjecture to the consideration of

a local unique factorization domain (UFD) R of Krull dimension at most 3.

A positive answer to Shimoda’s conjecture then amounts to showing that

either dim(R) = 2 or else dim(R) = 3 and then exhibiting a prime ideal of

height 2 minimally generated by three (or more) elements. This question

is attractive because of the combination of its simplicity and its seeming

difficulty. Indeed, we are not able, up to now, to produce in full generality

a noncomplete intersection prime ideal of height 2 in a local UFD of Krull

dimension 3.

However, in Section 2, we are able to give some partial positive answers.

First, if the ring R is regular and local of Krull dimension 3, then we explic-

itly describe a family of prime ideals of height 2 minimally generated by

three elements. These ideals are determinantal ideals of (2 × 3)-matrices,

and in the geometric case, they are precisely the defining ideals of irre-

ducible affine space monomial curves.

Next, when trying to weaken the hypothesis of regularity, we find that

we need to add extra hypotheses, such as completeness, infiniteness of the

residue field, and the multiplicity of the ring being at most 3. In this case,

if dim(R) = 3, we exhibit an ideal of height 2 minimally generated by three

elements which has a minimal prime over it which is not Gorenstein. This
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will enable us to conclude that a Shimoda ring, with these extra hypotheses,

has Krull dimension at most 2.

In the second part of the paper we turn our attention to the category of

standard graded algebras (with a graded definition of the notion of a Shi-

moda ring). In Section 3 we find that a geometrical approach via a double

use of a Bertini theorem, together with a result of Simis, Ulrich, and Vas-

concelos (see [SUV, Theorem 4.6]), allows us to obtain a definitive result.

In Section 4, we sketch an adaptation of Miller’s arguments in [Mi] to the

case of standard graded rings of interest that allows us, under somewhat

more technical hypotheses, to produce homogeneous prime ideals requiring

an arbitrarily large number of generators, and also allows us to present a

mild generalization of the core result of Section 3.

§2. The Shimoda conjecture for rings of small multiplicity

Let (R,m, k) be a Noetherian local ring, of Krull dimension d ≥ 1, and

k =A/m, the residue class field of R. For the remainder of this section, we

fix the following notation: the ring R will be called a Shimoda ring if every

prime ideal in the punctured spectrum is of the principal class; that is, the

minimal number of generators μ(p) of every prime ideal p of R, p �= m, is

equal to height(p).

Remark 2.1. Let (R,m, k) be a Noetherian local ring of Krull dimen-

sion d ≥ 1. If d = 1, R is Shimoda if and only if R is a domain. In par-

ticular, a Shimoda ring need not be Gorenstein since R = k[[t3, t4, t5]] is a

1-dimensional local domain that is not Gorenstein (see [E, Exercise 21.11] or

[Ma2, Exercise 18.8, p. 152]). Moreover, the completion of a Shimoda ring is

not necessarily a Shimoda ring, because A= (k[x, y]/(y2 − x2 − x3))(x,y) is

a 1-dimensional Noetherian local domain whose completion is not a domain

[E, p. 185].

Remark 2.2. Let (R,m, k) be a Noetherian local ring of Krull dimension

d≥ 2. If R is Shimoda, then R is a UFD, and the converse holds if d= 2.

Suppose now that d ≥ 2 and that R is Shimoda. Then R is also Cohen–

Macaulay. Indeed, take p a prime ideal with height(p) = d− 1. Since μ(p) =

height(p), then p is generated by a regular sequence, say, x1, . . . , xd−1 (see

[D, Remark, p. 203]). Set y ∈m, y /∈ p. Since p is prime, x1, . . . , xd−1, y is a

regular sequence of length d.

The purpose of this section is to prove the following result, where e(R)

stands for the multiplicity of R with respect to m.
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Theorem 2.3. Let (R,m, k) be a Shimoda ring of Krull dimension d≥ 2.

Suppose that, in addition, either

(a) R is regular, or

(b) R is complete, R⊃ k, k is infinite, and e(R)≤ 3.

Then d= 2.

Note inpassing thatwhenweweaken thehypothesis from regular (e(R) = 1)

to e(R)≤ 3, we need to add the extra hypotheses that R is complete and

contains its infinite residue field. Note that in either case, R is a local Cohen–

Macaulay domain, and we use properties of such domains without further

mention. We first show how to reduce the dimension of R.

Remark 2.4. Let (R,m, k) be a Shimoda ring of Krull dimension d≥ 2.

Let a ∈ m \ m2. Then R/aR is a Shimoda ring of Krull dimension d − 1.

Moreover,

(a) if R is regular, then R/aR is regular;

(b) if R is complete, then R/aR is complete; if k is infinite, then a can be

chosen to be a superficial element and e(R/aR) = e(R).

In particular, in Theorem 2.3, one can suppose that 2≤ d≤ 3.

Proof of Remark 2.4. Take a ∈m\m2. Given p, a prime ideal, p �=m, such

that a ∈ p, then a ∈ p \mp. Therefore, μ(p/aR) = μ(p)− 1 = height(p)− 1 =

height(p/aR), and R/aR is Shimoda of Krull dimension d−1. Clearly, if R is

regular, R/aR is regular, and if R is complete, R/aR is complete. Moreover,

if k is infinite, there exists a superficial element a ∈m \m2 and e(R/aR) =

e(R) (see, e.g., [HS, Propositions 8.5.7 and 11.1.9]). Finally, suppose that

Theorem 2.3 is true for 2 ≤ d ≤ 3, and suppose there exists a Shimoda

ring R of Krull dimension d≥ 4. By successively factoring out appropriate

elements, one would get a Shimoda ring of Krull dimension d= 3. But, by

Theorem 2.3, in the case 2≤ d≤ 3, one would deduce d= 2, a contradiction.

Therefore, Shimoda rings of Krull dimension d ≥ 4 cannot exist, and one

has only to prove Theorem 2.3 for the case 2≤ d≤ 3.

Let us fix now some notation that will hold for the rest of the section (see

[OP]).

Remark 2.5. Let (R,m, k) be a Cohen–Macaulay local ring, and let

x1, x2, x3 be a regular sequence in R. Take a = (a1, a2, a3) ∈ N3 and b =
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(b1, b2, b3) ∈N3. Let c= a+ b, c= (c1, c2, c3). Let M be the matrix

M=

(
xa11 xa22 xa33
xb22 xb33 xb11

)
,

and let v1 = xc11 − xb22 xa33 , v2 = xc22 − xa11 xb33 , and D = xc33 − xb11 xa22 be the

2×2 minors of M up to a change of sign. Consider I = I2(M) = (v1, v2,D),

the determinantal ideal generated by the 2× 2 minors of M. Then I is a

non-Gorenstein height-unmixed ideal of height 2, minimally generated by

three elements. For simplicity, I will be called the HN ideal (from Herzog–

Northcott) associated to x1, x2, x3 and a, b ∈N3. We will also setm1 = c2c3−
a2b3, m2 = c1c3 − a3b1, m3 = c1c2 − a1b2, and m(a, b) = (m1,m2,m3) ∈ N3.

Note that mi ≥ 3.

Proof of Remark 2.5. That I is height-unmixed of height 2 follows from

[OP, Propositions 4.2 and 2.2]. That I is minimally generated by three

elements and is non-Gorenstein follows from [OP, Lemma 6.1] and its proof,

where a nonsymmetric minimal resolution of R/I is shown.

The proof of Theorem 2.3 is divided into two parts. We first state the

regular case.

Proposition 2.6. Let (R,m, k) be a regular local ring of Krull dimen-

sion 3. Let x1, x2, x3 be a regular system of parameters in R, and let a, b ∈
N3. Let I be the HN ideal associated to x1, x2, x3 and a, b. If gcd(m(a, b)) = 1,

then I is prime. In particular, R is not Shimoda.

Taking a = (1,1,1) and b = (2,1,1) in Proposition 2.6, one obtains the

following result.

Corollary 2.7. Let (R,m, k) be a regular local ring of Krull dimen-

sion 3. Let x1, x2, x3 be a regular system of parameters in R. Then I =

(x31 − x2x3, x
2
2 − x1x3, x

2
3 − x21x2) is a height 2 prime ideal minimally gener-

ated by three elements.

For the case of small multiplicity, we have the following. As above, we

consider the HN ideal associated to a= (1,1,1) and b= (2,1,1).

Proposition 2.8. Let (R,m, k) be a complete Gorenstein local domain

of Krull dimension 3. Suppose that, in addition, R ⊃ k, k is infinite, and

e(R)≤ 3. Let (x1, x2, x3)R be a minimal reduction of m. Then there is a

minimal prime over I = (x31−x2x3, x
2
2−x1x3, x

2
3−x21x2) which is not Goren-

stein. In particular, R is not Shimoda.
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Let us give now a proof of Theorem 2.3 using Propositions 2.6 and 2.8.

Proof of Theorem 2.3 using Propositions 2.6 and 2.8. Let R be a Shi-

moda ring of Krull dimension d ≥ 2 as in Theorem 2.3. By Remark 2.4,

one can suppose that 2≤ d≤ 3. If R is regular, by Proposition 2.6, d �= 3.

Suppose now that R is complete, R ⊃ k, k is infinite, and e(R) ≤ 3. By

Remark 2.2, R is Cohen–Macaulay, and since R is complete, it admits a

canonical module (see, e.g., [BH, Corollary 3.3.8]). By Remark 2.2 again, R

is a UFD. Hence, R is Gorenstein (see, e.g., [BH, Corollary 3.3.19]). There-

fore, by Proposition 2.8, d �= 3.

Before proving Proposition 2.6, we note the following reasonably elemen-

tary fact.

Lemma 2.9. Let (S,n) be a Cohen–Macaulay local ring of Krull dimen-

sion 2. Let x, y be a system of parameters of S. Let p, q, r, s ∈ N, with

1≤ r < p and 1≤ s < q. Then

lengthS
(
S/(xp, yq, xrys)

)
=
[
pq− (p− r)(q− s)

]
· lengthS

(
S/(x, y)

)
.

Proof. Let I = (x, y). Since I is generated by a regular sequence, there is

a natural graded isomorphism (S/I)[X,Y ]∼=G(I), sending X to x+ I2 and

Y to y + I2, between the polynomial ring in two indeterminates X,Y over

S/I and the associated graded ring G=G(I) =
⊕

n≥0 I
n/In+1 of I . If z ∈ S,

let z∗ denote its initial form in G; that is, z∗ = z+ Im, where z ∈ Im−1 \ Im,

and 0∗ = 0. In particular, (x∗)n = (xn)∗ and (y∗)m = (ym)∗, for all n,m≥ 1.

If J is an ideal of S, let J∗ denote the homogeneous ideal of G generated

by all the initial forms of elements of J . One has J∗
n = (J ∩ In)+ In+1/In+1

for n≥ 0 (see, e.g., [VV, p. 94]).

Now take J = (xp, yq, xrys) ⊂ I . Observe that, for n ≥ p + q, In ⊆ J

and (J∗)n = Gn. For each n ≥ 0, consider the short exact sequences of

S-modules:

0→ (J + In+1)/J → (J + In)/J → (J + In)/(J + In+1)→ 0.

Hence, lengthS(S/J) =
∑p+q−1

n=0 lengthS((J + In)/(J + In+1)). But

J + In

J + In+1
∼= In

In ∩ (J + In+1)
∼= In

(J ∩ In) + In+1
∼= Gn

J∗
n

.
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Thus,

lengthS(S/J) =

p+q−1∑
n=0

lengthS(Gn/J
∗
n) =

∑
n≥0

lengthS(Gn/J
∗
n)

= lengthS(G/J∗).

Let L⊆ J∗ be the ideal generated by the initial forms of xp, yq, and xrys

in G. Since the regular sequence x, y is permutable, by [KS, Remark 4(4)],

L= J∗. Hence, lengthS(G/J∗) = lengthS(G/L)<∞. Through the isomor-

phism (S/I)[X,Y ] ∼= G(I), one sees that G/L is isomorphic to the free

S/I-module with basis XiY j , where (i, j) ∈ {0, . . . , p− 1}×{0, . . . , s− 1} or

(i, j) ∈ {0, . . . , r−1}×{s, . . . , q−1}. Therefore, lengthS(G/L) = [pq−(p−r)

(q− s)] · lengthS(S/I).
Remark 2.10. The result of Kiyek and Stückrad (see [KS, Remark 4(4)])

that we have used in the proof of Lemma 2.9, which deals only with the

case where the regular sequence at hand is permutable, says precisely that

xp, yq, xrys is an I-standard base of J = (xp, yq, xrys) (see, e.g., [HIO, Sec-

tion 13]). In this respect, one can prove the following fact, which uses a

generalization of a classic theorem of Rees (see [BH, Theorem 1.1.7]).

Theorem 2.11. Let R be a commutative ring, and let z = z1, . . . , zn be

an R-sequence. Set I = (z1, . . . , zn). Let Z = Z1, . . . ,Zn be indeterminates

over R.

(a) If F (Z) ∈ R[Z] is homogeneous of degree d and F (z) ∈ Id+i, then

F (Z) ∈ I i[Z].

(b) If m1, . . . ,ms is a finite set of monomials in z, then m1, . . . ,ms is an

I-standard base of J = (m1, . . . ,ms).

Proof. If i = 0, the result is trivial. Rees’s theorem is the case i = 1.

Suppose that i > 1 and that we have established the result in the case where

i is replaced by i− 1. Suppose then that F (Z) ∈ R[Z] is homogeneous of

degree d and that F (z) ∈ Id+i. Then F (z) ∈ Id+i−1, so by the inductive

hypothesis, the coefficients of F lie in I i−1. Thus, with λ= (λ1, . . . , λn),

F (Z) =
∑

λ1+···+λn=d

aλZ
λ1
1 · · ·Zλn

n ,

for aλ ∈ I i−1. Hence, for each such λ,

aλ =
∑

μ1+···+μn=i−1

bλ,μz
μ1
1 · · · zμn

n ,
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for elements bλ,μ in R, with μ= (μ1, . . . , μn) and μ1 + · · ·+ μn = i− 1. Let

ξ = (ξ1, . . . , ξn) = λ+ μ, so that ξ1 + · · ·+ ξn = d+ i− 1, and let

H(Z) =
∑

(λ1+···+λn=d)

∑
(μ1+···+μn=i−1)

bλ,μZ
ξ1
1 · · ·Zξn

n ∈R[Z].

Then H is homogeneous of degree d + i − 1 and H(z) = F (z) ∈ Id+i. By

Rees’s theorem, the coefficients bλ,μ of H lie in I , and it follows that

each aλ lies in I i, which proves (a). Let m1, . . . ,ms be monomials in z,

where mi = z
α1,i

1 · · · zαn,i
n , for i = 1, . . . , s. Let αi = α1,i + · · · + αn,i be the

degree of mi, which is well defined because of the standard isomorphism

(R/IR)[Z1, . . . ,Zn]→G(I) =
⊕

d≥0 I
d/Id+1, sending Zi to zi+I2. Let δ1 <

· · · < δt be the degrees occurring in {α1, . . . , αs}, t ≥ 1. Let Ji denote the

ideal of R generated by those monomials amongm1, . . . ,ms that have degree

δi. We must show that, for d≥ 0,

J ∩ Id =m1I
d−α1 + · · ·+msI

d−αs ,

or equivalently,

(1) J ∩ Id = J1I
d−δ1 + · · ·+ JtI

d−δt ,

understanding that Ir = R whenever r ≤ 0 and noting that I and J are

not comaximal (see [VV, p. 94, lines 23–24]). We prove (1) by induction on

t≥ 1.

Item (a) easily yields the case where t= 1, that is, where all the monomi-

als have the same degree. So we suppose that t≥ 2 and that (1) holds when

t is replaced by t− 1. Suppose first of all that d≤ δt. Then, by induction,

J ∩ Id = (J1 + · · ·+ Jt)∩ Id =
(
(J1 + · · ·+ Jt−1)∩ Id

)
+ Jt

= J1I
d−δ1 + · · ·+ Jt−1I

d−δt−1 + JtI
d−δt ,

since Id−δt =R in this case. Finally, suppose on the other hand that d > δt.

Then

J ∩ Id = J ∩ Iδt ∩ Id = (J1 + · · ·+ Jt)∩ Iδt ∩ Id = (J1I
δt−δ1 + · · ·+ Jt)∩ Id,

by the case just considered. But the ideal J1I
δt−δ1 + · · ·+Jt is generated by

monomials in z of degree δt, so by the case t= 1,

(J1I
δt−δ1+ · · ·+Jt)∩Id = (J1I

δt−δ1+ · · ·+Jt)I
d−δt = J1I

d−δ1+ · · ·+JtI
d−δt ,

as required.
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To prove Proposition 2.6, we are going to use formulas from the theory

of multiplicities (see, e.g., [BH, Chapter 4, Section 6] and [HS, Chapter 11,

Sections 1 and 2]).

Proof of Proposition 2.6. Let R̂ be the completion of R. Since R is reg-

ular and local with maximal ideal m generated by the regular system of

parameters x1, x2, x3, then R̂ is a regular local ring with maximal ideal

mR̂= (x1, x2, x3)R̂, generated by the regular system of parameters x1, x2, x3
(considered in R̂). Let I = (v1, v2,D) be the HN ideal associated to x1, x2, x3
and a, b ∈ N3 in R. Then IR̂ = (v1, v2,D)R̂ is the HN ideal associated to

x1, x2, x3 and a, b ∈ N3, regarded in R̂. Since I = IR̂ ∩R, if we prove that

IR̂ is prime, then I will be prime, too. Therefore we can suppose that R is

complete.

Until further notice, we assume only thatR is a complete Cohen–Macaulay

local ring of dimension 3 and that x1, x2, x3 generates a reduction of m. We

do this so that we can avoid repeating core aspects of the argument when

we prove Proposition 2.8.

Take p any associated prime of I , hence of height 2. Let D =R/p. Then

D is a 1-dimensional Noetherian domain. Let V be its integral closure in

its quotient field K. Since R is a complete local ring, R is a Nagata ring

(see, e.g., [Ma1, p. 234]), and hence V is a finite D-module and, in par-

ticular, V is Noetherian as a ring. Since D is a Noetherian complete local

domain, its integral closure V is a local ring (see, e.g., [Di, Corollary 6.1,

p. 116]). Therefore, V is a 1-dimensional Noetherian local integrally closed

ring, hence a discrete valuation ring (DVR).

Let ν denote the corresponding valuation on K. By abuse of notation, let

xi denote the image in V of each xi, and set νi = ν(xi). In V , xc11 = xb22 xa33 ,

xc22 = xa11 xb33 , and xc33 = xb11 xa22 . Applying ν to these equalities, one gets the

following system of equations:

c1ν1 = b2ν2 + a3ν3
c2ν2 = a1ν1 + b3ν3
c3ν3 = b1ν1 + a2ν2

⎫⎬
⎭ ,

the third equation (say) being the sum of the first two. So we reduce to

a system of two linearly independent equations, considered over Q, whose

solution is (ν1, ν2, ν3) = q ·m(a, b), for some q ∈ Q, q = u/v, u, v ∈ N (see

[OP, Remark 4.4]).



146 S. GOTO, L. O’CARROLL, AND F. PLANAS-VILANOVA

Set l= gcd(ν1, ν2, ν3) ∈N. Since v(ν1, ν2, ν3) = u(m1,m2,m3) and gcd(m1,

m2,m3) = 1, then vl= u and l= q ∈N. Hence, νi = lmi.

Clearly, x1R+I = (x1, x
c2
2 , xc33 , xb22 xa33 ) is an m-primary ideal of R. Set S =

R/x1R, and (by abuse of notation) consider x2, x3 as a regular sequence in S

and a system of parameters of S. Since R/(x1R+ I)∼= S/(xc22 , xc33 , xb22 xa33 )S

(and x1R ⊂ AnnR(S)), then lengthR(R/(x1R + I)) = lengthS(S/(x
c2
2 , xc33 ,

xb22 xa33 )S), which by Lemma 2.9 is equal to m1 · lengthS(S/(x2, x3)S). But
S/(x2, x3)S ∼=R/(x1, x2, x3), so

lengthS
(
S/(x2, x3)S

)
= lengthR

(
R/(x1, x2, x3)

)
= eR(x1, x2, x3),

because R is Cohen–Macaulay of Krull dimension d = 3 and (x1, x2, x3)

is an m-primary ideal [HS, Proposition 11.1.10]. Moreover, as (x1, x2, x3)

is a reduction of m, then eR(x1, x2, x3) = e(R) [HS, Corollary 1.2.5 and

Proposition 11.2.1].

Since x1R + I ⊆ x1R + p, then lengthR(R/(x1R + I)) ≥ lengthR(R/

(x1R+ p)). But

lengthR
(
R/(x1R+ p)

)
= lengthR/p

(
(R/p)/(x1 ·R/p)

)
= lengthD(D/x1D).

Observe that xc22 , xc33 ∈ x1D, and so x1D is an m/p-primary ideal of the 1-

dimensional Cohen–Macaulay local domain (D,m/p, k). By [HS, Proposition

11.1.10], lengthD(D/x1D) = eD(x1;D).

On the other hand, V is a finite Cohen–Macaulay D-module of

rankD(V ) = 1, and so eD(x1;D) = eD(x1;D) · rankD(V ) = lengthD(V/x1V )

[BH, Corollary 4.6.11].

Set r = [kV : kD], the degree of the extension of the residue fields of V

and of D. Then lengthD(V/x1V ) = r · lengthV (V/x1V ). Finally, since V is

a DVR, lengthV (V/x1V ) = ν(x1) = ν1 = lm1.

Therefore, putting together all the (in)equalities, we have

m1 · e(R) = lengthR
(
R/(x1R+ I)

)
≥ lengthR

(
R/(x1R+ p)

)
= rlm1.(2)

Observe that in all this reasoning, we have only used the facts that R is

a complete Cohen–Macaulay local ring of dimension 3 and that x1, x2, x3
generates a reduction of m.

Now, using the fact that R is regular, we have e(R) = 1, and we deduce

from (2) that

lengthR
(
R/(x1R+ I)

)
= lengthR

(
R/(x1R+ p)

)
.
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On tensoring the exact sequence 0→ p/I →R/I →R/p→ 0 by R/x1R, one

obtains the exact sequence

0→ L/x1L→R/(x1R+ I)→R/(x1R+ p)→ 0,

where L = p/I , because x1 is not in p, so x1R ∩ p = x1p. Then, from the

equality lengthR(R/(x1R+ I)) = lengthR(R/(x1R+ p)), one deduces that

lengthR(L/x1L) = 0, and hence that L= x1L, which by Nakayama’s lemma

implies that L= 0 and I = p.

Now we turn to the proof of Proposition 2.8.

Proof of Proposition 2.8. First observe that since k is infinite, there exist

x1, x2, x3 in m such that (x1, x2, x3) is a minimal reduction of m. In partic-

ular, x1, x2, x3 is a system of parameters in R. Since (R,m, k) is a complete

Noetherian local domain and since R ⊃ k, there exists a k-algebra homo-

morphism ϕ : k[[X1,X2,X3]]→ R, from the power series ring in the three

indeterminates X1,X2,X3 over k to R, with ϕ(Xi) = xi, and such that

if S = im(ϕ) = k[[x1, x2, x3]], then S ∼= k[[X1,X2,X3]] via ϕ, S is a com-

plete regular local ring, and R is a finite extension of S (see, e.g., [Ma2,

Theorem 29.4 and its proof]). Let ψ : k[[X1,X2,X3]] → k[[t]] be defined

as ψ(X1) = t3, ψ(X2) = t4, and ψ(X3) = t5, where t is an indeterminate

over k. Then ker(ψ) = (X3
1 − X2X3,X

2
2 − X1X3,X

2
3 − X2

1X2) (see, e.g.,

[OP, Theorem 7.8], where a proof for the polynomial case is given). Set

J = ϕ(ker(ψ)), which is a prime ideal of S, and set I = JR= (x31−x2x3, x
2
2−

x1x3, x
2
3−x21x2), which is the HN ideal of R associated to x1, x2, x3, and set

a= (1,1,1), b= (2,1,1).

Take now any minimal prime p over I , and suppose that p is Gorenstein.

We will reach a contradiction.

Since JR = I ⊆ p and since S ⊂ R is an integral extension, then J ⊆
I ∩S ⊆ p∩S, and S/(p∩S)⊂R/p is an integral extension. Hence, p∩S is a

prime ideal of S of height 2 and J = p∩S. Set A= S/J ∼= k[[t3, t4, t5]]⊂ k[[t]]

and D =R/p. By the Auslander–Buchsbaum formula, R is a free S-module

of rankS(R) = e(S) · rankS(R) = e(R) =: e (see, e.g., [BH, Corollary 4.6.9]).

By base change, it follows that R/I is a free A-module of rank e. Hence, D

is a torsion-free A-module of rank e′, where 1≤ e′ ≤ e.

We claim that e′ > 1. Indeed, suppose that e′ = 1. Then the quotient field

of D can be identified with the quotient field of A. By [E, Exercise 21.11],

the quotient field of A is k((t)) and the integral closure V of A is k[[t]]. Since

A and D have the same quotient field with A⊂D a finite and hence integral
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extension, V is also the integral closure of D. By [E, Exercise 21.11], the

conductor A :A V of V into A equals (t3, t4, t5)A= mA, the maximal ideal

of A. Since A :A V is also an ideal in V and since t3 ∈A :A V , we therefore

have

t3V ⊆A :A V =mA = (t3, t4, t5)A⊆ (t3, t4, t5)V = t3V.

Therefore, t3V =A :A V =mA. Now x1D is a reduction of the maximal ideal

mD of D, since (x1, x2, x3)R is a reduction of m. Hence, the integral closure

x1D of the ideal x1D equals mD, so x1V = (x1D)V =mDV (see, e.g., [HS,

Proposition 6.8.1]). Since x1V = t3V and A⊂D is integral, it follows that

mD ⊆mDV = t3V =mA ⊆mD.

Hence, mD = mDV = t3V . In particular, D �= V and mD is also an ideal

of V . Hence, mD ⊆D :D V �D, so mD =D :D V = t3V . Using the fact that

D is Gorenstein and [HS, Theorem 12.2.2], one has

2 = 2 · lengthD(D/mD) = 2 · lengthD
(
D/(D :D V )

)
= lengthD

(
V/(D :D V )

)
= lengthD(V/t

3V ) = r · lengthV (V/t3V ) = 3r,

where r = [kV : k], which is a contradiction. Thus, e′ ≥ 2.

Now, R/I and A are local rings with the same residue field. Hence,

since x1A is an mA-primary ideal of the Noetherian local domain A and

rankA(D) = e′, by [HS, Corollary 11.2.6], and regarding D as an R/I-

module, we have the following:

eR/I(x1 ·R/I;D) = eA(x1A;D) = eA(x1A;A) · rankA(D) = 3e′ ≥ 6.

Analogously, since rankA(R/I) = e≤ 3 by hypothesis, then

eR/I(x1 ·R/I;R/I) = eA(x1A;R/I) = eA(x1A;A) · rankA(R/I) = 3e≤ 9.

But, by the associativity formula (see, e.g., [HS, Theorem 11.2.4]), letting

p vary through the minimal primes in R over I , we have

9≥ eR/I(x1;R/I) =
∑
p

eR/I(x1;R/p) · lengthRp
(Rp/IRp)

≥ 6 · (the number of such p).

Hence, the number of such p equals 1, and for this unique p, lengthRp
(Rp/

IRp) = 1. Therefore, I = p, which is a contradiction, since I is not Goren-

stein and p is Gorenstein.
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§3. The Shimoda conjecture in the setting of a standard graded

algebra

In connection with the Shimoda property for affine rings, we note the

following result.

Proposition 3.1. Let S be an affine domain of Krull dimension d at

least 3. Then S contains a prime ideal P that requires more than height(P )

generators.

Proof. Since S is an excellent domain, the regular locus Reg(S) is a

nonempty Zariski-open subset of Spec(S). Hence, there exists a nonzero ele-

ment s ∈ S such that Ss is a regular ring. Since S is a Hilbert ring with (0)

a prime ideal, there exists a maximal ideal M ∈ S such that s /∈M , so SM is

a regular local ring. Now height(M) = d≥ 3, and so, by Theorem 2.3(a) and

its proof, there exists p ∈ Spec(SM ) having dimension 1 such that μ(p) = d.

Set P = p∩S. Since p= PM , it follows that height(P ) = d−1, yet P requires

at least d generators.

Remark 3.2. Note, however, that if S is also a standard graded algebra,

the preceding result does not provide any information as to whether the

resulting prime ideal P is or is not homogeneous.

We now consider a setup different but analogous to the local case con-

sidered in Section 2, influenced by the well-known similarities between the

theories of local and standard graded rings. So let A = k[x1, . . . , xn] be a

standard graded algebra over the field k; that is, A is graded by the non-

negative integers N0 with k sitting in degree 0 and each of the xi having

degree 1. For simplicity, we suppose that k is infinite (in fact, eventually

we will suppose that k has characteristic 0 or is algebraically closed). Let

M := (x1, . . . , xn)A denote the irrelevant ideal of A, and we take n to be the

minimal number of homogeneous generators μ(M) of M (see [BH, Proposi-

tion 1.5.15(a)], noting that μ(M) = μ(MM)). We fix this notation. We also

suppose that A is a Shimoda ring in the graded sense, or a gr-Shimoda ring

for short, meaning that each relevant homogeneous prime ideal p of A is

generated by height(p) elements, that is, is of the principal class; note that

these generators can be chosen to be homogeneous (once again, see [BH,

Proposition 1.5.15(a)]).

Finally, we suppose throughout that A has Krull dimension at least 2.
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Proposition 3.3. Suppose that the gr-Shimoda ring A has Krull dimen-

sion d (with d≥ 2). Then A is a Gorenstein domain that satisfies the Serre

condition (Rd−1).

Proof. On taking p to be a minimal prime (necessarily homogeneous) in

the above condition, we see that p= (0), so that A is a domain. Next, let

p be a homogeneous prime that is maximal with respect to the property

of being relevant. By Davis’s result [D, Remark p. 203], p is generated

by a regular sequence of length height(p). It follows that M contains a

regular sequence of length height(M). Hence, A is Cohen–Macaulay (see

[BH, Exercise 2.1.27(c)]).

Next, since A is a homomorphic image of a polynomial ring (with the

standard grading) by a homogeneous morphism of degree 0, A has a graded

canonical module C (see [BH, Example 3.6.10 and Proposition 3.6.12(b)]).

By [E, Exercise 21.18(b)], we may take C to be a homogeneous ideal of A. If

C =A, then A is Gorenstein [BH, Proposition 3.6.11]. Suppose, on the other

hand, that C is a proper ideal in A. By [BH, Propositions 3.6.9 and 3.3.18],

C is an unmixed ideal of height 1 whose (necessarily homogeneous) associ-

ated primes are therefore principal, by the gr-Shimoda property. Let p be

any one of these associated primes, with p = (p), say. Then each Ap is a

DVR, so that each localization Cp is a principal ideal, say, Cp = ptpAp. It is

easily seen that C = (
∏

p p
tp)A, since the latter ideal has the same associated

primes as C and agrees with C locally at each of these primes. Hence, C is

principal. That A is Gorenstein now follows from [BH, Proposition 3.6.11].

Finally, to show that A satisfies (Rd−1), we examine Ap for each prime

ideal p of height h, with h≤ d− 1. Clearly, we need only consider the case

where p is nonhomogeneous, so that h > 0. By [BH, Theorem 1.5.8, first

paragraph of proof ], or by [F, (5.1) Lemma, (b)], we see that for such p, Ap

is a regular local ring, and the result follows.

We next consider the effect of Noether normalization applied to A, not-

ing that k is infinite. This result highlights another way that the present

situation is to an extent analogous to that of Section 2.

We distinguish between the Krull dimension of A, denoted k-dim(A),

and the dimension of A as a projective scheme, denoted pr-dim(A). Thus,

k-dim(A) = pr-dim(A) + 1 (see [E, pp. 286–287]).

Proposition 3.4. Let d= k-dim(A). Then there exists a regular sequence

of homogeneous elements of degree 1 in A, which we relabel as x1, . . . , xd,
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such that A = k[x1, . . . , xn] with A a free finitely generated graded module

over the subring B := k[x1, . . . , xd], B being isomorphic to the polynomial

ring over k in d variables (with the standard grading) under the natural

homogeneous mapping of degree 0.

Proof. See [BH, Theorem 1.5.17(c)], together with the discussion in [St,

Section 3, especially p. 63]. Note also that n remains invariant under this

rewriting of A, as n= μ(M) = μ(MM).

We now show how to reduce dimension for gr-Shimoda rings.

Proposition 3.5. Let a be a homogeneous element of the gr-Shimoda

ring A, a lying in M\M2. Then A/aA is again a gr-Shimoda ring.

Proof. First of all, we note that such an element a exists. By the graded

version of Nakayama’s lemma, M �=M2 since A is not a field. Since M is a

homogeneous ideal, it has a set of homogeneous generators not all of which

can lie in M2, by the previous observation. Pick a to be a suitable member

of this set of generators.

Clearly, A/aA is a standard graded ring (with k-dim(A/aA) at least 1)

having irrelevant ideal M/aA. Consider a relevant homogeneous prime ideal

p of A/aA. Then p=P/aA for a unique relevant homogeneous prime ideal

P of A that contains a. Since a ∈M\M2, a fortiori, a ∈P \MP. Hence,

a is a minimal homogeneous generator of P, so that

μ(p) = μ(P)− 1 = height(P)− 1 = height(p),

and the result follows.

We can now give our main result.

Theorem 3.6. Suppose that in the gr-Shimoda ring A, the base field k

has characteristic 0. Then pr-dim(A)≤ 2.

Proof. We suppose that pr-dim(A) ≥ 3, and deduce a contradiction by

finding a homogeneous ideal of height pr-dim(A)− 1 that requires a gen-

erating set of cardinality pr-dim(A). By Proposition 3.5, we may suppose

that pr-dim(A) = 3.

We use without mention the fact that A is a standard graded Cohen–

Macaulay affine domain, together with the well-known properties of such

domains, such as their being catenary. Note that these are the only hypothe-

ses (together with the fact that char(k) = 0) used in the remainder of the

argument. That is, we prove the following:
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A standard graded Cohen–Macaulay affine domain over a field of charac-

teristic 0 and of Krull dimension 4 has a relevant homogeneous prime ideal

p of height 2 with μ(p) = 3.

Step 1. Constructing the prototype of the prime ideal we seek. Since

k-dim(A) = 4, using Proposition 3.4 we can choose a regular sequence x, y, z

of homogeneous elements of degree 1 in A. Set u= x2−yz, v = y2−xz, and

w = z2 − xy, and let I = (u, v,w)A; note that u, v,w are homogeneous of

degree 2. It is easily seen that u, v,w are all nonzero elements; for example,

note that rad((u, y)A) = rad((x, y)A); hence, (u, y)A has height 2, so u �= 0.

By way of motivation, we note in passing that I is an almost complete

intersection Northcott ideal ([N], [Va]), and it is also a determinantal ideal.

(The ideal analyzed in Section 2 also had these properties, and they will

prove crucial in the analysis of the ideal K that we will focus on below.)

We sketch the details as follows.

Setting

Φ =

(
x z

−z −y

)
,

and letting  denote matrix transpose, we have that

(3) Φ ·
(
x −y

)�
=
(
u v

)�
and that w = det(Φ). Note that u, v is a regular sequence, since u is a

nonzero element in the domain A and v cannot lie in any associated prime

of u (which is necessarily at height 1), because (u, v, z)A has height 3 as

a consequence of the equality rad((u, v, z)A) = rad((x, y, z)A). It follows

from [OP, Section 2], since (u, v)A has grade 2, that I is grade-unmixed of

height 2. Note also that

I = I2

(
x y z

y z x

)
,

so, given the properties of I stated above, the graded version of the Hilbert–

Burch theorem provides us with the resolution

0→A2(−2)
ϕ2→A3(−1)

ϕ1→A→A/I → 0,

where

ϕ1 =
(
w u v

)
and ϕ�

2 =

(
x y z

y z x

)
,
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so this resolution is then minimal. Hence, μ(I) = 3. We also see, using the

Auslander–Buchsbaum formula, that IM and hence I is a Cohen–Macaulay

ideal. (For further properties of such ideals, see [OP, Sections 2 and 5].)

We now use and develop [SUV, Theorem 4.6] along similar lines, in the

present setting.

Consider the polynomial extension D :=A[X,Y ]; note that D is a stan-

dard graded Cohen–Macaulay domain, on giving each of X and Y the

weighting 1. Set

K = (u+ xX,v + xY )D :D x.

In (3), on premultiplying by adj(Φ), one obtains the relationship

xw =−yu− zv.

One easily checks that, as a result, w−yX− zY ∈K. We wish to show that

K is a prime ideal of D, that K = L := (u+ xX,v + xY,w − yX − zY )D,

and that μ(K) = 3. (Note that K is then a homogeneous ideal of D, being

generated by quadrics.) The ideal K is the prototype of the prime ideal in

A that we seek so as to establish our contradiction.

We first show that u+xX is a prime element inD. Note that, as remarked

above, u is a regular element in the domain A, since u �= 0. Next, x is regular

modulo uA; otherwise, (u,x)A would have height 1, which would contradict

the fact that rad((u,x)A) (= rad((x, y)A)∩ rad((x, z)A)) has height 2. That

u+ xX is a prime element in A[X] follows from [Ka, Exercise 3, p. 102];

hence, u+xX is also a prime element in D. Now v+xY /∈ (u+xX)D, since

v /∈ uA, and we deduce that u+xX,v+xY is a regular sequence in D. Note

also that K is a proper ideal in D, since otherwise it would follow that x ∈
(u, v)A, which would contradict the fact that x is actually regular modulo

the larger ideal I ≡ (u, v,w)A. Hence, K is unmixed of height 2, by basic

properties of the colon operation vis-à-vis finite intersections and primary

ideals. Since w− yX − zY ∈K, it is easily seen that, up to radical, K +xD

contains the elements x, y, z(z − Y ). Since each of the ideals (x, y, z)D and

(x, y, z − Y )D has height 3, it follows that K + xD has height 3 and hence

that x is regular modulo K, since K is unmixed of height 2. But it is clear

that (D/K)x is isomorphic to Ax[(u/x), (v/x)], that is, to the domain Ax.

Hence, D/K is a domain, so K is indeed a prime ideal.

Recall the ideal L := (u+ xX,v+ xY,w− yX − zY )D introduced above.

Let

Ψ =

(
x+X −z

−z + Y y

)
.
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Note that Ψ · (x y)� = (u+ xX v + xY )� and that det(Ψ) =−(w− yX −
zY ). We have seen above that grade((u+ xX,v + xY )D) = 2 and that K

(and so L) is a proper ideal. Hence, by [N, Theorem 2], the projective

dimension of D/L is 2, and L is grade and hence height unmixed, with all

its associated primes having height 2. The argument above that established

that K+xD had height 3 actually showed that L+xD had height 3. Hence,

x is regular modulo L.

Now

(u+ xX,v+ xY )D ⊆ L⊆K ≡ (u+ xX,v+ xY )D :D x,

so that, on localizing at each associated prime p of L, we have

(u+ xX,v+ xY )Dp ⊆ Lp ⊆Kp ≡ (u+ xX,v + xY )Dp.

Hence, Lp =Kp for all such p, so L=K. Thus,

K = (u+ xX,v+ xY,w− yX − zY )D.

So

K = I2

(
x z −y

y x+X −z + Y

)
,

and again by the Hilbert–Burch theorem, on setting

ψ1 =
(
w− yX − zY v+ xY −(u+ xX)

)
,

ψ�
2 =

(
x z −y

y x+X −z + Y

)
,

we have the minimal free resolution

(4) 0→D2(−2)
ψ2→D3(−1)

ψ1→D→D/K → 0

of D/K. In particular, μ(K) = 3, and as before, an application of the

Auslander–Buchsbaum formula shows that K is a Cohen–Macaulay ideal.

So K has the features that we are seeking—a homogeneous prime ideal

of height 2, minimally generated by three elements—except that the projec-

tive variety V+(K) (consisting set-theoretically of all relevant homogeneous

prime ideals containing K) lies not in Proj(A) but in Proj(A[X,Y ]). We

now employ a double use of a Bertini theorem to project back into Proj(A).
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Step 2. Retracting back into A via the double use of a Bertini theorem. For

a standard graded Cohen–Macaulay algebra S of positive Krull dimension,

note that the scheme Proj(S) is integral if and only if S is an integral

domain. We use this fact below without further comment.

In our setting then, the scheme Proj(D/K) is integral. Note that pr-

dim(D/K) = 3. Now apply [F, (5.5) Satz], with the role of the fi there being

played by the images of x1, . . . , xn,X,Y in D/K, each of which has grade 1.

We abuse notation by continuing to write x1, . . . , xn,X,Y for these respec-

tive images. Hence, in applying [F, (5.5) Satz], the scheme D+(f0, . . . , fn)

featured there in fact equals all of Proj(D/K). (Recall that D+(f0, . . . , fn)

consists set-theoretically of all relevant homogeneous prime ideals that do

not contain {f0, . . . , fn}.)
We now make the elementary observation that if R is a ring and r is

an element of R, then, for an indeterminate Z over R, we have a natural

induced isomorphism R[Z]/(Z − r)≈R arising from the natural retraction

on R[Z] that maps Z to r (and is the identity map on R). We apply this

observation to a generic hyperplane section H , say, of Proj(D/K) and then

to a further generic hyperplane section H ′, say, of Proj(D/K)∩H , resulting

finally in an integral subscheme of Proj(A).

Hence, by [F, (5.5) Satz], for all α := (α1, . . . , αn+2) in a nonempty Zariski-

open set in kn+2, and following the standard notation in [F, Section 5],

V+(fα) is an integral subscheme of Proj(D/K), where fα := α1x1 + · · ·+
αnxn + αn+1X + αn+2Y . Without loss of generality, we may suppose that

αn+2 �= 0, using the intersection of nonempty Zariski-open sets in kn+2. Note

that K is generated by quadrics, so that the variety V+(K) is nondegenerate

(i.e., is not contained in a hyperplane). Set

Y ′ =−(α1x1 + · · ·+ αnxn + αn+1X)/αn+2, D′ =A[X].

By our elementary observation, therefore, K ′ := (u+xX,v+xY ′,w− yX−
zY ′)D′ is a homogeneous prime ideal which is generated by quadrics, and

pr-dim(D′/K ′) = 2.

Fix such an α in kn+2. Proceeding as before, there exists a nonempty

Zariski-open set in kn+1, depending on α, such that for all β := (β1, . . . , βn+1)

in this set, we have βn+1 �= 0, and on setting

X ′ =−(β1x1 + · · ·+ βnxn)/βn+1
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and

Y ′′ =−(α1x1 + · · ·+ αnxn + αn+1X
′)/αn+2,

K ′′ := (u + xX ′, v + xY ′′,w − yX ′ − zY ′′)A is a prime ideal with

pr-dim(A/K ′′) = 1, so grade(K ′′) = height(K ′′) = 2. Now the presentation

K = I2

(
x z −y

y x+X −z + Y

)

carries over to give the equality

K ′′ = I2

(
x z −y

y x+X ′ −z + Y ′′

)
,

and hence the resolution (4) carries over to give the minimal presentation

0→A2(−2)
ψ′
2→A3(−1)

ψ′
1→A→A/K ′′ → 0,

where

ψ′
1 =

(
w− yX ′ − zY ′′ v+ xY ′′ −(u+ xX ′)

)
,

(ψ′
2)

� =

(
x z −y

y x+X ′ −z + Y ′′

)
.

In particular, μ(K ′′) = 3, so K ′′ is the prime ideal we seek, and this yields

the desired contradiction.

Remark 3.7. Note that this result is optimal. Consider the ring A where

A is the polynomial ring k[X,Y,Z], with k algebraically closed, under the

natural grading. We see from the projective Nullstellensatz and the fact that

A is a UFD that A is a gr-Shimoda ring, and pr-dim(A) = 2.

§4. More technical results in the standard graded case

We can adapt arguments used in [Mi] to prove the following results. We

provide only some additional details, as necessary.

Theorem 4.1 (see [Mi, Corollary 2.7 (and Theorem 2.1)]). Let S be a

standard graded algebra over a field k of characteristic 0, such that S is a

domain, k-dim(S)≥ 4, and S satisfies the Serre conditions (R2) and (S3).

Suppose further that homogeneous prime ideals of S of height 1 are principal.

Then S possesses height 2 homogeneous prime ideals requiring an arbitrarily

large number of generators.
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Sketch of Proof. Let M be the graded second syzygy in a minimal graded

free resolution of a finitely generated graded S-module of finite projective

dimension at least 3, so that M itself is not free. Note that by the Evans–

Griffith syzygy theorem (see [BH, Corollary 9.5.6 and subsequent remark]),

rank(M)≥ 2. Let d= rank(M)− 1.

Suppose that we have the graded presentation Sc α→ Sb →M → 0 (ignor-

ing twists). Set A = S[Yi,j | 1 ≤ i ≤ b,1 ≤ j ≤ d], giving each indetermi-

nate Yi,j over S weight 1. Define φ : Ad → Ab by the matrix (Yi,j). Let

J = coker(α⊕ φ). Hence, we have the presentation

Ac ⊕Ad α⊕φ→ Ab → J → 0.

Clearly, rank(J) = 1. Note that N :=M⊗A�Ab/α(Ac) as graded modules,

so there is an exact sequence

0→Ad ψ→N → J → 0,

with the graded homomorphism ψ induced by φ.

A straightforward adaptation of Miller’s argument [Mi, p. 31] then shows

that the graded module J is a torsion-free A-module and so, as is easily

seen, it is a homogeneous ideal (up to graded isomorphism).

Next we show that we may suppose that the homogeneous ideal J has

height 2. Suppose that J has height 1. By an obvious “homogeneous” ana-

logue of the proof of [Ka, Theorem 5(b)], given our hypotheses, a nonzero

homogeneous element of A that is not a unit is a unique product of homo-

geneous elements each of which generates a homogeneous prime ideal. (We

note that, since A is a domain, a product of nonzero elements of A is homo-

geneous if and only if each element is homogeneous.) Hence, taking a finite

set of homogeneous generators of J , we can find a smallest homogeneous

principal ideal aA, with a a homogeneous element, that contains J . Clearly,

a−1J is a homogeneous ideal. We claim that a−1J is of height at least 2.

Otherwise, a−1J is contained in a homogeneous prime P of height 1, and

by hypothesis, P = bA for some homogeneous element b ∈A; it would then

follow that J ⊆ abA ⊆ aA, so abA = aA, that is, bA = A, a contradiction.

Hence, we may suppose that J has height at least 2. Another straightforward

adaptation of Miller’s argument [Mi, pp. 31–32] shows that J has precisely

height 2 and that J is in fact prime.

Finally, on replacing A by its localization at its irrelevant maximal ideal

M, we can directly apply the argument in [Mi] to prove his Corollary 2.7
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with reference to the ideal J := JM + (Z1, . . . ,Zbd)AM considered in SN ,

whereN denotes the irrelevant maximal ideal in S (see [Mi, pp. 33–34]); note

that if x1, . . . , xn are the degree 1 generators of N , then the Zl are general

k-linear combinations of x1, . . . , xn and the Yi,j , and so are homogeneous

forms of degree 1. We next observe that a standard graded algebra D with

irrelevant maximal ideal P is a domain if DP is a domain. It follows that the

homogeneous ideal J̃ := J+(Z1, . . . ,Zbd)A, considered in S, is a prime ideal.

Since J̃ requires at least as many generators as J , the result follows.

The arguments in the proof of Step 1 of the proof of Theorem 3.6 can

easily be adapted for use in the following more general situation. We adopt

the notation of Section 3.

Theorem 4.2. Let A be a standard graded algebra over a field of charac-

teristic 0, with A a domain. Suppose that k-dim(A)≥ 4 and that A satisfies

the Serre condition (S3). Then A possesses a homogeneous prime ideal P

of height 2 with μ(P ) = 3.

Sketch of Proof. In the light of [BH, Propositions 1.5.15(e), 1.5.11, and

1.5.12], a straightforward adaptation of the original argument means that

we need only comment on how to adapt the details of Step 2, namely, the

application of the double use of a Bertini theorem, in order to finish the

proof.

Replace D by its localization at its irrelevant ideal, say M′, and A by its

localization at its irrelevant ideal M.

As before, D/K has projective dimension 2. Since A satisfies the con-

dition (S3) and X,Y are indeterminates over A, depth(D) ≥ 5. By the

Auslander–Buchsbaum formula, therefore, depth(D/K) ≥ 3. We can now

mimic the argument in the second part of the proof of [Mi, Theorem 2.1,

p. 33], here cutting with two generic hyperplanes Z1 and Z2, in the notation

at [Mi, p. 33].

By Flenner’s Bertini theorem (see [Mi, p. 32]), D/(K +Z1D) is analyti-

cally irreducible. Note that depth(D/(K+Z1D))≥ 2. Hence, another appli-

cation of Bertini’s theorem is allowed, and we have that D/(K+(Z1,Z2)D)

is again analytically irreducible.

From the short exact sequence 0 → D
Z1→ D → D/Z1D → 0, we quickly

establish that TorDi (D/K,D/Z1D) = 0 for i ≥ 1. Hence, the minimal free

resolution of D/K over D afforded by the Hilbert–Burch theorem descends

via tensoring with D/Z1D to give the minimal free resolution over D/Z1D
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of D/(K+Z1D), this being in Hilbert–Burch form. Repeating the argument

on further factoring out Z2 ·D/Z1D shows that

μD/(Z1,Z2)D

((
K + (Z1,Z2)D

)
/(Z1,Z2)D

)
= 3,

and the full result now follows.

Remark 4.3. Suppose that we have a standard graded domain S over

a field k such that every homogeneous prime ideal of height 1 (resp., 2) is

generated by 1 (resp., 2) elements. It easily follows from the first part of the

proof of [BH, Theorem 1.5.9] that S satisfies the condition (R2). Hence, if

we further suppose that pr-dim(S)≥ 3 and that k has characteristic 0, then

S satisfies the hypotheses of the Theorem 4.1. It follows that Theorem 3.6

is a consequence of Theorem 4.1.

On the other hand, it is clear that Theorem 3.6 is also a consequence of

Theorem 4.2.
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