COHEN-MACAULAY EDGE IDEAL WHOSE HEIGHT IS HALF OF THE NUMBER OF VERTICES

MARILENA CRUPI, GIANCARLO RINALDO, AND NAOKI TERAI

Abstract

We consider a class of graphs G such that the height of the edge ideal $I(G)$ is half of the number $\sharp V(G)$ of the vertices. We give Cohen-Macaulay criteria for such graphs.

§0. Introduction

In this article, a graph means a simple graph without loops and multiple edges. Let G be a graph with the vertex set $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}$ and with the edge set $E(G)$. Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over a field K. The edge ideal $I(G)$, associated to G, is the ideal of S generated by the set of all square-free monomials $x_{i} x_{j}$ so that x_{i} is adjacent to x_{j}. For this ideal, the following theorem is known.

Theorem 0.1 (see [5]). Suppose that G is an unmixed graph without isolated vertices. Then we have 2 height $I(G) \geq \sharp V(G)$.

In this article, we treat the class of graphs for which the above equality holds; that is, we consider an unmixed graph without isolated vertex with 2 height $I(G)=\sharp V(G)$. Such a class of graphs is rich, because it includes all the unmixed bipartite graphs and all the grafted graphs. Herzog and Hibi [8] gave beautiful theorems on Cohen-Macaulay edge ideals of bipartite graphs. Our purpose in this article is to generalize their results for our class of graphs.

[^0]It is known that a graph G in our class has a perfect matching (see [6, Remark 2.2]). We may assume that

$$
\begin{equation*}
V(G)=X \cup Y, \quad X \cap Y=\emptyset \tag{*}
\end{equation*}
$$

where $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a minimal vertex cover of G and where $Y=$ $\left\{y_{1}, \ldots, y_{n}\right\}$ is a maximal independent set of G such that $\left\{x_{1} y_{1}, \ldots, x_{n} y_{n}\right\} \subset$ $E(G)$.

Hence, $\left\{x_{1}-y_{1}, \ldots, x_{n}-y_{n}\right\}$ is a system of parameters of $S / I(G)$. In Sections 3 and 4 , using assumption $\left(^{*}\right)$, we give the following characterization of Cohen-Macaulayness, which is similar to the case of bipartite graphs (see [8, Corollary 3.5]).

Theorem 0.2. Let G be an unmixed graph with $2 n$ vertices, which are not isolated, and with height $I(G)=n$. Then the following conditions are equivalent.
(1) G is Cohen-Macaulay.
(2) $\Delta(G)$ is strongly connected.
(3) There is a unique perfect matching in G.
(4) G is shellable.

Note that it includes equivalence between Cohen-Macaulayness and shellability as in the bipartite graphs (see [3]).

We also have a Cohen-Macaulay criterion which is similar to that of Herzog and Hibi [8, Theorem 3.4].

Theorem 0.3. Let G be a graph with $2 n$ vertices, which are not isolated, and with height $I(G)=n$. We assume conditions (*) and

$$
\begin{equation*}
x_{i} y_{j} \in E(G) \text { implies } i \leq j . \tag{**}
\end{equation*}
$$

Then the following conditions are equivalent.
(1) G is Cohen-Macaulay.
(2) G is unmixed.
(3) The following conditions hold:
(i) if $z_{i} x_{j}, y_{j} x_{k} \in E(G)$, then $z_{i} x_{k} \in E(G)$ for distinct i, j, k and for $z_{i} \in\left\{x_{i}, y_{i}\right\} ;$
(ii) if $x_{i} y_{j} \in E(G)$, then $x_{i} x_{j} \notin E(G)$.

Although in Herzog and Hibi [8] Alexander duality plays an important role in their proof, we give a direct and elementary proof without it. The

Herzog-Hibi criterion for bipartite graphs is discussed by other authors in the literature that give alternative proofs for it (see [7], [12]).

In Section 5, we introduce a new class of graphs which we call B-grafted graphs. They are a generalization of grafted graphs introduced by Faridi [4]. If G is an unmixed B-grafted graph, then we have 2 height $I(G)=\sharp V(G)$. Hence, applying our main result, we show the following.

Theorem 0.4. The B-grafted graph $G\left(H_{0} ; B_{1}, \ldots, B_{p}\right)$ is Cohen-Macaulay (resp., unmixed) if and only if every bipartite graph B_{i} is Cohen-Macaulay (resp., unmixed) for $i=1, \ldots, p$.

See Sections 1 and 5 for undefined concepts and notation.

§1. Preliminaries

In this section, we recall some concepts and a notation on graphs and on simplicial complexes that we use in the article.

Let G be a graph with the vertex set $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}$ and with the edge set $E(G)$. The induced subgraph $\left.G\right|_{W}$ by $W \subset V(G)$ is defined by

$$
\left.G\right|_{W}=(W,\{e \in E(G) ; e \subset W\})
$$

For $W \subset V(G)$, we denote $\left.G\right|_{V(G) \backslash W}$ by $G-W$. For $F \subset E(G)$, we denote $(V(G), E(G) \backslash F)$ by $G-F$. For a family F of two-element subsets of $V(G)$, we denote $(V(G), E(G) \cup F)$ by $G+F$.

A subset $C \subset V(G)$ is a vertex cover of G if every edge of G is incident with at least one vertex in C. A vertex cover C of G is called minimal if there is no proper subset of C which is a vertex cover of G. A subset A of $V(G)$ is called an independent set of G if no two vertices of A are adjacent. An independent set A of G is maximal if there exists no independent set which properly includes A. Observe that C is a minimal vertex cover of G if and only if $V(G) \backslash C$ is a maximal independent set of G. And also note that height $I(G)$ is equal to the smallest number $\sharp C$ of vertices among all the minimal vertex covers C of G. A graph G is called unmixed if all the minimal vertex covers of G have the same number of elements. A graph G is called Cohen-Macaulay if $S / I(G)$ is a Cohen-Macaulay ring, where $S=K\left[x_{1}, \ldots, x_{n}\right]$ is a polynomial ring for a field K.

Finally, a subgraph H of a graph G with $V(G)=V(H)$ is called a perfect matching if every connected component of H is a 2-complete graph.

See [2] and [13] for detailed information on this subject.

Set $V=\left\{x_{1}, \ldots, x_{n}\right\}$. A simplicial complex Δ on the vertex set V is a collection of subsets of V such that (i) $\left\{x_{i}\right\} \in \Delta$ for all $x_{i} \in V$ and (ii) $F \in \Delta$ and $G \subseteq F$ imply $G \in \Delta$. An element $F \in \Delta$ is called a face of Δ. For $F \subset V$, we define the dimension of F by $\operatorname{dim} F=\sharp F-1$, where $\sharp F$ is the cardinality of the set F. A maximal face of Δ with respect to inclusion is called a facet of Δ. If all facets of Δ have the same dimension, then Δ is called pure.

A pure simplicial complex Δ is called shellable if the facets of Δ can be given a linear order F_{1}, \ldots, F_{m} such that for all $1 \leq j<i \leq m$, there exist some $v \in F_{i} \backslash F_{j}$ and some $k \in\{1, \ldots, i-1\}$ with $F_{i} \backslash F_{k}=\{v\}$.

Moreover, a pure simplicial complex Δ is strongly connected if for every two facets F and G of Δ there is a sequence of facets $F=F_{0}, F_{1}, \ldots, F_{m}=G$ such that $\operatorname{dim}\left(F_{i} \cap F_{i+1}\right)=\operatorname{dim} \Delta-1$ for each $i=0, \ldots, m-1$.

If G is a graph, we define the complementary simplicial complex of G by

$$
\Delta(G)=\{A \subseteq V(G): A \text { is an independent set in } G\}
$$

Observe that $\Delta(G)$ is the Stanley-Reisner simplicial complex of $I(G)$.
A graph G is called shellable if $\Delta(G)$ is a shellable simplicial complex.

§2. Unmixedness

In this section, we survey unmixed graphs whose edge ideals have the height that is half of the number of vertices.

Lemma 2.1. Let G be an unmixed graph with nonisolated $2 n$ vertices and with height $I(G)=n$. Then G has a perfect matching.

This fact is written in [6, Remark 2.2]. By the lemma for an unmixed graph G with $2 n$ vertices, which are not isolated, and with height $I(G)=n$, we may assume that

$$
\begin{equation*}
V(G)=X \cup Y, \quad X \cap Y=\emptyset \tag{*}
\end{equation*}
$$

where $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a minimal vertex cover of G and where $Y=$ $\left\{y_{1}, \ldots, y_{n}\right\}$ is a maximal independent set of G such that $\left\{x_{1} y_{1}, \ldots, x_{n} y_{n}\right\} \subset$ $E(G)$.

For the remainder of this article, set $S=K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ for a field K, and $I(G)$ is an ideal of S. By Lemma 2.1, we have the following ring-theoretic properties of $S / I(G)$.

Corollary 2.2. Let G be an unmixed graph with $2 n$ vertices, which are not isolated, and with height $I(G)=n$. We assume condition $\left(^{*}\right)$. Then,
(i) each minimal prime ideal of $I(G)$ is of the form

$$
\left(x_{i_{1}}, \ldots, x_{i_{k}}, y_{i_{k+1}}, \ldots, y_{i_{n}}\right)
$$

where $\left\{i_{1}, \ldots, i_{n}\right\}=\{1, \ldots, n\}$;
(ii) $\left\{x_{1}-y_{1}, \ldots, x_{n}-y_{n}\right\}$ is a system of parameters of $S / I(G)$.

For later use we give a characterization of the unmixedness for our graphs, that is, a more detailed description, but a special case of a more general result (see [10, Theorem 2.9] and see [14, Theorem 1.1] for the bipartite case).

Proposition 2.3. Let G be a graph with $2 n$ vertices, which are not isolated, and with height $I(G)=n$. We assume condition $\left({ }^{*}\right)$. Then G is unmixed if and only if the following conditions hold.
(i) If $z_{i} x_{j}, y_{j} x_{k} \in E(G)$, then $z_{i} x_{k} \in E(G)$ for distinct i, j, k and for $z_{i} \in\left\{x_{i}, y_{i}\right\}$.
(ii) If $x_{i} y_{j} \in E(G)$, then $x_{i} x_{j} \notin E(G)$.

§3. Cohen-Macaulayness

In this section, we give combinatorial characterizations of Cohen-Macaulay graphs whose edge ideals have the height that is half of the number of vertices.

First, we introduce an operator that allows us to construct a new graph. Let G be a graph with $2 n$ vertices, which are not isolated, and with height $I(G)=$ n. We assume condition $\left(^{*}\right)$.

For any $i \in[n]:=\{1, \ldots, n\}$, set

$$
E_{i}:=\left\{k \in[n]: x_{k} y_{i} \in E(G)\right\} \backslash\{i\}
$$

and define the graph $O_{i}(G)$ by

$$
O_{i}(G):=G-\left\{x_{k} y_{i}: k \in E_{i}\right\}+\left\{x_{k} x_{i}: k \in E_{i}\right\} .
$$

Then, for every nonempty subset $T:=\left\{i_{1}, \ldots, i_{\ell}\right\}$ of the set $[n]$, we define

$$
O_{T}(G)=O_{i_{1}} O_{i_{2}} \cdots O_{i_{\ell}}(G)
$$

Moreover, if $T=\emptyset$, then we set $O_{T}(G)=G$. Note that $O_{T}(G)$ is a graph with $2 n$ vertices, which are not isolated, and with height $I(G)=n$, satisfying condition $(*)$.

Example 3.1. Let $T=\{2,3\}$; then

The next proposition shows that the Cohen-Macaulayness of G can be checked by the unmixedness of all the deformations $O_{T}(G)$ of G.

Proposition 3.2. Let G be an unmixed graph with $2 n$ vertices, which are not isolated, and with height $I(G)=n$. We assume condition (*). Then the following conditions are equivalent.
(1) G is Cohen-Macaulay.
(2) $O_{T}(G)$ is Cohen-Macaulay for every subset T of $[n]$.
(3) $O_{T}(G)$ is unmixed for every subset T of $[n]$.

Proof. Set $S=K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$, set $S_{k}=K\left[x_{1}, \ldots, x_{n}, y_{k+1}, \ldots\right.$, $\left.y_{n}\right]$, and set $G_{k}=\left.O_{T_{k}}(G)\right|_{X \cup\left\{y_{k+1}, \ldots, y_{n}\right\}}$.
$(1) \Longrightarrow(2)$. By relabeling, we may assume that $T=[k]$. Let G be a Cohen-Macaulay graph. Then

$$
S /\left(I(G)+\left(x_{1}-y_{1}, \ldots, x_{k}-y_{k}\right)\right) \simeq S_{k} /\left(I\left(G_{k}\right)+\left(x_{1}^{2}, \ldots, x_{k}^{2}\right)\right)
$$

is Cohen-Macaulay. Since the polarization preserves Cohen-Macaulayness,

$$
S /\left(I\left(G_{k}\right)+\left(x_{1}^{2}, \ldots, x_{k}^{2}\right)\right)^{\mathrm{pol}}=S /\left(I\left(G_{k}\right)+\left(x_{1} y_{1}, \ldots, x_{k} y_{k}\right)\right)=S / I\left(O_{T}(G)\right)
$$

is Cohen-Macaulay, where $\left(x_{1}^{2}, \ldots, x_{k}^{2}\right)^{\text {pol }}$ stands for the polarization of $\left(x_{1}^{2}\right.$, $\left.\ldots, x_{k}^{2}\right)$. See [11] for basic properties of polarization.
$(2) \Longrightarrow(3)$. Every Cohen-Macaulay ideal is unmixed (see [1]).
$(3) \Longrightarrow(1)$. Suppose that G is not Cohen-Macaulay. We want to prove that there exists a subset $T \subset[n]$ such that $O_{T}(G)$ is not unmixed. Since G is not Cohen-Macaulay, the sequence $\left\{x_{i}-y_{i}: 1 \leq i \leq n\right\}$ is not a regular sequence of $S / I(G)$. Hence, there exists $k \geq 1$ such that $\left\{x_{i}-y_{i}: i \in[k-1]\right\}$ is a regular sequence of $S / I(G)$ and $x_{k}-y_{k}$ is not regular on the ring $R:=$ $S_{k-1} /\left(I\left(G_{k-1}\right)+\left(x_{1}^{2}, \ldots, x_{k-1}^{2}\right)\right) \simeq S /\left(I(G)+\left(x_{1}-y_{1}, \ldots, x_{k-1}-y_{k-1}\right)\right)$. Set $J=I\left(G_{k-1}\right)+\left(x_{1}^{2}, \ldots, x_{k-1}^{2}\right)$. Since $x_{k}-y_{k}$ is not regular on R, then

$$
x_{k}-y_{k} \in \bigcup_{P \in \text { Ass } R} P
$$

and there exists an associated prime ideal \widetilde{P} of J such that $x_{k}-y_{k} \in \widetilde{P}$. Since $x_{k} \in \widetilde{P}$ or $y_{k} \in \widetilde{P}$, we have $x_{k}, y_{k} \in \widetilde{P}$. Hence, height $\widetilde{P}>n$. Hence, R is not unmixed. Therefore, $S /\left(I\left(G_{k-1}\right)+\left(x_{1}^{2}, \ldots, x_{k-1}^{2}\right)\right)^{\mathrm{pol}} \simeq S / I\left(O_{T_{k-1}}(G)\right)$ is not unmixed.

For distinct $i_{1}, i_{2}, \ldots, i_{r} \in[n]$, we denote by $C_{i_{1} i_{2} \cdots i_{r}}$ the cycle C with

$$
V(C)=\left\{x_{i_{1}}, y_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{r}}, y_{i_{r}}\right\}
$$

and

$$
E(C)=\left\{x_{i_{1}} y_{i_{1}}, y_{i_{1}} x_{i_{2}}, x_{i_{2}} y_{i_{2}}, \ldots, y_{i_{r}} x_{i_{r}}, y_{i_{r}} x_{i_{1}}\right\}
$$

Proposition 3.3. Let G be an unmixed graph with $2 n$ vertices, which are not isolated, and with height $I(G)=n$. We assume condition (${ }^{*}$). Then the following conditions are equivalent.
(1) The subset $\left\{x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n} y_{n}\right\}$ of $E(G)$ is a unique perfect matching in G.
(2) The cycle $C_{i j}$ is not a subgraph of G for any $i<j$.
(3) For any $r \geq 2$, the cycle $C_{i_{1} i_{2} \cdots i_{r}}$ is not a subgraph of G for any subset $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \subset[n]$ of cardinality r.
Proof. (1) $\Longrightarrow(2)$. Suppose that $C_{i j}$ is a subgraph of G. Then we have two perfect matchings in G :

$$
\begin{gathered}
\left\{x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n} y_{n}\right\} \\
\left\{x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{i-1} y_{i-1}, x_{i} y_{j}, x_{j} y_{i}, x_{i+1} y_{i+1}, \ldots, x_{n} y_{n}\right\} .
\end{gathered}
$$

$(2) \Longrightarrow(3)$. We proceed by induction on r.
For $r=2$ there is nothing to prove. Assume that $r>2$, and suppose that $C_{i_{1} i_{2} \cdots i_{r}}$ is a subgraph of G. Since $y_{i_{r-1}} x_{i_{r}}, y_{i_{r}} x_{i_{1}} \in E(G)$, we have $y_{i_{r-1}} x_{i_{1}} \in E(G)$ by Proposition 2.3. Hence, $C_{i_{1} i_{2} \cdots i_{r-1}}$ is a subgraph of G, which is a contradiction with the inductive hypothesis.
$(3) \Longrightarrow(1)$. Suppose that there exists another perfect matching:

$$
\left\{x_{1} y_{i_{1}}, x_{2} y_{i_{2}}, \ldots, x_{n} y_{i_{n}}\right\} \subset E(G)
$$

Then we define a permutation σ by

$$
\sigma=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
i_{1} & i_{2} & \cdots & i_{n}
\end{array}\right)
$$

Then σ can be decomposed as $\sigma=\prod \sigma_{i}$, where each σ_{i} is a cycle of σ. Since σ is not an identity permutation, for some i the cycle σ_{i} is of the form $\left(j_{1} j_{2} \cdots j_{r}\right)$ with $r \geq 2$. Then we have that $C_{j_{r} j_{r-1} \cdots j_{1}}$ is a subgraph of G.

Now we give characterizations of Cohen-Macaulayness, which is analogous to the corresponding result for bipartite graphs (see [8, Corollary 3.5]).

Theorem 3.4. Let G be an unmixed graph with $2 n$ vertices, which are not isolated, and with height $I(G)=n$ satisfying condition (*). Then the following conditions are equivalent.
(1) G is Cohen-Macaulay.
(2) $\Delta(G)$ is strongly connected.
(3) The cycle $C_{i j}$ is not a subgraph of G for any $i<j$.

Proof. (1) $\Longrightarrow(2)$. This is well known.
$(2) \Longrightarrow(3)$. Assume that $C_{i j}$ is a subgraph of G for some $i<j$. Let F be a facet of $\Delta(G)$ such that $x_{i} \in F$. Since $x_{i} y_{j} \in E(G)$, we have $y_{j} \notin F$, and by the unmixedness of G it follows that $x_{j} \in F$. Hence, $\left\{x_{i}, x_{j}\right\} \subset F$. Let F^{\prime} be a facet of $\Delta(G)$ such that $\left\{y_{i}, y_{j}\right\} \subset F^{\prime}$.

We show that there does not exist a chain of facets of $\Delta(G)$ such that

$$
F=F_{0}, F_{1}, \ldots, F_{m}=F^{\prime}, \quad \text { with } \sharp\left(F_{i} \cap F_{i+1}\right)=n-1 \text { for } i=1, \ldots, m-1 .
$$

Every facet $H \in \Delta(G)$ is one of the following forms:

$$
H=\left\{z_{1}, \ldots, z_{i-1}, x_{i}, z_{i+1}, \ldots, z_{j-1}, x_{j}, z_{j+1}, \ldots, z_{n}\right\}
$$

or

$$
H=\left\{z_{1}, \ldots, z_{i-1}, y_{i}, z_{i+1}, \ldots, z_{j-1}, y_{j}, z_{j+1}, \ldots, z_{n}\right\}
$$

where $z_{k} \in\left\{x_{k}, y_{k}\right\}$, since $\left\{x_{i} y_{i}, x_{j} y_{j}, x_{i} y_{j}, x_{j} y_{i}\right\} \subset E(G)$. Hence, it is impossible to find such a chain. Hence, $\Delta(G)$ is not strongly connected.
$(3) \Longrightarrow(1)$. In order to prove the statement by Proposition 3.2, it is sufficient to verify that $O_{T}(G)$ is unmixed for every subset T of [n]. In contrast, suppose that there exists $T \subset[n]$ such that $G^{\prime}:=O_{T}(G)$ is not unmixed. By Proposition 2.3, one of the following cases occurs:
(i.a) there exist distinct $i, j, k \in[n]$ such that $x_{i} x_{j}, y_{j} x_{k} \in E\left(G^{\prime}\right)$ but $x_{i} x_{k} \notin$ $E\left(G^{\prime}\right)$;
(i.b) there exist distinct $i, j, k \in[n]$ such that $y_{i} x_{j}, y_{j} x_{k} \in E\left(G^{\prime}\right)$ but $y_{i} x_{k} \notin$ $E\left(G^{\prime}\right)$;
(ii) there exist distinct $i, j \in[n]$ such that $x_{i} y_{j}, x_{i} x_{j} \in E\left(G^{\prime}\right)$.

In case (i.a), since $j \notin T$, we have $y_{j} x_{k} \in E(G)$. Moreover, since $j \notin T$, $x_{i} x_{j} \in E\left(G^{\prime}\right)$ implies that
(i.aa) $x_{i} x_{j} \in E(G)$
or
(i.ab) $y_{i} x_{j} \in E(G)$ and $i \in T$.

In subcase (i.aa), we have $x_{i} x_{k} \in E(G)$ by Proposition 2.3. Hence, $x_{i} x_{k} \in$ $E\left(G^{\prime}\right)$. This contradicts $x_{i} x_{k} \notin E\left(G^{\prime}\right)$.

In subcase (i.ab), we have $y_{i} x_{k} \in E(G)$ by Proposition 2.3 with $i \in T$. Hence, $x_{i} x_{k} \in E\left(G^{\prime}\right)$. This contradicts $x_{i} x_{k} \notin E\left(G^{\prime}\right)$.

In case (i.b), $y_{i} x_{j}, y_{j} x_{k} \in E\left(G^{\prime}\right)$ implies that $i, j \notin T$. Hence, $y_{i} x_{j}, y_{j} x_{k} \in$ $E(G)$. Then $y_{i} x_{k} \in E(G)$ by Proposition 2.3. Hence, $y_{i} x_{k} \in E\left(G^{\prime}\right)$. This contradicts $y_{i} x_{k} \notin E\left(G^{\prime}\right)$.

In case (ii), $x_{i} y_{j} \in E\left(G^{\prime}\right)$ implies that $j \notin T$. Hence, $x_{i} y_{j} \in E(G)$. Moreover, $x_{i} x_{j} \in E\left(G^{\prime}\right)$ implies that
(ii.a) $y_{i} x_{j} \in E(G)$ and $i \in T$
or
(ii.b) $x_{i} x_{j} \in E(G)$.

In subcase (ii.a), we have $y_{i} x_{j}, y_{j} x_{i} \in E(G)$. This contradicts the assumption that $C_{i j}$ is not a subgraph of G.

In subcase (ii.b), we have $x_{i} x_{j}, x_{i} y_{j} \in E(G)$. Hence, G is not unmixed by Proposition 2.3. This contradicts the assumption that G is unmixed.

The next lemma is crucial for giving another criterion for the CohenMacaulayness of our graphs.

Lemma 3.5. Let G be an unmixed graph with $2 n$ vertices, which are not isolated, and with height $I(G)=n$. We assume condition (*).

If G is a Cohen-Macaulay graph, then there exists a suitable simultaneous change of labeling on both $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ (i.e., we relabel $\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)$ and $\left(y_{i_{1}}, \ldots, y_{i_{n}}\right)$ as $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$ at the same time), such that $x_{i} y_{j} \in E(G)$ implies that $i \leq j$.

Proof. We can define a partial order \preceq on X by

$$
x_{i} \preceq x_{j} \quad \text { if and only if } x_{i} y_{j} \in E(G)
$$

In fact, the reflexivity holds by condition $\left(^{*}\right)$, the transitivity holds by unmixedness of G (see Proposition 2.3(i)), and the antisymmetry holds since G contains no cycle $C_{i j}$ for any $i<j$. Take a linear extension of \preceq, which we call \preceq^{\prime}. By the linear order \preceq^{\prime}, we have $x_{i_{1}} \preceq^{\prime} \cdots \preceq^{\prime} x_{i_{n}}$. We relabel them as $x_{1} \preceq^{\prime} \cdots \preceq^{\prime} x_{n}$. At the same time, we relabel $y_{i_{1}}, \ldots, y_{i_{n}}$ as y_{1}, \ldots, y_{n}. Then if $x_{i} y_{j} \in E(G), x_{i} \preceq^{\prime} x_{j}$. Hence, $i \leq j$.

Hence, for a Cohen-Macaulay graph G with $2 n$ vertices, which are not isolated, and with height $I(G)=n$ satisfying condition (*), we may assume that

$$
\begin{equation*}
x_{i} y_{j} \in E(G) \text { implies } i \leq j \tag{**}
\end{equation*}
$$

Now we state another Cohen-Macaulay criterion on our graphs, which is a generalization of Herzog and Hibi ([8, Theorem 3.4]).

Theorem 3.6. Let G be a graph with $2 n$ vertices, which are not isolated, and with height $I(G)=n$. We assume conditions (${ }^{*}$) and (${ }^{* *}$). Then the following conditions are equivalent.
(1) G is Cohen-Macaulay.
(2) G is unmixed.
(3) The following conditions hold:
(i) if $z_{i} x_{j}, y_{j} x_{k} \in E(G)$, then $z_{i} x_{k} \in E(G)$ for distinct i, j, k and for $z_{i} \in\left\{x_{i}, y_{i}\right\}$;
(ii) if $x_{i} y_{j} \in E(G)$, then $x_{i} x_{j} \notin E(G)$.

Proof. (1) $\Longrightarrow(2)$. This is well known.
$(2) \Longrightarrow(1)$. This follows from Theorem 3.4, since we assume condition (**).
$(2) \Longleftrightarrow(3)$. This follows from Proposition 2.3.
We remark that the equivalence between (1) and (2) in Theorem 3.6 is a special case of [9, Theorem 4.3].

As an easy consequence of the previous results, we obtain the upper bound for the minimal number $\mu(I(G))$ of generators of $I(G)$, as follows.

Corollary 3.7. Let G be a graph with $2 n$ vertices, which are not isolated, and with height $I(G)=n$. Then we have the following.
(i) If G is unmixed, then $\mu(I(G)) \leq n^{2}$.
(ii) If G is Cohen-Macaulay, then $\mu(I(G)) \leq(n(n+1)) / 2$.

Proof. The statements are consequences of the criteria for unmixedness and for Cohen-Macaulayness given by Proposition 2.3 and Theorem 3.6.

§4. Shellability and Cohen-Macaulay type

In this section, if G is a graph such that $\sharp V(G)=2 n$ and height $I(G)=n$, we show the equivalence between the Cohen-Macaulayness and shellability
of G. We also express the Cohen-Macaulay type of $S / I(G)$ in a combinatorial way.

Theorem 4.1. Let G be an unmixed graph with $2 n$ vertices, which are not isolated, and with height $I(G)=n$. Then G is Cohen-Macaulay if and only if G is shellable.

Here we give a proof only of the following lemma. The rest of the proof is almost identical to the proof of [3, Theorem 2.9].

Lemma 4.2. Let G be a Cohen-Macaulay graph with $2 n$ vertices, which are not isolated, and with height $I(G)=n$. Then there exists a vertex $v \in V(G)$ such that $\operatorname{deg}(v)=1$.

Proof. Since G is Cohen-Macaulay, it is unmixed. By Lemma 2.1, G has a perfect matching. Then we may assume condition (*). Suppose that each $v \in V(G)$ has at least degree 2 . Let i_{1}, i_{2}, \ldots be a sequence such that $y_{i_{1}} x_{i_{2}}, y_{i_{2}} x_{i_{3}}, \ldots \in E(G)$ with $i_{j} \neq i_{j+1}$. Since the cardinality of Y is finite, there must exist integers $s<t$ such that $i_{t}=i_{s}$. We may assume that $i_{s}, i_{s+1}, \ldots, i_{t-1}$ are distinct. This induces that the cycle $C_{i_{s} i_{s+1} \cdots i_{t-1}}$ is a subgraph of G. Therefore, G is not Cohen-Macaulay by Proposition 3.3 and Theorem 3.4.

Now we express the Cohen-Macaulay type of a graph belonging to our class, imitating the bipartite case (see [13, pp. 184-185]).

Lemma 4.3. Let G be a Cohen-Macaulay graph with $2 n$ vertices, which are not isolated, and with height $I(G)=n$. We assume condition (*). Then

$$
\operatorname{Soc}\left(K\left[x_{1}, \ldots, x_{n}\right] /\left(I\left(\left.O_{[n]}(G)\right|_{X}\right)+\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)\right)\right)
$$

is generated by all the monomials $x_{i_{1}} \cdots x_{i_{r}}$ such that $\left\{x_{i_{1}}, \ldots, x_{i_{r}}\right\}$ is a maximal independent set of $\left.O_{[n]}(G)\right|_{X}$.

Proof. The ring $A:=K\left[x_{1}, \ldots, x_{n}\right] /\left(I\left(\left.O_{[n]}(G)\right|_{X}\right)+\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)\right)$ is spanned as a K-vector space by the image of 1 and the images of the square-free monomials

$$
\begin{equation*}
x_{i_{1}} \cdots x_{i_{r}}, \quad 1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n \tag{4.1}
\end{equation*}
$$

such that $x_{i_{j}} x_{i_{k}} \notin E\left(\left.O_{[n]}(G)\right|_{X}\right)$, for $j \neq k$; that is, $\left\{x_{i_{1}}, \ldots, x_{i_{r}}\right\}$ is an independent set of $\left.O_{[n]}(G)\right|_{X}$. Since A is an Artinian positively graded algebra,

Soc $A=\left(0:_{A} A_{+}\right)$is generated by the images of the square-free monomials of form (4.1) such that $\left\{x_{i_{1}}, \ldots, x_{i_{r}}\right\}$ is a maximal independent set of $\left.O_{[n]}(G)\right|_{X}$.

Corollary 4.4. Let G be a Cohen-Macaulay graph with $2 n$ vertices, which are not isolated, and with height $I(G)=n$. We assume condition (*). Then we have the following.
(i) type $S / I(G)=\sharp \Upsilon\left(\left.O_{[n]}(G)\right|_{X}\right)$, where $\Upsilon\left(\left.O_{[n]}(G)\right|_{X}\right)$ is the family of all minimal vertex covers of $\left.O_{[n]}(G)\right|_{X}$. In particular, type $S / I(G)$ is independent from the base field K.
(ii) G is level if and only if $\left.O_{[n]}(G)\right|_{X}$ is unmixed. In particular, the levelness of G is independent from the base field K.

Proof. Set $S=K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$, and set $S_{n}=K\left[x_{1}, \ldots, x_{n}\right]$.
(i) Since G is Cohen-Macaulay and since $\left\{x_{1}-y_{1}, \ldots, x_{n}-y_{n}\right\}$ is a regular sequence, we have

$$
\text { type } \begin{aligned}
S / I(G) & =\operatorname{dim}_{K} \operatorname{Soc} S /\left(I(G)+\left(x_{1}-y_{1}, \ldots, x_{n}-y_{n}\right)\right) \\
& =\operatorname{dim}_{K} \operatorname{Soc} S_{n} /\left(I\left(\left.O_{[n]}(G)\right|_{X}\right)+\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)\right) \\
& =\sharp \Upsilon\left(\left.O_{[n]}(G)\right|_{X}\right)
\end{aligned}
$$

by Lemma 4.3 .
(ii) When G is Cohen-Macaulay, G is level if and only if

$$
\operatorname{Soc} S /\left(I(G)+\left(x_{1}-y_{1}, \ldots, x_{n}-y_{n}\right)\right)
$$

is equigenerated. By Lemma 4.3, it is equivalent that $\left.O_{[n]}(G)\right|_{X}$ is unmixed.
The next result generalizes [8, Corollary 3.6].
Corollary 4.5. Let G be a Cohen-Macaulay graph with $2 n$ vertices, which are not isolated, and with height $I(G)=n$. We assume condition (*). Then the following conditions are equivalent.
(1) G is Gorenstein.
(2) $I(G)=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)$.
(3) G is a complete intersection.

Proof. (1) $\Rightarrow(2)$. G is Gorenstein if and only if $S / I(G)$ is Cohen-Macaulay and type $S / I(G)=1$. Since $1=$ type $S / I(G)=\sharp \Upsilon\left(\left.O_{[n]}(G)\right|_{X}\right)$, it follows that $\left.O_{[n]}(G)\right|_{X}$ has a unique minimal vertex cover. Hence, $\left.O_{[n]}(G)\right|_{X}$ is isolated n vertices. Hence, $I(G)=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)$.
$(2) \Rightarrow(3)$. This is true from its definition.
$(3) \Rightarrow(1)$. See [1].

§5. B-grafted graph

In this section, we introduce a new class of graphs G with $\sharp V(G)=2 n$ and with height $I(G)=n$, and we study its Cohen-Macaulayness.

Let H_{0} be a graph with the labeled vertices $1,2, \ldots, p$.
For every $i=1, \ldots, p$, let B_{i} be a bipartite graph with labeled partition X_{i} and Y_{i} such that $\sharp X_{i}=\sharp Y_{i}=n_{i}$. (We do not give a label to each vertex of B_{i}, but we distinguish the partition X_{i} and Y_{i}.) We assume that B_{i} has no isolated vertex for every $i=1, \ldots, p$. We define the graph

$$
G=G\left(H_{0} ; B_{1}, \ldots, B_{p}\right)
$$

as follows. The vertex set of G is $V(G):=X \cup Y$, where $X=X_{1} \cup \cdots \cup X_{p}$ and $Y=Y_{1} \cup \cdots \cup Y_{p}$. The edge set $E(G)$ of G is defined by $x y \in E(G)$ if and only if either there exist i, j such that $x \in X_{i}, y \in X_{j}$, and $i j \in E\left(H_{0}\right)$ or there exists i such that $x \in X_{i}, y \in Y_{i}$, and $x y \in E\left(B_{i}\right)$. We call such a graph G the B-grafted graph. Note that X is a minimal vertex cover of G and that Y is a maximal independent set of G. Note also that $\sharp V(G)=2\left(\sum_{i=1}^{p} n_{i}\right)$.

Example 5.1. Let H_{0} be a cycle of length 3. By the following bipartite graphs B_{1}, B_{2}, and B_{3}, we obtain the B-grafted graph G :

REmark 5.2. If B_{i} is just a complete graph with two vertices, that is, a complete bipartite graph with $\sharp X_{i}=\sharp Y_{i}=1$ for $i=1, \ldots, p$, then the Bgrafted graph G is called a grafted graph in [4].

Theorem 5.3. The B-grafted graph $G\left(H_{0} ; B_{1}, \ldots, B_{p}\right)$ is Cohen-Macaulay (resp., unmixed) if and only if every bipartite graph B_{i} is Cohen-Macaulay (resp., unmixed) for $i=1, \ldots, p$.

Proof. It is clear from Theorem 3.4 (resp., Proposition 2.3).

Acknowledgment. The third author gratefully acknowledges the hospitality during his stay at the Department of Mathematics of the University of Messina.

References

[1] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Univ. Press, Cambridge, 1997.
[2] R. Diestel, Graph Theory, 2nd ed., Grad. Texts in Math. 173, Springer, Berlin, 2000.
[3] M. Estrada and R. H. Villarreal, Cohen-Macaulay bipartite graphs, Arch. Math. (Basel) 68 (1997), 124-128.
[4] S. Faridi, "Cohen-Macaulay properties of square-free monomial ideals" in Commutative Algebra, Lect. Notes Pure Appl. Math. 244, Chapman \& Hall, Boca Raton, Fla, 2006, 85-114.
[5] I. Gitler and C. E. Valencia, Bounds for invariants of edge-rings, Comm. Algebra 33 (2005), 1603-1616.
[6] I. Gitler and C. E. Valencia, Bounds for graph invariants, preprint, arXive:math/0510387v2 [math.CO]
[7] H. Haghighi, S. Yassemi, and R. Zaare-Nahandi, Bipartite S_{2} graphs are CohenMacaulay, to appear in Bull. Math. Soc. Sci. Math. Roumanie (N.S.).
[8] J. Herzog and T. Hibi, Distributive lattices, bipartite graphs and Alexander duality, J. Algebraic Combin. 22 (2005), 289-302.
[9] J. Herzog, T. Hibi, and X. Zheng, The monomial ideal of a finite meet-semilattice, Trans. Amer. Math. Soc. 358 (2006), 4119-4134.
[10] S. Morey, E. Reyes, and R. H. Villarreal, Cohen-Macaulay, shellable and unmixed clutters with a perfect matching of König type, J. Pure Appl. Algebra 212 (2008), 1770-1786.
[11] J. Stückrad and W. Vogel, Buchsbaum Rings and Applications: An Interaction between Algebra, Geometry and Topology, Springer, Berlin, 1986.
[12] A. Van Tuyl and R. H. Villarreal, Shellable graphs and sequentially Cohen-Macaulay bipartite graphs, J. Combin. Theory Ser. A 115 (2008), 779-814.
[13] R. H. Villarreal, Monomial Algebras, Monogr. Textbooks Pure Appl. Math. 238, Marcel Dekker, New York, 2001.
[14] , Unmixed bipartite graphs, Rev. Colombiana Mat. 41 (2007), 393-395.

```
Marilena Crupi
Dipartimento di Matematica
Università di Messina
98166 Messina
Italy
mcrupi@unime.it
```


Giancarlo Rinaldo

Dipartimento di Matematica
Università di Messina
98166 Messina
Italy
rinaldo@dipmat.unime.it
Naoki Terai
Department of Mathematics
Faculty of Culture and Education
Saga University
Saga 840-8502
Japan
terai@cc.saga-u.ac.jp

[^0]: Received May 19, 2009. Revised March 8, 2010. Accepted May 9, 2010.
 2000 Mathematics Subject Classification. Primary 05C75; Secondary 05C90, 13H10, 55 U 10.

 Terai's work partially supported by Gruppo Nazionale per le Strutture Algebriche e Geometriche e loro Applicazioni - Instituto Nazionale di Alta Matematica and by KAKENHI-18540041 and KAKENHI-20540047.

