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COHEN-MACAULAY EDGE IDEAL WHOSE HEIGHT IS
HALF OF THE NUMBER OF VERTICES

MARILENA CRUPI, GIANCARLO RINALDO, and

NAOKI TERAI

Abstract. We consider a class of graphs G such that the height of the edge

ideal I(G) is half of the number �V (G) of the vertices. We give Cohen-Macaulay

criteria for such graphs.

§0. Introduction

In this article, a graph means a simple graph without loops and multiple
edges. Let G be a graph with the vertex set V (G) = {x1, . . . , xn} and with
the edge set E(G). Let S = K[x1, . . . , xn] be the polynomial ring in n vari-
ables over a field K. The edge ideal I(G), associated to G, is the ideal of S

generated by the set of all square-free monomials xixj so that xi is adjacent
to xj . For this ideal, the following theorem is known.

Theorem 0.1 (see [5]). Suppose that G is an unmixed graph without
isolated vertices. Then we have 2height I(G) ≥ �V (G).

In this article, we treat the class of graphs for which the above equality
holds; that is, we consider an unmixed graph without isolated vertex with
2height I(G) = �V (G). Such a class of graphs is rich, because it includes
all the unmixed bipartite graphs and all the grafted graphs. Herzog and
Hibi [8] gave beautiful theorems on Cohen-Macaulay edge ideals of bipartite
graphs. Our purpose in this article is to generalize their results for our class
of graphs.
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It is known that a graph G in our class has a perfect matching (see [6,
Remark 2.2]). We may assume that

(*) V (G) = X ∪ Y, X ∩ Y = ∅,

where X = {x1, . . . , xn} is a minimal vertex cover of G and where Y =
{y1, . . . , yn} is a maximal independent set of G such that {x1y1, . . . , xnyn} ⊂
E(G).

Hence, {x1 − y1, . . . , xn − yn} is a system of parameters of S/I(G). In Sec-
tions 3 and 4, using assumption (*), we give the following characterization
of Cohen-Macaulayness, which is similar to the case of bipartite graphs (see
[8, Corollary 3.5]).

Theorem 0.2. Let G be an unmixed graph with 2n vertices, which are
not isolated, and with height I(G) = n. Then the following conditions are
equivalent.
(1) G is Cohen-Macaulay.
(2) Δ(G) is strongly connected.
(3) There is a unique perfect matching in G.
(4) G is shellable.

Note that it includes equivalence between Cohen-Macaulayness and shella-
bility as in the bipartite graphs (see [3]).

We also have a Cohen-Macaulay criterion which is similar to that of
Herzog and Hibi [8, Theorem 3.4].

Theorem 0.3. Let G be a graph with 2n vertices, which are not isolated,
and with height I(G) = n. We assume conditions (*) and

(**) xiyj ∈ E(G) implies i ≤ j.

Then the following conditions are equivalent.
(1) G is Cohen-Macaulay.
(2) G is unmixed.
(3) The following conditions hold:

(i) if zixj , yjxk ∈ E(G), then zixk ∈ E(G) for distinct i, j, k and for
zi ∈ {xi, yi};

(ii) if xiyj ∈ E(G), then xixj /∈ E(G).

Although in Herzog and Hibi [8] Alexander duality plays an important
role in their proof, we give a direct and elementary proof without it. The
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Herzog-Hibi criterion for bipartite graphs is discussed by other authors in
the literature that give alternative proofs for it (see [7], [12]).

In Section 5, we introduce a new class of graphs which we call B-grafted
graphs. They are a generalization of grafted graphs introduced by Faridi [4].
If G is an unmixed B-grafted graph, then we have 2height I(G) = �V (G).
Hence, applying our main result, we show the following.

Theorem 0.4. The B-grafted graph G(H0;B1, . . . ,Bp) is Cohen-Macaulay
(resp., unmixed) if and only if every bipartite graph Bi is Cohen-Macaulay
(resp., unmixed) for i = 1, . . . , p.

See Sections 1 and 5 for undefined concepts and notation.

§1. Preliminaries

In this section, we recall some concepts and a notation on graphs and on
simplicial complexes that we use in the article.

Let G be a graph with the vertex set V (G) = {x1, . . . , xn} and with the
edge set E(G). The induced subgraph G|W by W ⊂ V (G) is defined by

G|W =
(
W,

{
e ∈ E(G);e ⊂ W

})
.

For W ⊂ V (G), we denote G|V (G)\W by G − W . For F ⊂ E(G), we denote
(V (G),E(G) \ F ) by G − F . For a family F of two-element subsets of V (G),
we denote (V (G),E(G) ∪ F ) by G + F .

A subset C ⊂ V (G) is a vertex cover of G if every edge of G is incident
with at least one vertex in C. A vertex cover C of G is called minimal if
there is no proper subset of C which is a vertex cover of G. A subset A of
V (G) is called an independent set of G if no two vertices of A are adjacent.
An independent set A of G is maximal if there exists no independent set
which properly includes A. Observe that C is a minimal vertex cover of G

if and only if V (G) \ C is a maximal independent set of G. And also note
that height I(G) is equal to the smallest number �C of vertices among all
the minimal vertex covers C of G. A graph G is called unmixed if all the
minimal vertex covers of G have the same number of elements. A graph
G is called Cohen-Macaulay if S/I(G) is a Cohen-Macaulay ring, where
S = K[x1, . . . , xn] is a polynomial ring for a field K.

Finally, a subgraph H of a graph G with V (G) = V (H) is called a perfect
matching if every connected component of H is a 2-complete graph.

See [2] and [13] for detailed information on this subject.
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Set V = {x1, . . . , xn}. A simplicial complex Δ on the vertex set V is a
collection of subsets of V such that (i) {xi} ∈ Δ for all xi ∈ V and (ii) F ∈ Δ
and G ⊆ F imply G ∈ Δ. An element F ∈ Δ is called a face of Δ. For F ⊂ V,

we define the dimension of F by dimF = �F − 1, where �F is the cardinality
of the set F . A maximal face of Δ with respect to inclusion is called a facet
of Δ. If all facets of Δ have the same dimension, then Δ is called pure.

A pure simplicial complex Δ is called shellable if the facets of Δ can be
given a linear order F1, . . . , Fm such that for all 1 ≤ j < i ≤ m, there exist
some v ∈ Fi \ Fj and some k ∈ {1, . . . , i − 1} with Fi \ Fk = {v}.

Moreover, a pure simplicial complex Δ is strongly connected if for every
two facets F and G of Δ there is a sequence of facets F = F0, F1, . . . , Fm = G

such that dim(Fi ∩ Fi+1) = dimΔ − 1 for each i = 0, . . . ,m − 1.
If G is a graph, we define the complementary simplicial complex of G by

Δ(G) =
{
A ⊆ V (G) : A is an independent set in G

}
.

Observe that Δ(G) is the Stanley-Reisner simplicial complex of I(G).
A graph G is called shellable if Δ(G) is a shellable simplicial complex.

§2. Unmixedness

In this section, we survey unmixed graphs whose edge ideals have the
height that is half of the number of vertices.

Lemma 2.1. Let G be an unmixed graph with nonisolated 2n vertices and
with height I(G) = n. Then G has a perfect matching.

This fact is written in [6, Remark 2.2]. By the lemma for an unmixed
graph G with 2n vertices, which are not isolated, and with height I(G) = n,
we may assume that

(*) V (G) = X ∪ Y, X ∩ Y = ∅,

where X = {x1, . . . , xn} is a minimal vertex cover of G and where Y =
{y1, . . . , yn} is a maximal independent set of G such that {x1y1, . . . , xnyn} ⊂
E(G).

For the remainder of this article, set S = K[x1, . . . , xn, y1, . . . , yn] for a
field K, and I(G) is an ideal of S. By Lemma 2.1, we have the following
ring-theoretic properties of S/I(G).

Corollary 2.2. Let G be an unmixed graph with 2n vertices, which are
not isolated, and with height I(G) = n. We assume condition (*). Then,
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(i) each minimal prime ideal of I(G) is of the form

(xi1 , . . . , xik , yik+1
, . . . , yin),

where {i1, . . . , in} = {1, . . . , n};
(ii) {x1 − y1, . . . , xn − yn} is a system of parameters of S/I(G).

For later use we give a characterization of the unmixedness for our graphs,
that is, a more detailed description, but a special case of a more general
result (see [10, Theorem 2.9] and see [14, Theorem 1.1] for the bipartite
case).

Proposition 2.3. Let G be a graph with 2n vertices, which are not
isolated, and with height I(G) = n. We assume condition (*). Then G is
unmixed if and only if the following conditions hold.
(i) If zixj , yjxk ∈ E(G), then zixk ∈ E(G) for distinct i, j, k and for

zi ∈ {xi, yi}.
(ii) If xiyj ∈ E(G), then xixj /∈ E(G).

§3. Cohen-Macaulayness

In this section, we give combinatorial characterizations of Cohen-Macaulay
graphs whose edge ideals have the height that is half of the number of ver-
tices.

First, we introduce an operator that allows us to construct a new graph. Let
G be a graph with 2n vertices, which are not isolated, and with height I(G) =
n. We assume condition (*).

For any i ∈ [n] := {1, . . . , n}, set

Ei :=
{
k ∈ [n] : xkyi ∈ E(G)

}
\ {i},

and define the graph Oi(G) by

Oi(G) := G − {xkyi : k ∈ Ei} + {xkxi : k ∈ Ei}.

Then, for every nonempty subset T := {i1, . . . , i�} of the set [n], we define

OT (G) = Oi1Oi2 · · · Oi�(G).

Moreover, if T = ∅, then we set OT (G) = G. Note that OT (G) is a graph
with 2n vertices, which are not isolated, and with height I(G) = n, satisfying
condition (*).



122 M. CRUPI, G. RINALDO, AND N. TERAI

Example 3.1. Let T = {2,3}; then
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The next proposition shows that the Cohen-Macaulayness of G can be
checked by the unmixedness of all the deformations OT (G) of G.

Proposition 3.2. Let G be an unmixed graph with 2n vertices, which
are not isolated, and with height I(G) = n. We assume condition (*). Then
the following conditions are equivalent.
(1) G is Cohen-Macaulay.
(2) OT (G) is Cohen-Macaulay for every subset T of [n].
(3) OT (G) is unmixed for every subset T of [n].

Proof. Set S = K[x1, . . . , xn, y1, . . . , yn], set Sk = K[x1, . . . , xn, yk+1, . . . ,

yn], and set Gk = OTk
(G)|X∪ {yk+1,...,yn}.

(1) =⇒ (2). By relabeling, we may assume that T = [k]. Let G be a
Cohen-Macaulay graph. Then

S/
(
I(G) + (x1 − y1, . . . , xk − yk)

)
� Sk/

(
I(Gk) + (x2

1, . . . , x
2
k)

)
is Cohen-Macaulay. Since the polarization preserves Cohen-Macaulayness,

S/
(
I(Gk) + (x2

1, . . . , x
2
k)

)pol = S/
(
I(Gk) + (x1y1, . . . , xkyk)

)
= S/I

(
OT (G)

)
is Cohen-Macaulay, where (x2

1, . . . , x
2
k)

pol stands for the polarization of (x2
1,

. . . , x2
k). See [11] for basic properties of polarization.

(2) =⇒ (3). Every Cohen-Macaulay ideal is unmixed (see [1]).
(3) =⇒ (1). Suppose that G is not Cohen-Macaulay. We want to prove

that there exists a subset T ⊂ [n] such that OT (G) is not unmixed. Since
G is not Cohen-Macaulay, the sequence {xi − yi : 1 ≤ i ≤ n} is not a regular
sequence of S/I(G). Hence, there exists k ≥ 1 such that {xi − yi : i ∈ [k − 1]}
is a regular sequence of S/I(G) and xk − yk is not regular on the ring R :=
Sk−1/(I(Gk−1)+(x2

1, . . . , x
2
k−1)) � S/(I(G)+(x1 − y1, . . . , xk−1 − yk−1)). Set

J = I(Gk−1) + (x2
1, . . . , x

2
k−1). Since xk − yk is not regular on R, then

xk − yk ∈
⋃

P ∈AssR

P,
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and there exists an associated prime ideal P̃ of J such that xk − yk ∈ P̃ .
Since xk ∈ P̃ or yk ∈ P̃ , we have xk, yk ∈ P̃ . Hence, height P̃ > n. Hence, R is
not unmixed. Therefore, S/(I(Gk−1) + (x2

1, . . . , x
2
k−1))

pol � S/I(OTk−1
(G))

is not unmixed.

For distinct i1, i2, . . . , ir ∈ [n], we denote by Ci1i2· · ·ir the cycle C with

V (C) = {xi1 , yi1 , xi2 , . . . , xir , yir }

and
E(C) = {xi1yi1 , yi1xi2 , xi2yi2 , . . . , yirxir , yirxi1 }.

Proposition 3.3. Let G be an unmixed graph with 2n vertices, which
are not isolated, and with height I(G) = n. We assume condition (*). Then
the following conditions are equivalent.
(1) The subset {x1y1, x2y2, . . . , xnyn} of E(G) is a unique perfect matching

in G.
(2) The cycle Cij is not a subgraph of G for any i < j.
(3) For any r ≥ 2, the cycle Ci1i2· · ·ir is not a subgraph of G for any subset

{i1, i2, . . . , ir } ⊂ [n] of cardinality r.

Proof. (1) =⇒ (2). Suppose that Cij is a subgraph of G. Then we have
two perfect matchings in G:

{x1y1, x2y2, . . . , xnyn},

{x1y1, x2y2, . . . , xi−1yi−1, xiyj , xjyi, xi+1yi+1, . . . , xnyn}.

(2) =⇒ (3). We proceed by induction on r.
For r = 2 there is nothing to prove. Assume that r > 2, and suppose

that Ci1i2· · ·ir is a subgraph of G. Since yir−1xir , yirxi1 ∈ E(G), we have
yir−1xi1 ∈ E(G) by Proposition 2.3. Hence, Ci1i2· · ·ir−1 is a subgraph of G,
which is a contradiction with the inductive hypothesis.

(3) =⇒ (1). Suppose that there exists another perfect matching:

{x1yi1 , x2yi2 , . . . , xnyin } ⊂ E(G).

Then we define a permutation σ by

σ =
(

1 2 · · · n

i1 i2 · · · in

)
.

Then σ can be decomposed as σ =
∏

σi, where each σi is a cycle of σ. Since
σ is not an identity permutation, for some i the cycle σi is of the form
(j1j2 · · · jr) with r ≥ 2. Then we have that Cjrjr−1· · ·j1 is a subgraph of G.
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Now we give characterizations of Cohen-Macaulayness, which is analogous
to the corresponding result for bipartite graphs (see [8, Corollary 3.5]).

Theorem 3.4. Let G be an unmixed graph with 2n vertices, which are
not isolated, and with height I(G) = n satisfying condition (*). Then the
following conditions are equivalent.
(1) G is Cohen-Macaulay.
(2) Δ(G) is strongly connected.
(3) The cycle Cij is not a subgraph of G for any i < j.

Proof. (1) =⇒ (2). This is well known.
(2) =⇒ (3). Assume that Cij is a subgraph of G for some i < j. Let F be

a facet of Δ(G) such that xi ∈ F . Since xiyj ∈ E(G), we have yj /∈ F , and
by the unmixedness of G it follows that xj ∈ F . Hence, {xi, xj } ⊂ F . Let F ′

be a facet of Δ(G) such that {yi, yj } ⊂ F ′.
We show that there does not exist a chain of facets of Δ(G) such that

F = F0, F1, . . . , Fm = F ′, with �(Fi ∩ Fi+1) = n − 1 for i = 1, . . . ,m − 1.

Every facet H ∈ Δ(G) is one of the following forms:

H = {z1, . . . , zi−1, xi, zi+1, . . . , zj−1, xj , zj+1, . . . , zn}

or
H = {z1, . . . , zi−1, yi, zi+1, . . . , zj−1, yj , zj+1, . . . , zn},

where zk ∈ {xk, yk }, since {xiyi, xjyj , xiyj , xjyi} ⊂ E(G). Hence, it is impos-
sible to find such a chain. Hence, Δ(G) is not strongly connected.

(3) =⇒ (1). In order to prove the statement by Proposition 3.2, it is
sufficient to verify that OT (G) is unmixed for every subset T of [n]. In
contrast, suppose that there exists T ⊂ [n] such that G′ := OT (G) is not
unmixed. By Proposition 2.3, one of the following cases occurs:
(i.a) there exist distinct i, j, k ∈ [n] such that xixj , yjxk ∈ E(G′) but xixk /∈

E(G′);
(i.b) there exist distinct i, j, k ∈ [n] such that yixj , yjxk ∈ E(G′) but yixk /∈

E(G′);
(ii) there exist distinct i, j ∈ [n] such that xiyj , xixj ∈ E(G′).
In case (i.a), since j /∈ T , we have yjxk ∈ E(G). Moreover, since j /∈ T ,

xixj ∈ E(G′) implies that
(i.aa) xixj ∈ E(G)
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or
(i.ab) yixj ∈ E(G) and i ∈ T .
In subcase (i.aa), we have xixk ∈ E(G) by Proposition 2.3. Hence, xixk ∈

E(G′). This contradicts xixk /∈ E(G′).
In subcase (i.ab), we have yixk ∈ E(G) by Proposition 2.3 with i ∈ T .

Hence, xixk ∈ E(G′). This contradicts xixk /∈ E(G′).
In case (i.b), yixj , yjxk ∈ E(G′) implies that i, j /∈ T . Hence, yixj , yjxk ∈

E(G). Then yixk ∈ E(G) by Proposition 2.3. Hence, yixk ∈ E(G′). This
contradicts yixk /∈ E(G′).

In case (ii), xiyj ∈ E(G′) implies that j /∈ T . Hence, xiyj ∈ E(G). More-
over, xixj ∈ E(G′) implies that

(ii.a) yixj ∈ E(G) and i ∈ T

or
(ii.b) xixj ∈ E(G).
In subcase (ii.a), we have yixj , yjxi ∈ E(G). This contradicts the assump-

tion that Cij is not a subgraph of G.
In subcase (ii.b), we have xixj , xiyj ∈ E(G). Hence, G is not unmixed by

Proposition 2.3. This contradicts the assumption that G is unmixed.

The next lemma is crucial for giving another criterion for the Cohen-
Macaulayness of our graphs.

Lemma 3.5. Let G be an unmixed graph with 2n vertices, which are not
isolated, and with height I(G) = n. We assume condition (*).

If G is a Cohen-Macaulay graph, then there exists a suitable simultaneous
change of labeling on both {xi} and {yi} (i.e., we relabel (xi1 , . . . , xin) and
(yi1 , . . . , yin) as (x1, . . . , xn) and (y1, . . . , yn) at the same time), such that
xiyj ∈ E(G) implies that i ≤ j.

Proof. We can define a partial order � on X by

xi � xj if and only if xiyj ∈ E(G).

In fact, the reflexivity holds by condition (*), the transitivity holds by
unmixedness of G (see Proposition 2.3(i)), and the antisymmetry holds since
G contains no cycle Cij for any i < j. Take a linear extension of �, which we
call �′. By the linear order �′, we have xi1 �′ · · · �′ xin . We relabel them as
x1 �′ · · · �′ xn. At the same time, we relabel yi1 , . . . , yin as y1, . . . , yn. Then
if xiyj ∈ E(G), xi �′ xj . Hence, i ≤ j.
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Hence, for a Cohen-Macaulay graph G with 2n vertices, which are not
isolated, and with height I(G) = n satisfying condition (*), we may assume
that

(**) xiyj ∈ E(G) implies i ≤ j.

Now we state another Cohen-Macaulay criterion on our graphs, which is
a generalization of Herzog and Hibi ([8, Theorem 3.4]).

Theorem 3.6. Let G be a graph with 2n vertices, which are not isolated,
and with height I(G) = n. We assume conditions (*) and (**). Then the
following conditions are equivalent.

(1) G is Cohen-Macaulay.
(2) G is unmixed.
(3) The following conditions hold:

(i) if zixj , yjxk ∈ E(G), then zixk ∈ E(G) for distinct i, j, k and for
zi ∈ {xi, yi};

(ii) if xiyj ∈ E(G), then xixj /∈ E(G).

Proof. (1) =⇒ (2). This is well known.
(2) =⇒ (1). This follows from Theorem 3.4, since we assume condition

(**).
(2) ⇐⇒ (3). This follows from Proposition 2.3.

We remark that the equivalence between (1) and (2) in Theorem 3.6 is a
special case of [9, Theorem 4.3].

As an easy consequence of the previous results, we obtain the upper
bound for the minimal number μ(I(G)) of generators of I(G), as follows.

Corollary 3.7. Let G be a graph with 2n vertices, which are not iso-
lated, and with height I(G) = n. Then we have the following.

(i) If G is unmixed, then μ(I(G)) ≤ n2.
(ii) If G is Cohen-Macaulay, then μ(I(G)) ≤ (n(n + 1))/2.

Proof. The statements are consequences of the criteria for unmixedness
and for Cohen-Macaulayness given by Proposition 2.3 and Theorem 3.6.

§4. Shellability and Cohen-Macaulay type

In this section, if G is a graph such that �V (G) = 2n and height I(G) = n,
we show the equivalence between the Cohen-Macaulayness and shellability
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of G. We also express the Cohen-Macaulay type of S/I(G) in a combinatorial
way.

Theorem 4.1. Let G be an unmixed graph with 2n vertices, which are
not isolated, and with height I(G) = n. Then G is Cohen-Macaulay if and
only if G is shellable.

Here we give a proof only of the following lemma. The rest of the proof
is almost identical to the proof of [3, Theorem 2.9].

Lemma 4.2. Let G be a Cohen-Macaulay graph with 2n vertices, which are
not isolated, and with height I(G) = n. Then there exists a vertex v ∈ V (G)
such that deg(v) = 1.

Proof. Since G is Cohen-Macaulay, it is unmixed. By Lemma 2.1, G

has a perfect matching. Then we may assume condition (*). Suppose that
each v ∈ V (G) has at least degree 2. Let i1, i2, . . . be a sequence such that
yi1xi2 , yi2xi3 , . . . ∈ E(G) with ij �= ij+1. Since the cardinality of Y is finite,
there must exist integers s < t such that it = is. We may assume that
is, is+1, . . . , it−1 are distinct. This induces that the cycle Cisis+1· · ·it−1 is a
subgraph of G. Therefore, G is not Cohen-Macaulay by Proposition 3.3 and
Theorem 3.4.

Now we express the Cohen-Macaulay type of a graph belonging to our
class, imitating the bipartite case (see [13, pp. 184–185]).

Lemma 4.3. Let G be a Cohen-Macaulay graph with 2n vertices, which
are not isolated, and with height I(G) = n. We assume condition (*). Then

Soc
(
K[x1, . . . , xn]/(I(O[n](G)|X) + (x2

1, . . . , x
2
n))

)
is generated by all the monomials xi1 · · · xir such that {xi1 , . . . , xir } is a
maximal independent set of O[n](G)|X .

Proof. The ring A := K[x1, . . . , xn]/(I(O[n](G)|X)+ (x2
1, . . . , x

2
n)) is span-

ned as a K-vector space by the image of 1 and the images of the square-free
monomials

(4.1) xi1 · · · xir , 1 ≤ i1 < i2 < · · · < ir ≤ n

such that xijxik /∈ E(O[n](G)|X), for j �= k; that is, {xi1 , . . . , xir } is an inde-
pendent set of O[n](G)|X . Since A is an Artinian positively graded algebra,
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Soc A = (0 :A A+) is generated by the images of the square-free monomi-
als of form (4.1) such that {xi1 , . . . , xir } is a maximal independent set of
O[n](G)|X .

Corollary 4.4. Let G be a Cohen-Macaulay graph with 2n vertices,
which are not isolated, and with height I(G) = n. We assume condition (*).
Then we have the following.
(i) type S/I(G) = �Υ(O[n](G)|X), where Υ(O[n](G)|X) is the family of all

minimal vertex covers of O[n](G)|X . In particular, type S/I(G) is inde-
pendent from the base field K.

(ii) G is level if and only if O[n](G)|X is unmixed. In particular, the level-
ness of G is independent from the base field K.

Proof. Set S = K[x1, . . . , xn, y1, . . . , yn], and set Sn = K[x1, . . . , xn].
(i) Since G is Cohen-Macaulay and since {x1 − y1, . . . , xn − yn} is a regular

sequence, we have

type S/I(G) = dimK SocS/
(
I(G) + (x1 − y1, . . . , xn − yn)

)
= dimK SocSn/

(
I(O[n](G)|X) + (x2

1, . . . , x
2
n)

)
= �Υ

(
O[n](G)|X

)
by Lemma 4.3.

(ii) When G is Cohen-Macaulay, G is level if and only if

SocS/
(
I(G) + (x1 − y1, . . . , xn − yn)

)
is equigenerated. By Lemma 4.3, it is equivalent that O[n](G)|X is unmixed.

The next result generalizes [8, Corollary 3.6].

Corollary 4.5. Let G be a Cohen-Macaulay graph with 2n vertices,
which are not isolated, and with height I(G) = n. We assume condition (*).
Then the following conditions are equivalent.
(1) G is Gorenstein.
(2) I(G) = (x1y1, . . . , xnyn).
(3) G is a complete intersection.

Proof. (1) ⇒ (2). G is Gorenstein if and only if S/I(G) is Cohen-Macaulay
and type S/I(G) = 1. Since 1 = type S/I(G) = �Υ(O[n](G)|X), it follows
that O[n](G)|X has a unique minimal vertex cover. Hence, O[n](G)|X is iso-
lated n vertices. Hence, I(G) = (x1y1, . . . , xnyn).
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(2) ⇒ (3). This is true from its definition.
(3) ⇒ (1). See [1].

§5. B-grafted graph

In this section, we introduce a new class of graphs G with �V (G) = 2n
and with height I(G) = n, and we study its Cohen-Macaulayness.

Let H0 be a graph with the labeled vertices 1,2, . . . , p.
For every i = 1, . . . , p, let Bi be a bipartite graph with labeled partition

Xi and Yi such that �Xi = �Yi = ni. (We do not give a label to each vertex
of Bi, but we distinguish the partition Xi and Yi.) We assume that Bi has
no isolated vertex for every i = 1, . . . , p. We define the graph

G = G(H0;B1, . . . ,Bp)

as follows. The vertex set of G is V (G) := X ∪ Y , where X = X1 ∪ · · · ∪ Xp

and Y = Y1 ∪ · · · ∪ Yp. The edge set E(G) of G is defined by xy ∈ E(G) if
and only if either there exist i, j such that x ∈ Xi, y ∈ Xj , and ij ∈ E(H0) or
there exists i such that x ∈ Xi, y ∈ Yi, and xy ∈ E(Bi). We call such a graph
G the B-grafted graph. Note that X is a minimal vertex cover of G and that
Y is a maximal independent set of G. Note also that �V (G) = 2

(∑p
i=1 ni

)
.

Example 5.1. Let H0 be a cycle of length 3. By the following bipartite
graphs B1, B2, and B3, we obtain the B-grafted graph G:

�
�
�
��

�

x1
�

x2
�

x3
�

x4

�

y1
�

y2
�

y3
�

y4

B1 B2 B3 =⇒ G

�
�
�
��

�

x1
�

x2
�

x3
�

x4

�

y1
�

y2
�

y3
�

y4

Remark 5.2. If Bi is just a complete graph with two vertices, that is,
a complete bipartite graph with �Xi = �Yi = 1 for i = 1, . . . , p, then the B-
grafted graph G is called a grafted graph in [4].

Theorem 5.3. The B-grafted graph G(H0;B1, . . . ,Bp) is Cohen-Macaulay
(resp., unmixed) if and only if every bipartite graph Bi is Cohen-Macaulay
(resp., unmixed) for i = 1, . . . , p.

Proof. It is clear from Theorem 3.4 (resp., Proposition 2.3).
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