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LOGARITHMIC ABELIAN VARIETIES, III:
LOGARITHMIC ELLIPTIC CURVES AND

MODULAR CURVES
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CHIKARA NAKAYAMA

To Professor Luc Illusie

Abstract. We illustrate the theory of log abelian varieties and their moduli in

the case of log elliptic curves.

Introduction

The purpose of this part III of our series of papers is to illustrate our the-

ory of log abelian varieties in the case of 1-dimensional log abelian varieties,

that is, log elliptic curves.

The theory of log abelian varieties is a new formulation of degenerating

abelian varieties. A log abelian variety is something like a proper singular

variety appearing when an abelian variety degenerates, but it still has a

group structure. It is also like a smooth object in the sense of log geometry.

Hence, we can develop the theory of log abelian varieties exactly parallel

to the classical theory of nondegenerating abelian varieties. The purpose of

this series of papers is to establish the theory of log abelian varieties of any

dimension, and the aim of this Part III is to describe an essence of ideas by

giving a complete proof for a typical case, that is, the 1-dimensional case.

Thus, we hope that this paper gives a nice picture of degenerating elliptic

Received August 9, 2011. Revised March 23, 2012. Accepted May 10, 2012.
2010 Mathematics Subject Classification. Primary 14K10; Secondary 14J10, 14D06.
Kajiwara’s work was partially supported by Japan Society for the Promotion of Science

(JSPS) Grant-in-Aid for Scientific Research (C)21540032.

Kato’s work was partially supported by National Science Foundation grant DMS-

1001729.

Nakayama’s work was partially supported by JSPS Grants-in-Aid for Scientific

Research (C)18540017, (C)22540011.

© 2013 by The Editorial Board of the Nagoya Mathematical Journal

http://dx.doi.org/10.1215/00277630-2077017
http://www.ams.org/msc/


60 T. KAJIWARA, K. KATO, AND C. NAKAYAMA

curves in the log world and thereby serves to introduce the readers to the

whole theory of log abelian varieties.

Readers should notice that our emphasis always lies in the fact that the

theory of log abelian varieties is parallel to the theory of abelian varieties;

that is, the log geometric method can treat the degenerate objects as if they

were not degenerate. For example, since a log elliptic curve E has a group

structure, the Γ(N)-level structure (N � 1) on it can be defined just as an

isomorphism between (Z/NZ)2 and Ker(E
N→E), and we can consider the

moduli of log elliptic curves with Γ(N)-structure. These moduli are repre-

sented by nothing but the Deligne–Rapoport compactifications of modular

curves (see [2]), so we can compare log elliptic curves and generalized ellip-

tic curves in [2]. In fact, some of our proofs in this paper are based on the

work of Deligne and Rapoport, but there are some important differences.

For instance, a log elliptic curve can have N -level structures for various N ,

while the presence of an N -level structure determines the shape of a gener-

alized elliptic curve. So, log elliptic curves can be useful when one studies

a degenerating family of elliptic curves with level structures in changing

levels. See Remark 5.2 for a more precise form of this remark.

The paper is organized as follows. In Section 1, we give a definition of log

elliptic curves, which are nothing but 1-dimensional log abelian varieties,

as defined in Part II [3] of our series. In Section 2, we define the moduli

functors of log elliptic curves and review Deligne–Rapoport compactifica-

tions endowed with the natural log structures, which represent the moduli

functors (see Theorem 5.1), as we prove in Section 5 after the preparations

in Sections 3 and 4.

In Section 3, we construct universal families E log of log elliptic curves over

Deligne–Rapoport compactifications (endowed with the natural log struc-

tures). These families induce by definition the morphism from the functor

represented by Deligne–Rapoport compactifications on the category of log

schemes to the moduli functor of log elliptic curves in Section 2, which

is proved to be an isomorphism in Section 5 by standard techniques with

models of log elliptic curves discussed in Section 4.

For simplicity, until Section 5, we limit ourselves to the most basic case

in the sense that we do not use Drinfeld level structures, Γ0(N)-level struc-

tures, and stacks, because the most basic case is enough for our purpose to

show that, in the log world, the story of the moduli of degenerate objects

exactly parallels that of the moduli of classical, nondegenerate objects. We
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plan to investigate these variants in forthcoming parts in this series of papers

with full generality. For the reader’s convenience, in Section 6, we briefly

discuss these generalizations, which also should be parallel to the nonde-

generating stories, mentioning other works (e.g., Katz and Mazur [5] and

Conrad [1]).

In the appendix, we give an alternative construction of the universal log

elliptic curves E log in Section 3, which includes a precise relationship between

our E log and the Deligne–Rapoport universal generalized log elliptic curves.

§1. Log elliptic curves

Let S be an fs (fine and saturated) log scheme. Let (fs/S) be the category

of fs log schemes over S. Recall that a morphism X → Y in (fs/S) is strict

if the log structure of X is the pullback one from Y . We endow (fs/S) with

the strict étale topology (i.e., the topology by the strict morphisms whose

underlying morphisms of schemes are étale in the usual sense).

In this section, we review the definition of log abelian varieties in [3,

Definition 4.1] in the case where the dimension is 1, that is, the case of log

elliptic curves.

1.1.

We begin with a typical example of log elliptic curves.

First, define two sheaves Gm and Gm,log of abelian groups on (fs/S) as

follows. For an object U of (fs/S),

Gm(U) = Γ(U,O×
U ),

Gm,log(U) = Γ(U,Mgp
U ),

where Mgp
U is the sheaf of abelian groups associated to MU .

Next, let q be a global section of MS . Define a subgroup sheaf G
(q)
m,log (see

[3, Section 1.3]) of Gm,log as follows:

G
(q)
m,log(U) =

{
ϕ ∈ Γ(U,Mgp

U )
∣∣ locally on U,

there exist i, j ∈ Z such that qi|ϕ|qj
}
.

Here, by abuse of notation, we denote the image of q in Mgp
U (U) by the

same letter. For local sections a, b ∈Mgp
U , a | b means that a−1b ∈MU .

Let q be a global section of MS/O×
S . Then, the subgroup sheaf G

(q̃)
m,log of

Gm,log is independent of a local lift q̃ ∈MS of q and hence can be defined

globally. We denote it again by G
(q)
m,log by abuse of notation.
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Example 1.2. Two typical examples of log elliptic curves are as follows.

(1) Let E → S be a strict morphism of fs log schemes. If the underlying

morphism of schemes is an elliptic curve in the classical sense, E is a

log elliptic curve over S. We identify E with the sheaf on (fs/S) that it

represents. We call log elliptic curves of this type elliptic curves.

(2) Let q be a global section of MS as in Section 1.1. Assume that the

image of q in OS is locally nilpotent. Then, the group sheaf G
(q)
m,log/q

Z

on (fs/S) is a log elliptic curve. We call log elliptic curves of this type

log Tate curves.

Now, a general log elliptic curve is a family consisting of the above two

examples.

Definition 1.3. A log elliptic curve over an fs log scheme S is a sheaf E

of abelian groups on (fs/S) satisfying the following three conditions.

(1) For any s ∈ S, the pullback of E over s either is a log scheme strict

over s whose underlying scheme is an elliptic curve or is isomorphic to

a log Tate curve G
(q)
m,log/q

Z (Example 1.2). Here s̄ is the Spec of the

separable closure k̄ of the residue field k of s endowed with the pullback

log structure of S, and q is a section of Ms whose image in k̄ is zero.

(2) There exist a 1-dimensional semi-abelian scheme G over S, a global

section q of MS/O×
S , and an exact sequence

0−→G−→E −→G
(q)
m,log/GmqZ −→ 0.

(3) The diagonal morphism E →E×E is represented by finite morphisms.

(Equivalently, the 0-section S →E is represented by finite morphisms.)

Note that a log elliptic curve is not necessarily represented by a log

scheme; that is, it is an object of a different nature than a log scheme. On

the other hand, we study its big representable subfunctors, called models,

in Section 4.

Proposition 1.4. The above log elliptic curves are 1-dimensional log

abelian varieties in the sense of [3, Definition 4.1]. Conversely, 1-

dimensional log abelian varieties in the sense of [3, Definition 4.1] are log

elliptic curves.

Proof. First, in Example 1.2, (1) and (2) are log abelian varieties with

constant degeneration in the sense of [3, Section 3]. Conversely, let A be a
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log abelian variety with constant degeneration. If its semi-abelian part G is

1-dimensional, it is an elliptic curve or a torus. Then, by [3, Theorem 3.4], A

is either a strict elliptic curve or a log Tate curve (Example 1.2), respectively.

Hence, the first condition in Definition 1.3 and that in [3, Definition 4.1] are

equivalent.

Next, it is easy to see that a log elliptic curve over S satisfies the condition

[3, second condition of 4.1.2] if we take X = Y = Z and 〈m,n〉 := qmn and

if φ is the identity.

The third condition in Definition 1.3 is identical to that in [3, Defini-

tion 4.1].

It remains to show that a log abelian variety A satisfies Definition 1.3(2).

By [3, Section 4.4], G exists globally. We show that A/G is isomorphic to

G
(q)
m,log/GmqZ for some q. To see this, we can work locally on S because q is

uniquely determined by E if it exists (see [3, Theorem 7.6(2)]). Consider the

locus Z ⊂ S where G is a torus. Then, A is with constant degeneration on

Z by [3, Theorem 4.6(1)]. Hence, by the argument of the first paragraph of

this proof, A|Z is isomorphic to a log Tate curve G
(q)
m,log/q

Z (Example 1.2).

Hence, A/G = G
(q)
m,log/GmqZ on Z. On the other hand, we have A/G =

Hom(X,Gm,log/Gm)(Y )/Y on S for an admissible pairing 〈 , 〉 : X × Y →
Gm,log/Gm. Take a local extension of q over S, still denoted by q. It is enough

to show that q is invertible outside Z. But, by [3, Theorem 7.6(2)], we may

assume that q is the image of some element of X × Y in MS/O×
S which

vanishes outside Z. Hence, q is invertible outside Z. Thus, Definition 1.3(2)

is satisfied.

We note that, as seen in the above proof, G and q in Definition 1.3(2)

are uniquely determined by E.

Finally in this section, we define some standard level structures on a log

elliptic curve. By virtue of the remarkable fact that a log elliptic curve is a

commutative group object, the definitions are parallel to the classical ones.

Definition 1.5. Let N ≥ 1. Let S be an fs log scheme over SpecZ[1/N ].

(1) A Γ(N)-structure of a log elliptic curve E over S is an isomorphism

(Z/NZ)2 →Ker(E
N-times−−−−−→E).

(2) A Γ1(N)-structure of a log elliptic curve E over S is a section P : S →E

of exact order N , that is, of order N in each geometric fiber.

(3) A Γ0(N)-structure of a log elliptic curve E over S is a subgroup scheme

C of Ker(E
N-times−−−−−→E) that is étale locally isomorphic to Z/NZ.
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Remark 1.6. For any log elliptic curve over S, the above structures

exist locally on S in the Kummer-étale topology—which we abbreviate as

the két topology; that is, there is a surjective, log étale morphism S′ → S

of Kummer type (see [6]) such that the pullback log elliptic curve over S′

has the above structures.

§2. Moduli functors

Let N ≥ 1. We define moduli functors of log elliptic curves with Γ∗(N)-

structure, where ∗= ∅,1. We will explain the case of Γ0(N) in Section 6.

Definition 2.1. Let S be an fs log scheme over SpecZ[1/N ]. We define

four functors FN , FN , FN,1, and FN,1 : (fs/S)→ (set) as follows. Let U be

an object of (fs/S).

(1) Let FN (U) be the set of isomorphism classes of elliptic curves E over

U with Γ(N)-structure.

(2) Let FN (U) be the set of isomorphism classes of log elliptic curves E

over U with Γ(N)-structure.

(3) Let FN,1(U) be the set of isomorphism classes of elliptic curves E over

U with Γ1(N)-structure.

(4) Let FN,1(U) be the set of isomorphism classes of log elliptic curves

E over U with Γ1(N)-structure.

Here an elliptic curve E over U is an fs log scheme E over U such that

E → U is a strict morphism whose underlying morphism is an elliptic curve

in the usual sense (Example 1.2(1)). Since we always regard such an E as a

log elliptic curve, we have

FN ⊂ FN , FN,1 ⊂ FN,1.

2.2.

Next, we recall the Deligne–Rapoport compactifications of moduli of ellip-

tic curves with level structure [2].

We work over Z[1/N ].

First, let N ≥ 3. Consider the functor (sch/Z[1/N ])→ (set) associating

to a scheme U over Z[1/N ] the set of isomorphism classes of elliptic curves

over U with Γ(N)-structures. Then, this functor is represented by a scheme,

which is denoted by Y (N).

Let N ≥ 4. The functor (sch/Z[1/N ])→ (set) associating to U the set of

isomorphism classes of elliptic curves over U with Γ1(N)-structures is also

represented by a scheme, which is denoted by Y1(N).
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Next, let N ≥ 3 (resp., N ≥ 4). The functor (sch/Z[1/N ])→ (set) asso-

ciating to U the set of isomorphism classes of generalized elliptic curves

over U with Γ(N)-structures (resp., Γ1(N)-structures) is represented by a

scheme, which is denoted by X(N) (resp., X1(N)).

Then, both X(N) and X1(N) are proper and smooth over Z[1/N ]; the

scheme Y (N) (resp., Y1(N)) is an open subscheme of X(N) (resp., X1(N))

whose complement is a relative normal crossing divisor over Z[1/N ]. We call

the components of this divisor cusps.

We endow X(N) (resp., X1(N)) with the fs log structure defined by the

cusps, that is, by the divisor X(N)− Y (N) (resp., X1(N)− Y1(N)).

Let E be the universal generalized elliptic curve over X(N). Endow E
with the fs log structure defined by the divisor which is the pullback of

X(N)− Y (N).

Let S be an fs log scheme over Z[1/N ]. In the following, we denote the

base change of Y (N), Y1(N),X(N),X1(N) to S by the same symbol. By

definition, the functor FN (resp., FN,1) in Definition 2.1 is represented by

the fs log scheme Y (N) (resp., Y1(N)).

In Section 5, we will prove that moduli functors in Definition 2.1 are

represented by Deligne–Rapoport compactifications in Section 2.2, after the

preparations in Sections 3 and 4.

§3. Universal log elliptic curves

In this section, we construct universal log elliptic curves over X(N) over

Z[1/N ]. Fix N ≥ 3 in this section.

Let G be the universal semi-abelian scheme over X(N), that is, the largest

semi-abelian subscheme of the universal generalized elliptic curve E over

X(N) (see Section 2.2). Then, G coincides with the open subspace of E
where the structure map E →X(N) is strict.

Below, we will compactify G around each cusp as we have done in [3,

Proposition 4.8] to get our universal log elliptic curve. Thus, we do not use

E itself.

See the appendix for an alternative construction of the universal log ellip-

tic curves, which uses E and shows the precise relationship between our

construction and E .

3.1.

Let q be the local parameter of the cusp of the moduli stack X(1) of

elliptic curves. Let J be the set of cusps of X(N). For each v ∈ J , let Ov be
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the completion of the local ring of X(N) at v, and let Kv be its fraction field.

Then, we have Ov = Z[1/N, ζN ][[q1/N ]] and Kv = Z[1/N, ζN ][[q1/N ]][1/q],

where ζN is a primitive N th root of unity. Endow SpecOv and SpecKv

with the inverse image log structures of X(N), which are the log structure

defined by q1/N and the trivial log structure, respectively.

3.2. The qv-Tate curve

Let qv = q, and let Eqv be the qv-Tate curve, which we will review briefly

(see [3, Section 1] for details). For each integer i≥ 1 and a nonempty sub-

set I of Q stable under the translation by Z such that I/Z is finite, we

construct the proper fs log scheme E(I)
qiv

over SpecOv by the log Mumford

construction (see [3, Section 1]). For example, E((1/N)Z)
qv is nothing but the

base change of E to SpecOv (see [3, Section 1.8]). Over v, the pullback of E(I)

qiv

is G
(qiv ,I)
m,log/q

iZ
v , where G

(qiv ,I)
m,log is the subsheaf of Gm,log consisting of sections

locally satisfying qα|x|qα′
for some α ∈ I . Here α′ ∈ I is the smallest element

of {β ∈ I | β > α}, and qα|x|qα′
means that qαn|xn|qα′n for some positive

integer n with αn and α′n integers. Then Eqv = (
⊔

(i,I) E
(I)
qiv

)/∼, where ∼ is

the equivalence relation in the category of sheaves on (fs/SpecOv) generated

by the following two equivalences (see [3, Section 1.6]).

(1) For any (i, I) and (j, J) such that j | i and such that (i/j)I ⊃ J , any

element of E(I)

qiv
(U) for any fs log scheme U over SpecOv is equivalent

to its image in E(J)

qjv
(U) under the canonical morphism E(I)

qiv
→E(J)

qjv
.

(2) For any (i, I), if we denote J = I + (1/i), any element of E(I)

qiv
(U) for

any fs log scheme U over SpecOv is equivalent to its image in E(J)

qiv
(U)

under the morphism E(I)

qiv
→E(J)

qiv
;ϕ �→ qvϕ.

3.3.

We define a log elliptic curve E log →X(N) as the sheaf that makes the

diagram

E log(U) −−−−→
∏

v∈J Eqv(U ×X(N) SpecOv)⏐⏐�
⏐⏐�

G
(
U ×X(N) Y (N)

)
−−−−→

∏
v∈J Eqv(U ×X(N) SpecKv)

Cartesian for each X(N)-fs log scheme U , similar to the ones in [3, Propo-

sition 4.7].
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We show that this E log is actually a log elliptic curve (Definition 1.3).

Proposition 3.4. The above construction gives a log elliptic curve.

We call this E log a universal log elliptic curve.

Proof. We can prove this exactly in a way parallel to [3, Proposition 4.8]

as follows.

We have to check the three conditions in Definition 1.3. In the same way

as in [3, Section 9.10], we can show that there is an exact sequence

0→G →E log →
⊕
v∈J

iv∗
(
G

(qv)
m,log/(Gm · qZv )

)
→ 0,

where iv is the inclusion morphism v → X(N). This implies Defini-

tion 1.3(2). Next, again as in [3, Section 9.10], we can prove that the pull-

back of E log to the open subset Y (N) of X(N) coincides with G and that

the pullback E log|Ov of E log to Spec(Ov) is Eqv for each v ∈ J . This shows

Definition 1.3(1). Finally, Definition 1.3(3) also can be checked similarly as

in [3, Section 9.10]. So, we have finished.

The universal log elliptic curve has the canonical level structure (Z/

NZ)2 → E log coming from the level structure of G|Y (N) and those of the

qv-Tate curves.

§4. Models

In this section, we consider representable models of log elliptic curves,

which are used in the proof of Theorem 5.1 in Section 5.

4.1. The sheaf CΣ

Let S be an fs log scheme. Let C := Gm,log/Gm on (fs/S). Let q be a

global section of MS/O×
S . For a bounded rational interval I := [α,α′] of Q,

α,α′ ∈Q, and α≤ α′, we define a sheaf CI as the subsheaf of C consisting of

sections x locally satisfying qα|x|qα′
. Here qα|x|qα′

means that qαn|xn|qα′n

for some positive integer n with αn and α′n integers. For a collection Σ =

(Ii)i of bounded rational intervals such that for any i, j, the intervals Ii and

Ij have no common interior point, let CΣ =
⋃

i CIi .

4.2. The sheaf QΣ

Further, let E be a log elliptic curve over S. Let

0−→G−→E −→Q−→ 0
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be the exact sequence as in Definition 1.3, where Q := G
(q)
m,log/GmqZ. We

assume that Σ is preserved by the translation α �→ α + 1. Let QΣ be the

image of the natural projection CΣ →Q. Let E(Σ) ⊂ E be the pullback of

QΣ by E →Q. Then E(Σ) is represented by an fs log scheme which is log

smooth over S [3, Section 1.5]. When
⋃
Ii = Q, this fs log scheme is also

proper over S.

4.3. Representable models of log elliptic curves

Let the assumption be as in Section 4.1. In the rest of Section 4, fix a Σ

which is preserved by α �→ α + 1. Assume that
⋃
Ii = Q. Let G be a 1-

dimensional semi-abelian scheme over S. Let W be a sheaf of sets on (fs/S)

endowed with a diagram

G
i→W

p→QΣ

with i injective and p surjective such that p ◦ i is the trivial map.

Let (W ×W )′ be the subsheaf of W ×W defined by {(x, y) | p(x)p(y) ∈
Q belongs to QΣ}. A map

(W ×W )′ →W

is called a partial group law on such a W if the following three conditions

(a)–(c) are satisfied. We say that xy is defined if (x, y) ∈W ×W belongs to

(W ×W )′.

(a) For any x, y, z ∈ W , if xy, (xy)z, yz are defined, then (xy)z = x(yz).

(Note that the right-hand side is defined by the assumptions.)

(b) For any x ∈W , 1Gx= x. Here 1G is the unit section of G.

(c) For any x, y ∈W , if xy is defined, then xy = yx. (Note that yx is also

defined if xy is defined.)

Since (G×W ) ∪ (W ×G) ⊂ (W ×W )′, a partial group law induces an

action of G on W .

We consider three more conditions.

(d) The morphism i is compatible with the (partial) group laws of G andW .

(e) The morphism p is compatible with the partial group laws of W and

QΣ, where the partial group law on QΣ is the natural one.

(f) The sheaf W is a G-torsor over QΣ; that is, G ×S W → W ×QΣ W ;

(g,w) �→ (gw,w) is bijective.

Let W be the category of (W,i, p) as above endowed with a partial group

law satisfying (d)–(f). The morphisms of this category are defined naturally.
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It is easy to see that the correspondence E �→ E(Σ) := the pullback of QΣ

by E →Q defines a functor μ from Ext(Q,G) to W .

Proposition 4.4. Let the notation be as in the previous paragraph.

Assume that there is an interval I in Σ that contains 0 ∈ Q in its inte-

rior.

Let A be the category of log elliptic curves E over S satisfying the fol-

lowing conditions.

(i) The semi-abelian part of E is G.

(ii) The log étale quotient E/G is Q.

Let B be the full subcategory of W consisting of objects satisfying the

following conditions.

(g) For any s ∈ S, either the pullback of G→W to s is an isomorphism of

elliptic curves and q is invertible, or the pullback of G→W →QΣ to s

is isomorphic to Gm →G
(Σ)
m,log/q̃

Z →QΣ and q is not invertible, where

q̃ is a lift of q.

(h) The sheaf W is quasi-separated over S.

Then the functor μ in the above induces an equivalence of the categories

A and B; E �→E(Σ).

Proof. First we prove that μ : Ext(Q,G)→W is an equivalence by giving

the inverse functor. Let W be an object of W . Let I be the interval in the

assumption. Let W̃ I :=W ×QΣ CI . Let (W̃ I × W̃ I)′ → W̃ I be the induced

partial group law, where (W̃ I × W̃ I)′ is the subsheaf of W̃ I × W̃ I defined

by {(x, y) | the product of the images of x and y in Q belongs to QI}. Let
Ẽ be the két sheafification of the presheaf (see [6] for the definition of the két

topology; see Remark 1.6 in this paper) that associates to each U ∈ (fs/S)

the abelian group defined by W̃ I(U) as a set of generators and [x][y] = [xy]

for all (x, y) ∈ (W̃ I × W̃ I)′(U) as relations, where [x] denotes the generator

corresponding to x ∈ W̃ I(U).

Take an n ≥ 1 such that 1/n ∈ I . Let E be the quotient sheaf of Ẽ by

the subgroup sheaf generated by a local section [(w,q1/n)]n, where w is the

section of W [n] whose image in QΣ is the image of q1/n, and (w,q1/n) is

regarded as a section of the fiber product W ×QΣ CI . Then, it is straight-

forward to see that the map W �→ E is well defined and gives an inverse

of μ.

Further, it is easy to see that E ∈ Ext(Q,G) satisfies Definition 1.3(1)

if and only if the corresponding W satisfies condition (g). It is also easy
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to see that if E ∈ Ext(Q,G) is a log elliptic curve, then the corresponding

W satisfies condition (h). It remains to show its converse. Assume that

the corresponding W is quasi-separated. Then, W̃ I is quasi-separated. This

implies that Ẽ(nI) :=E×Q CnI is quasi-separated for all n > 0. Then, we can

see that the morphism Ẽ(nI) ×E Ẽ(nI) → Ẽ(nI) ×S Ẽ(nI) is quasi-compact.

Since any morphism U →E×SE from a quasi-compact fs log scheme locally

factors through Ẽ(nI) ×S Ẽ(nI) for some n, we conclude that E is quasi-

separated.

§5. Representability

In this section, we prove the following theorem on the representability of

the moduli functors of log elliptic curves with level structure.

Theorem 5.1. Let N ≥ 3 (resp., N ≥ 4), and let S be an fs log scheme

over SpecZ[1/N ] with the trivial log structure. Then the moduli functor FN

(resp., FN,1) is represented by the Deligne–Rapoport compactification X(N)

(resp., X1(N)) over S with the log structure defined by the cusps.

Remark 5.2. Let K be a complete discrete valuation field, let q be a

nonzero element of the maximal ideal of the valuation ring OK , and let

Eq be the Tate elliptic curve over K with “q-invariant” q. We can ask if

there is a best model among all proper models of Eq over OK . Since X(N)

is a fine moduli in the sense of Deligne and Rapoport and in the sense of

the above theorem, by giving an N -level structure on Eq, we get two kinds

of good models of Eq over OK , respectively. In the sense of Deligne and

Rapoport, this good model is a generalized elliptic curve, which depends on

N . On the other hand, in the sense of the above theorem, this good model

is a log elliptic curve and independent of N . (See [3, Section 1.8] for more

explanations.)

We prove 5.1. We prove the case of X(N). The other case of X1(N) is

similar and is omitted.

5.3. Two properties of FN

Using the universal log elliptic curve in Section 3, we have a morphism

i : P → F , where P denotes the functor represented by X(N) with log struc-

tures along cusps, and F is the moduli functor FN of log elliptic curves with

level N -structure. We remark that both P and F are sheaves with respect

to the étale topology.
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To show that i is an isomorphism, it is enough to verify the following two

statements.

(1) Finiteness: F is locally of finite presentation.

(2) Uniqueness: For a complete Noetherian local ring R, the canonical mor-

phism F (R)→ proj limnF (R/mn
R) is injective.

Here, SpecR is endowed with an fs log structure, and SpecR/mn
R is

endowed with the pullback log structure.

5.4. Reduction to the two properties of FN

We first explain that Theorem 5.1 follows from statements (1) and (2)

above. Using (1), we have only to show that, for the strict Henselization R

endowed with an fs log structure of a local ring of a scheme of finite type

over Z, the morphism P (R) → F (R) is bijective. Moreover, by the Artin

approximation theorem, we may assume that R is complete.

For an integer n ≥ 0, the morphism P (Rn) → F (Rn), where Rn :=

R/mn+1
R , is bijective by using the equivalence between the category of log

abelian varieties with constant degenerations and that of log 1-motives (see

[3, Theorem 3.4]). Then statement (2) and a commutative diagram

P (R) −−−−→ proj limnP (Rn)⏐⏐�
⏐⏐�

F (R) −−−−−→
injective

proj limnF (Rn)

show that i is an isomorphism because the upper horizontal arrow is an

isomorphism.

5.5. Beginning of the proof of finiteness

We prove statement (1). Let (Si)i be a filtered projective system of affine

fs log schemes whose transition morphisms are strict. Let S := lim←−Si. Let

(E1, μ1), (E2, μ2) ∈ F (Si0) for some i0, where Ej is a log elliptic curve and

μj is a level structure on it (j = 1,2). Assume that (E1, μ1)|S ∼= (E2, μ2)|S .
We will show that (E1, μ1)|Si

∼= (E2, μ2)|Si for some i. Consider the exact

sequences in Definition 1.3(2) for Ej (j = 1,2):

0→Gj →Ej →G
(qj)
m,log/GmqZj → 0.

Since G1|S ∼=G2|S and q1|S = q2|S , we have G1|Si
∼=G2|Si and q1|Si = q2|Si

for some i. Hence, we may assume that G1 =G2 =:G and that q1 = q2 =: q.
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5.6. Use of a model

Take Σ = {[n − (1/2), n + (1/2)] | n ∈ Z}, and let Wj = E
(Σ)
j (j = 1,2).

Since W1|S ∼=W2|S , we have ι : W1|Si
∼=W2|Si for some i. Enlarging i, we

may assume that the isomorphism ι is compatible with the morphisms

from G. Further, Q is locally of finite presentation. This is reduced to

the fact that Gm,log/Gm is locally of finite presentation, which is easily

checked. Hence, we may assume that ι is compatible with the morphisms

to Q. Furthermore, since (W1×W1)
′ (in the notation of Section 4.3) is rep-

resented by a log blowup of W1 ×S W1, enlarging i, we may assume that

ι is compatible with the partial group laws on W1 and W2. By Proposi-

tion 4.4, E1|Si
∼= E2|Si . Hence, E1|Si [n]

∼= E2|Si [n]. Lastly, enlarging i, we

have μ1|Si
∼= μ2|Si .

5.7. Descent

Next let (E,μ) ∈ F (S). We will prove that (E,μ) comes from an element

of F (Si) for some i, which completes the proof of statement (1). We have

an exact sequence

0→G→E →Q→ 0

over S. First, G and q come from some i. Also, W :=E(Σ) is the base change

of a proper fs log scheme W (abuse of notation) over Si for some i. The

morphism G→W also comes from some i. We may assume that it is strict

and that it is a monomorphism. Since QΣ is locally of finite presentation,

the morphism W → QΣ also comes from some i. Again, by the fact that

QΣ is locally of finite presentation, we may assume that the composite

G→W →QΣ is trivial.

5.8. The condition (g)

Enlarging i further, we may assume the equality of two subsets Ui := {s ∈
Si | the pullback of G to s is an elliptic curve}= {s ∈ Si | q is invertible at

s} of Si because the pullbacks of the two subsets to S coincide. Enlarging

i, we may assume that G→W is an isomorphism on Ui. Let Zi = Si −Ui,

and let Z = lim←−Zi. By [3, Theorem 4.6(1)], the pullback of E to Z is a

log abelian variety with constant degeneration. Hence, G → W → QΣ on

Z is isomorphic to Gm →G
(Σ)
m,log/q̃

Z →QΣ. Therefore, enlarging i, we may

assume that G→W →QΣ on Zi is isomorphic to Gm →G
(Σ)
m,log/q̃

Z →QΣ.

Thus, we may assume that condition (g) in Proposition 4.4 is satisfied.
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5.9. Surjectivity of W →QΣ

Further, we may assume that condition (h) in Proposition 4.4 is also

satisfied. Then, we can prove that W →QΣ is surjective as follows. To see

this, we may assume that S is of finite type over Z. Let T be an fs log

scheme over S. We have to prove that a section of QΣ over T can lift to W

locally on T . For this, we may assume that the underlying scheme of T is the

spectrum of a strict localization of a scheme of finite type over Z. Further, by

the Artin approximation theorem, we may assume that T is the spectrum of

a complete local ring R with a separably closed residue field. Then, W (R)→
QΣ(R) is isomorphic to p′ : lim←−W (R/mn

R)→ lim←−QΣ(R/mn
R) =QΣ(R/mR).

Since W is log smooth over S, each transition morphism W (R/mn+1
R )→

W (R/mn
R) is surjective by [4, Corollary 3.11]. Hence, p′ is surjective, and

W →QΣ is also surjective.

5.10. Partial group law

Next, since (W ×W )′ is represented by a log blowup of W ×S W , the

morphism (W ×W )′ →W comes from some i. For each x ∈W , write x̄ for

its image in Q. Since the set of triples (x, y, z) ∈ W ×W ×W such that

the products x̄ȳ, x̄ȳz̄, and ȳz̄ in Q belong to QΣ is also represented by a

proper fs log scheme, the morphism (W ×W )′ →W satisfies conditions (a)–

(c) in Section 4.3 over some Si; that is, we may assume that the morphism

(W ×W )′ → W is a partial group law. We may assume that this partial

group law is compatible with that of G. Further, since QΣ is locally of finite

presentation, we may assume that it is also compatible with the partial

group law of QΣ.

5.11. The condition (f)

Further, we consider the morphism G ×Si W → W ×QΣ W over Si in

condition (f) in Section 4.3. This is an isomorphism over S, and W ×QΣ W

over Si is represented by an open subscheme of a log blowup of W ×Si W .

Hence, this morphism is already an isomorphism over some Si; that is,

we may assume that W is a G-torsor. Thus, we have an object of B in

Proposition 4.4 over Si.

5.12. End of the proof of finiteness

Now, by Proposition 4.4, this object corresponds to a log elliptic curve

over Si, which induces the original E over S.
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Finally, we prove that μ comes from a level structure over some Si. This is

because the kernel of n : E →E is represented by lim←−({0}→E(Σ′) n←E(Σ′)),

where Σ′ is the collection {{i/n} | i ∈ Z}.

5.13. Proof of uniqueness

We next prove statement (2). Let (Ei, μi) ∈ F (R) (i = 1,2). Assume

that for each n, the pullbacks of (Ei, μi) (i = 1,2) to R/mn
R coincide. We

have to prove that then (Ei, μi) coincide. We may assume that there is

an exact sequence 0→ Gi → Ei
fi→ G

(qi)
m,log/GmqZi → 0 (i = 1,2) on R as in

Definition 1.3(2). Then, q := q1 = q2 because q1 ≡ q2 mod mn
R for all n.

Take Σ = {[(2k − 1)/4, (2k + 1)/4] | k ∈ Z}, and let Wi = E
(Σ)
i (i = 1,2).

We have W1|R/mn
R

∼=W2|R/mn
R
. We claim that W1

∼=W2. We can see that

(M/O×)W1|R/mn
R
is generated by global sections. To see this, we may assume

that n= 0 and that, in this case, E
(Σ)
i is a base change of the universal object

over Z[ζn][[q
1/n]]. For such a universal object, M/O× is generated by global

sections because it is a regular scheme endowed with the log structure by

a simple normal crossing divisor. Hence, (M/O×)W1|R/mn
R

is generated by

global sections, too. Then, W1
∼= W2 by GAGF (see [7, Theorem 4.2.7]).

Further, f1 = f2 because f1 ≡ f2 mod mn
R for all n. Thus, G1

∼= G2. The

partial group laws on Wi also coincide, and hence, by Proposition 4.4, we

conclude that A1
∼=A2. Level structures clearly coincide, too.

§6. Drinfeld level structures, Γ0(N), and moduli stacks

Here we sketch some variants. Our emphasis still lies in the fact that

the concept of log elliptic curve makes degenerate stories parallel to the

corresponding nondegenerate stories.

6.1.

First, we briefly discuss Drinfeld Γ∗(N)-structures of log elliptic curves.

Let N ≥ 1.

Definition 6.1.1. Let E be a log elliptic curve over an fs log scheme S.

(1) A Γ(N)-structure of E is a triple (D,P,Q), where

(a) D is a subgroup sheaf of E represented by a strict, finite locally

free group scheme of rank N2 over S; and

(b) P,Q are two sections of order N and generate D, that is, give a

(Z/NZ)2-generator of D in the sense of [5, Section 1.10.5]. (We

regard D as a group scheme without log structure.)
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(2) A Γ1(N)-structure of E is a pair (C,P ) of a finite locally free subgroup

scheme C and a section P which is of order N and generates C.

(3) A Γ0(N)-structure of E is a finite locally free subgroup scheme C which

étale locally is generated by a section of order N .

Remark 6.1.2.

(1) Over SpecZ[1/N ], the above Drinfeld Γ∗(N)-structures coincide with

the ones in Definition 1.5 (∗= ∅,1,0). They also coincide with those of

Katz and Mazur [5] away from the cusps.

(2) It can be shown that for a log elliptic curve E, the subgroup scheme

Ker(E
N-times−−−−−→E) is, két locally, a finite flat group scheme of rank N2.

So E has, két locally, Γ∗(N) structures for any N and ∗= ∅,1,0.
(3) A natural question is whether a log elliptic curve with Drinfeld Γ∗(N)-

structure in our sense corresponds to a generalized elliptic curve with

Drinfeld Γ∗(N)-structure in Conrad’s sense (see [1]).

6.1.3. Assume that N ≥ 3 (resp., N ≥ 4). As in Definition 2.1, we can

define the moduli functor of log elliptic curves with Drinfeld Γ∗(N)-

structures, where ∗ = ∅ (resp., 1), and we think that these moduli func-

tors are represented by fs log schemes which are proper and log smooth

over SpecZ. One can ask if this moduli space of ours coincides with the

Conrad compactification over SpecZ with log structure defined by cusps.

6.2.

Next, the case of Γ0(N) also can be treated in a way similar to the

nondegenerate case. Let M > 2 be an auxiliary integer which is prime to

N . Then, X0(N)×X(1) X(M) is the fine moduli of the appropriate mod-

uli problem over SpecZ[1/N ], formulated by using the Γ0(N)-structure in

Definition 1.5(3).

Using the Drinfeld level structure in Definition 6.1.1(3), we can work even

over Z.

We plan to study, in a forthcoming paper in this series, the higher-

dimensional analogue of X0(N)×X(1) X(M) (see Stroh [8]).

6.3.

Log stacks also can be considered in a way parallel to the nondegenerate

case. Then, in a way similar to the nondegenerate case, we can construct

moduli stacks of log elliptic curves with Γ∗(N)-structures for any N ≥ 1.

The auxiliary numbers M as in Section 6.2 are not necessary for Γ0(N) (see

Conrad [1]).



76 T. KAJIWARA, K. KATO, AND C. NAKAYAMA

Appendix. Alternative construction of universal log elliptic curves

In this appendix, we give an alternative construction of universal log

elliptic curves over X(N) over Z[1/N ] in Section 3. Fix N ≥ 3.

Let E be a universal generalized elliptic curve overX(N) as in Section 2.2.

Below, roughly, we get our universal log elliptic curve as a quotient of the

disjoint union of several variants of E by an equivalence relation. Contrary to

the construction in Section 3, this alternative one is global (see Section A.1).

In particular, it explains a precise relationship between our construction and

Deligne and Rapoport’s E (see [2]).

A.1 Feature of the construction

Recall that the construction in Section 3 is locally regarded as a quo-

tient under a suitable equivalence relation of models E((1/N)Z)

qi
for larger and

larger i. (We need only E(I)

qi
with I = (1/N)Z, but in [3, Section 1] we used

all I to simplify the description of the equivalence relation.) The alternative

construction here is also regarded as a suitable quotient of models E((1/N)Z)

qi
,

but globally. We use the Deligne–Rapoport family E to have such models

globally.

Before we explain the alternative construction, we introduce some nota-

tion and prove a property of E .
Let us consider the sheaf C :=Gm,log/Gm on X(N) as in Section 4.1. For

a bounded rational interval I := [α,α′] of Q, α,α′ ∈Q, we define a sheaf CI

as the subsheaf of C consisting of sections x satisfying qα|x|qα′
. Further, we

define C1 := (
⋃

l∈Z C[l/N,(l+1)/N ])/qZ ⊂ C/qZ. In the notation of [3, Section 1],

C1|Ov coincides with G
(qv ,(1/N)Z)
m,log /(GmqZv ).

Lemma A.2. The sheaf E/G is isomorphic to C1. (Recall that G is the

universal semi-abelian scheme over X(N) as in Section 3.)

Proof. First note that C1 is locally of finite presentation (see Section 5.6).

Let i be the inclusion map from the set J of cusps to X(N). Since i−1E is

isomorphic to the subsheaf of Gm,log/q
Z consisting of sections x locally satis-

fying ql/N |x|q(l+1)/N for some l ∈ Z, and since i−1G is sent to Gm by this iso-

morphism, the quotient i−1(E/G) is isomorphic to i−1C1. Since C1 = i∗i−1C1,

we have a homomorphism h : E/G → C1. We prove the bijectivity of this h.

Let U be an fs log scheme over X(N), and we have to prove the bijectivity of

h(U). For this, first we may assume that the underlying scheme of U is the

spectrum of the strict Henselization R of a local ring of a scheme of finite
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type over Z. Next, by the Artin approximation theorem, we may assume

further that R is complete. Furthermore, we may replace R with R/mn
R

(n≥ 1), where mR is the maximal ideal of R. In fact, assume that h(R/mn
R)

is bijective for any n≥ 1. If a, b ∈ E(R) have the same image in C1(R), then,

for each n, we have an = bngn in E(R/mn
R) for some gn ∈G(R/mn

R), where

an and bn are the images of a and b, respectively. Hence, a= bg in E(R) if

we put g := (gn)n ∈ lim←−G(R/mn
R) =G(R). Therefore, h(R) is injective. On

the other hand, since E is log smooth over X(N), each transition homomor-

phism E(R/mn+1
R )→ E(R/mn

R) is surjective by [4, Corollary 3.11]. Hence,

E(R) = lim←−E(R/mn
R)→E(R/mR)→C1(R/mR) is surjective. From this, we

also see that h(R) is surjective. Thus, it is enough to show that h(R/mn
R)

is bijective. When the image of Spec(R/mn
R) is not contained in J , this is

trivial because E = G there. Otherwise, h(R/mn
R) is also bijective because

i−1(E/G) = i−1C1.

A.3 Idea of the construction

We explain the idea of the alternative construction. As we said above,

the idea is that there should be a surjection from the disjoint union of the

global versions of E((1/N)Z)
qm (i.e., the global version of G

(qm,(1/N)Z)
m,log /qmZ),

which we denote by Pm, to the desired log elliptic curve. Once Pm is

defined, the description of the equivalence is routine. To obtain Pm, we

want to divide G
(q,(1/N)Z)
m,log /qZ by Z/mZ(1) to obtain G

(qm,(1/N)Z)
m,log /qmZ via

the multiplication-by-m map, or we want to divide E((1/N)Z)
q by Z/mZ(1)

to obtain E((1/N)Z)
qm . That is, we want to divide E by Z/mZ(1) to obtain Pm.

But an obstacle lies in the fact that E does not necessarily contain Z/mZ(1).

To overcome this difficulty, we work étale locally as follows.

A.4 Fs log scheme Pm

We define Pm. For a positive integer m prime to N , consider the mod-

uli functor X(m,N) classifying injective homomorphisms bm : Z/mZ(1)U →
G ×X(N) U for fs log schemes U over X(N). Then, X(m,N) is represented

by an fs log scheme over X(N), denoted by X(m,N), which is strict étale

over X(N). We denote by bm : Z/mZ(1)→G ×X(N) X(m,N) the universal

object over X(m,N).

Let Pm be the quotient scheme of Em := E ×X(N)X(m,N) over X(m,N)

by the action of the image of bm : Z/mZ(1)→G ×X(N) X(m,N) endowed

with the natural log structure.
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Let us denote by Pm the unique étale sheaf over X(N) whose restriction

to X(m,N) is represented by Pm.

Then, over Y (N), the pullback of Pm is E/(Z/mZ(1)). Over Ov, the

pullback of Pm is E((1/N)Z)
qmv

. Over v, the pullback of Pm is G
(qmv ,(1/N)Z)
m,log /qmZ

v .

There is a natural map Pm →C/qmZ which is compatible with E → C/qZ m→
C/qmZ (see Lemma A.2).

A.5 Equivalence relation

We define a log elliptic curve over X(N), denoted by E log
2 here, as a

quotient of
∐

(m,N)=1,m>0Pm by an equivalence relation ∼.

To describe the equivalence relation ∼, we introduce further notation.

Let m be a positive integer prime to N . Let I be a bounded ratio-

nal interval of Q that is contained in [lm/N, (l + 1)m/N ] for some inte-

ger l. We define PI
m as the Cartesian product Pm ×C/qmZ CI . Then, if m′ =

mm′′, there is a natural map PI
m′ →Pm whose restriction to v is compati-

ble with the canonical map G
(qm

′
v ,(1/N)Z)

m,log /qm
′Z

v ⊂Gm,log/q
m′Z
v →Gm,log/q

mZ
v

and whose restriction to Y (N) is the multiplication-by-m′′ map E/(Z/
m′Z(1))→E/(Z/mZ(1)).

Further, let i be an integer. If i+ I is contained in some interval [l′m/N,

(l′ + 1)m/N ] with an integer l′, then the qi-times morphism PI
m → Pm;

x �→ qix is defined.

A.6 Alternative construction

Now the alternative construction of the universal log elliptic curve E log →
X(N) is E log

2 :=
∐

(m,N)=1,m>0Pm/∼, where ∼ is the following equivalence

relation: for an fs log scheme U over X(N), two U -sections f1 ∈ Pm1 and

f2 ∈ Pm2 are equivalent if, étale locally on U , there exist a multiple m3 of

m1 and of m2, a U -section f3 of Pm3 , bounded rational intervals I1, I2 of Q,

and integers i1, i2, such that, for k = 1,2, Ik is contained in the interval

[lkmk/N, (lk+1)mk/N ] for some integer lk, ik+ Ik is contained in the inter-

val [lm3/N, (l+ 1)m3/N ] for some integer l, the section fk can be lifted to

a U -section f̃k of PIk
m3

, and the qik -times morphism PIk
m3

→Pm3 sends f̃k
to f3.

Proposition A.7. The above E log
2 is canonically isomorphic to the uni-

versal log elliptic curve constructed in Section 3.

Proof. We denote by E log
1 the universal log elliptic curve given in Sec-

tion 3. We prove that it is isomorphic to the above E log
2 . For this, we first



LOGARITHMIC ABELIAN VARIETIES, III 79

construct a homomorphism f : E log
2 →E log

1 . For each integer m prime to N ,

by the definition of Em, we have a morphism Em|Y (N) →G, which induces an

isomorphism Pm|Y (N) to G. On the other hand, let v ∈ J . We have a mor-

phism Em|Ov →Eqv . It is easy to see that this morphism is equivariant with

respect to the action of the image of bm in Section A.4 that acts trivially

on the target and induces a morphism Pm|Ov
∼= E((1/N)Z)

qmv
→Eqv .

So, using the diagram in Section 3.3, we have morphisms Pm →E log
1 and∐

(m,N)=1Pm →E log
1 .

We show that the last map kills the equivalence and factors through E log
2 .

Let f1 ∈ Pm1 be equivalent to f2 ∈ Pm2 . Assume that we are given the data

m3, f3, and so forth, in the definition of the equivalence in Section A.6.

Then, first, considering the diagram of natural maps

Pmk
←E(mk/(Nm3)Z)

q
m3
v

→Pm3 ←E((1/N)Z∪(αk/m3+Z)∪(αk′/m3+Z))

q
m3
v

←PIk
m3

where [αk, α
′
k] := Ik, and applying equivalence relation (1) in Section 3.2,

we see that the image of fk in E log
1 and the image of f̃k in E log

1 coincide.

Further, by equivalence relation (2) in Section 3.2, the image of f̃k coincides

with that of f3. Thus, the images of fk in E log
1 coincide, and we have the

desired morphism f : E log
2 →E log

1 .

We now prove that f is an isomorphism. Taking the quotients of E log
2 ,E log

1

by G, we get an exact sequence of sheaves

0 −−−−→ G −−−−→ E log
2 −−−−→ E log

2 /G −−−−→ 0∥∥∥ f

⏐⏐�
⏐⏐�f

0 −−−−→ G −−−−→ E log
1 −−−−→ E log

1 /G −−−−→ 0

So, it is enough to show that f is an isomorphism. Fix v ∈ J . In the following,

we work around v and use the same symbols for the objects after pulling back

to SpecOv. First, note that we already know that E log
1 /G is G

(qv)
m,log/(GmqZv ).

Since the image of Pm in this quotient is G
(qmv ,(1/N)Z)
m,log /(GmqZv ), the sur-

jectivity of f follows. To see the injectivity, it is enough to show that

E log
2 /G → C/qZ is injective. Let fk ∈ Pmk

(k = 1,2), and assume that their

images coincide in C/qZ. It suffices to prove that their images coincide

in E log
2 /G. Let m3 be a multiple of m1m2. For k = 1,2, take an interval

Ik = [αk, α
′
k] of the form [lkmk/N, (lk + 1)mk/N ] for some integer lk ≥ 0
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such that fk can be lifted to some f̃k ∈ PIk
m3

. Let gk be the image of f̃k
in Pm3/G ⊂ C/qm3Z. By the assumption, we may assume that g1 = qig2 for

some i ≥ 0. Replace m3 by its multiple such that i + I2 is contained in

[0,m3/N ]. Let f3 be the image of f̃1 in P3. By adjusting f2 by the action of

G, we may assume further that the image of the qi-times morphism sends

f̃2 to f3. Hence, f1 and f2 are equivalent by definition, which implies the

desired injectivity of E log
2 /G → C/qZ.
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