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THE BRAUER–MANIN PAIRING, CLASS FIELD
THEORY, AND MOTIVIC HOMOLOGY

TAKAO YAMAZAKI

Abstract. For a smooth proper variety over a p-adic field, its Brauer group and

abelian fundamental group are related to higher Chow groups by the Brauer–

Manin pairing and class field theory. We generalize this relation to smooth (pos-

sibly nonproper) varieties, using motivic homology and a variant of Wiesend’s

ideal class group. Several examples are discussed.

§1. Introduction

1.1. The Brauer–Manin pairing and class field theory

Let p be a prime number, and let k be a finite extension of Qp. Let X

be a smooth variety over k. For i ∈ Z≥0, we write X(i) for the set of all

points of X of dimension i. Let Br(X) be the cohomological Brauer group

of X , and let πab
1 (X) be the abelian étale fundamental group of X . For any

x ∈X(0), local class field theory yields canonical maps

ψ∗
x : Br(x)

∼=Q/Z, ρx : k(x)
∗ → πab

1 (x).

As for the first map, it is convenient for our purpose to consider its dual.

Putting A∗ := Hom(A,Q/Z) for an abelian group A, we define ψx to be the

composition of the dual of ψ∗
x and the canonical inclusion

ψx : Z ↪→ Ẑ∼=Br(x)∗.

Since both of Br(−)∗ and πab
1 (−) are covariant functorial, we get homomor-

phisms
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ψ̃X : Z0(X) :=
⊕

x∈X(0)

Z→Br(X)∗,

(1.1.1)
ρ̃X : Z1

0 (X) :=
⊕

x∈X(0)

k(x)∗ → πab
1 (X)

by taking the direct sum of the ψx and ρx values.

When X is proper over k, Manin [23], Bloch [1], and Saito [29] observed

that ψ̃X and ρ̃X factor, respectively, through

CH0(X) := coker
[ ⊕
y∈X(1)

k(y)∗ → Z0(X)
]
,

SK1(X) := coker
[ ⊕
y∈X(1)

K2k(y)→ Z1
0 (X)

]
;

the induced pairing CH0(X) × Br(X) → Q/Z and the induced map

SK1(X)→ πab
1 (X) are called the Brauer–Manin pairing and reciprocity map

of class field theory, respectively. Both are studied intensively by several

authors (for the Brauer–Manin pairing, see [4]–[6], [28], [31], and [46]; for

the reciprocity map, see [18], [19], [32], [40], [41], and [47]).

If X is not proper over k, however, ψ̃X and ρ̃X do not factor through

CH0(X) or SK1(X). To this end, we will introduce good quotients of Z0(X)

and Z1
0 (X).

1.2. Wiesend’s tame ideal class group

Let V be a variety over a field F . Take y ∈ V(1). Let C(y) be the closure

of {y} in V , let C̃(y)�C(y) be the normalization, let C̃(y) ↪→ C̄(y) be the

smooth completion, and let C∞(y) = C̄(y) \ C̃(y). For x ∈ C∞(y), we take

a uniformizer πx ∈ F (y)∗ at x. We define for r ∈ Z>0

UKM
r F (y) := ker

[
KM

r F (y)→
⊕

x∈C∞(y)

(
KM

r−1F (x)⊕KM
r F (x)

)]
.

Here the x-component of the map is defined by a �→ (∂x(a), ∂x({πx}∪a)) for

a ∈KM
r F (y), where ∂x is the tame symbol at x. This group does not depend

on the choice of πx. If V is proper over F , then UKM
r F (y) =KM

r F (y). For

example, UKM
1 F (y) is the group of rational functions on C̄(y) which takes

value 1 at all points of C∞(y). The following definition is a natural outcome

of an idea of Wiesend [45].
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Definition 1.1. Let V be a variety over a field F , and let r ∈ Z≥0. We

define Wiesend’s tame ideal class group of degree r to be

Cr(V ) := coker
[ ⊕
y∈V(1)

UKM
r+1F (y) ↪→

⊕
y∈V(1)

KM
r+1F (y)

(∗)
→

⊕
x∈V(0)

KM
r F (x)

]
,

where (∗) is the boundary map of Gersten complex of the Milnor K-sheaf.

(In particular, its image is in the direct sum.)

By definition, C0(V ) and C1(V ) are quotients of Z0(V ) and Z1
0 (V ),

respectively. If V is proper over F , then we have C0(V ) = CH0(V ) and

C1(V ) = SK1(V ).

Remark 1.2. Suppose that V = C̄ \C∞, where C̄ is a smooth projective

geometrically irreducible curve over F and where C∞ is a closed reduced

subvariety of C̄. Then our definition of C0(V ) coincides with that of the

group of classes of divisors on C̄ prime to C∞ modulo C∞-equivalence

defined in [36, Chapitre 5, Section 2]. It is proved in [36, Chapitre 5,

Théorème 1] that ker(deg : C0(V ) → Z) is represented by a semiabelian

variety J , which is called the generalized Jacobian variety of C̄ with mod-

ulus C∞. (Here the degree map deg : C0(V ) → Z is induced by the usual

degree map Z0(V )→ Z.) For simplicity, we call J the generalized Jacobian

of V . One can also interpret C0(V ) as the Picard group of the singular

curve obtained from C̄ by contracting all points of C∞ to one point (see

[36, Chapitre 5, Section 2, and Chapitre 4, Section 4]). On the other hand,

C0(V ) is also isomorphic to the relative Picard group Pic(C̄,C∞) (see [38,

Theorem 3.1]).

1.3. Motivic homology

Let V be a smooth variety over a perfect field F , and let i, j ∈ Z. Its

motivic homology HM
i (V,Z(j)) is defined to be the group of homomor-

phisms Hom
DMeff,−

Nis (F )
(Z(j)[i],M(V )) in Voevodsky’s category (see [11], [26,

(14.17)]). When j = 0, the group HM
i (V,Z(0)) agrees with Suslin’s algebraic

singular homology hi(V ) (see [38]) and admits a (relatively simple) descrip-

tion in terms of algebraic cycles (see [42, (3.2.7)], [26, (14.18)]). There is a

similar but complicated description also for j 	= 0 (see [11, (9.4)]). The fol-

lowing theorem, which plays a crucial role in our paper, provides a simpler

description in a special case.



32 T. YAMAZAKI

Theorem 1.3. Let V be a smooth variety over a perfect field F , and let

r ∈ Z≥0. Then there is a canonical isomorphism

(1.3.1) Cr(V )∼=HM
−r

(
V,Z(−r)

)
.

When r = 0, using the comparison of HM
0 (V,Z(0)) with h0(V ) recalled

above, this follows from a result of Schmidt ([34, Theorem 5.1]). We will

prove this theorem by reducing to the case r = 0 in Section 2. In what

follows, we often identify Cr(V ) and HM
−r(V,Z(−r)).

Remark 1.4. For a smooth projective variety V over a finite field, unram-

ified class field theory (see [21]) relates CH0(V ) with the abelian fundamen-

tal group of V . This has been generalized by Schmidt and Spieß [35] to a

smooth (possibly nonproper) variety V , in which CH0(V ) is replaced by

Suslin’s algebraic singular homology h0(V ). (Note that h0(V )∼= C0(V ) by

Schmidt’s theorem mentioned above. See also recent works of Geisser [12],

[13] for a further generalization.) The basic strategy of our paper is to follow

their argument over a p-adic base field.

1.4. Open varieties over a p-adic field

We go back to the situation of Section 1.1. Schmidt and Spieß [35] con-

structed a map connecting motivic homology and étale cohomology with

compact support, which we will recall in Section 3. As an application, we

deduce the following proposition in Section 4.

Proposition 1.5. Let X be a smooth variety over a finite extension k

of Qp. The homomorphisms (1.1.1) induce well-defined homomorphisms

(1.4.1) ψX :C0(X)→Br(X)∗, ρX :C1(X)→ πab
1 (X).

In Section 5, we consider the case whereX is a curve. In this case, the map

ψX was already studied by Scheiderer and van Hamel [33] (see Theorem 5.1

below), and the map ρX is closely related to work of Hiranouchi [16] (see

Theorem 5.4 and Remark 5.5 below). When X is of dimension 2 or higher,

the maps ψX and ρX are not very close to an isomorphism even if X is

projective over k. We study several examples of surfaces in Section 6. As a

sample, here we mention the following result. (We write V̄ = V ×k k̄ for a

variety V over a field k with an algebraic closure k̄.)

Theorem 1.6. Let X be a smooth projective geometrically irreducible

surface over a finite extension k of Qp. Suppose that X̄ is rational. Let U

be an open subvariety of X.
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(1) Suppose that the irreducible components of X̄ \ Ū generate the Néron–

Severi group NS(X̄) of X̄. Then, the kernel of ψU is the maximal divis-

ible subgroup of C0(U). However, there is an example of U such that

ker(ψU ⊗Z/nZ) 	= 0 for all n ∈ Z>0 divisible by some (fixed) integer N .

(2) The kernel of ρU is the maximal divisible subgroup of C1(U), and ρU ⊗
Z/nZ is bijective for all n ∈ Z>0.

Note that, ifX is a (projective smooth) rational surface, then ker(ψX) = 0

and ker(ψX ⊗ Z/nZ) = 0 for all sufficiently divisible n (see Theorem 6.2).

Note also that there are examples of (nonrational) projective smooth sur-

faces X and X ′ for which ker(ψX) and ker(ρX′) are not divisible (see [28],

[32]).

1.5. Conventions

Let A be an abelian group. For a nonzero integer n, we write A[n] and

A/n for the kernel and cokernel of the map n : A → A. This notation is

sometimes used when n =∞, in which case we mean that A[n] = ATor is

the subgroup of torsion elements in A, and A/n=A⊗Q/Z. We write AQ

for A⊗Z Q. We define ADiv := Im[Hom(Q,A)→Hom(Z,A) =A] to be the

maximal divisible subgroup in A, and we define Adiv :=
⋂

n∈Z>0
nA to be the

subgroup of divisible elements in A. Note that we always have ADiv ⊂Adiv

and that ADiv =Adiv holds if A[n] is finite for all n ∈ Z>0.

Let f :A→B be a homomorphism of abelian groups. We write f/n for

f ⊗ Z/n when n ∈ Z>0, and for f ⊗ Q/Z when n = ∞. Let m,n ∈ Z>0.

The map ker(f/n)→ ker(f/nm) induced by the map m : A→ A is desig-

nated the canonical map, so that {ker(f/n)}n becomes an inductive system

whose limit is ker(f ⊗Q/Z). The map ker(f/nm)→ ker(f/n) induced by

the identity map on A is designated the canonical map, so that {ker(f/n)}n
becomes an inverse system.

Let F be a field. A separated scheme of finite type over F is called a

variety over F . Let X be a variety over F . For i ∈ Z≥0, we write X(i) and

X(i) for the set of all points on X of dimension i and of codimension i,

respectively. We write F̄ for an algebraic closure of F , and we write X̄ for

the base change X ×SpecF Spec F̄ . A closed subset of X is always regarded

as a reduced subvariety of X .

§2. Wiesend’s ideal class group and motivic homology

Let F be a perfect field. Except in the beginning of Section 2.1 and in

Section 2.3, we will assume that the characteristic of F is zero.
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2.1. Motivic homology and cohomology

We recall some facts from [42] and [26]. Let DMeff,−
Nis (F ) denote the rigid

triangulated tensor category of effective motivic complexes (see [42, Sec-

tion 3.1], [26, Definition 14.1]). There is a functor M from the category of

varieties over F to DMeff,−
Nis (F ). For a variety X and n ∈ Z>0 ∪ {∞}, we

write M(X,Z/nZ) =M(X)⊗L Z/nZ (see Section 1.5). Let i, j ∈ Z. Motivic

cohomology and motivic homology of a variety X are defined by

H i
M

(
X,Z(j)

)
=Hom

DMeff,−
Nis (F )

(
M(X),Z(j)[i]

)
,

HM
i

(
X,Z(j)

)
=Hom

DMeff,−
Nis (F )

(
Z(j)[i],M(X)

)
.

For n ∈ Z>0 ∪ {∞}, their coefficient versions are defined by

H i
M

(
X,Z/nZ(j)

)
=Hom

DMeff,−
Nis (k)

(
M(X),Z/nZ(j)[i]

)
,

HM
i

(
X,Z/nZ(j)

)
=Hom

DMeff,−
Nis (k)

(
Z(j)[i],M(X,Z/nZ)

)
.

They fit into (obvious) exact sequences

0→H i
M

(
X,Z(j)

)
/n

(2.1.1)
→H i

M

(
X,Z/nZ(j)

)
→H i+1

M

(
X,Z(j)

)
[n]→ 0,

0→HM
i

(
X,Z(j)

)
/n

(2.1.2)
→HM

i

(
X,Z/nZ(j)

)
→HM

i−1

(
X,Z(j)

)
[n]→ 0.

Motivic cohomology H i
M (X,Z(j)) is contravariantly functorial in X . It

also has covariant functionality: if f : X → Y is a proper flat equidimen-

sional morphism of relative dimension d, then there is an induced map

H i
M (X,Z(j)) → H i−2d

M (Y,Z(j − d)). Motivic homology HM
i (X,Z(j)) is

covariantly functorial in X . It also has contravariant functionality: if f :

X → Y is a proper flat equidimensional morphism of relative dimension d,

then there is an induced map HM
i (Y,Z(j))→HM

i+2d(X,Z(j + d)).

The following fact will play an important role in the proof of Theorem 1.3:

for any variety X , there is a decomposition

(2.1.3) HM
i

(
X ×Gm,Z(j)

)∼=HM
i−1

(
X,Z(j − 1)

)
⊕HM

i

(
X,Z(j)

)
.

This is deduced from the Mayer–Vietoris sequence, the projective bundle

formula, and A1-homotopy invariance.
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From now through the end of Section 2.2, we assume that the character-

istic of F is zero. If X is a smooth variety, we have a canonical isomorphism

(2.1.4) H i
M

(
X,Z(j)

)∼=CHj(X,2j − i),

where the right-hand side is Bloch’s higher Chow group. If X is a smooth

projective variety of pure dimension d, we also have

(2.1.5) HM
i

(
X,Z(j)

)∼=H2d−i
M

(
X,Z(d− j)

)∼=CHd−j(X, i− 2j).

In particular, if X = SpecF , then we have, for any r ∈ Z≥0,

HM
−r

(
SpecF,Z(−r)

)∼=Hr
M

(
SpecF,Z(r)

)
(2.1.6)

∼=CHr(SpecF, r)∼=KM
r F.

Let Z be a closed subvariety of a smooth variety X . Suppose that Z is

smooth and of pure codimension c. Then we have a long exact sequence

· · · →HM
i+1

(
X,Z(j)

)
→HM

i+1−2c

(
Z,Z(j − c)

)
(2.1.7)

→HM
i

(
X \Z,Z(j)

)
→HM

i

(
X,Z(j)

)
→ · · · .

Lemma 2.1. Let X be a smooth variety of pure dimension d, and let

i, j ∈ Z.

(1) Suppose that j < 0, i > j+d, or i > 2j. Then we have H i
M (X,Z(j)) = 0.

(2) Suppose that j > i. Then we have HM
i (X,Z(j)) = 0.

The same holds for the Z/n-coefficient version for any n ∈ Z>0 ∪ {∞}.

Proof. For (1), see [26, (3.6), (19.3)]. IfX is projective, (2) follows from (1)

and (2.1.5). The general case follows by induction on dimX and (2.1.7).

By Lemma 2.1 and (2.1.2), we can identify HM
i (X,Z(i))/n = HM

i (X,

Z/n(i)) for any i ∈ Z and n ∈ Z>0, which will be frequently used without

further notice.

Remark 2.2. If X is a smooth variety of pure dimension d, then motivic

homology HM
i (X,Z(j)) is isomorphic to motivic cohomology with compact

support H2d−i
M,c (X,Z(d− j)). However, the work of Geisser (see Remark 1.4)

suggests that motivic homology would be better for a further generalization,

so we opt to use homology theory.
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2.2. Motivic complex

We recall some results on the motivic complex. Let X be a smooth variety

over F , and let j ∈ Z≥0. There is a complex Z(j)X of Zariski sheaves on X

(see [26, (3.1)]), which is concentrated in degrees ≤ j. The hypercohomology

of Z(j)X agrees with motivic cohomology (see [26, (14.16)]):

H i
Zar

(
X,Z(j)X

)∼=H i
M

(
X,Z(j)

)
.

Thanks to the recent resolution of Bloch–Kato conjecture by Rost and

Voevodsky (see [37], [43], [44]), the following important result of Suslin and

Voevodsky [39] (see also Geisser and Levine [14]) holds unconditionally.

Theorem 2.3 ([14], [39]). Let X be a smooth variety over F , and let

π :Xét →XZar be the natural map of sites. Let j ∈ Z≥0, and let n ∈ Z>0.

(1) There is a canonical isomorphism

(2.2.1) π∗Z(j)X ⊗L Z/n∼= μ⊗j
n .

Consequently, we have a canonical map for any i ∈ Z≥0

(2.2.2) H i
M

(
X,Z/n(j)

)
→H i

ét(X,μ⊗j
n ).

(2) The map (2.2.1) induces an isomorphism

Z(j)X ⊗L Z/n→ τ≤jRπ∗μ
⊗j
n .

Consequently, the map (2.2.2) is an isomorphism if either i≤ j or j ≥
dimX + cdF . (Here cd means the cohomological dimension.) It is an

injection if i= j + 1.

In what follows, we frequently write H i
ét(X,Z/n(j)) for H i

ét(X,μ⊗j
n ).

2.3. Wiesend’s ideal class group

In this section, we do not assume that CharF = 0. We will prove Theo-

rem 1.3 after introducing a simple lemma.

Lemma 2.4. Let r ∈ Z≥0. Let f :X →X ′ be a morphism of varieties over

F . There is a unique homomorphism f∗ :Cr(X)→Cr(X
′) characterized by

the following property: for any x ∈X(0), the diagram

KM
r F (x) → Cr(X)

↓NF (x)/F (f(x)) ↓f∗

KM
r F

(
f(x)

)
→ Cr(X

′)
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commutes. (Here the upper and lower horizontal maps are the natural map

to the x-component and f(x)-component, respectively.) This makes Cr a

covariant functor on the category of varieties over F .

Proof. Uniqueness is clear by the definition of Cr(X). Functoriality

follows from that of the norm map of Milnor K-groups. We prove

well-definedness. Take y ∈X(1), and put y′ = f(y). We need to show that the

image of UKM
r+1F (y) in Cr(X

′) is trivial. We consider two cases separately.

First, we assume that y′ ∈X ′
(0). With the notation of Section 1.2, we regard

C̄(y) as a curve over F (y′). Weil reciprocity (see [15, Proposition 7.4.4])

shows that the composition map

KM
r+1F (y)

⊕∂x→
⊕

x∈C̄(y)(0)

KM
r F (x)

⊕NF (x)/F (y′)→ KM
r F (y′)

is the zero map. In view of the definition of UKM
r+1F (y), this proves our

assertion in this case. Next, we assume that y′ ∈X ′
(1), so that f induces a

morphism fy : C̄(y) → C̄(y′) such that f−1
y (C∞(y′)) ⊂ C∞(y). It suffices

to show that the image of UKM
r+1F (y) by the norm map KM

r+1F (y) →
KM

r+1F (y′) is contained in UKM
r+1F (y′). This follows from the following

basic fact on the tame symbol. (We omit its proof.)

Lemma 2.5. Let L/K be a finite extension of fields. Let v be a discrete

valuation on K, and let {v1, . . . , vf} be the set of all extensions of v to L.

We write C and Di (1≤ i≤ f) for the residue field of v and vi, respectively.

Let r ∈ Z>0. For any λ ∈KM
r L, we have

∂vNL/Kλ=

f∑
i=1

NDi/C∂viλ.

Proof of Theorem 1.3. The case r = 0 is a conjunction of the compari-

son theorem of motivic homology with Suslin’s homology (see [42, Corol-

lary 3.2.7], [26, Proposition 14.18]) and the comparison theorem of Suslin’s

homology and C0(V ) (see [34, Theorem 5.1]). We proceed by induction

on r.
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We construct a commutative diagram

(2.3.1)

⊕
y∈(V×Gm)(1)

UKM
r+1F (y)

∂→
⊕

x∈(V×Gm)(0)
KM

r F (x)

↓f ↓g
⊕

w∈V(1)
UKM

r+2F (w)
∂→

⊕
z∈V(0)

KM
r+1F (z)

The two horizontal maps ∂ are given by the tame symbol. For x ∈ (V ×
Gm)(0) and z ∈ V(0), the (x, z)-component of g is given as follows. It is the

zero map if z 	= p0(x), where p0 : V ×Gm → V is the projection. Suppose

that z = p0(x), so that F (x) is a finite extension of F (z). The composition

x→ V ×Gm →Gm defines an element ξ(x) ∈Gm(F (x)) = F (x)∗. Now the

map in question is given by

KM
r F (x)

mult. by ξ(x)
→ KM

r+1F (x)
NF (x)/F (z)

→ KM
r+1F (z).

Next, let y ∈ (V ×Gm)(1), and let w ∈ V(1). If w 	= p0(y), then the (y,w)-

component of f is the zero map. Suppose that w = p0(y), so that F (y) is

a finite extension of F (w). The composition y→ V ×Gm →Gm defines an

element ξ(y) ∈Gm(F (y)) = F (y)∗. Now the (y,w)-component of f is given

by

UKM
r+1F (y)

mult. by ξ(y)
→ UKM

r+2F (y)
NF (y)/F (w)→ UKM

r+2F (w).

We check the commutativity. Let y ∈ (V ×Gm)(1), and let λ ∈ UKM
r+1F (y).

Put w = p0(y). When w ∈ V(0), by definition we have ∂(f(λ)) = 0, and set-

ting z =w, we have

g
(
∂(λ)

)
= g

( ∑
x∈C(y)

∂xλ
)
=

∑

x∈C̃(y)

NF (x)/F (z)

{
∂xλ, ξ(x)

}

(1)
=

∑

x∈C̃(y)

NF (x)/F (z)∂x
{
λ, ξ(y)

}

(2)
=

[ ∑

x∈C̃(y)

+
∑

x∈C∞(y)

](
NF (x)/F (z)∂x

{
λ, ξ(y)

})

(3)
= 0.

Here, at (1) we used the fact that for all x ∈ C̃(y) we have ordx ξ(y) = 0

and ∂x{ξ(y), πx}= ξ(x), where πx ∈ k(y)∗ is a uniformizer at x. At (2), we
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used the definition of UKM
r+1F (y) (i.e., ∂x(λ) = 0 and ∂x{λ,πx}= 0 for all

x ∈C∞(y)). The equality (3) is Weil reciprocity (see [15, Proposition 7.4.4]).

Now we suppose that w ∈ V(1). We take z ∈ V(0), and we write {x1, . . . , xn}
for the set of all points on C̃(y) above z. We have

z-component of ∂
(
f(λ)

)
= ∂zNF (y)/F (w)

{
λ, ξ(y)

}

(1)
=

n∑
i=1

NF (xi)/F (z)∂xi

{
λ, ξ(y)

}

(2)
=

n∑
i=1

NF (xi)/F (z)

{
∂xi(λ), ξ(xi)

}

= z-component of g
(
∂(λ)

)
.

At (1), we used Lemma 2.5. The equality (2) follows from the fact that

ordx ξ(y) = 0 and ∂x{ξ(y), πx}= ξ(x) for all x ∈ C̃(y). This proves the com-

mutativity.

It can be seen without difficulty that both f and g are surjective. As a

consequence, we get a surjection

α :Cr(V ×Gm)→Cr+1(V ).

It follows from the definition that the composition Cr(V ) =Cr(V ×{1})→
Cr(V ×Gm)

α→Cr+1(V ) is the zero map.

Next, we consider a diagram (see [20, (4.3)])

(2.3.2)

⊕
x∈(V×Gm)(0)

KM
r F (x) → HM

−r(V ×Gm,Z(−r))

↓g ↓
⊕

z∈V(0)
KM

r+1F (z) → HM
−r−1(V,Z(−r− 1))

Here the horizontal maps are induced by the functoriality of motivic homol-

ogy and (2.1.6). The right vertical map is the projection with respect to the

decomposition (2.1.3). The left vertical map g was defined above.

We denote by Pr(V ) the assertion that the diagram (2.3.2) is commu-

tative. We also denote by Qr(V ) the assertion that
⊕

x∈V(0)
KM

r F (x) →
HM

−r(V,Z(−r)) induces an isomorphism Cr(V ) ∼= HM
−r(V,Z(−r)) (which is

what the theorem claims). We claim the following.
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(1) We have Q0(V ) for all V .

(2) Fix r ∈ Z≥0 and a finite extension F ′/F . If Qr(Gm × SpecF ′) holds,

then Pr(SpecF
′) holds.

(3) Fix r ∈ Z≥0. If Pr(SpecF
′) holds for any finite extension F ′/F , then

Pr(V ) holds for all V .

(4) Fix r ∈ Z≥0 and V . If Pr(V ),Qr(V ), and Qr(V × Gm) hold, then

Qr+1(V ) holds.

Indeed, claim (1) was already remarked at the beginning of the proof.

Claim (2) holds because we have Qr+1(SpecF
′) by (2.1.6). (By the defi-

nition of Cr(V ), if one has Qr(V ×Gm) and Qr+1(V ), then Pr(V ) becomes

trivial.) Claim (3) is clear from the definition of Pr(V ). We prove claim (4).

By Pr(V ),Qr(V ×Gm), and the surjectivity of f , we get a well-defined map

(!) in the commutative diagram

Cr(V ×Gm)/Cr(V )
α� Cr+1(V )

↓ ↓(!)

HM
−r

(
V ×Gm,Z(−r)

)
/HM

−r

(
V,Z(−r)

) ∼= HM
−r−1

(
V,Z(−r− 1)

)

By Qr(V ) and Qr(V × Gm), the left vertical map is an isomorphism. It

follows that the right vertical map is also an isomorphism, which shows

claim (4). Now the theorem follows by induction.

§3. Étale cohomology with compact support

In this section, F is a field of characteristic zero.

3.1. The map ci,jX,n

Let V be a smooth irreducible variety over F of dimension d. Schmidt

and Spieß [35, Proposition 3.1 and Remarks, p. 26] constructed a canonical

homomorphism

(3.1.1) ci,jV,n :HM
2d−i

(
V,Z/n(d− j)

)
→H i

ét,c

(
V,Z/n(j)

)

for any i, j ∈ Z≥0 and n ∈ Z>0, which is functorial in V . If V is projec-

tive, ci,jV,n coincides with the map (2.2.2) under the identification (2.1.5)

and H i
ét,c(V,Z/n(j)) =H i

ét(V,Z/n(j)). The maps ci,jX,n are functorial with

respect to the sequences (2.1.7) and the Gysin sequence in étale cohomology.

By taking the inductive limit, we also have

ci,jV,∞ :HM
2d−i

(
V,Q/Z(d− j)

)
→H i

ét,c

(
V,Q/Z(j)

)
.



THE BRAUER–MANIN PAIRING, CLASS FIELD THEORY, AND MOTIVIC HOMOLOGY 41

The source of the map c2d+r,d+r
V,n can be identified with Cr(V )/n by Theo-

rem 1.3.

Remark 3.1. In [35, Proposition 3.1 and Remarks (b), p. 26], this homo-

morphism is constructed when k is a finite field. In [35, Remarks (a),

p. 26], it is pointed out that the same construction works over any per-

fect field, by using relative Poincaré duality instead of its absolute version.

When k is a p-adic field, one can also use the absolute version (based on

H2
Gal(k,Z/nZ(1))

∼= Z/n).

Proposition 3.2. Let V be a smooth variety over F of dimension d,

let i, j ∈ Z≥0, and let n ∈ Z>0. If i ≤ j or j ≥ d + cdF , then ci,jV,n is an

isomorphism. If i= j + 1, then ci,jV,n is an injection.

Proof. By induction on dimV and (2.1.7), this can be reduced to the case

where V is projective, which is proved in Theorem 2.3.

3.2. Curves

Let X be a smooth projective irreducible curve over F , and let U be an

open dense subscheme of X . Put Z =X \U .

Lemma 3.3. Let n ∈ Z>0 ∪ {∞}.
(1) We have ker(c2,1U,n) = 0. The map coker(c2,1U,n)→ coker(c2,1X,n) is injective.

(2) We have ker(c3,2U,n) = 0. If cdF ≤ 2, then we have coker(c3,2U,n)
∼=

coker(c3,2X,n).

Proof. We consider a commutative diagram with exact rows

HM
1

(
X,Z/n(0)

)
→ C1(Z)/n → C0(U)/n → C0(X)/n → 0

↓c
1,1
X,n ↓c

1,1
Z,n ↓c

2,1
U,n ↓c

2,1
X,n

H1
ét

(
X,Z/n(1)

)
→ H1

ét

(
Z,Z/n(1)

) (∗)
→ H2

ét,c

(
U,Z/n(1)

)
→ H2

ét

(
X,Z/n(1)

)
.

The two left vertical maps are bijective and the two right vertical maps

injective by Proposition 3.2, and (1) follows. The proof of (2) is similar.

3.3. Surfaces

Let X be a smooth projective irreducible surface over F . Let V ⊂ X

be an open subvariety such that dim(X \ V ) = 0. Let U ⊂ V be an open

subvariety such that V \ U is a (not necessary connected) smooth curve.

Given a smooth surface U , one can always find such V and X . Let C be

the smooth compactification of V \U (i.e., the normalization of X \U ).
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Proposition 3.4. Let n ∈ Z>0 ∪ {∞}.
(1) There is a canonical homomorphism

ηn : coker(c3,2V,n)→ coker(c3,2V \U,n)

for which there are exact sequences

ker(ηn)
(∗)
→ ker(c4,2U,n)→ ker(c4,2X,n),

coker(ηn)
(∗∗)→ coker(c4,2U,n)→ coker(c4,2V,n).

If H3
ét,c(V,Z/n(2))→H3

ét,c(V \U,Z/n(2)) is injective, then (∗) is injec-
tive, too. If c4,2X,n is injective, then (∗∗) is injective, too. If cdF ≤ 2, then

we have coker(c3,2V \U,n)
∼= coker(c3,2C,n), coker(c3,2V,n)

∼= coker(c3,2X,n), and

coker(c4,2V,n)
∼= coker(c4,2X,n). (That is, one can replace V \ U and V by

C and X in the above sequences.)

(2) Suppose that F is a finite extension of Qp. Then there is an exact

sequence

coker(c4,3X,n)→ ker(c5,3U,n)→ ker(c5,3X,n),

and we have coker(c5,3U,n)
∼= coker(c5,3X,n).

Before we give a proof of this proposition, we record a well-known lemma

which describes the kernel and cokernel of ci,jX,n. We set Hi(Z/n(j)) :=

Riπ∗μ
⊗j
n for n ∈ Z>0∪{∞} and i, j ∈ Z. (See Theorem 2.3 for the definition

of π.)

Lemma 3.5.

(1) Let n ∈ Z>0 ∪ {∞}. There is an exact sequence

0→HM
1

(
X,Z/n(0)

) c3,2X,n→ H3
ét

(
X,Z/nZ(2)

)

→H0
Zar

(
X,H3

(
Z/n(2)

))
→C0(X)/n

c4,2X,n→ H4
ét

(
X,Z/n(2)

)
.

(2) Let n ∈ Z>0 ∪ {∞}. There is an exact sequence

0→HM
0

(
X,Z/n(−1)

) c4,3X,n→ H4
ét,c

(
X,Z/n(3)

)
→H0

Zar

(
X,H4

(
Z/n(3)

))

→ C1(X)/n
c5,3X,n→ H5

ét,c

(
X,Z/n(3)

)
→H1

Zar

(
X,H4

(
Z/n(3)

))
→ 0.
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(3) Let n ∈ Z>0. The canonical map H0
Zar(X,Hi(Z/n(i − 1))) → H0

Zar(X,

Hi(Q/Z(i− 1)))[n] is bijective for i= 3,4.

Proof. Since X is projective, (1) and (2) follow from (2.1.5) and the

Bloch–Ogus theory; (3) is a consequence of the Bloch–Kato conjecture.

Proof of Proposition 3.4(1). We have a commutative diagram with exact

rows

HM
1

(
V,Z/nZ(0)

)
→ C1(V \U)/n → C0(U)/n → C0(V )/n→ 0

↓c
3,2
V,n ↓c

3,2
V \U,n ↓c

4,2
U,n ↓c

4,2
V,n

H3
ét,c

(
V,Z/nZ(2)

)
→ H3

ét,c

(
V \U,Z/nZ(2)

)
→ H4

ét,c

(
U,Z/nZ(2)

)
→ H4

ét,c

(
V,Z/nZ(2)

)

Proposition 3.2 shows the injectivity of c3,2V,n and c3,2V \U,n. If cdF ≤ 2, then we

have coker(c3,2V \U,n)
∼= coker(c3,2C,n) by Lemma 3.3. Using the following lemma,

a diagram chase completes the proof.

Lemma 3.6. The map ker(c4,2V,n)→ ker(c4,2X,n) is injective. If cdF ≤ 2, then

coker(ci,2V,n)→ coker(ci,2X,n) is bijective for i= 3,4.

Proof. This follows from Lemma 2.1, Proposition 3.2, and (2.1.7).

Proof of Proposition 3.4(2). We have a commutative diagram with exact

rows

HM
0

(
V,Z/nZ(1)

)
→ C2(V \U)/n → C1(U)/n → C1(V )/n → 0

↓c
4,3
V,n ↓c

4,3
V \U,n ↓c

5,3
U,n ↓c

5,3
V,n

H4
ét,c

(
V,Z/nZ(3)

)
→ H4

ét,c

(
V \U,Z/nZ(3)

)
→ H5

ét,c

(
U,Z/nZ(3)

)
→ H5

ét,c

(
V,Z/nZ(3)

)
→ 0

Proposition 3.2 shows the injectivity of the two left vertical maps. In Propo-

sition 4.3 below, we will show that c4,3V \U,n is bijective. Using the following

lemma, a diagram chase completes the proof.

Lemma 3.7. The map ker(c5,3V,n)→ ker(c5,3X,n) is injective. If cdF ≤ 2, then

coker(ci,3V,n)→ coker(ci,3X,n) is bijective for i= 3,4.

Proof. This follows from Lemma 2.1, Proposition 3.2, and (2.1.7).

§4. Varieties over a p-adic field

In this section, k is a finite extension of Qp. Let X be a smooth geomet-

rically irreducible variety over k of dimension d.
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4.1. The Brauer–Manin pairing

By Poincaré duality, we have a canonical isomorphism

H2d
ét,c

(
X, Ẑ(d)

)∼=H2
ét

(
X,Q/Z(1)

)∗
.

Since Br(X) is a torsion group, the Kummer sequence implies an exact

sequence

0→ Pic(X)⊗Q/Z→H2
ét

(
X,Q/Z(1)

)
→Br(X)→ 0;

hence, we have an injective homomorphism Br(X)∗ → H2d
ét,c(X, Ẑ(d)). We

consider a diagram

Z0(X)
ψ̃X→ Br(X)∗

↓surj. ↓inj.

C0(X) → H2d
ét,c

(
X, Ẑ(d)

)

where the lower horizontal map is the composition of

C0(X)→ lim
←n

C0(X)/n
(c2d,dX,n )n
→ H2d

ét,c

(
X, Ẑ(d)

)
.

This diagram is seen to be commutative by reducing to the case dimX = 0.

This shows the first part of Proposition 1.5 (the well-definedness of ψX).

The same argument shows the following simple lemma.

Lemma 4.1. For any n ∈ Z>0 ∪ {∞}, we have an isomorphism ker(ψX/

n)∼= ker(c2d,dX,n) and an exact sequence

0→ coker(ψX/n)→ coker(c2d,dX,n)→
(
Pic(X)/n

)∗ → 0.

4.2. Class field theory

By Poincaré duality, we have a canonical isomorphism

H2d+1
ét,c

(
X, Ẑ(d+ 1)

)∼=H1
ét(X,Q/Z)∗ ∼= πab

1 (X).

We consider a diagram

Z1
0 (X)

ρ̃X→ πab
1 (X)

↓surj. ↓∼=

C1(X) → H2d+1
ét,c

(
X, Ẑ(d+ 1)

)
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where the lower horizontal map is the composition of

C1(X)→ lim
←n

C1(X)/n
(c2d+1,d+1

X,n )n
→ H2d+1

ét,c

(
X, Ẑ(d+ 1)

)
.

This diagram is seen to be commutative by reducing to the case dimX = 0.

This shows the second part of Proposition 1.5 (the well-definedness of ρX).

The same argument shows the following simple lemma.

Lemma 4.2. For any n ∈ Z>0∪{∞}, we have isomorphisms ker(ρX/n)∼=
ker(c2d+1,d+1

X,n ) and coker(ρX/n)∼= coker(c2d+1,d+1
X,n ).

4.3. Higher degree

We consider the groups Cr(X) when r ≥ 2. Proposition 4.3 below shows

that Cr(X) is uniquely divisible if r ≥ 3 and that C2(X) → C2(Speck) =

K2(k) is a surjective map with uniquely divisible kernel. Note that K2(k) is

the direct sum of a uniquely divisible group and a finite group isomorphic

to μ(k) (see [27]).

Proposition 4.3. Let X be a smooth geometrically irreducible variety

over k. Suppose that there exists a smooth projective variety Y that contains

X as an open dense subvariety. Let i, j ∈ Z, and suppose that j ≤−2.

(1) If i <−2, then HM
i (X,Z(j)) is uniquely divisible.

(2) The map HM
−2(X,Z(j)) → HM

−2(Speck,Z(j)) induced by the structure

morphism is surjective with uniquely divisible kernel. Consequently,

c2d+2,d+2
X,n :C2(X)/n→H2d+2

ét,c

(
X,Z/n(d+ 2)

)

is bijective for any n ∈ Z>0.

Proof. Since j ≤−2, Proposition 3.2 shows that

(4.3.1) c2d−i,d−j
X,n :HM

i

(
X,Z/n(j)

)
→H2d−i

ét,c

(
X,Z/n(d− j)

)

is an isomorphism for any n ∈ Z>0∪{∞}. If i <−2, then we have H2d−i
ét,c (X,

Z/nZ(d− j)) = 0 since cdk = 2. We also have H2d+2
ét,c (X,Q/Z(d− j)) = 0,

because this group is dual to H0
Gal(k, Ẑ(j+1))∗ = 0 under Poincaré duality.

Now (1) follows from (2.1.2).

Proposition 4.3(2) follows from the four claims (a)–(d) below. In what fol-

lows, we write HM
∗ (k,−) for HM

∗ (Speck,−). Put HM
−2(X,Z(j))0 :=

ker[HM
−2(X,Z(j))→HM

−2(k,Z(j))]. Then we have the following:
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(a) HM
−2(X,Z(j))→HM

−2(k,Z(j)) is surjective;

(b) HM
−2(X,Z(j))/n→HM

−2(k,Z(j))/n is bijective for any n ∈ Z>0;

(c) HM
−2(X,Z(j))[n]→HM

−2(k,Z(j))[n] is surjective for any n ∈ Z>0;

(d) HM
−2(X,Z(j))0 is torsion-free.

Indeed, by (a) we have an exact sequence for any n ∈ Z>0,

0→HM
−2

(
X,Z(j)

)
0
[n]→HM

−2

(
X,Z(j)

)
[n]→HM

−2

(
k,Z(j)

)
[n]

→HM
−2

(
X,Z(j)

)
0
/n→HM

−2

(
X,Z(j)

)
/n→HM

−2

(
k,Z(j)

)
/n→ 0,

which shows (2) in view of (b)–(d).

We prove claims (a)–(d). Since we have shown that HM
−3(X,Z(j))Tor = 0,

(2.1.2) and (4.3.1) yield a commutative diagram

HM
−2

(
X,Z(j)

)
/n ∼= H2d+2

ét,c

(
X,Z/nZ(d− j)

)

↓ ↓∼=

HM
−2

(
k,Z(j)

)
/n ∼= H2

Gal

(
k,Z/nZ(−j)

)

which shows (b). Taking a closed point x ∈ X , the cokernel of HM
−2(X,

Z(j))→HM
−2(k,Z(j)) is seen to be annihilated by [k(x) : k]. Using (b) with

n= [k(x) : k], we get (a). By (2.1.2) we have a commutative diagram with

exact rows

H2d+1
ét,c

(
X,Z/nZ(d− j)

)
→ HM

−2

(
X,Z(j)

)
[n] → 0

(∗) ↓ ↓

H1
Gal

(
k,Z/nZ(−j)

)
→ HM

−2

(
k,Z(j)

)
[n] → 0

The map (∗) is induced by the structure morphism α :X → Speck. Thus, it

is dual to α∗ :H1
Gal(k,Z/nZ(1 + j))→H1

ét(X,Z/nZ(1 + j)), which is injec-

tive by Leray’s spectral sequence. This shows that (∗) is surjective, and (c)

follows. We consider a commutative diagram with exact rows and columns

0

↓

H2
Gal

(
k,H2d−1

ét,c

(
X̄,Q/Z(d− j)

))
HM

−2

(
X,Z(j)

)
0,Tor

↓ ↓

0 → HM
−1

(
X,Z(j)

)
⊗Q/Z → H2d+1

ét,c

(
X,Q/Z(d− j)

)
→ HM

−2

(
X,Z(j)

)
Tor

→ 0

↓ ↓ ↓

0 → HM
−1

(
k,Z(j)

)
⊗Q/Z → H1

Gal

(
k,Q/Z(d− j)

)
→ HM

−2

(
k,Z(j)

)
Tor

→ 0
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Note that the lower left vertical map is surjective since the cokernel of

HM
−1(X,Z(j)) → HM

−1(k,Z(j)) is torsion (annihilated by [k(x) : k] for any

closed point x ∈X). Now the following lemma completes the proof of (d).

Lemma 4.4. Let X be a variety over k satisfying the same assumption

as in Proposition 4.3. If j ≤−2, then H2
Gal(k,H

2d−1
ét,c (X̄,Q/Z(d− j))) = 0.

Proof. By Poincaré duality, it suffices to show that H0
Gal(k,H

1
ét(X̄,Zl(j+

1))) = 0 for all prime numbers l. There is an exact sequence

0→H1
ét

(
Ȳ ,Zl(j + 1)

)
→H1

ét

(
X̄,Zl(j + 1)

)
→H2

ét,Ȳ \X
(
Ȳ ,Zl(j + 1)

)
.

By excision and purity, we have H0
Gal(k,H

2
ét,Ȳ \X(Ȳ ,Zl(j + 1))) = 0. Thus,

we are reduced to showing that H0
Gal(k,H

1
ét(Ȳ ,Zl(j +1))) = 0, but this is a

result of Jannsen [17, Theorems 4.2 and 5.3], for the cases l 	= p and l = p,

respectively.

4.4. Auxiliary lemmas

For future use, we record a few simple lemmas. The following lemma is

often used concurrently with the fact that the groups πab
1 (X) and Br(X)∗

have no nontrivial divisible elements for any smooth variety X (see Sec-

tion 1.5).

Lemma 4.5. Let f :A→B be a homomorphism of abelian groups.

(1) Suppose that Bdiv = 0. Then there is an exact sequence

0→Adiv → ker(f)→ lim
←

ker(f/n).

(2) Suppose that there is an N ∈ Z>0 such that the canonical map

ker(f/nN)→ ker(f ⊗Q/Z) is bijective for all n ∈ Z>0. Then we have

lim← ker(f/n) = 0. (Hence, ker(f) =Adiv if Bdiv = 0.)

Proof. Claim (1) is a direct consequence of the definition. We prove (2).

By assumption, the canonical map ker(f/mN)→ ker(f/mnN) is bijective

for all n,m ∈ Z>0, which implies that the canonical map ker(f/mnN) →
ker(f/nN) is the zero map. Thus, we have lim← ker(f/n) = 0.

Lemma 4.6. Let X be a smooth irreducible variety over k of dimension d,

and let i, j ∈ Z. If i+2≥ j+d or j ≥ d+2, then we have HM
i (X,Z(j))div =

HM
i (X,Z(j))Div. In particular, we have Cr(X)div = Cr(X)Div for any r ∈

Z≥0 when d≤ 2. If d= 1, then C0(X)Div = 0.
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Proof. It suffices to show that HM
i (X,Z(j))[n] is finite for any n ∈ Z>0.

Proposition 3.2 and (2.1.2) reduce this to the finiteness of H2d−i−1
ét,c (X,

Z/n(d − j)), which is well known. For the last statement, we recall that

C0(X) is isomorphic to the relative Picard group (see Remark 1.2), which

has no nontrivial divisible subgroup by a theorem of Mattuck [25].

§5. Curves over a local field

In this section, k is a finite extension of Qp. Let X be a smooth projective

irreducible curve over k, and let U be an open dense subscheme of X . Put

Z =X \U .

5.1. The Brauer–Manin pairing

The following theorem was proved by Scheiderer and van Hamel. When

U =X , this theorem is due to Lichtenbaum [22].

Theorem 5.1 ([33, (3.5)]). The homomorphism ψU : C0(U) → Br(U)∗

is an injection with dense image. The induced map ψU/n : C0(U)/n →
Br(U)∗/n is an isomorphism for all n ∈ Z>0.

Proof. We deduce this theorem assuming Lichtenbaum’s result. We may

assume that X is geometrically irreducible over k. Let n ∈ Z>0. Lemmas 3.3

and 4.1 show the injectivity of ψU/n. By Lemma 4.1, we have a commutative

diagram

0 → coker(ψU/n)→ coker(c2,1U,n) →
(
Pic(U)/n

)∗ → 0

↓(∗) ↓

coker(c2,1X,n)
∼=

(
Pic(X)/n

)∗

The bottom horizontal map is bijective because coker(ψX/n) = 0 by Licht-

enbaum’s result. By Lemma 3.3, (∗) is injective; thus, coker(ψU/n) = 0. The

rest of the assertion follows from Lemmas 4.5 and 4.6.

5.2. Class field theory

We recall a result for projective curves due to Bloch and Saito.

Theorem 5.2 ([1], [29]).

(1) The kernel of the homomorphism ρX : C1(X)(= SK1(X)) → πab
1 (X)

coincides with C1(X)Div. Moreover, ρX/n is injective for all n ∈ Z>0.
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(2) The group D(X) := πab
1 (X)/Im(ρX) is isomorphic to Ẑ⊕r(X) for some

r = r(X) ∈ Z≥0. We have coker(ρX/n)∼=D(X)/n for any n ∈ Z>0.

Remark 5.3. If X has potentially good reduction, then r(X) = 0. In

general, we have an inequality r(X)≤ g(X), where g(X) is the genus of X

(see [29, (6.2)]). In particular, we have D(X) = 0 when g(X) = 0.

The following generalization follows from Lemmas 3.3, 4.2, 4.5, and 4.6.

Theorem 5.4.

(1) The kernel of the homomorphism ρU : C1(U)→ πab
1 (U) coincides with

C1(U)Div. Moreover, ρU/n is injective for all n ∈ Z>0.

(2) Set D(U) := πab
1 (U)/Im(ρU ). The canonical maps D(U)→D(X) and

coker(ρU/n)→ coker(ρX/n)(∼=D(X)/n) are bijective for any n ∈ Z>0.

Remark 5.5. Following Hiranouchi [16], we define

Cw
1 (U) := coker

[
K2

(
k(X)

)
→

( ⊕
x∈U(0)

k(x)∗
)
⊕
(⊕
z∈Z

K2

(
k(X)z

))]
,

where k(X)z is the completion of k(X) at z. Hiranouchi constructed the

reciprocity map ρ′U : Cw
1 (U) → πab

1 (U) and showed that the kernel of ρ′U
coincides with Cw

1 (U)Div and that πab
1 (U)/Im(ρ′U )

∼=D(X). It is easy to see

the following.

• The natural projection π :Cw
1 (U)→C1(U) fits into an exact sequence

⊕
z∈Z

UK2k(X)z →Cw
1 (U)

π→C1(U)→ 0.

Here we put UK2k(X)z = ker[K2k(X)z → k(z)∗⊕K2k(z)], where the map

is defined by a �→ (∂z(a), ∂z({πz}∪ a) for some uniformizer πz ∈ k(X)z at

z (and ∂z is the tame symbol). Note that UK2k(X)z is uniquely divisible.

• We have ρ′U = ρU ◦ π.
Hence, Hiranouchi’s result (see [16]) can be recovered by Theorem 5.4.

§6. Surfaces over a local field

We keep assuming that k is a finite extension of Qp. Let X be a smooth

projective geometrically connected surface over k. Let U ⊂ V ⊂X be open

dense subsets such that dim(X \ V ) = 0 and such that V \ U is a smooth

curve. Let C be the normalization of X \ U , and set D(C) =
⊕

iD(Ci),

where Ci are the irreducible components of C, and D(Ci) is the group

defined in Theorem 5.2.
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6.1. P2 minus curves

As the first example, we show the following.

Proposition 6.1. Suppose that X ∼= P2. Let d be the greatest common

divisor of the degrees (as a subvariety of P2) of the irreducible components

of X \U . Then, there is an exact sequence

0→C0(U)/nd
ψU/nd→ Br(U)∗/nd→D(C)/nd→ 0

for any n ∈ Z>0. We have ker(ψU ) =C0(U)Div and Br(U)∗/Im(ψU )∼=D(C).

For the map ρU :C1(U)→ πab
1 (U), see Theorem 6.5 below.

Proof. Let n ∈ Z>0. Note that ψX/n : C0(X)/n→ Br(X)∗/n is bijective

and that H0
Zar(X,Hi(Q/Z(i− 1))) = 0 for i= 3,4. By Lemmas 3.5 and 4.1

and Proposition 3.4, we have ker(ψU/n) = 0. By Lemmas 4.5 and 4.6, we

get ker(ψU ) =C0(U)Div.

Note that Z = Pic(X) → Pic(U) is a surjection with kernel dZ. By

Lemma 4.1, we get a commutative diagram with exact rows

0 → coker(ψU/nd) → coker(c4,2U,nd) → Z/dZ → 0

↓ ↓inj.

0 = coker(ψX/nd) → coker(c4,2X,nd)
∼= Z/nd

By Proposition 3.4 and Lemma 3.5, we get an exact sequence

0→ coker(c3,2C,nd)→ coker(c4,2U,nd)→ coker(c4,2X,nd).

It follows that coker(ψU/nd) ∼= coker(c3,2C,nd), which is isomorphic to

D(C)/nd by Lemma 4.2 and Theorem 5.2. This completes the proof.

6.2. Rational surface

Suppose that X̄ :=X ×Speck Spec k̄ is a rational surface over k̄ (i.e., X̄

is birational to P2
k̄
) and that X(k) 	= φ. In this situation, the Chow group

C0(X) = CH0(X) and related maps such as ψX and c4,2,X,n have been studied

by several authors (see, e.g., [2]–[5], [8], [24]). We will briefly recall a few

results among them.

We set A0(X) := ker[C0(X) = CH0(X)
deg
→ Z]. Let S = Hom(NS(X̄), k̄∗)

be the Néron–Severi torus of X . Recall that we have the Bloch map (see

[2], [8])

φX :A0(X)→H1
Gal(k,S).
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It is known by [3] that φX is injective. Note that H1
Gal(k,S) is finite (hence,

so is A0(X)). We will also need the following result.

Theorem 6.2 (Saito [30]; see also [4]). There is an N =NX ∈ Z>0 such

that c4,2X,nN is injective for all n ∈ Z>0. Moreover, we have ker(ψX) = 0.

Now we state our main result.

Theorem 6.3. We assume the following condition:

(∗) the irreducible components of X̄ \ Ū generate NS(X̄).

Then we have the following:

(1) ker(ψU ) =C0(U)Div;

(2) F0(U) := ker(ψU ⊗ Q/Z) is finite, and there is an N ∈ Z>0 such that

for all n ∈ Z>0 the canonical map ker(ψU/nN)→ F0(U) is bijective;

(3) there is an injection F0(U) ↪→ coker(φX), which is bijective if D(C) = 0.

In Examples 6.8 and 6.10 below, we will provide concrete examples for

which F0(U) 	= 0. Theorem 1.6(1) is a consequence of this theorem and

the examples. Note that Parimala and Suresh [28] have constructed smooth

projective surfaces X and X ′ such that ker(ψX) 	= C0(X)Div and

ker(ψX′/2) 	= 0. It seems difficult to control the cokernel of ψU , because,

as Proposition 6.1 shows, it can easily become bigger and bigger. If we fix

X and vary U , the above theorem immediately implies the following.

Proposition 6.4. There exists an open dense subvariety U0 ⊂X such

that, for any open dense subvariety U ⊂ U0, the natural map F0(U) →
F0(U0) is an isomorphism.

Proof. We take U∗ ⊂X that satisfies (∗). By Theorem 6.3(3), the map

F0(U) → F0(U∗) is injective for any U ⊂ U∗. Since F0(U∗) is finite, there

exists U0 ⊂ U∗ such that

F0(U0) =
⋂

U⊂U∗

F0(U).

The proposition holds with this U0.

As for the map ρU , we prove the following result. Theorem 1.6(2) follows

from this.

Theorem 6.5. The map ρU/n :C1(U)/n→ πab
1 (U)/n is an isomorphism

for any n ∈ Z>0. We have ker(ρU ) =C1(U)Div and πab
1 (U) = Im(ρU ).
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Note that Sato [32] has constructed smooth projective K3 surfaces X,X ′

such that ker(ρX) 	=C1(X)Div and ker(ρX′/2n) 	= 0 for all n ∈ Z>0.

Before we start the proof of Theorems 6.3 and 6.5, we introduce a few

lemmas.

Lemma 6.6. We have a canonical isomorphism

H0
Zar

(
X,H3

(
Q/Z(2)

))∼= coker
[
φX :A0(X)→H1

Gal(k,S)
]
.

In particular, H0
Zar(X,H3(Q/Z(2))) is finite.

Proof. By the Kummer sequence, we get an exact sequence for any n ∈
Z>0

0→ S(k)/n→H1
Gal

(
k,S[n]

)
→H1

Gal(k,S)[n]→ 0.

Using the facts that H1
Gal(k,S) is a torsion group and that the Hochschild–

Serre spectral sequence induces an isomorphism H3
ét(X,Q/Z(2))∼=H1

Gal(k,

STor), we get an exact sequence which fits into the lower row in the com-

mutative diagram

0 → H3
M

(
X,Z(2)

)
⊗Q/Z → H3

M

(
X,Q/Z(2)

)
→ CH0(X)Tor → 0

↓∼= ↓c
3,2
X,∞ ↓φX

0 → S(k)⊗Q/Z → H3
ét

(
X,Q/Z(2)

)
→ H1

Gal(k,S) → 0

(Note that CH0(X)Tor =A0(X).) Here the upper row is exact by (2.1.2).

The left vertical isomorphism is given by [3, Theorem C]. (Here we used the

assumption that X(k) 	= φ.) Now the assertion follows from Theorem 6.2

and Lemma 3.5.

Lemma 6.7. If (∗) is satisfied, then H3
ét,c(V,Q/Z(2)) → H3

ét,c(V \ U,

Q/Z(2)) is injective.

Proof. It suffices to show that H3
ét,c(U,Q/Z(2)) → H3

ét,c(V,Q/Z(2)) is

the zero map. By Poincaré duality, this amounts to showing that H3
ét(V,

Ẑ(1))→H3
ét(U, Ẑ(1)) is the zero map. By the Gysin sequenceH3

ét(X, Ẑ(1))→
H3

ét(V, Ẑ(1)) → H0
ét(X \ V, Ẑ(−1)) = 0, it suffices to show that H3

ét(X,

Ẑ(1)) → H3
ét(U, Ẑ(1)) is the zero map. By the Hochschild–Serre spectral

sequence, we haveH3
ét(X, Ẑ(1)) =H1

Gal(k,H
2
ét(X̄, Ẑ(1))), and we are reduced

to showing that NS(X̄)⊗ Ẑ=H2
ét(X̄, Ẑ(1))→H2

ét(Ū , Ẑ(1)) is the zero map,

but this follows from the assumption (∗).
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Proof of Theorem 6.3. Let N1 = NX ∈ Z>0 be the natural number

appearing in Theorem 6.2, and let N2 be the order of H
0
Zar(X,H3(Q/Z(2))).

Put N =N1N2, and take any n ∈ Z>0. By Theorem 6.2 and Lemma 3.5, we

have coker(c3,2X,nN )∼=H0
Zar(X,H3(Z/nN(2))). Hence, we have a commutative

diagram which contains the map ηn appearing in Proposition 3.4:

H0
Zar

(
X,H3

(
Z/nN(2)

)) ηnN→ coker(c3,2C,nN ) ∼= (Z/nN)⊕r(C)

‖ ↓ ∩

H0
Zar

(
X,H3

(
Q/Z(2)

)) η∞→ coker(c3,2C,∞) ∼= (Q/Z)⊕r(C)

where the two right horizontal isomorphisms are given by Theorem 5.2. We

get ker(ηnN )∼= ker(η∞). Then by Theorem 6.2 and Proposition 3.4, we have

a commutative diagram,

ker(ηnN ) � ker(ψU/nN)

↓∼= ↓

ker(η∞) ∼= ker(ψU ⊗Q/Z) = F0(U)

in which the top horizontal map is surjective. Hence, all the maps in this

diagram are bijective. This proves (2). If D(C) = 0, then we have ker(η∞) =

H0
Zar(X,H3(Q/Z(2))), and Lemma 6.6 proves (3). Claim (1) follows from

Lemma 4.5.

Proof of Theorem 6.5. By Proposition 3.4 and Lemma 4.1, it suffices to

show the bijectivity of ci,3X,n for i = 4,5 and n ∈ Z>0. Probably this is well

known to the specialists, but the author could not find a suitable reference.

For the sake of completeness, we include a proof here.

Let n ∈ Z>0 ∪ {∞}. The injectivity of c4,3X,n follows from Proposition 3.2.

We consider the commutative diagram with exact rows

(6.2.1)
0 → HM

0

(
X,Z(−1)

)
/n → HM

0

(
X,Z/n(−1)

)
→ C1(X)[n] → 0

↓ ↓c
4,3
X,n ↓

0 → H2
Gal

(
k,NS(X̄)⊗Z/n(2)

)
→ H4

ét

(
X,Z/n(3)

)
→ H0

Gal

(
k,Z/n(1)

)
→ 0

Here the upper and lower rows are given by (2.1.2) and by the Hochschild–

Serre spectral sequence, respectively. The right vertical map is given by

C1(X)[n]→C1(Speck)[n] = k∗[n] =H0
Gal

(
k,Z/n(1)

)
.
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The left vertical map is defined by the commutativity of this diagram. The

existence of a k-rational point of X shows that both rows are split exact. It

also shows the surjectivity of the right vertical map. We show the surjectivity

of the left vertical map. Since the corestriction map

H2
Gal

(
k′,NS(X̄)⊗Z/n(2)

)
→H2

Gal

(
k,NS(X̄)⊗Z/n(2)

)

is surjective for any finite extension k′/k, it suffices to show this surjectivity

whenX is a split rational surface (i.e., k(X) is purely transcendental over k).

This follows from Lemma 3.5 because H0
Zar(X,H4(Z/n(3))) = 0 when X is a

split rational surface. (More explicitly, one can directly show the surjectivity

of the composite map

Pic(X)⊗K2k
prod.→ H4

M

(
X,Z(3)

)

∼= HM
0

(
X,Z(−1)

)
→H2

Gal

(
k,NS(X̄)⊗Z/n(2)

)
,

where the first map is given by the product structure.)

Next, we consider c5,3X,n. By the Hochschild–Serre spectral sequence, we

have an isomorphism

H5
ét

(
X,Z/n(3)

)∼=H1
Gal

(
k,Z/n(1)

)∼= k∗/n.

It suffices to show that the structure morphism induces an isomorphism

C1(X) → C1(Speck) = k∗. By the existence of a k-rational point of X ,

one knows that this map is split surjective. We set V (X) := ker[C1(X)→
C1(Speck) = k∗]. Since V (X ′) = 0 if X ′ is a split rational surface, the norm

argument shows that V (X) is a torsion group. It suffices to show that

V (X)Tor = 0. This follows from a commutative diagram with exact rows

0 → V (X)Tor → C1(X)Tor
(!)
→ μ(k)→ 0

↑ surj. ‖

HM
0

(
X,Q/Z(−1)

) (!)
→ HM

0

(
Speck,Q/Z(1)

)

↓c
4,3
X,∞ ‖

H4
ét

(
X,Q/Z(3)

) ∼= H0
Gal

(
k,Q/Z(1)

)

Here the maps (!) are split surjective, and c4,3X,∞ is injective by Proposi-

tion 3.2. The lower horizontal map is bijective because the first term in the
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bottom row of (6.2.1) vanishes when n=∞. The middle upper vertical map

is given by (2.1.2).

Example 6.8. Let a, b ∈ k∗. Suppose that p 	= 2, a 	= b, and ordk(a) =

ordk(b) = r. We also take d ∈ k∗ such that k(
√
d)/k is a nontrivial unramified

extension. Let X be a smooth projective surface with function field K :=

k(x, y)[z]/(x2 − dy2 − z(z − a)(z − b)) (called a Châtelet surface). Let C

be a divisor on X , and put U = X \ C. We assume that the irreducible

components of C̄ generate NS(X̄) and that D(C) = 0. (When X is minimal

with respect to the fibration corresponding to the field extension K/k(z), we

can take C to be the union of the four singular fibers and the “∞-section,”

so that each component has genus zero (see Remark 5.3; see [7] for details).)

We claim the following.

(1) If r is even and ordk(a− b) = r, then F0(U)∼= Z/2⊕Z/2.

(2) If r is even and ordk(a− b)> r, then F0(U)∼= Z/2.

(3) If r is odd, then F0(U) = 0.

It is shown in [7] that H1
Gal(k,S)

∼= Z/2⊕ Z/2. Hence, the claim follows

from Theorem 6.3 and the following theorem.

Theorem 6.9 ([9, (4.7)]).

(1) If r is even and ordk(a− b) = r, then A0(X) = 0.

(2) If r is even and ordk(a− b)> r, then A0(X)∼= Z/2.

(3) If r is odd, then A0(X)∼= Z/2⊕Z/2.

One can extend this example to the case where k(
√
d)/k is a ramified

extension, by using a result of Dalawat [10].

Example 6.10. Let a ∈ k∗, and let X be a cubic surface defined by

T 3
0 + T 3

1 + T 3
2 + aT 3

3 = 0 in P3
k. Let ζ ∈ k̄ be a primitive cubic root of unity.

Set r = ordk(a). Let C be a divisor on X , and put U =X \C. We assume

that the irreducible components of C̄ generate NS(X̄) and that D(C) = 0.

(For example, we can take C to be the union of the 27 lines on X ; see

Remark 5.3.) We claim the following.

(1) If p 	= 3 and r ≡ 0 mod 3, then F0(U)∼= Z/3⊕Z/3.

(2) If p 	= 3, r 	≡ 0 mod 3, and ζ /∈ k, then F0(U)∼= Z/3.

(3) Suppose that ζ ∈ k. If p 	= 3, assume that r 	≡ 0 mod 3. If p= 3, assume

that r ≡ 1 mod 3. Then F0(X) = 0.

Manin [24] has observed that H1
Gal(k,S)

∼= Z/3⊕ Z/3. Hence, the claim

follows from Theorem 6.3 and the following theorem.
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Theorem 6.11 ([31, (5.1.1)]).

(1) If p 	= 3 and r ≡ 0 mod 3, then A0(X) = 0.

(2) If p 	= 3, r 	≡ 0 mod 3, and ζ /∈ k, then A0(X)∼= Z/3.

(3) Suppose that ζ ∈ k. If p 	= 3, assume that r 	≡ 0 mod 3. If p= 3, assume

that r ≡ 1 mod 3. Then A0(X)∼= Z/3⊕Z/3.
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