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PRESENTING CYCLOTOMIC q-SCHUR ALGEBRAS

KENTARO WADA

Abstract. We give a presentation of cyclotomic q-Schur algebras by generators

and defining relations. As an application, we give an algorithm for computing

decomposition numbers of cyclotomic q-Schur algebras.
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§0. Introduction

Let Hn,r be the Ariki-Koike algebra associated to a complex reflection
group Sn � (Z/rZ)n introduced by Ariki and Koike in [AK]. The cyclotomic
q-Schur algebra Sn,r associated to Hn,r, introduced in [DJM], is defined as
the endomorphism algebra of a certain Hn,r-module. The main aim of this
article is to give a presentation of cyclotomic q-Schur algebras by generators
and defining relations.
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In the case where r = 1, Hn,1 is the Iwahori-Hecke algebra of the symmet-
ric group Sn, and Sn,1 is the q-Schur algebra of type A. In this case, Sn,1

can be realized as a quotient algebra of the quantum group Uq = Uq(glm)
via the Schur-Weyl duality between Hn,1 and Uq given in [J]. We note that
the Schur-Weyl duality holds not only over Q(q) but also over Z[q, q−1] (see
[Du]). By using the surjection from Uq to Sn,1, Doty and Giaquinto [DG]
gave a presentation of Sn,1 by generators and defining relations. They also
gave a presentation of Sn,1 which is compatible with Lusztig’s modified
form of Uq. After that, Doty [Do] realized the generalized q-Schur algebra
(in the sense of Donkin) as a quotient algebra of a quantum group (also
Lusztig’s modified form) associated to any Cartan matrix of finite type.

In the case where r > 1, a Schur-Weyl duality between Hn,r and Uq(g)
over K = Q(q, γ1, . . . , γr) was obtained by Sakamoto and Shoji [SakS], where
g = glm1

⊕ · · · ⊕ glmr
is a Levi subalgebra of a parabolic subalgebra of glm.

However, this Schur-Weyl duality does not hold over Z[q, q−1, γ1, . . . , γr]. In
fact, Sakamoto-Shoji’s Schur-Weyl duality should be understood as a Schur-
Weyl duality between the modified Ariki-Koike algebra H 0

n,r, introduced
in [S1], and Uq(g), rather than the duality between Hn,r and Uq(g). The
image of Uq(g) in the Schur-Weyl duality is isomorphic to the modified
cyclotomic q-Schur algebra S

0
n,r associated to H 0

n,r introduced in [SawS].

H 0
n,r and S

0
n,r are defined over any integral domain R with parameters

satisfying certain conditions. In particular, we have Hn,r
∼= H 0

n,r over K
though S

0
n,r �∼= Sn,r. (Note that Hn,r �∼= H 0

n,r over R in general.) Some

relations between Sn,r and S
0
n,r were studied in [SawS] and [Saw]. They

showed that S
0
n,r turns out to be a subquotient algebra of Sn,r, and S

0
n,r

∼=⊕
(n1,...,nr)

n1+···+nr=n

Sn1,1 ⊗ · · · ⊗ Snr,1, where each component Snk,1 is a q-Schur

algebra of type A which is a quotient algebra of the corresponding Levi
component Uq(glmk

) of Uq(glm).
In [SW], we have generalized the results in [SawS] and [Saw] as follows. Let

p = (r1, . . . , rg) ∈ Zg
>0 be such that r1 + · · · +rg = r. We define a subquotient

algebra S
p
n,r of Sn,r with respect to p by using a cellular basis of Sn,r given

in [DJM]. Then we have S
p
n,r

∼=
⊕

(n1,...,ng)
n1+···+ng=n

Sn1,r1 ⊗ · · · ⊗ Sng ,rg . The

case of p = (1, . . . ,1) is the one discussed in [SawS], and S
(r)
n,r (the case of

p = (r)) is just Sn,r. These structures suggest to us that S
p
n,r is a quotient

algebra of a certain algebra Ũq(gp) with respect to the Levi subalgebra
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gp = glm1+· · ·+mr1
⊕ · · · ⊕ glmr1+···+rg−1+1+· · ·+mr

of glm. In particular, Sn,r

should be a quotient algebra of a certain algebra Ũq(glm). (Note that Ũq(glm)
(also Ũq(gp)) is not a quantum group.) This is a motivation for this article.

On the other hand, in [DR2] Du and Rui defined (upper and lower) Borel
subalgebras S ≥0

n,r and S ≤0
n,r of Sn,r, and they showed that Sn,r = S ≤0

n,r ·
S ≥0

n,r . Moreover, they showed that the Borel subalgebra S ≥0
n,r (resp., S ≤0

n,r )
is isomorphic to the Borel subalgebra S ≥0

m,1 (resp., S ≤0
m,1) of a q-Schur algebra

Sm,1 of type A with an appropriate rank. In fact, the Borel subalgebra S ≥0
m,1

(resp., S ≤0
m,1) of Sm,1 is a quotient algebra of an upper (resp., lower) Borel

subalgebra of Uq(glm). These structures imply that Sn,r is presented by
generators of Uq(glm) with certain defining relations which are different from
the defining relations of Uq(glm). A main idea here is to find presentations
of Sn,r by generators and relations.

This article is organized as follows. In Section 1, we introduce a certain
algebra Ũq = Ũq(glm) associated to the Cartan data of glm. The quantum
group Uq(glm) turns out to be a quotient algebra of Ũq. We also prepare
several notions for representations of Ũq similar to the case of quantum
groups, for example, weight modules, highest-weight modules, and Verma
modules. In Section 2, we define various finite-dimensional quotient algebras
Sq of Ũq which are constructions inspired by the generalized q-Schur algebras
defined in [Do]. In fact, both the q-Schur algebra Sn,1 of type A and the
cyclotomic q-Schur algebra Sn,r are examples of these finite-dimensional
quotient algebras of Ũq. We also give a method to study representations of
Sq analogous to the theory of cellular algebras in [GL]. In some cases, Sq

turns out to be a quasi-hereditary cellular algebra. In Section 3, we develop
an argument of specialization of Sq to an arbitrary ring and parameters by
taking divided powers. We note that the arguments in Sections 1–3 can be
applied to any Cartan matrix of finite type (see Remarks 3.16(ii)).

After recalling some known results on q-Schur algebras and cyclotomic
q-Schur algebras in Sections 4 and 5, we define a surjective homomorphism
ρ̃ from Ũq to Sn,r in Section 6. By using the surjection ρ̃ combined with
the results in Sections 1–3, we give two presentations of Sn,r in Section 7
(see Theorem 7.16).

Finally, we give an algorithm to compute the decomposition numbers of
cyclotomic q-Schur algebras in Section 8.
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§1. The algebra Ũq

In this section, we introduce a new algebra Ũq = Ũq(glm) associated to
the Cartan data of glm. Then we study some representations of Ũq. The
definition of Ũq is motivated by some structures of the cyclotomic q-Schur
algebras Sn,r given in [SW] and [DR2] (see the introduction). Then Ũq will
be used to obtain a presentation of Sn,r in Sections 6 and 7.

1.1.
Let P =

⊕m
i=1 Zεi be the weight lattice of glm, and let P ∨ =

⊕m
i=1 Zhi

be the dual-weight lattice with the natural pairing 〈 , 〉 : P × P ∨ → Z such
that 〈εi, hj 〉 = δij . Set αi = εi − εi+1 for i = 1, . . . ,m − 1; then Π = {αi | 1 ≤
i ≤ m − 1} is the set of simple roots, and Q =

⊕m−1
i=1 Zαi is the root lattice

of glm. Put Q+ =
⊕m−1

i=1 Z≥0αi. We define a partial order ≥ on P by λ ≥ μ

if λ − μ ∈ Q+.

1.2.
The quantum group Uq = Uq(glm) is the associative algebra over Q(q),

where q is an indeterminate, with 1 generated by ei, fi (1 ≤ i ≤ m − 1) and
K±

i (1 ≤ i ≤ m) with the following defining relations (we denote K+
i by Ki

simply):

KiKj = KjKi, KiK
−
i = K−

i Ki = 1,(1.2.1)

KiejK
−
i = q〈αj ,hi〉ej ,(1.2.2)

KifjK
−
i = q− 〈αj ,hi 〉fj ,(1.2.3)

eifj − fjei = δij

KiK
−
i+1 − K−

i Ki+1

q − q−1
,(1.2.4)

ei±1e
2
i − (q + q−1)eiei±1ei + e2

i ei±1 = 0,(1.2.5)

eiej = ejei (|i − j| ≥ 2),

fi±1f
2
i − (q + q−1)fifi±1fi + f2

i fi±1 = 0,(1.2.6)

fifj = fjfi (|i − j| ≥ 2).

Let U+
q (resp., U −

q ) be the subalgebra of Uq generated by ei (resp., fi)
for i = 1, . . . ,m − 1, and let U0

q be the subalgebra of Uq generated by K±
i

for i = 1, . . . ,m. It is well known that Uq has the triangular decomposition

Uq
∼= U −

q ⊗ U0
q ⊗ U+

q as vector spaces.
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Let U ≥0
q (resp., U ≤0

q ) be the subalgebra of Uq generated by ei (resp., fi)
for 1 ≤ i ≤ m − 1 and K±

i for 1 ≤ i ≤ m. We call U ≥0
q (resp., U ≤0

q ) a Borel
subalgebra of Uq. The following lemma is well known.

Lemma 1.3. We have the following.
(i) U+

q (resp., U −
q ) is isomorphic to the algebra defined by generators

ei (resp., fi) (1 ≤ i ≤ m − 1) with a defining relation (1.2.5) (resp.,
(1.2.6)).

(ii) U0
q is isomorphic to Q(q)[K±

1 , . . . ,K±
m].

(iii) U ≥0
q is isomorphic to the algebra defined by generators ei (1 ≤ i ≤

m − 1) and K±
i (1 ≤ i ≤ m) with defining relations (1.2.1), (1.2.2),

and (1.2.5).
(iv) U ≤0

q is isomorphic to the algebra defined by generators fi (1 ≤ i ≤
m − 1) and K±

i (1 ≤ i ≤ m) with defining relations (1.2.1), (1.2.3),
and (1.2.6).

1.4.
Put Z = Z[q, q−1]. We define the Z -form of Uq as follows. For any integer

k ∈ Z, put

[k] =
qk − q−k

q − q−1
.

For any positive integer t ∈ Z>0, put [t]! = [t][t − 1] · · · [1] and set [0]! = 1.
For any integer k and any positive integer t, put[

k

t

]
=

[k][k − 1] · · · [k − t + 1]
[t][t − 1] · · · [1]

=
[k]!

[t]![k − t]!
.

For k ∈ Z≥0 and i = 1, . . . ,m − 1, put

e
(k)
i =

ek
i

[k]!
, f

(k)
i =

fk
i

[k]!
.

For t ∈ Z≥0, c ∈ Z, and i = 1, . . . ,m, put[
Ki; c

t

]
=

t∏
s=1

Kiq
c−s+1 − K−1

i q−c+s−1

qs − q−s
.

Let Z Uq be the Z -subalgebra of Uq generated by all e
(k)
i , f

(k)
i ,K±

i , and[
Ki;0

t

]
. We also define the Z -subalgebra Z U ≥0

q (resp., Z U ≤0
q ) of Uq generated

by all e
(k)
i (resp., f

(k)
i ), K±

i , and
[

Ki;0
t

]
.
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1.5.
Let A = Z[γ1, . . . , γr] be the polynomial ring over Z with indeterminate

elements γ1, . . . , γr, where r is an arbitrary nonnegative integer (put A = Z
when r = 0), and let K = Q(q, γ1, . . . , γr) be the quotient field of A. We
define the associative algebra Ũq = Ũq(glm) over K with the unit element 1
by the following generators and defining relations.

Generators ei, fi (1 ≤ i ≤ m − 1), K±
i (1 ≤ i ≤ m), τi (1 ≤ i ≤ m − 1).

Defining relations

KiKj = KjKi, KiK
−
i = K−

i Ki = 1,(1.5.1)

KiejK
−
i = q〈αj ,hi〉ej ,(1.5.2)

KifjK
−
i = q− 〈αj ,hi 〉fj ,(1.5.3)

KiτjK
−
i = τj ,(1.5.4)

eifj − fjei = δijτi,(1.5.5)

ei±1e
2
i − (q + q−1)eiei±1ei + e2

i ei±1 = 0,(1.5.6)

eiej = ejei (|i − j| ≥ 2),

fi±1f
2
i − (q + q−1)fifi±1fi + f2

i fi±1 = 0,(1.5.7)

fifj = fjfi (|i − j| ≥ 2).

Set deg ei = αi, deg fi = −αi, degK±
i = 0, and deg τi = 0. Since all the

defining relations of Ũq are homogeneous under this degree, Ũq is a Q-graded
algebra, and Ũq has the following root space decomposition:

Ũq =
⊕
α∈Q

(Ũq)α,

where (Ũq)α = {u ∈ Ũq | KiuK−
i = q〈α,hi〉u for 1 ≤ i ≤ m}. For u ∈ Ũq, we

denote by deg(u) = α if u ∈ (Ũq)α.
The following proposition is clear from definitions.

Proposition 1.6. Let Ĩ be the two-sided ideal of Ũq generated by

τi −
KiK

−
i+1 − K−

i Ki+1

q − q−1
for i = 1, . . . ,m − 1.

Then we have the following isomorphism of algebras:

Ũq/Ĩ ∼= K ⊗Q(q) Uq.
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Remark 1.7. We note that the parameters γ1, . . . , γr do not appear in
the definition of Ũq. However, we will use these parameters later when we
consider some representations of Ũq or some quotient algebras of Ũq.

1.8.
Let Ũ+

q (resp., Ũ −
q ) be the subalgebra of Ũq generated by ei (resp., fi)

for i = 1, . . . ,m − 1, and let Ũ0
q be the subalgebra of Ũq generated by K±

i

for i = 1, . . . ,m. We also define a Borel subalgebra of Ũq as follows. Let Ũ ≥0
q

(resp., Ũ ≤0
q ) be the subalgebra of Ũq generated by Ũ+

q (resp., Ũ −
q ) and Ũ0

q .
Lemma 1.3 and Proposition 1.6 imply the following corollary.

Corollary 1.9. The following isomorphisms of algebras exist:

Ũ ±
q

∼= K ⊗Q(q) U ±
q , Ũ0

q
∼= K ⊗Q(q) U0

q ,

Ũ ≥0
q

∼= K ⊗Q(q) U ≥0
q , Ũ ≤0

q
∼= K ⊗Q(q) U ≤0

q .

Proof. We show only the isomorphism for the Borel subalgebra Ũ ≥0
q . The

other isomorphisms can be shown in a similar way. By Lemma 1.3, we
have a surjective homomorphism of algebras K ⊗Q(q) U ≥0

q → Ũ ≥0
q . On the

other hand, by restricting the surjection Ũq → K ⊗Q(q) Uq in Proposition 1.6
to Ũ ≥0

q , we have a surjection Ũ ≥0
q → K ⊗Q(q) U ≥0

q . Thus, we have Ũ ≥0
q

∼=
K ⊗Q(q) U ≥0

q .

1.10.
For η = (η1, . . . , ηm−1) such that ηi ∈ Ũ −

q Ũ0
q Ũ+

q with deg(ηi) = 0, let Ôη

be the category consisting of Ũq-modules satisfying the following conditions
(a) and (b).
(a) M ∈ Ôη has the weight-space decomposition

M =
⊕
μ∈P

Mμ,

where Mμ = {v ∈ M | Ki · v = q〈μ,hi〉v for 1 ≤ i ≤ m}.
(b) For M ∈ Ôη and i = 1, . . . ,m − 1, it holds that (τi − ηi) · M = 0.

Let Ôη
tri be the full subcategory of Ôη satisfying the following additional

condition.
(c) For each u ∈ Ũq, there exists an element x ∈ Ũ −

q Ũ0
q Ũ+

q such that

(u − x) · M = 0 for any M ∈ Ôη
tri.
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By this definition, in Ôη
tri the action of Ũq has a triangular decomposition.

Finally, let Oη be the full subcategory of Ôη satisfying the following
additional conditions.

(d) For any M ∈ Oη, the dimension of M is finite.
(e) For any M ∈ Oη, we have

Mμ = 0 unless μ ∈ P≥0,

where P≥0 =
⊕m

i=1 Z≥0εi.

As is shown later, Oη is a full subcategory of Ôη
tri. Moreover, we will con-

struct all simple objects of Oη through some quotient algebras of Ũq (see
Theorem 2.20).

Remarks 1.11. (i) If ηi ∈ Ũ0
q for all i = 1, . . . ,m − 1, we have Ôη = Ôη

tri.
(ii) Let Ĩη be the two-sided ideal of Ũq generated by (τi − ηi), and put

Ũη
q = Ũq/Ĩ

η. Then, we can regard a Ũη
q -module as a Ũq-module through

the natural surjection. Clearly, any Ũη
q -module equipped with the weight-

space decomposition is contained in Ôη. On the other hand, a Ũq-module
M contained in Ôη is regarded as a Ũη

q -module since we have Ĩη · M = 0 by
condition (b). Thus, the category Ôη coincides with the category consisting
of Ũη

q -modules which have weight-space decompositions.
(iii) When K = Q(q) and ηi = (KiK

−
i+1 − K−

i Ki+1)/(q − q−1) for any i =
1, . . . ,m − 1, Ôη coincides with the category of Uq-modules having weight-
space decompositions.

1.12.
Next, we introduce a notion of highest-weight modules. Let η be as in

Section 1.10. We say that a Ũq-module Mη(λ) is a highest-weight module of
highest weight λ ∈ P associated to η if there exists an element vλ ∈ Mη(λ)
satisfying the following conditions:

u · vλ = 0 for any u ∈ Ũq such that(1.12.1)

deg(u) =
m−1∑
i=1

diαi with di > 0 for some i,

Ki · vλ = q〈λ,hi〉vλ for i = 1, . . . ,m,(1.12.2)

Ũq · vλ = Mη(λ),(1.12.3)
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(τi − ηi) · Mη(λ) = 0 for i = 1, . . . ,m − 1.(1.12.4)

We call the above element vλ a highest-weight vector of Mη(λ).

Remarks 1.13. (i) Note that, since we take ηi ∈ Ũ −
q Ũ0

q Ũ+
q such that

deg(ηi) = 0, then (1.12.1), (1.12.2), and (1.12.4) imply that τi · vλ ∈ K · vλ.
(ii) Each highest-weight module Mη(λ) is contained in Ôη.
(iii) If a highest-weight module Mη(λ) is contained in Ôη

tri, we can replace
(1.12.1) with

ei · vλ = 0 for i = 1, . . . ,m − 1.(1.13.1)

(iv) For a Ũη
q -module M , if there exists an element vλ ∈ M for some

λ ∈ P satisfying conditions (1.12.1)–(1.12.3), M is a highest-weight module
of highest weight λ ∈ P associated to η. In particular, if ηi = (KiK

−
i+1 −

K−
i Ki+1)/(q − q−1) for any i = 1, . . . ,m − 1 (i.e., Ũη

q
∼= Uq), the definition of

a highest-weight module in Section 1.12 coincides with the usual definition
of a highest-weight module of Uq(glm).

Lemma 1.14. If a highest-weight module Mη(λ) is contained in Ôη
tri, we

have the following.
(i) The dimension of the weight space Mη(λ)λ with highest weight λ is

equal to 1.
(ii) Mη(λ) has a unique maximal submodule.

Proof. Item (i) is clear from definitions. By (i) and (1.12.3), a proper
Ũq-submodule of Mη(λ) does not have a weight λ. Thus, the sum of all
proper Ũq-submodules of Mη(λ) does not have the weight λ, and this is the
unique maximal submodule of Mη(λ).

Remark 1.15. When a highest-weight module Mη(λ) with a highest-
weight vector vλ is not contained in Ôη

tri, it may occur that u · vλ /∈ Kvλ and
that u · vλ has the weight λ for some u ∈ Ũq such that deg(u) = 0.

1.16.
Let Jη(λ) be the left ideal of Ũq generated by

u ∈ Ũq such that deg(u) =
m−1∑
i=1

diαi with di > 0 for some i,

Ki − q〈λ,hi〉1 for i = 1, . . . ,m,
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(τi − ηi) · u for i = 1, . . . ,m − 1 and u ∈ Ũq.

Put V η(λ) = Ũq/J
η(λ); then one sees that V η(λ) is a highest-weight module

of highest weight λ associated to η with highest-weight vector 1 + Jη(λ).
We call V η(λ) a Verma module of Ũq. We have the following lemma.

Lemma 1.17. Any highest-weight module Mη(λ) of highest weight λ asso-
ciated to η is a homomorphic image of V η(λ).

Proof. Let Mη(λ) be a highest-weight module of a highest weight λ asso-
ciated to η with a highest-weight vector vλ. We regard Ũq as a Ũq-module
by left multiplications. Then, we have a natural surjective homomorphism
of Ũq-modules Ũq → Mη(λ) such that 1 �→ vλ. Moreover, one can check that
Jη(λ) is included in the kernel of this homomorphism. Thus, this homomor-
phism induces the surjective homomorphism from V η(λ) to Mη(λ).

1.18.
Finally, we define an A-form of Ũq as follows. We use the same nota-

tions as in Section 1.4. Let AŨq be the A-subalgebra of Ũq generated by all
e
(k)
i , f

(k)
i ,K±

i , τi, and
[

Ki;0
t

]
. We also define the A-subalgebra AŨ ≥0

q (resp.,

AŨ ≤0
q ) of Ũq generated by all e

(k)
i (resp., f

(k)
i ), K±

i , and
[

Ki;0
t

]
. Then, an

isomorphism AŨ ≥0
q

∼= A ⊗Z Z U ≥0
q (resp., AŨ ≤0

q
∼= A ⊗Z Z U ≤0

q ) follows from
Corollary 1.9.

§2. The algebra Sq

In this section, we define various finite-dimensional quotient algebras Sq

of Ũq. This definition is inspired by the presentation of generalized q-Schur
algebras given in [Do]. Then we study the representation theory of Sq which
has properties similar to those of the theory of cellular algebras and of
standardly based algebras introduced by [GL] and [DR1], respectively. The
results in this section will be applied to obtain a presentation of cyclotomic
q-Schur algebras in Section 7.

2.1.
Recall that P =

⊕m
i=1 Zεi is the weight lattice of glm. We can identify P

with a set of m-tuple of integers Zm by the correspondence

P  λ =
m∑

i=1

λiεi �→ (λ1, . . . , λm) ∈ Zm.
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Under this identification, we use the notation λ = (λ1, . . . , λm) for λ ∈ P .
Let Λ be a finite subset of P≥0 =

⊕m
i=1 Z≥0εi.

We define the associative algebra S̃q = S̃q(Λ) over K with 1 by following
generators and defining relations.

Generators Ei, Fi (1 ≤ i ≤ m − 1), 1λ (λ ∈ Λ), τλ
i (1 ≤ i ≤ m − 1, λ ∈ Λ).

Defining relations

1λ1μ = δλμ1λ,
∑
λ∈Λ

1λ = 1;(2.1.1)

τλ
i 1μ = 1μτλ

i = δλμτλ
i ;(2.1.2)

Ei1λ =

{
1λ+αi

Ei if λ + αi ∈ Λ,

0 otherwise;
(2.1.3)

Fi1λ =

{
1λ−αi

Fi if λ − αi ∈ Λ,

0 otherwise;
(2.1.4)

1λEi =

{
Ei1λ−αi

if λ − αi ∈ Λ,

0 otherwise;
(2.1.5)

1λFi =

{
Fi1λ+αi

if λ + αi ∈ Λ,

0 otherwise;
(2.1.6)

EiFj − FjEi = δij

(∑
λ∈Λ

τλ
i

)
;(2.1.7)

Ei±1E
2
i − (q + q−1)EiEi±1Ei + E2

i Ei±1 = 0,(2.1.8)

EiEj = EjEi (|i − j| ≥ 2);

Fi±1F
2
i − (q + q−1)FiFi±1Fi + F 2

i Fi±1 = 0,(2.1.9)

FiFj = FjFi (|i − j| ≥ 2).

We can prove the following proposition in a way similar to the proof in
[Do, Proposition 3.4].

Proposition 2.2. There exists a surjective homomorphism of algebras

Ψ̃ : Ũq → S̃q

such that Ψ̃(ei) = Ei, Ψ̃(fi) = Fi, Ψ̃(K±
i ) =

∑
λ∈Λ q±λi1λ, Ψ̃(τi) =

∑
λ∈Λ τλ

i .
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Proof. In order to show that Ψ̃ is well defined, we should check the defin-
ing relations of Ũq in the images of Ψ̃, and we obtain them by direct cal-
culations. Note that τλ

i = (
∑

μ∈Λ τμ
i )1λ = Ψ̃(τi)1λ by (2.1.2). Thus, in order

to prove that Ψ̃ is surjective, it is enough to show that, for all λ ∈ Λ, 1λ is
a linear combination of Ψ̃(Ki). This will be proved in Lemma 2.3.

We define a partial order � on P≥0 by λ � μ if λ �= μ and λi ≥ μi for any
i = 1, . . . ,m. For λ = (λ1, . . . , λm) ∈ Λ, put

Kλ =
[
K1; 0
λ1

][
K2; 0
λ2

]
· · ·
[
Km; 0
λm

]
.(2.2.1)

Then we have the following lemma.

Lemma 2.3.
(i) Ψ̃

([
Ki;0

t

])
(1 ≤ i ≤ m,t ∈ Z≥0) is a linear combination of elements in

{1λ | λ ∈ Λ} with coefficients in Z.
(ii) For λ ∈ Λ, we have

1λ = Ψ̃(Kλ) +
∑
μ∈Λ

μ�λ

rμΨ̃(Kμ) (rμ ∈ Z).

Proof. In this proof, we denote Ψ̃(K±
i ) by K±

i simply. Thus, we have
K±

i =
∑

λ∈Λ q±λi1λ. For 1 ≤ i ≤ m,t ∈ Z≥0 and λ ∈ Λ, we have[
Ki; 0

t

]
1λ =

t∏
s=1

Kiq
−s+1 − K−

i qs−1

qs − q−s
1λ(2.3.1)

=
t∏

s=1

qλi −s+1 − q−(λi −s+1)

qs − q−s
1λ

=
t∏

s=1

[λi − s + 1]
[s]

1λ

=
[λi][λi − 1] · · · [λi − t + 1]

[1][2] · · · [t]
1λ

=

⎧⎪⎨⎪⎩
[
λi

t

]
1λ if t ≤ λi,

0 if t > λi.
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Since 1 =
∑

λ∈Λ 1λ and
[

λi
t

]
∈ Z , we have (i). By the definition of Kλ and

(2.3.1), we have

Kλ = Kλ

(∑
μ∈Λ

1μ

)
= 1λ +

∑
μ∈Λ
μ�λ

( m∏
i=1

[
μi

λi

]
1μ

)
.(2.3.2)

Since Λ is a finite set, there exists a maximal element λ ∈ Λ with respect to
the order �. Thus, we have 1λ = Kλ when λ is a maximal element of Λ by
(2.3.2). By induction on Λ together with (2.3.2), we have (ii).

Remark 2.4. For λ = (λ1, . . . , λm) ∈ P≥0, set |λ| =
∑m

i=1 λi. If Λ = {λ ∈
P≥0 | |λ| = n} for some n ∈ Z>0, we have μ �� λ for any λ,μ ∈ Λ since |μ| > |λ|
if μ � λ. Thus, we have 1λ = Ψ̃(Kλ) for any λ ∈ Λ by Lemma 2.3.

2.5.
Let S̃ +

q (resp., S̃ −
q ) be the subalgebra of S̃q generated by Ei (resp., Fi) for

1 ≤ i ≤ m − 1, and let S̃ 0
q be the subalgebra of S̃q generated by 1λ for λ ∈ Λ.

By Lemma 2.3, it is clear that S̃ 0
q (resp., S̃ ±

q ) coincides with the image of
Ũ0

q (resp., Ũ ±
q ) under the surjection Ψ̃ in Proposition 2.2.

We consider the Q-grading on S̃q arising from the grading on Ũq; namely,
we set degEi = αi,degFi = −αi,deg 1λ = 0,deg τλ

i = 0.
For each λ ∈ Λ and i = 1, . . . ,m − 1, we take an element ηλ

i of S̃ −
q S̃ +

q · 1λ

such that deg(ηλ
i ) = 0. By the condition deg(ηλ

i ) = 0 together with (2.1.3)–
(2.1.6), we have ηλ

i ∈ 1λ · S̃ −
q S̃ +

q · 1λ. Moreover, again by (2.1.3)–(2.1.6), we
have ηλ

i ∈ S̃ −
q S̃ 0

q S̃ +
q . Put ηΛ = {ηλ

i | 1 ≤ i ≤ m − 1, λ ∈ Λ}. Let Ĩ ηΛ be the
two-sided ideal of S̃q generated by all τλ

i − ηλ
i (1 ≤ i ≤ m − 1, λ ∈ Λ). We

define the quotient algebra Sq of S̃q by

Sq = S ηΛ
q = S̃q/Ĩ ηΛ .

Let S 0
q (resp., S ±

q ) be the image of S̃ 0
q (resp., S̃ ±

q ) under the natural sur-
jection S̃q → Sq. Under the map S̃q → Sq, we denote the image of Ei (resp.,
Fi, 1λ) by the same symbol Ei (resp., Fi, 1λ) again, and the image of τλ

i by
ηλ

i . We denote the composition of Ψ̃ and the natural surjection S̃q → Sq by
Ψ : Ũq → Sq. Thus, we have Ψ(ei) = Ei, Ψ(fi) = Fi, Ψ(K

±
i ) =

∑
λ∈Λ q±λi1λ,

and Ψ(τi) =
∑

λ∈Λ ηλ
i .
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Proposition 2.6. The algebra Sq has a triangular decomposition

Sq = S −
q S 0

q S +
q .

Moreover, the algebra Sq is finite-dimensional.

Proof. First, we show the following claim.

Claim A. For 1 ≤ i, j1, . . . , jl ≤ m − 1, we have

EiFj1 · · · Fjl
=

m−1∑
k=1

akEk + b,

where ak ∈ Sq and b ∈ S −
q S 0

q .

We prove this claim by induction on l. When l = 1, we have

EiFj1 =

{
Fj1Ei +

∑
λ∈Λ ηλ

i if i = j1,

Fj1Ei otherwise.

Since ηλ
i ∈ S −

q S 0
q S +

q , we obtain the claim. When l ≥ 2, we have

EiFj1 · · · Fjl
=

{
Fj1EiFj2 · · · Fjl

+
(∑

λ∈Λ ηλ
i

)
Fj2 · · · Fjl

if i = j1,

Fj1EiFj2 · · · Fjl
otherwise.

Note that ηλ
i ∈ S −

q S 0
q S +

q and deg(ηλ
i ) = 0. Applying the induction hypothesis

to the right-hand side of this formula, we obtain the claim.
For any u ∈ Sq, we have u = u · 1 =

∑
λ∈Λ u · 1λ. Thus, in order to prove

the first assertion of the proposition, it suffices to show the following claim.

Claim B. We have u · 1λ ∈ S −
q S +

q · 1λ for any u ∈ Sq and λ ∈ Λ.

Indeed, this claim implies that u ∈ S −
q S 0

q S +
q for any u ∈ Sq by relation

(2.1.3). Hence, we show Claim B by backward induction on Λ with respect
to order ≥. By Claim A combined with relations (2.1.1) and (2.1.3)–(2.1.6),
for any u ∈ Sq and λ ∈ Λ, we have

u · 1λ =
m−1∑
k=1

akEk1λ + b · 1λ (ak ∈ Sq, b ∈ S −
q ).(2.6.1)

Clearly, b · 1λ ∈ S −
q S +

q · 1λ. On the other hand, we have akEk1λ = ak1λ+αk
Ek

by (2.1.3), where we set 1λ+αk
= 0 if λ + αk /∈ Λ.
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First, we assume that λ is a maximal element of Λ. Then, for any k =
1, . . . ,m − 1, we have λ + αk /∈ Λ since λ + αk ≥ λ in P and λ is maximal
in Λ. Thus, we have 1λ+αk

= 0 for k = 1, . . . ,m − 1. In this case, we have
u · 1λ = b · 1λ ∈ S −

q S +
q · 1λ.

Next, we assume that λ is not maximal in Λ and that λ + αk ∈ Λ. In
this case, by the induction hypothesis, we have ak1λ+αk

∈ S −
q S +

q · 1λ+αk
.

Thus, we have ak1λ+αk
Ek = akEk1λ ∈ S −

q S +
q · 1λ. Combined with (2.6.1),

we obtain Claim B; thus, the first assertion of the proposition is proved.
Recall that S 0

q is the subalgebra of Sq generated by {1λ | λ ∈ Λ} and
that {1λ �= 0 | λ ∈ Λ} is a set of pairwise orthogonal idempotents. Thus,
{1λ �= 0 | λ ∈ Λ} gives a K-basis of S 0

q .
On the other hand, the set {Ei1Ei2 · · · Eil | 1 ≤ i1, . . . , il ≤ m − 1, l ≥ 0}

gives a spanning set of S +
q over K. Since

Ei1 · · · Eil =
∑
λ∈Λ

(Ei1 · · · Eil1λ)

=
∑
λ∈Λ

(1λ+αi1
+· · ·+αil

Ei1 · · · Eil),

we have Ei1 · · · Eil = 0 if the integer l is sufficient large. This implies that S +
q

is finitely generated over K. Similarly, we see that S −
q is finitely generated

over K. Combined with the triangular decomposition, we conclude that Sq

is finite-dimensional.

The next result follows from the proof of Proposition 2.6.

Corollary 2.7. {1λ �= 0 | λ ∈ Λ} gives a K-basis of S 0
q .

2.8.
For each λ ∈ Λ, we define the following subspaces of Sq:

Sq(≥ λ) = {x1μy | x ∈ S −
q , y ∈ S +

q , μ ∈ Λ such that μ ≥ λ},

Sq(> λ) = {x1μy | x ∈ S −
q , y ∈ S +

q , μ ∈ Λ such that μ > λ}.

By using the triangular decomposition and the defining relations of Sq, one
can easily check the following lemma.

Lemma 2.9. For λ ∈ Λ, both Sq(≥ λ) and Sq(> λ) are two-sided ideals
of Sq.
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2.10.
Thanks to Lemma 2.9, for λ ∈ Λ, Sq(≥ λ)/Sq(> λ) turns out to be an

(Sq, Sq)-bimodule by multiplications. In general, it happens that Sq(≥ λ) =
Sq(> λ). So, we take a subset Λ+ = {λ ∈ Λ | Sq(≥ λ) �= Sq(> λ)} of Λ. It is
clear that

λ ∈ Λ+ if and only if 1λ /∈ Sq(> λ).(2.10.1)

For λ ∈ Λ+, we define a subspace Δ(λ) of Sq(≥ λ)/Sq(> λ) by

Δ(λ) = S −
q · 1λ + Sq(> λ).

Note that Ek1λ = 1λ+αk
Ek ∈ Sq(> λ) for k = 1, . . . ,m − 1. Together with

the triangular decomposition, Δ(λ) turns out to be a left Sq-submodule of
Sq(≥ λ)/Sq(> λ). Similarly, we can define a right Sq-submodule Δ�(λ) of
Sq(≥ λ)/Sq(> λ) by

Δ�(λ) = 1λ · S +
q + Sq(> λ).

For x ∈ S −
q , y ∈ S +

q , we denote the coset of Sq(≥ λ)/Sq(> λ) containing x1λy

by x1λy. Then, we denote an element of Δ(λ) (resp., Δ�(λ)) by x1λ (x ∈ S −
q )

(resp., 1λy (y ∈ S +
q )). It is clear that Δ(λ) = Sq · 1λ and Δ�(λ) = 1λ · Sq. We

can check the following lemma immediately from the definitions.

Lemma 2.11. For λ ∈ Λ+, there exists a surjective homomorphism of
(Sq, Sq)-bimodules

Δ(λ) ⊗K Δ�(λ) → Sq(≥ λ)/Sq(> λ)

such that x1λ ⊗ 1λy �→ x1λy for x ∈ S −
q , y ∈ S +

q .

2.12.
As will be shown later, if the surjection in Lemma 2.11 gives an iso-

morphism for any λ ∈ Λ+ and if Sq has a certain involution ι, Sq turns
out to be a quasi-hereditary cellular algebra, and Δ(λ) (λ ∈ Λ+) is a left
cell (standard) module of Sq. In such a case, we can apply a general the-
ory of (quasi-hereditary) cellular algebras. However, in general, we do not
know whether Δ(λ) ⊗K Δ�(λ) is isomorphic to Sq(≥ λ)/Sq(> λ). (In fact,
it happens that Δ(λ) ⊗K Δ�(λ) is not isomorphic to Sq(≥ λ)/Sq(> λ); see
Appendix C.) And we do not know whether Sq has such an involution. Nev-
ertheless, we develop a certain representation theory of Sq which is almost
similar to the theory of standardly based algebras in the sense of [DR1],
and also similar to the theory of cellular algebras (see, e.g., [GL], [M, Chap-
ter 2]).
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2.13.
For y ∈ S +

q , x ∈ S −
q , and λ ∈ Λ+, we have 1λyx1λ = 1λ1λ+αyx if deg(yx) =

α. Thus, we have 1λyx1λ = 0 if deg(yx) = α �= 0. On the other hand, if
deg(yx) = 0, we can write

1λyx1λ = r01λ +
∑

Y ∈ S+
q ,X∈ S −

q

deg(Y )=− deg(X)	=0

rXY 1λXY 1λ (r0, rXY ∈ K)(2.13.1)

by investigating the degrees through the triangular decomposition. These
imply, for y ∈ S +

q , x ∈ S −
q , and λ ∈ Λ+, that we have

1λyx1λ ≡ ryx1λ mod Sq(> λ) (ryx ∈ K).

By using this formula, for λ ∈ Λ+, we can define a bilinear form 〈 , 〉 :
Δ�(λ) × Δ(λ) → K such that

〈1λy,x1λ〉1λ ≡ 1λyx1λ mod Sq(> λ) for y ∈ S +
q , x ∈ S −

q .(2.13.2)

For α ∈ Q+, put

Υα =
{
(i1, i2, . . . , ik)

∣∣ 1 ≤ i1, i2, . . . , ik ≤ m − 1

such that αi1 + αi2 + · · · + αik = α
}
.

From the definition, for (i1, . . . , ik) ∈ Υα, (j1, . . . , jl) ∈ Υβ (α,β ∈ Q+), we
have

〈1λEi1 · · · Eik , Fj1 · · · Fjl
1λ〉 = 0 if α �= β.(2.13.3)

We have the following lemma.

Lemma 2.14. For λ ∈ Λ+, we have the following formulas.
(i) 〈y · u,x〉 = 〈y,u · x〉 for x ∈ Δ(λ), y ∈ Δ�(λ), u ∈ Sq.
(ii) (Fi1 · · · Fik1λEj1 · · · Ejl

) · x = 〈1λEj1 · · · Ejl
, x〉Fi1 · · · Fik1λ

for x ∈ Δ(λ) and Fi1 · · · Fik1λEj1 · · · Ejl
∈ Sq(≥ λ).

Proof. (i) For x ∈ S −
q , y ∈ S +

q , and u ∈ Sq, we have

〈1λy · u,x1λ〉1λ ≡ 1λyux1λ

≡ 〈1λy,u · x1λ〉1λ mod Sq(> λ).
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(ii) For x ∈ S −
q and Fi1 · · · Fik1λEj1 · · · Ejl

∈ Sq(≥ λ), we have

(Fi1 · · · Fik1λEj1 · · · Ejl
) · x1λ = Fi1 · · · Fik(1λEj1 · · · Ejl

x1λ)

= Fi1 · · · Fik 〈1λEj1 · · · Ejl
, x1λ〉1λ

= 〈1λEj1 · · · Ejl
, x1λ〉Fi1 · · · Fik1λ.

2.15.
For λ ∈ Λ+, let

radΔ(λ) =
{
x ∈ Δ(λ) | 〈y,x〉 = 0 for any y ∈ Δ�(λ)

}
,

radΔ�(λ) =
{
y ∈ Δ�(λ) | 〈y,x〉 = 0 for any x ∈ Δ(λ)

}
.

By Lemma 2.14(i), radΔ(λ) (resp., radΔ�(λ)) is a left (resp., right) Sq-
submodule of Δ(λ) (resp., Δ�(λ)). Put L(λ) = Δ(λ)/ radΔ(λ), and put
L�(λ) = Δ�(λ)/ radΔ�(λ) We have the following theorem. This theorem is
proven in a way similar to proofs in the general theory of standardly based
algebras or cellular algebras (see [DR1], [GL], [M, Chapter 2]).

Theorem 2.16. We have the following.
(i) For λ ∈ Λ+, radΔ(λ) (resp., radΔ�(λ)) is a unique proper maximal

Sq-submodule of Δ(λ) (resp., Δ�(λ)). Thus, L(λ) (resp., L�(λ)) is a
left (resp., right) absolutely simple Sq-module.

(ii) For λ,μ ∈ Λ+, if L(μ) (resp., L�(μ)) is a composition factor of Δ(λ)
(resp., Δ�(λ)), we have λ ≥ μ. Thus, L(λ) ∼= L(μ) (resp., L�(λ) ∼=
L�(μ)) if and only if λ = μ. Moreover, the multiplicity of L(λ) (resp.,
L�(λ)) in Δ(λ) (resp., Δ�(λ)) is equal to 1.

(iii) {L(λ) | λ ∈ Λ+} (resp., {L�(λ) | λ ∈ Λ+}) gives a complete set of noniso-
morphic left (resp., right) simple Sq-modules.

(iv) Sq is semisimple if and only if Δ(λ) ∼= L(λ) and Δ�(λ) ∼= L�(λ) for any
λ ∈ Λ+.

Proof. We prove only the assertions for left Sq-modules. The proof is
similar for right Sq-modules. (i) It is clear that 〈1λ,1λ〉 = 1. Thus, we have
Δ(λ) � radΔ(λ). For x ∈ Δ(λ) \ radΔ(λ), there exists an element y ∈ Δ�(λ)
such that 〈y,x〉 �= 0. Since 〈 , 〉 is a bilinear form over a field K, we can
suppose that 〈y,x〉 = 1. Let

y =
∑

(j1,...,jl)∈Υα

α∈Q+

r(j1,...,jl)1λEj1 · · · Ejl
.
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For t = Fi1 · · · Fik1λ ∈ Δ(λ), put

yt = Fi1 · · · Fik1λ

( ∑
(j1,...,jl)∈Υα

α∈Q+

r(j1,...,jl)Ejl
· · · Ej1

)
∈ Sq.

Then, we have

yt · x =
∑

r(j1,...,jl)(Fi1 · · · Fik1λEjl
· · · Ej1) · x

=
∑

r(j1,...,jl)〈1λEj1 · · · Ejl
, x〉Fi1 · · · Fik1λ (∵ Lemma 2.14(ii))

= 〈y,x〉Fi1 · · · Fik1λ

= Fi1 · · · Fik1λ.

This implies that Δ(λ) is generated by x as an Sq-module. Since this fact
holds for any x ∈ Δ(λ) \ radΔ(λ), radΔ(λ) is the unique maximal proper
submodule of Δ(λ).

(ii) For λ ∈ Λ+, we have 1λ · L(λ) �= 0 since 1λ /∈ radΔ(λ). On the other
hand, one sees easily that 1μ · Δ(λ) = 0 for any μ ∈ Λ such that μ �≤ λ.
Thus, if L(μ) is a composition factor of Δ(λ), we have 1μ · Δ(λ) �= 0 and
μ ≤ λ. Moreover, one sees that 1λ · radΔ(λ) = 0. (Note that 1λ /∈ radΔ(λ).)
This implies that L(λ) does not appear in radΔ(λ) as a composition factor.
Thus, we have (ii).

(iii) Let {λ〈1〉, λ〈2〉, . . . , λ〈z〉 } be such that i < j if λ〈i〉 > λ〈j〉. Put Sq(λ〈i〉) =∑
j≤i S −

q 1λ〈j〉 S +
q ; then Sq(λ〈i〉) turns out to be a two-sided ideal of Sq. Thus,

we have the following filtration of two-sided ideals:

Sq = Sq(λ〈z〉) ⊃ Sq(λ〈z−1〉) ⊃ · · · ⊃ Sq(λ〈1〉) ⊃ Sq(λ〈0〉) = 0.(2.16.1)

One sees easily that Sq(λ〈i〉)/Sq(λ〈i−1〉) ∼= Sq(≥ λ〈i〉)/Sq(> λ〈i〉) as (Sq, Sq)-
bimodules for λ〈i〉 ∈ Λ. Moreover, one can check that

Sq(λ〈i〉) �= Sq(λ〈i−1〉) if and only if 1λ〈i〉 /∈ Sq(> λ〈i〉)

if and only if λ〈i〉 ∈ Λ+.

Let Λ+ = {λ〈c1〉, . . . , λ〈cz′ 〉 } such that i < j if ci < cj . Then, we have the
following filtration of two-sided ideals:

Sq = Sq(λ〈cz′ 〉) � Sq(λ〈cz′ −1〉) � · · · � Sq(λ〈c1〉) � Sq(λ〈c0〉) = 0,(2.16.2)
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such that Sq(λ〈ci 〉)/Sq(λ〈ci−1〉) ∼= Sq(≥ λ〈ci 〉)/Sq(> λ〈ci 〉) as (Sq, Sq)-bimodu-
les.

By the filtration of Sq in (2.16.2) and the surjective homomorphism of
(Sq, Sq)-bimodules Δ(λ) ⊗K Δ�(λ) → Sq(≥ λ)/Sq(> λ) for λ ∈ Λ+ in
Lemma 2.11, any composition factor of Sq is a composition factor of Δ(λ)
for some λ ∈ Λ+. Thus, it is enough to show that any composition factor of
Δ(λ) (λ ∈ Λ+) is isomorphic to L(μ) for some μ ∈ Λ+. We prove it by using
an induction on Λ+.

Let λ ∈ Λ+ be a minimal element with respect to order ≥. We take x =∑
r(i1,...,ik)Fi1 · · · Fik1λ ∈ radΔ(λ). Put x =

∑
r(i1,...,ik)Fi1 · · · Fik1λ ∈ Sq(≥

λ). For μ ∈ Λ+ such that λ �= μ, we have Sq(≥ μ) · x ∈ Sq(≥ λ) ∩ Sq(≥ μ) ⊂
Sq(> λ) since both of Sq(≥ λ) and Sq(≥ μ) are two-sided ideals of Sq and λ

is a minimal element of Λ+. This implies that Sq(≥ μ) · x = 0 for any μ ∈ Λ+

such that μ �= λ. On the other hand, for any Fy1 · · · Fyb
1λEx1 · · · Exa ∈ Sq(≥

λ), we have

(Fy1 · · · Fyb
1λEx1 · · · Exa) · x = 〈1λEx1 · · · Exa , x〉Fy1 · · · Fyb

1λ = 0,

where the first equation follows Lemma 2.14(ii), and the second equation
follows x ∈ radΔ(λ). This implies that Sq(≥ λ) · x = 0. Together with the
above arguments, we have Sq · x = 0. In particular, we have x = 1 · x = 0.
This means that radΔ(λ) = 0, and we have Δ(λ) = L(λ).

Next, we suppose that λ ∈ Λ+ is not minimal. Put

Sq( �< λ) =
∑
μ∈Λ

μ	<λ

S −
q 1μS +

q and Sq( �� λ) =
∑
μ∈Λ

μ	�λ

S −
q 1μS +

q .

One sees that Sq( �< λ) and Sq( �� λ) are two-sided ideals of Sq. It is clear that
Sq( �� λ) · Δ(λ) = 0. Moreover, we see that Sq(≥ λ) · radΔ(λ) = 0 in a way
similar to the above arguments. Thus, we have Sq( �< λ) · radΔ(λ) = 0. This
implies that the action of Sq on radΔ(λ) induces the action of Sq/Sq( �< λ) on
radΔ(λ). Thus, any composition factor of radΔ(λ) is a composition factor
of Sq/Sq( �< λ). Moreover, we can take a total order of Λ such that Sq( �<
λ) = Sq(λ〈k〉) for some k and that λ〈j〉 < λ for any j = k +1, . . . , z. Thus, by
Lemma 2.11, any composition factor of Sq/Sq( �< λ) is a composition factor
of Δ(μ) for some μ ∈ Λ+ such that μ < λ. By the induction hypothesis, we
see that any composition factor of Δ(μ) such that μ < λ is isomorphic to
L(ν) for some ν ∈ Λ+. It follows that any composition factor of radΔ(λ)
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is isomorphic to L(ν) for some ν ∈ Λ+. Since Δ(λ)/ radΔ(λ) = L(λ), we
obtain (iii).

(iv) Suppose that Sq is semisimple; then L(λ) and L(μ) (λ �= μ ∈ Λ+)
belong to different blocks of Sq. On the other hand, Δ(λ) is indecompos-
able since Δ(λ) has a unique top. Thus, all the composition factors of Δ(λ)
belong to the same block. This means that Δ(λ) has only L(λ) as a com-
position factor, and we have Δ(λ) = L(λ) for any λ ∈ Λ+ by (ii). We have
Δ�(λ) = L�(λ) for any λ ∈ Λ+ in a similar way.

Next, we suppose that Δ(λ) ∼= L(λ) and Δ�(λ) ∼= L�(λ) for any λ ∈ Λ+.
Then, the surjective homomorphism of (Sq, Sq)-bimodules Δ(λ) ⊗K Δ�(λ) →
Sq(≥ λ)/Sq(> λ) in Lemma 2.11 must be an isomorphism. Thus, the filtra-
tion (2.16.2) implies that

dimK Sq =
∑

λ∈Λ+

(
dimK Δ(λ)

)2
.

(dimK L(λ) = dimK L�(λ) will be proved in Lemma 3.8.) This implies that
Sq is semisimple.

2.17.
Let S ≥0

q (resp., S ≤0
q ) be the subalgebra of Sq generated by S +

q (resp.,
S −

q ) and S 0
q . Thus, S ≥0

q (resp., S ≤0
q ) is generated by Ei (resp., Fi) for i =

1, . . . ,m − 1 and 1λ for λ ∈ Λ. For λ ∈ Λ such that 1λ �= 0 in Sq, let θλ = Kvλ

be the 1-dimensional vector space with a basis vλ. We define a left action
of S ≥0

q on θλ by

1μ · vλ = δλμvλ, Ei · vλ = 0 for μ ∈ Λ and i = 1, . . . ,m − 1.

One can check that this action is well defined for λ ∈ Λ such that 1λ �= 0.
Similarly, we define a right action of S ≤0

q on θλ by

vλ · 1μ = δλμvλ, vλ · Fi = 0 for μ ∈ Λ and i = 1, . . . ,m − 1.

We have the following theorem. (A similar theorem for cyclotomic q-Schur
algebras has been obtained by [DR2]. The proof given here is similar to the
proof given in [DR2].)

Theorem 2.18. We have the following.
(i) {1λ | λ ∈ Λ such that 1λ �= 0} is a complete set of primitive idempotents

in S ≥0
q and S ≤0

q .
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(ii) {θλ | λ ∈ Λ such that 1λ �= 0} is a complete set of nonisomorphic simple
left S ≥0

q -modules and of nonisomorphic simple right S ≤0
q -modules.

(iii) For λ ∈ Λ such that 1λ �= 0, we have the following isomorphism of left
Sq-modules:

Sq ⊗S ≥0
q

θλ
∼=
{

Δ(λ) if λ ∈ Λ+,

0 otherwise.

(iv) For λ ∈ Λ such that 1λ �= 0, we have the following isomorphism of right
Sq-modules:

θλ ⊗S ≤0
q

Sq
∼=
{

Δ�(λ) if λ ∈ Λ+,

0 otherwise.

Proof. We show the theorem only for S ≥0
q . The proof is similar for S ≤0

q .
Note that

1λEi1 · · · Eik1λ = 1λ1λ+αi1
+· · ·+αik

Ei1 · · · Eik = 0

for 1 ≤ i1, . . . , ik ≤ m − 1, k ≥ 1. Thus, for λ ∈ Λ such that 1λ �= 0, we have
1λS ≥0

q 1λ = K1λ. This implies that 1λ is a primitive idempotent of S ≥0
q since

1λS ≥0
q 1λ

∼= EndS ≥0
q

(S ≥0
q 1λ), and dimK EndS ≥0

q
(S ≥0

q 1λ) ≥ 2 if 1λ is not prim-
itive. Moreover, we have 1 =

∑
λ∈Λ 1λ, and so {1λ | λ ∈ Λ such that 1λ �= 0}

is the complete set of primitive idempotents in S ≥0
q . This proves (i). In addi-

tion, we deduce that, for λ ∈ Λ such that 1λ �= 0, Θλ = S ≥0
q 1λ is a principal

indecomposable S ≥0
q -module. By investigating the degrees, S ≥0

q · (x1λ) is a
proper S ≥0

q -submodule of Θλ for any x ∈ S +
q such that x �= 1. This implies

that Θλ/RadΘλ
∼= θλ.

Next, we prove (iii). If λ /∈ Λ+, we can write 1λ =
∑

x∈ S −
q ,y∈ S+

q ,μ>λ rx,y,μ ×
x1μy in Sq. Thus, we have

1 ⊗ θλ =
∑
ν∈Λ

1ν ⊗ θλ = 1λ ⊗ θλ =
∑

x∈ S −
q ,y∈ S+

q ,μ>λ

rx,y,μx1μy ⊗ θλ = 0.

This implies that Sq ⊗S ≥0
q

θλ = Sq · (1 ⊗ θλ) = 0. Hence, we suppose that

λ ∈ Λ+. Note that Δ(λ) is generated by an element 1λ and that Sq ⊗S ≥0
q

θλ is
generated by 1 ⊗ vλ as Sq-modules. We define a map fλ : Δ(λ) → Sq ⊗S ≥0

q
θλ

by u · 1λ �→ u ⊗ vλ for u ∈ Sq. One can check that fλ gives a well-defined
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Sq-homomorphism. On the other hand, we define the map g̃λ : Sq × θλ →
Δ(λ) by (u, rvλ) �→ ru · 1λ for u ∈ Sq, r ∈ K. One can check that g̃λ gives
a well-defined S ≥0

q -balanced map. Thus, g̃λ induces an Sq-homomorphism
gλ : Sq ⊗S ≥0

q
θλ → Δ(λ) such that u ⊗ vλ �→ u · 1λ. Thus, (iii) is proved.

2.19.
Given that ηΛ = {ηλ

i | 1 ≤ i ≤ m − 1, λ ∈ Λ}, where ηλ
i ∈ S̃ −

q S̃ +
q 1λ is such

that deg(ηλ
i ) = 0, we take ηi ∈ Ũ −

q Ũ0
q Ũ+

q (1 ≤ i ≤ m − 1) such that Ψ̃(ηi) =∑
λ∈Λ ηλ

i , and we put η = (η1, . . . , ηm−1).
On the other hand, given that η = (η1, . . . , ηm−1), where ηi ∈ Ũ −

q Ũ0
q Ũ+

q

is such that deg(ηi) = 0, and given that Λ ⊂ P , set ηλ
i = Ψ̃(ηi)1λ (1 ≤ i ≤

m − 1, λ ∈ Λ), and put ηΛ = {ηλ
i | 1 ≤ i ≤ m − 1, λ ∈ Λ}.

Under this correspondence, we have the following theorem.

Theorem 2.20. We have the following.
(i) Let S ηΛ

q -mod be the category of finite-dimensional left S ηΛ
q -modules.

Then S ηΛ
q -mod is a full subcategory of Oη. In particular, when we

regard a S ηΛ
q -module as a Ũq-module through the surjection Ψ : Ũq →

S ηΛ
q , Δ(λ) (λ ∈ Λ+) is a highest-weight module, and L(λ) (λ ∈ Λ+) is

a simple highest-weight module with a highest weight λ associated to η.
(ii) For each M ∈ Oη, if the set of weights λ such that Mλ �= 0 is contained

in Λ, then we have M ∈ S ηΛ
q -mod, where we regard the S ηΛ

q -mod as a
full subcategory of Oη by (i). In particular, any simple object of Oη

is obtained as in Theorem 2.16 through the quotient algebra S ηΛ
q for a

suitable Λ ⊂ P≥0, where the choice of Λ depends on the simple object
of Oη.

(iii) Oη is a full subcategory of Ôη
tri.

Proof. (i) is clear through the surjection Φ : Ũq → S ηΛ
q and by the defin-

itions of Δ(λ) and L(λ).
We prove (ii). For M ∈ Oη, put ΛM = {λ ∈ P≥0 | Mλ �= 0}. (Note that

Mλ = 0 unless λ ∈ P≥0 by condition (e) in the definition of Oη.) Since the
dimension of M is finite, ΛM is a finite set. We take a finite subset Λ of P≥0

such that ΛM ⊂ Λ. Then, we can define an action of S ηΛ
q on M as follows:

Ei · m = ei · m for 1 ≤ i ≤ m − 1,m ∈ M,

Fi · m = fi · m for 1 ≤ i ≤ m − 1,m ∈ M,

1λ · m = δλμm for λ ∈ Λ,m ∈ Mμ.
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One can check that this action is well defined by using the defining relations
of Ũq and the definition of Oη. We denote this S ηΛ

q -module by MΛ. When
we regard MΛ as a Ũq-module through the surjection Ψ, MΛ coincides with
M . This implies that M ∈ S ηΛ

q -mod. Now, the last assertion of (ii) is clear.
Since S ηΛ

q has the triangular decomposition compatible with that of Ũq,
(iii) follows from (ii).

2.21.
We define an algebra antiautomorphism ι : S̃q → S̃q by ι(Ei) = Fi, ι(Fi) =

Ei, ι(1λ) = 1λ, and ι(τλ
i ) = τλ

i for i = 1, . . . ,m − 1 and λ ∈ Λ. We can easily
check that ι is well defined. We consider the following conditions.

ι(ηλ
i ) = ηλ

i for any i = 1, . . . ,m − 1 and λ ∈ Λ.(C-1)

Δ(λ) ⊗K Δ�(λ) ∼= Sq(≥ λ)Sq(> λ)
(C-2)

as (Sq, Sq)-bimodules for any λ ∈ Λ+.

Thanks to condition (C-1), ι induces a well-defined algebra antiautomor-
phism on Sq. In view of Lemma 2.11, condition (C-2) is equivalent to the
following condition:∑

x∈ S −
q ,y∈ S+

q

rxyx1λy ∈ Sq(> λ)

(C ′-2)
⇒

∑
x∈ S −

q ,y∈ S+
q

rxyx1λ ⊗ 1λy = 0 ∈ Δ(λ) ⊗K Δ�(λ).

It is clear that

u ∈ Sq(≥ λ) if and only if ι(u) ∈ Sq(≥ λ),

u ∈ Sq(> λ) if and only if ι(u) ∈ Sq(> λ).

This implies that Δ(λ)  x �→ ι(x) ∈ Δ�(λ) gives an isomorphism of K-vector
spaces. We consider the filtration of Sq in (2.16.2). Recall that

Sq(λ〈ci〉)/Sq(λ〈ci−1〉) ∼= Sq(≥ λ〈ci〉)/Sq(> λ〈ci〉) as (Sq, Sq)-bimodules.
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Under conditions (C-1) and (C-2), we have the following commutative dia-
gram:

Sq(λ〈ci 〉)/Sq(λ〈ci−1〉)

ι

∼= Δ(λ〈ci〉) ⊗K Δ�(λ〈ci 〉)

x⊗y �→ι(y)⊗ι(x)

Sq(λ〈ci 〉)/Sq(λ〈ci−1〉) ∼= Δ(λ〈ci〉) ⊗K Δ�(λ〈ci 〉)

This implies that Sq(λ〈ci〉)/Sq(λ〈ci−1〉) is a cell ideal of Sq/Sq(λ〈ci−1〉) in
the sense of [KX]. Thus, Sq turns out to be a cellular algebra (see [KX,
Definition 3.2]), and Δ(λ) (λ ∈ Λ+) gives a cell module of Sq. Moreover, we
already know that {L(λ) | λ ∈ Λ+} gives a complete set of nonisomorphic
simple Sq-modules. Thus, we have the following theorem.

Theorem 2.22. If Sq satisfies conditions (C-1) and (C-2), then Sq is a
quasi-hereditary cellular algebra.

§3. Specialization to an arbitrary ring

In this section, we define an A-form A Sq of Sq, and we consider a spe-
cialization RSq of A Sq to an arbitrary ring R. Recall that Sq depends on
the choice of {ηλ

i | 1 ≤ i ≤ m − 1, λ ∈ Λ}. In this section, we will assume
some conditions on this set so that, in the case where R is a field, we obtain
the properties of RSq which are similar to those obtained in the preceding
section and are compatible with the case where R = K.

3.1.
Put E

(k)
i = Ek

i /[k]!, F
(k)
i = F k

i /[k]!. Let A Sq be the A-subalgebra of Sq

generated by E
(k)
i , F

(k)
i (1 ≤ i ≤ m − 1, k ≥ 1), and 1λ (λ ∈ Λ). Note that,

by Lemma 2.3, we have Ψ(AŨq) =A Sq.
Let A S +

q (resp., A S −
q ) be the A-subalgebra of A Sq generated by E

(k)
i

(resp., F
(k)
i ) for 1 ≤ i ≤ m − 1, k ≥ 0, and let A S 0

q be the A-subalgebra of
A Sq generated by 1λ for λ ∈ Λ. As shown in Section 2, Sq has the triangular
decomposition Sq = S −

q S 0
q S +

q over K. However, it may happen that such
relations break over A. Hence, in order for the triangular decomposition to
hold over A, we impose the following condition:

E
(k)
i F

(l)
i ∈ A S −

q A S 0
q A S +

q for 1 ≤ i ≤ m − 1, k, l ≥ 1.((A-1))
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Indeed, under this assumption, we can prove the following proposition
by replacing Ei, Fj (1 ≤ i, j ≤ m − 1) with the divided powers E

(k)
i , F

(l)
j

(1 ≤ i, j ≤ m − 1, k, l ≥ 1) in the proof of Proposition 2.6.

Proposition 3.2. Suppose that condition (A-1) holds. Then A Sq has a
triangular decomposition

A Sq = A S −
q A S 0

q A S +
q .

Moreover, A Sq is finitely generated over A.

In the rest of this section, we always assume condition (A-1).

3.3.
Let R be an arbitrary ring, and we take ξ0, ξ1, . . . , ξr ∈ R, where ξ0 is

invertible in R. We regard R as an A-module by the homomorphism of
rings π : A → R such that q �→ ξ0, γi �→ ξi (1 ≤ i ≤ r). Then, we obtain the
specialized algebra R ⊗A A Sq of A Sq through the homomorphism π. We
denote it by RSq, and we denote 1 ⊗ x ∈ R ⊗A A Sq simply by x if it does
not cause any confusion. Let RS +

q (resp., RS −
q ) be the R-subalgebra of RSq

generated by 1 ⊗ E
(k)
i (resp., 1 ⊗ F

(k)
i ) for 1 ≤ i ≤ m − 1, k ≥ 0, and let RS 0

q be
the R-subalgebra of RSq generated by 1 ⊗ 1λ for λ ∈ Λ. By Proposition 3.2,
we have the triangular decomposition

RSq = RS −
q RS 0

q RS +
q .

Thanks to the triangular decomposition, we have the following results which
are similar to the case over K. For λ ∈ Λ, let

RSq(≥ λ) = {x1μy | x ∈ RS −
q , y ∈ RS +

q , μ ∈ Λ such that μ ≥ λ},

RSq(> λ) = {x1μy | x ∈ RS −
q , y ∈ RS +

q , μ ∈ Λ such that μ > λ}.

Then, RSq(≥ λ) and RSq(> λ) are two-sided ideals of RSq. Put

RΛ+ =
{
λ ∈ Λ

∣∣
RSq(≥ λ) �= RSq(> λ)

}
=
{
λ ∈ Λ

∣∣ 1λ /∈ RSq(> λ)
}
.

For λ ∈ RΛ+, we define a left (resp., right) RSq-submodule RΔ(λ) (resp.,
RΔ�(λ)) of RSq(≥ λ)/RSq(> λ) by

RΔ(λ) = RS −
q · 1λ + RSq(> λ), RΔ�(λ) = 1λ · RS +

q + RSq(> λ).
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Let RS ≥0
q (resp., RS ≤0

q ) be the subalgebra of RSq generated by RS +
q (resp.,

RS −
q ) and RS 0

q . For λ ∈ Λ such that 1λ �= 0 in RSq, let θλ = Rvλ be the free
R-module with a basis vλ. We define the left action of RS ≥0

q on θλ by

1μ · vλ = δλμvλ, E
(k)
i · vλ = 0 for μ ∈ Λ, i = 1, . . . ,m − 1 and k ≥ 1.

Similarly, we define a right action of RS ≤0
q on θλ by

vλ · 1μ = δλμvλ, vλ · F
(k)
i = 0 for μ ∈ Λ, i = 1, . . . ,m − 1 and k ≥ 1.

We have the following theorem which is shown in a way similar to the
proof of Theorem 2.18.

Theorem 3.4. We have the following.
(i) {1λ | λ ∈ Λ such that 1λ �= 0} is a complete set of primitive idempotents

in RS ≥0
q and RS ≤0

q .
(ii) {θλ | λ ∈ Λ such that 1λ �= 0} is a complete set of nonisomorphic simple

left RS ≥0
q -modules and of nonisomorphic simple right RS ≤0

q -modules.
(iii) For λ ∈ Λ such that 1λ �= 0, we have the following isomorphism of left

(resp., right) RSq-modules:

RSq ⊗
R S ≥0

q
θλ

∼=
{

RΔ(λ) if λ ∈ RΛ+,

0 otherwise;

θλ ⊗
R S ≤0

q
RSq

∼=
{

RΔ�(λ) if λ ∈ RΛ+,

0 otherwise.

3.5.
For λ ∈ RΛ+, we can define a bilinear form 〈 , 〉 : RΔ�(λ) × RΔ(λ) → R

such that

〈1λy,x1λ〉1λ ≡ 1λyx1λ mod RSq(> λ) for x ∈ RS −
q , y ∈ RS +

q .

Put radRΔ(λ) = {x ∈ RΔ(λ) | 〈y,x〉 = 0 for any y ∈ RΔ�(λ)}, and put
RL(λ) = RΔ(λ)/ radRΔ(λ). Similarly, put radRΔ�(λ) = {y ∈ RΔ�(λ) | 〈y,

x〉 = 0 for any x ∈ RΔ(λ)}, and put RL�(λ) = RΔ�(λ)/ radRΔ�(λ). Then,
one can prove the following theorem by replacing Ei, Fj (1 ≤ i, j ≤ m − 1)
with the divided powers E

(k)
i , F

(l)
j (1 ≤ i, j ≤ m − 1, k, l ≥ 1) in the proof of

Theorem 2.16.



72 K. WADA

Theorem 3.6. Suppose that R is a field. Then we have the following.
(i) For λ ∈ RΛ+, radRΔ(λ), (resp., radRΔ�(λ)) is a unique proper maxi-

mal submodule of RΔ(λ) (resp., RΔ�(λ)). Thus, RL(λ) (resp., RL�(λ))
is an absolutely simple left (resp., right) RSq-module.

(ii) For λ,μ ∈ RΛ+, if RL(μ) (resp., RL�(μ)) is a composition factor of
RΔ(λ) (resp., RΔ�(λ)), we have λ ≥ μ. Thus, RL(λ) ∼= RL(μ) if and
only if λ = μ. Moreover, the multiplicity of RL(λ) (resp., RL�(λ)) in
RΔ(λ) (resp., RΔ�(λ)) is equal to 1.

(iii) {RL(λ) | λ ∈ RΛ+} (resp., {RL�(λ) | λ ∈ RΛ+}) gives a complete set of
nonisomorphic left (resp., right) simple RSq-modules.

(iv) RSq is semisimple if and only if RΔ(λ) ∼= RL(λ) and RΔ�(λ) ∼= RL�(λ)
for any λ ∈ Λ+.

3.7.
Throughout the rest of this section, we assume that R is a field. Since

radRΔ�(λ) × radRΔ(λ) is included in the kernel of the bilinear form 〈 , 〉 :
RΔ�(λ) × RΔ(λ) → R, 〈 , 〉 induces a bilinear form on RL�(λ) × RL(λ).
Clearly, this bilinear form is nondegenerate on RL�(λ) × RL(λ). We regard
HomR(RL�(λ),R) as a left RSq-module by the standard way. Thanks to the
associativity of the bilinear form 〈 , 〉 (see Lemma 2.14(i)), the R-homomor-
phism G : RL(λ) → HomR(RL�(λ),R) given by x �→ 〈−, x〉 turns out to be
an RSq-homomorphism. Since 〈 , 〉 is nondegenerate on RL�(λ) × RL(λ),
the homomorphism G is nonzero. Hence, G is an isomorphism of left RSq-
modules since both of RL(λ) and HomR(RL�(λ),R) are simple. Thus, we
have the following lemma (a similar argument holds for RL�(λ)).

Lemma 3.8. Suppose that R is a field. For λ ∈ RΛ+, we have the following
isomorphisms:
(i) RL(λ) ∼= HomR(RL�(λ),R) as left RSq-modules,
(ii) RL�(λ) ∼= HomR(RL(λ),R) as right RSq-modules.
In particular, we have dimR RL(λ) = dimR RL�(λ).

3.9.
For λ ∈ RΛ+, let RP (λ) be the projective cover of RL(λ). For λ,μ ∈ RΛ+,

we denote the multiplicity of RL(μ) in the composition series of RP (λ)
by [RP (λ) : RL(μ)]. Similarly, we denote the multiplicity of RL(μ) (resp.,
RL�(μ)) in the composition series of RΔ(λ) (resp., RΔ�(λ)) by [RΔ(λ) :
RL(μ)] (resp., [RΔ�(λ) : RL�(λ)]). We have the following relation concerning
these multiplicities.
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Lemma 3.10. Suppose that R is a field. For λ,μ ∈ RΛ+, we have

[RP (λ) : RL(μ)] �
∑

ν∈RΛ+

[RΔ(ν) : RL(μ)][RΔ�(ν) : RL�(λ)].

Proof. In the proof, we omit the subscript R as we always consider the
objects over R. Let Λ+ = {λ〈1〉, . . . , λ〈z〉 } be such that i < j if λ〈i〉 > λ〈j〉.
Then we have the following filtrations of two-sided ideals:

Sq = Sq(λ〈z〉) � Sq(λ〈z−1〉) � · · · � Sq(λ〈1〉) � Sq(λ〈0〉) = 0,(3.10.1)

such that Sq(λ〈i〉)/Sq(λ〈i−1〉) ∼= Sq(≥ λ〈i〉)/Sq(> λ〈i〉) as Sq-bimodules. Since
P (λ) is a left projective Sq-module, the filtration (3.10.1) implies the exis-
tence of left Sq-modules Mj (0 ≤ j ≤ z) which give the following filtration:

P (λ) = Mz ⊃ Mz−1 ⊃ · · · ⊃ M1 ⊃ M0 = 0,

such that Mi/Mi−1
∼= (Sq(≥ λ〈i〉)/Sq(> λ〈i〉)) ⊗Sq P (λ). This implies that

[P (λ) : L(μ)] =
∑

ν∈Λ+

[(
Sq(≥ ν)/Sq(> ν)

)
⊗Sq P (λ) : L(μ)

]
.(3.10.2)

Since there exists a surjection Δ(ν) ⊗R Δ�(ν) → Sq(≥ ν)/Sq(> ν) of Sq-
bimodules, (3.10.2) implies that

[P (λ) : L(μ)] �
∑

ν∈Λ+

[Δ(ν) ⊗R Δ�(ν) ⊗Sq P (λ) : L(μ)].

Thus, it suffices to prove the following equality:

[Δ(ν) ⊗R Δ�(ν) ⊗Sq P (λ) : L(μ)] = [Δ(ν) : L(μ)][Δ�(ν) : L�(λ)].

Since

[Δ(ν) ⊗R Δ�(ν) ⊗Sq P (λ) : L(μ)] = [Δ(ν) : L(μ)] · dimR

(
Δ�(ν) ⊗Sq P (λ)

)
,

it is enough to show that dimR(Δ�(ν) ⊗
R Sq P (λ)) = [Δ�(ν) : L�(λ)]. By the

general theory of finite-dimensional algebras over a field, we have

dimR

(
Δ�(ν) ⊗Sq P (λ)

)
= dimR

(
HomR((Δ�(ν) ⊗Sq P (λ),R))

)



74 K. WADA

= dimR

(
HomSq(P (λ),HomR(Δ�(ν),R))

)
=
[
HomR

(
Δ�(ν),R

)
: L(λ)

]
=
[
HomR

(
Δ�(ν),R

)
: HomR

(
L�(λ),R

)]
(Lemma 3.8)

=
[
Δ�(ν) : L�(λ)

]
.

The lemma is then proved.

3.11.
For λ ∈ RΛ+, RΔ(λ) is an indecomposable RSq-module since RΔ(λ) has

a unique top. Thus, all the composition factors of RΔ(λ) belong to the same
block of RSq.

For λ,μ ∈ RΛ+, we denote by λ ∼ μ if there exists a sequence λ = λ0, λ1,

. . . , λk = μ (λi ∈ RΛ+) such that RΔ(λi−1) and RΔ(λi) (1 ≤ i ≤ k) have a
common composition factor. Clearly, ∼ gives an equivalent relation on RΛ+,
and RΔ(λ) and RΔ(μ) belong to the same block if λ ∼ μ. If RSq satisfies
condition (C-1), one can prove that the converse is also true. To prove it,
we prepare the following lemma.

Lemma 3.12. Suppose that R is a field. If RSq satisfies condition (C-1),
we have

[RΔ(λ) : RL(μ)] = [RΔ�(λ) : RL�(μ)].

Proof. Thanks to (C-1), we can define an isomorphism of R-modules
ι : RΔ(λ) → RΔ�(λ) via x �→ ι(x). For y ∈ RS +

q and x ∈ RS −
q , we have

〈1λy,x1λ〉1λ ≡ 1λyx1λ = 1λι(x)ι(y)1λ ≡ 〈1λι(x), ι(y)1λ〉1λ mod RSq(> λ).

Thus, we have 〈y,x〉 = 〈ι(x), ι(y)〉 for any x ∈ RΔ(λ) and y ∈ Δ�(λ). This
implies that radRΔ�(λ) = {ι(x) | x ∈ radRΔ(λ)}. Therefore, ι : RΔ(λ) →
RΔ�(λ) induces an R-isomorphism RL(λ) → RL�(λ). Let RΔ(λ) = M0 �
M1 � · · · � Mk � 0 be a composition series of RΔ(λ) such that Mi−1/Mi

∼=
RL(μi). By investigating the action of RSq, we see that ι(RΔ(λ)) = ι(M0) �
ι(M1) � · · · � ι(Mk) � 0 gives a composition series of RΔ�(λ) such that
ι(Mi−1)/ι(Mi) ∼= RL�(μi). This implies the lemma.

We have the following theorem.

Theorem 3.13. Suppose that R is a field. If RSq satisfies condition (C-1),
then λ ∼ μ if and only if RΔ(λ) and RΔ(μ) belong to the same block of RSq

for λ,μ ∈ RΛ+.
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Proof. Because we have already seen the “only if” part, we prove the
“if” part. Assume that RΔ(λ) and RΔ(μ) belong to the same block. Then
RP (λ) and RP (μ) belong to the same block. Thus, there exists a sequence
λ = λ0, λ1, . . . , λk = μ (λi ∈ RΛ+) such that RP (λi−1) and RP (λi) (1 ≤
i ≤ k) have a common composition factor RL(μi). By Lemma 3.10, there
exists νi, ν

′
i ∈ RΛ+ (1 ≤ i ≤ k) such that [RΔ(νi) : RL(μi)] �= 0, [RΔ�(νi) :

RL�(λi−1)] �= 0, [RΔ(ν ′
i) : RL(μi)] �= 0, and [RΔ�(ν ′

i) : RL�(λi)] �= 0. Com-
bined with Lemma 3.12, we have

λi−1 ∼ νi ∼ μi ∼ ν ′
i ∼ λi

for each 1 ≤ i ≤ k. Thus, we have λ ∼ μ.

3.14.
Finally, we consider the following condition:

For any λ ∈ AΛ+, AΔ(λ) is a free A-module, and(A-2)

AΔ(λ) ⊗A AΔ�(λ) ∼= A Sq(≥ λ)/A Sq(> λ)

as (A Sq, A Sq)-bimodules.

We have the following theorem.

Theorem 3.14. Suppose that conditions (A-1), (A-2), and (C-1) hold.
Then, for an arbitrary ring R and parameters ξ0, ξ1, . . . , ξr ∈ R, RSq is a
cellular algebra with respect to the poset Λ+. In particular, when R is a
field, RSq is a quasi-hereditary cellular algebra.

Proof. Thanks to (C-1), the map AΔ(λ)  x �→ ι(x) ∈ AΔ�(λ) gives an
isomorphism of A-modules. Thus, (A-2) implies that AΔ�(λ) is a free A-
module. Now, we can prove that A Sq is a cellular algebra with respect to the
poset AΛ+ in a way similar to that of the case over K (see Theorem 2.22),
and that AΔ(λ) (λ ∈ AΛ+) is a (left) cell module of A Sq. Thus, for any ring
R, RSq is a cellular algebra with respect to the poset AΛ+, and R ⊗A AΔ(λ)
(λ ∈ AΛ+) is a cell module of RSq.

From now on, we assume that R is a field. It is clear that 1 ⊗ 1λ ∈ RSq(> λ)
if 1λ ∈ A Sq(> λ). This implies that RΛ+ ⊂ AΛ+. Since R ⊗A AΔ(λ) has
an element 1 ⊗ 1λ, we have that rad(R ⊗A AΔ(λ)) �= R ⊗A AΔ(λ) for any
λ ∈ AΛ+. This implies that RSq is quasi-hereditary and that the number of
isomorphism classes of simple RSq-modules is equal to AΛ+ by the general
theory of cellular algebras. On the other hand, we know that the number
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of isomorphism classes of simple RSq-modules is equal to RΛ+ by Theo-
rem 3.6. Thus, we have RΛ+ = AΛ+. In particular, we have AΛ+ = Λ+ when
R = K.

Remarks 3.16. (i) Let A S̃ 

q = A S̃ 


q (Λ) be the A-subalgebra of S̃q gener-
ated by Ei, Fi,1λ, τλ

i for 1 ≤ i ≤ m − 1, λ ∈ Λ. Clearly, A S̃ 

q is isomorphic to

the associative algebra over A defined by generators Ei, Fi,1λ, τλ
i and defin-

ing relations (2.1.1)–(2.1.9). Moreover, A S̃ 

q is a homomorphic image of AŨ 


q ,
where AŨ 


q is the A-subalgebra of Ũq generated by all ei, fi, τi,K
±
j ,
[

Kj ;0
t

]
.

For A S̃ 

q , we can take ηΛ, and we can define the quotient algebra A S 


q =
A S 
ηΛ

q as the case of S ηΛ
q . (In this case, condition (A-1) for A S 


q to have
the triangular decomposition is unnecessary since we do not take a divided
power.) For an arbitrary ring R and parameters ξ0, ξ1, . . . , ξr, we take the
specialized algebra RS 


q = R ⊗A A S 

q . Then, for RS 


q , one can apply similar
arguments as in the case of RSq. In particular, results similar to those of
Theorems 3.4, 3.6, 3.13, and 3.15 hold for RS 


q . However, RS 

q is different

from RSq in general.
(ii) For any Cartan matrix of finite type, one can define the algebra

Ũq and its quotient algebra Sq associated to a given Cartan matrix in a
similar way. Namely, for the given Cartan data, we define Ũq by replacing
the “commutative relations between ei and fi” in the defining relations
of the corresponding quantum group with “formal generators τi” which
commute with Cartan parts. Then we specialize τi to various elements ηλ

i

to define finite-dimensional quotient algebras Sq as in Section 2. In this
case, we should take a weight lattice P whose rank is equal to the rank of
the root lattice, and we take a finite subset Λ of P to define the quotient
algebra S̃q without taking a subset of P such as P≥0. We should use an
argument similar to that in the proof of [Do, Lemma 3.2] instead of Lemma
2.3 in order to prove a statement similar to that in Proposition 2.2. We also
remove condition (e) from the definition of Oη. Then, we have all statements
in Sections 2 and 3 corresponding to the given Cartan matrix.

§4. Review of q-Schur algebras of type A

In this section, we recall the definition of the q-Schur algebra Sn,1 of type
A and review some known results concerning the presentations of Sn,1 given
in [DG] and the Borel subalgebras of Sn,1. The Borel subalgebras will play



PRESENTING CYCLOTOMIC q-SCHUR ALGEBRAS 77

an important role in Sections 6 and 7 to obtain presentations of cyclotomic
q-Schur algebras.

4.1.
Let n,m be positive integers, and let Λn,1 be the set of compositions of

n with m parts, namely,

Λn,1 =
{
μ = (μ1, . . . , μm) ∈ Zm

≥0

∣∣ μ1 + · · · + μm = n
}
.

The set Λn,1 depends on the choice of the integer m. However, we fix the
integer m for the set Λn,1 throughout this article. Hence, we omit m from
the notation of the set Λn,1. We regard Λn,1 as a subset of P by the injective
map from Λn,1 to P given by μ = (μ1, . . . , μm) �→

∑m
i=1 μiεi. Thus, for μ =

(μ1, . . . , μm) ∈ Λn,1 and αi (1 ≤ i ≤ m − 1), we have

μ ± αi = (μ1, . . . , μi−1, μi ± 1, μi+1 ∓ 1, μi+2, . . . , μm).

For μ ∈ Λn,1, the diagram of μ is the set [μ] = {(i, j) ∈ N × N | 1 ≤ j ≤
μi,1 ≤ i ≤ m}, and a μ-tableau is a bijection t : [μ] → {1,2, . . . , n}. Let tμ be
the μ-tableau in which the integers 1,2, . . . , n, are attached in the order from
left to right and from top to bottom in [μ]. The symmetric group Sn acts
on the set of μ-tableaux from the right by permuting the integers attached
in [μ]. For μ,ν ∈ Λn,1, a μ-tableau of type ν is a map T : [μ] → {1, . . . ,m}
such that νi = �{x ∈ [μ] | T (x) = i}. For μ,ν and μ-tableau t, let ν(t) be a
μ-tableau of type ν obtained by replacing each entry i in t by k if the i

appear in the kth row of tν .
For μ ∈ Λn,1, let Sμ be the Young subgroup of Sn corresponding to μ,

and let Dμ be the set of distinguished representatives of right Sμ-cosets.
For μ,ν ∈ Λn,1, Dμν = Dμ ∩ D −1

ν is the set of distinguished representatives
of Sμ-Sν double cosets.

4.2.
Let R be an integral domain, and let q be an invertible element in R.

The Iwahori-Hecke algebra RHn of the symmetric group Sn is the associa-
tive algebra over R generated by T1, . . . , Tn−1 with the following defining
relations:

(Ti − q)(Ti + q−1) (1 ≤ i ≤ n − 1),

TiTi+1Ti = Ti+1TiTi+1 (1 ≤ i ≤ n − 2),

TiTj = TjTi (|i − j| ≥ 2).
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For w ∈ Sn, we denote by �(w) the length of w, and we denote by Tw the
standard basis of RHn corresponding to w. We define an antiautomorphism
∗ : RHn  x �→ x∗ ∈ RHn by T ∗

i = Ti for i = 1, . . . , n − 1. Thus, we have T ∗
w =

Tw−1 for w ∈ Sn. For μ ∈ Λn,1, set xμ =
∑

w∈Sμ
q�(w)Tw, and we define the

right RHn-module Mμ = xμ · RHn. The q-Schur algebra RSn,1 associated
to RHn is defined by

RSn,1 = End
RHn

( ⊕
μ∈Λn,1

Mμ
)
.

The following lemma is well known (see, e.g., [M, (4.6)]).

Lemma 4.3. For μ,ν ∈ Λn,1 and d ∈ Dμν , let T = ν(tμ · d), S = μ(tν · d−1).
Then we have∑

y∈Dν

μ(tν ·y)=S

q�(y)T ∗
y xν =

∑
w∈SμdSν

q�(w)Tw =
∑

x∈Dμ

ν(tμ ·x)=T

q�(x)xμTx.

Thanks to this lemma, for μ,ν ∈ Λn,1 and d ∈ Dμν , we can define an
RHn-module homomorphism ψd

μ,ν : Mν → Mμ by

ψd
μ,ν(xν · h) =

( ∑
y∈Dν

μ(tν ·y)=S

q�(y)T ∗
y xν

)
· h

=
( ∑

x∈Dμ

ν(tμ ·x)=T

q�(x)xμTx

)
· h (h ∈ RHn).

We extend this homomorphism to an element of RSn,1 by ψd
μ,ν(mτ ) = 0

for mτ ∈ M τ with τ ∈ Λn,1 such that τ �= ν. It is known that {ψd
μ,ν | μ,ν ∈

Λn,1, d ∈ Dμν } gives a free R-basis of RSn,1 (see [M, Theorem 4.7]).

4.4.
Next, we define the Borel subalgebras of RSn,1 following [DR2]. Let

I(m,n) = {i = (i1, . . . , in) | 1 ≤ ik ≤ m for 1 ≤ k ≤ n}. Sn acts on I(m,n)
from the right by i · w = (iw(1), . . . , iw(n)) for i = (i1, . . . , in) ∈ I(m,n) and
w ∈ Sn. We define a partial order � on I(m,n) by

(i1, . . . , in) � (j1, . . . , jn) if and only if ik ≥ jk for all k = 1, . . . , n.
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For λ ∈ Λn,1, put

iλ = (1, . . . ,1︸ ︷︷ ︸
λ1 terms

,2, . . . ,2︸ ︷︷ ︸
λ2 terms

, . . . ,m, . . . ,m︸ ︷︷ ︸
λm terms

).

For μ ∈ Λn,1, we set

Ω�(μ) =
{
(λ,d)

∣∣ λ ∈ Λn,1, d ∈ Dλμ such that iλ · d � iμ
}
,

Ω�(μ) =
{
(λ,d)

∣∣ λ ∈ Λn,1, d ∈ Dλμ such that iμ · d � iλ
}
.

Let RS ≤0
n,1 be the free R-submodule of RSn,1 spanned by {ψd

λ,μ | (λ,d) ∈
Ω�(μ), μ ∈ Λn,1}, and let RS ≥0

n,1 be the free R-submodule of RSn,1 spanned
by {ψd

μ,λ | (λ,d) ∈ Ω�(μ), μ ∈ Λn,1}. By [DR2, Theorem 2.3], RS ≤0
n,1 (resp.,

RS ≥0
n,1 ) becomes a subalgebra of RSn,1.

4.5.
We denote Q(q)Sn,1 (resp., Q(q)S

≤0
n,1 , Q(q)S

≥0
n,1 ) simply by S (resp., S ≤0

n,1 ,

S ≥0
n,1 ). The following theorem comes from the works of several authors.

Theorem 4.6. (see [J], [Du], [PW], [DR2], [DP])
(i) There exists a surjective homomorphism of algebras

ρ : Uq → Sn,1.

(ii) By restricting ρ to U ≥0
q (resp., U ≤0

q ), we have the surjective homomor-
phisms

ρ |
U ≥0

q
: U ≥0

q → S ≥0
n,1 , ρ |

U ≤0
q

: U ≤0
q → S ≤0

n,1 .

(iii) By restricting ρ to Z Uq, we have the surjective homomorphism

ρ |ZUq : Z Uq → Z Sn,1.

(iv) By restricting ρ to Z U ≥0
q (resp., Z U ≤0

q ), we have the surjective homo-
morphisms

ρ |ZU ≥0
q

: Z U ≥0
q → Z S ≥0

n,1 , ρ |
Z U ≤0

q
: Z U ≤0

q → Z S ≤0
n,1 .

We can describe precisely the image of the generators of Uq under the
homomorphism ρ in Theorem 4.6 as follows.
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Proposition 4.7. (see [S2])
(i) For ei (1 ≤ i ≤ m − 1), we have

ρ(ei) =
∑

μ∈Λn,1

q−μi+1+1ψ1
μ+αi,μ,

where if μ + αi /∈ Λn,1, we define ψ1
μ+αi,μ = 0.

(ii) For fi (1 ≤ i ≤ m − 1), we have

ρ(fi) =
∑

μ∈Λn,1

q−μi+1ψ1
μ−αi,μ,

where if μ − αi /∈ Λ1, we define ψ1
μ−αi,μ = 0.

(iii) For K±
i (1 ≤ i ≤ m), we have

ρ(K±
i ) =

∑
μ∈Λn,1

q±μiψ1
μ,μ.

Clearly, ψ1
μ,μ is an identity map on Mμ.

Proof. See Appendix A.

4.8.
By Theorem 4.6, the q-Schur algebra Sn,1 is a quotient algebra of Uq.

Thus, Sn,1 is generated by the generators of Uq. Doty and Giaquinto [DG]
described the kernel of the surjection ρ : Uq → Sn,1 precisely. Moreover, they
also gave a presentation of the q-Schur algebra Z Sn,1 over Z .

Theorem 4.9. ([DG, Theorems 3.1 and 3.3])
(i) The q-Schur algebra Sn,1 is isomorphic to the associative algebra over

Q(q) generated by ei, fi (1 ≤ i ≤ m − 1) and K±
i (1 ≤ i ≤ m) with the

defining relations (1.2.1)–(1.2.6) together with the following two rela-
tions:

K1K2 · · · Km = qn,(4.9.1)

(Ki − 1)(Ki − q)(Ki − q2) · · · (Ki − qn) = 0.(4.9.2)

(ii) Z Sn,1 is the Z-subalgebra of Sn,1 generated by all e
(k)
i , f

(k)
i ,K±

j , and[
Kj ;0

t

]
for 1 ≤ i ≤ m − 1,1 ≤ j ≤ m,k ≥ 1, t ≥ 1.

In [DG], they gave an alternative presentation of Sn,1 by generators and
relations as follows.
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Theorem 4.10. ([DG, Theorem 3.4])
(i) The q-Schur algebra Sn,1 is isomorphic to an associative algebra over

Q(q) generated by Ei, Fi (1 ≤ i ≤ m − 1) and 1λ (λ ∈ Λn,1) with the
following defining relations:

1λ1μ = δλμ1λ,
∑

λ∈Λn,1

1λ = 1;

Ei1λ =

{
1λ+αi

Ei if λ + αi ∈ Λn,1,

0 otherwise;

Fi1λ =

{
1λ−αi

Fi if λ − αi ∈ Λn,1,

0 otherwise;

1λEi =

{
Ei1λ−αi

if λ − αi ∈ Λn,1,

0 otherwise;

1λFi =

{
Fi1λ+αi

if λ + αi ∈ Λn,1,

0 otherwise;

EiFj − FjEi = δij

∑
λ∈Λn,1

[λi − λi+1]1λ;

Ei±1E
2
i − (q + q−1)EiEi±1Ei + E2

i Ei±1 = 0;

EiEj = EjEi (|i − j| ≥ 2);

Fi±1F
2
i − (q + q−1)FiFi±1Fi + F 2

i Fi±1 = 0;

FiFj = FjFi (|i − j| ≥ 2).

(ii) Z Sn,1 is the Z-subalgebra of Sn,1 generated by all E
(k)
i , F

(k)
i (1 ≤ i ≤

m − 1, k ≥ 1), and 1λ (λ ∈ Λn,1).

Remark 4.11. For λ ∈ Λn,1 and i = 1, . . . ,m − 1, put ηλ
i = [λi − λi+1]1λ,

and put ηΛn,1 = {ηλ
i | 1 ≤ i ≤ m − 1, λ ∈ Λn,1}. It is clear that Sn,1 is iso-

morphic to S
ηΛn,1
q defined in Section 2.5. Clearly, S

ηΛn,1
q satisfies condition

(C-1). It is known that the q-Schur algebra Z Sn,1 over Z has a triangular
decomposition which coincides with the triangular decomposition of Z Sq

in Proposition 3.2, and that Z Sn,1 is a cellular algebra. Moreover, Z Δ(λ)
for λ ∈ Λ+

n,1 coincides with a cell module of Z Sn,1 thanks to Theorem 3.4.
In particular, Λ+

n,1 coincides with the set of partitions of size n (see [DR2]
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and [M] for the results on q-Schur algebra Z Sn,1). Thus, Sn,1 (∼= S η
q (Λn,1))

satisfies conditions (A-1), (A-2), and (C-1).

In [DP], a presentation of Borel subalgebras S ≤0
n,1 and S ≥0

n,1 was given as
follows.

Theorem 4.12. ([DP, Theorem 8.1]) The Borel subalgebra S ≤0
n,1 (resp.,

S ≥0
n,1 ) is isomorphic to the associative algebra generated by fi (resp., ei)

(1 ≤ i ≤ m − 1) and K±
i (1 ≤ i ≤ m) with defining relations (1.2.1), (1.2.3),

(1.2.6), (4.9.1), and (4.9.2) (resp., (1.2.1), (1.2.2), (1.2.5), (4.9.1), and
(4.9.2)).

Remark 4.13. The above presentation of Borel subalgebras is not exactly
the same as the one given in [DP, Theorem 8.1]. However, it is equivalent
to their presentation (see [DP, Remarks 4.4]).

§5. Review of cyclotomic q-Schur algebras

In this section, we recall the definition of cyclotomic q-Schur algebras Sn,r

introduced by [DJM], and we review some results on Borel subalgebras of
Sn,r obtained by [DR2] which have an important role in later arguments to
obtain presentations of Sn,r.

5.1.
Let R be an integral domain, and take parameters q,Q1, . . . ,Qr ∈ R,

where q is invertible in R. The Ariki-Koike algebra RHn,r associated to Sn �
(Z/rZ)n is the associative algebra with 1 over R generated by T0, T1, . . . ,

Tn−1 with the following defining relations:

(T0 − Q1)(T0 − Q2) · · · (T0 − Qr) = 0,

(Ti − q)(Ti + q−1) = 0 (1 ≤ i ≤ n − 1),

T0T1T0T1 = T1T0T1T0,

TiTi+1Ti = Ti+1TiTi+1 (1 ≤ i ≤ n − 2),

TiTj = TjTi (|i − j| ≥ 2).

The subalgebra of RHn,r generated by T1, . . . , Tn−1 is isomorphic to the
Iwahori-Hecke algebra RHn. We define an algebra antiautomorphism
∗ : RHn,r  x �→ x∗ ∈ RHn,r by T ∗

i = Ti for i = 0, . . . , n − 1.
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5.2.
Put

Λn,r =

{
μ = (μ(1), . . . , μ(r))

∣∣∣∣∣ μ(k) = (μ(k)
1 , . . . , μ

(k)
n ) ∈ Zn

≥0∑r
k=1

∑n
i=1 μ

(k)
i = n

}
.

Thus, Λn,r is the set of r-tuples of compositions with n parts whose size
is equal to n. Put m = rn, and put pk = (k − 1)n for k = 1, . . . , r. Then,
there exists a bijection from Λn,r to Λn,1 such that μ �→ μ, where μ =
(μ1, μ2, . . . , μm) ∈ Λn,1 obtained by μpk+i = μ

(k)
i .

5.3.
For i = 1, . . . , n, put L1 = T0 and Li = Ti−1Li−1Ti−1. For μ ∈ Λn,r, put

u+
μ =

r∏
k=1

ak∏
i=1

(Li − Qk), mμ = xμu+
μ , Mμ = mμ · RHn,r,

where ak =
∑k−1

j=1 |μ(j)| with a1 = 0. Note that (mμ)∗ = mμ, and we define
(Mμ)∗ = RHn,r · mμ. The cyclotomic q-Schur algebra RSn,r associated to
RHn,r is defined by

RSn,r = End
RHn,r

( ⊕
μ∈Λn,r

Mμ
)
.

The following properties are well known, and one can check them by
direct calculations by using the defining relations of RHn,r.

Lemma 5.4. We have the following.
(i) Li and Lj commute with each other for any 1 ≤ i, j ≤ n.
(ii) Ti and Lj commute with each other if j �= i, i + 1.
(iii) Ti commutes with both LiLi+1 and Li + Li+1.
(iv) For a ∈ R and i = 1, . . . , n − 1, Ti commutes with

∏k
j=1(Lj − a) if k �= i.

(v) Li+1Ti = (q − q−1)Li+1 + TiLi, TiLi+1 = (q − q−1)Li+1 + LiTi.
(vi) LiTi = (q−1 − q)Li+1 + TiLi+1, TiLi = (q−1 − q)Li+1 + Li+1Ti.

5.5.
For λ,μ ∈ Λn,r and d ∈ Dλμ such that iλ · d � iμ, we define ϕd

λ,μ ∈ RSn,r

by

ϕd
λ,μ(mν · h) = δμν

( ∑
w∈SλdSμ

q�(w)Tw

)
u+

μ · h (ν ∈ Λn,r, h ∈ RHn,r).
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This is well defined by Lemma 4.3, and we have ϕd
λ,μ ∈ Hom

RHn,r(M
μ,Mλ)

by [DR2, Lemma 5.6].
For λ,μ ∈ Λn,r and d ∈ Dμλ such that iλ � iμ · d, we have iλ · d−1 � iμ

and d−1 ∈ Dλμ from definitions immediately. Thus, we can define ϕd−1

λ,μ ∈
Hom

RHn,r(M
μ,Mλ) as above. On the other hand, by [DJM, Corollary 5.17],

we have ϕd−1

λ,μ (mμ) ∈ (Mμ)∗ ∩ Mλ; hence, (ϕd−1

λ,μ (mμ))∗ ∈ Mμ ∩ (Mλ)∗. Thus,
we define ϕ′d

μ,λ ∈ RSn,r by

ϕ′d
μ,λ(mν · h) = δλν

(
ϕd−1

λ,μ (mμ)
)∗ · h (ν ∈ Λn,r, h ∈ RHn,r),

and we have ϕ′d
μλ ∈ Hom

RHn,r(M
λ,Mμ).

Let RS ≤0
n,r (resp., RS ≥0

n,r ) be the free R-submodule of RSn,r spanned
by {ϕd

λ,μ | (λ,d) ∈ Ω�(μ), μ ∈ Λn,r } (resp., {ϕ′d
μ,λ | (λ,d) ∈ Ω�(μ), μ ∈ Λn,r }).

Then RS ≤0
n,r (resp., RS ≥0

n,r ) is a subalgebra of RSn,r, and {ϕd
λ,μ | (λ,d) ∈

Ω�(μ), μ ∈ Λn,r } (resp., {ϕ′d
μ,λ | (λ,d) ∈ Ω�(μ), μ ∈ Λn,r }) gives a free R-

basis of RS ≤0
n,r (resp., RS ≥0

n,r ) by [DR2, Lemma 5.12, Theorem 5.13].
Moreover, Du and Rui [DR2] proved the following theorem.

Theorem 5.6 ([DR2, Theorems 5.13 and 5.16]).

(i) There exists an algebra isomorphism F ≤0 : RS ≤0
n,r → RS ≤0

n,1 such that
F ≤0(ϕd

λ,μ) = ψd
λ,μ

for ϕd
λ,μ ∈ {ϕd

λ,μ | (λ,d) ∈ Ω�(μ), μ ∈ Λn,r }.

(ii) There exists an algebra isomorphism F ≥0 : RS ≥0
n,r → RS ≥0

n,1 such that
F ≥0(ϕ′d

μ,λ) = ψd
μ,λ

for ϕ′d
μ,λ ∈ {ϕ′d

μ,λ | (λ,d) ∈ Ω�(μ), μ ∈ Λn,r }.
(iii) RSn,r has a decomposition

RSn,r = RS ≤0
n,r · RS ≥0

n,r =
∑

λ∈Λn,r

RS ≤0
n,r · ϕ1

λ,λ · RS ≥0
n,r .

§6. The cyclotomic q-Schur algebra as a quotient algebra of Ũq

In this section, we give a surjective homomorphism from Ũq to Sn,r.

6.1.
As in Section 5, let n, r be positive integers, and put m = nr. (We need

this condition to apply Theorem 5.6 later.) Let Γ = {1, . . . , n} × {1, . . . , r},
and let Γ ′ = Γ \ {(n, r)}. As a convention, we set (n + 1, k) = (1, k + 1)
and (0, k + 1) = (n,k) for k = 1, . . . , r − 1. For (i, k) ∈ Γ , put ε(i,k) = εpk+i,
where pk = (k − 1)n. Thus, we can rewrite the weight lattice P by P =
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(i,k)∈Γ Zε(i,k), and we regard Λn,r as a subset of P by the injective map

from Λn,r to P given by Λn,r  μ �→
∑

(i,k)∈Γ μ
(k)
i ε(i,k) ∈ P . For (i, k) ∈ Γ ,

put h(i,k) = hpk+i; then the dual weight lattice P ∨ can be rewritten as
P ∨ =

⊕
(i,k)∈Γ Zh(i,k). Moreover, for (i, k) ∈ Γ ′, put α(i,k) = αpk+i = ε(i,k) −

ε(i+1,k). Thus, for μ ∈ Λn,r, μ ± α(i,k) makes sense in P .

6.2.
For μ ∈ Λn,r and (i, k) ∈ Γ ′, if μ+α(i,k) ∈ Λn,r then we have iμ � iμ+α(i,k)

from definitions. On the other hand, if μ − α(i,k) ∈ Λn,r then we have
iμ−α(i,k)

� iμ. Then, for (i, k) ∈ Γ ′, we define elements ϕ±
(i,k) ∈ RSn,r by

ϕ+
(i,k) =

∑
μ∈Λn,r

q−μ
(k)
i+1+1ϕ′1

μ+α(i,k),μ
,

ϕ−
(i,k) =

∑
μ∈Λn,r

q−μ
(k)
i +1ϕ1

μ−α(i,k),μ
,

where we set ϕ′1
μ+α(i,k),μ

= 0 (resp., ϕ1
μ−α(i,k),μ

= 0) if μ+α(i,k) /∈ Λn,r (resp.,
μ − α(i,k) /∈ Λn,r).

For (i, k) ∈ Γ , we define κ±
(i,k) ∈ RSn,r by

κ±
(i,k) =

∑
μ∈Λn,r

q±μ
(k)
i ϕ1

μ,μ,

and we write κ+
(i,k) by κ(i,k) for simplicity.

For μ ∈ Λn,r and (i, k) ∈ Γ , put N =
∑k−1

l=1 |μ(l)| +
∑i−1

j=1 μ
(k)
j . By

Lemma 5.4, one sees that (LN+1+LN+2+ · · · +L
N+μ

(k)
i

) commutes with mμ.

Thus, we can define σμ
(i,k) ∈ RSn,r by

σμ
(i,k)(mν · h) = δμ,ν

(
mμ(LN+1 + · · · + L

N+μ
(k)
i

)
)

· h (ν ∈ Λn,rh ∈ RHn,r),

where we set σμ
(i,k) = 0 if μ

(k)
i = 0. Moreover, we define

σ(i,k) =
∑

μ∈Λn,r

σμ
(i,k).

6.3.
Recall that A = Z[γ1, . . . , γr] is the polynomial ring over Z = Z[q, q−1]

with indeterminate elements γ1, . . . , γr and that K = Q(q, γ1, . . . , γr) is the
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quotient field of A. We denote KSn,r simply by Sn,r, where we set Qi = γi

(1 ≤ i ≤ r). Now, we can define a surjective homomorphism of K-algebras
from Ũq to Sn,r as in the following proposition.

Proposition 6.4. There exists a surjective homomorphism ρ̃ : Ũq → Sn,r

such that, for (i, k) ∈ Γ ′,

ρ̃(epk+i) = ϕ+
(i,k),(6.4.1)

ρ̃(fpk+i) = ϕ−
(i,k),(6.4.2)

ρ̃(τpk+i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−γk+1

κ(n,k)κ
−
(1,k+1)

−κ−
(n,k)

κ(1,k+1)

q−q−1

+ κ(n,k)κ
−
(1,k+1)(q

−1σ(n,k) − qσ(1,k+1)) if i = n,
κ(i,k)κ

−
(i+1,k)

−κ−
(i,k)

κ(i+1,k)

q−q−1 otherwise,

(6.4.3)

and that, for (i, k) ∈ Γ ,

ρ̃(K±
pk+i) = κ±

(i,k).(6.4.4)

Moreover, by restricting ρ̃ to AŨq, ρ̃ |
AŨq

gives a surjective homomor-

phism from AŨq to ASn,r.

6.5.
The rest of this section is devoted to the proof of the proposition. The

following relations are clear from the definitions:

κ(i,k)κ(j,l) = κ(j,l)κ(i,k), κ(i,k)κ
−
(i,k) = κ−

(i,k)κ(i,k) = 1.(6.5.1)

Since ϕ1
ν,ν is the identity map on Mν and σμ

(i,k) ∈ HomHn,r(M
μ,Mμ), we

have

σμ
(i,k)ϕ

1
ν,ν = ϕ1

ν,νσ
μ
(i,k) = δμ,νσ

μ
(i,k).

This relation combined with (6.5.1) implies that

κ(j,l)

(
κ(n,k)κ

−
(1,k+1)(q

−1σ(n,k) − qσ(1,k+1))
)

(6.5.2)
=
(
κ(n,k)κ

−
(1,k+1)(q

−1σ(n,k) − qσ(1,k+1))
)
κ(j,l).
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6.6.
By the definitions of ϕ±

(i,k), κ
±
(i,k), it is clear that the elements ϕ+

(i,k) (resp.,
ϕ−

(i,k)) for (i, k) ∈ Γ ′ are in S ≥0
n,r (resp., S ≤0

n,r ), and that κ±
(i,k) for (i, k) ∈ Γ

is included in both of S ≥0
n,r and S ≤0

n,r . Recall that, in the type A case, there
exists a surjective homomorphism ρ : Uq → Sn,1 (Theorem 4.6). Here, we
extend this homomorphism to a homomorphism over K. By using the iso-
morphism F ≥0 : S ≥0

n,r → KS ≥0
n,1 (resp., F ≤0 : S ≤0

n,r → KS ≤0
n,1 ) in Theorem 5.6,

we have the following proposition.

Proposition 6.7. We have the following.

(i) S ≥0
n,r is generated by ϕ+

(i,k) ((i, k) ∈ Γ ′) and κ±
(i,k) ((i, k) ∈ Γ ).

(ii) S ≤0
n,r is generated by ϕ−

(i,k) ((i, k) ∈ Γ ′) and κ±
(i,k) ((i, k) ∈ Γ ).

Proof. We show only (i) since (ii) is shown in a similar way. By the above
arguments, ϕ+

(i,k) and κ±
(i,k) are elements of S ≥0

n,r . On the other hand, by
Proposition 4.7 and Theorem 5.6, we have ((F ≥0)−1 ◦ ρ)(epk+i) = ϕ+

(i,k) and

((F ≥0)−1 ◦ ρ)(K±
pk+i) = κ±

(i,k). Moreover, KS ≥0
n,1 is the image of U ≥0

q under
ρ by Theorem 4.6(ii), and U ≥0

q is generated by ei (1 ≤ i ≤ m − 1) and K±
i

(1 ≤ i ≤ m). This implies (i).

6.8.
In the proof of Proposition 6.7, we have a surjection (F ≥0)−1 ◦ ρ : U ≥0

q →
S ≥0

n,r . Under this surjection, relations (1.2.2) and (1.2.5) imply the following
relations (6.8.1) and (6.8.3). Similarly, the following relations (6.8.2) and
(6.8.4) follow from relations (1.2.3) and (1.2.6).

κ(i,k)ϕ
+
(j,l)κ

−
(i,k) = q〈α(j,l),h(i,k)〉ϕ+

(j,l),(6.8.1)

κ(i,k)ϕ
−
(j,l)κ

−
(i,k) = q− 〈α(j,l),h(i,k)〉ϕ−

(j,l),(6.8.2)

ϕ+
(i±1,k)(ϕ

+
(i,k))

2 − (q + q−1)ϕ+
(i,k)ϕ

+
(i±1,k)ϕ

+
(i,k) + (ϕ+

(i,k))
2ϕ+

(i±1,k) = 0,(6.8.3)

ϕ+
(i,k)ϕ

+
(j,l) = ϕ+

(j,l)ϕ
+
(i,k)

(
|(pk + i) − (pl − j)| ≥ 2

)
,

ϕ−
(i±1,k)(ϕ

−
(i,k))

2 − (q + q−1)ϕ−
(i,k)ϕ

−
(i±1,k)ϕ

−
(i,k) + (ϕ−

(i,k))
2ϕ−

(i±1,k) = 0,(6.8.4)

ϕ−
(i,k)ϕ

−
(j,l) = ϕ−

(j,l)ϕ
−
(i,k)

(
|(pk + i) − (pl − j)| ≥ 2

)
.
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6.9.
For i = 1, . . . , n − 1, let si = (i, i + 1) ∈ Sn be the adjacent transposition.

For μ,ν ∈ Λn,r, put Xν
μ = {x ∈ Dμ | ν(tμ · x) = ν(tμ)}. One can check that

X
μ−α(i,k)
μ =

{
1, sN , (sNsN+1), . . . , (sNsN+1 · · · s

N+μ
(k)
i+1−1

)
}
,(6.9.1)

Xμ
μ−α(i,k)

=
{
1, sN −1, (sN −1sN −2), . . . , (sN −1sN −2 · · · s

N −μ
(k)
i +1

)
}
,(6.9.2)

X
μ+α(i,k)
μ =

{
1, sN , (sNsN −1), . . . , (sNsN −1 · · · s

N −μ
(k)
i +1

)
}
,(6.9.3)

Xμ
μ+α(i,k)

=
{
1, sN+1, (sN+1sN+2), . . . , (sN+1sN+2 · · · s

N+μ
(k)
i+1−1

)
}
,(6.9.4)

where N =
∑k−1

l=1 |μ(l)| +
∑i

j=1 μ
(k)
j , and put μ

(k)
n+1 = μ

(k+1)
1 if i = n. Then,

we have the following lemma.

Lemma 6.10. For μ ∈ Λn,r and (i, k) ∈ Γ ′, we have the following.

(i)

ϕ+
(i,k)(mμ) = q−μ

(k)
i+1+1mμ+α(i,k)

( ∑
y∈Xμ

μ+α(i,k)

q�(y)Ty

)

= q−μ
(k)
i+1+1

( ∑
x∈X

μ+α(i,k)
μ

q�(x)T ∗
x

)
hμ

+(i,k)mμ,

where hμ
+(i,k) =

{
1 (i �= n)

LN+1 − Qk+1 (i = n) (N = |μ(1)| + · · · + |μ(k)|).
(ii)

ϕ−
(i,k)(mμ) = q−μ

(k)
i +1

( ∑
y∈X

μ−α(i,k)
μ

q�(y)T ∗
y

)
mμ

= q−μ
(k)
i +1mμ−α(i,k)

hμ
−(i,k)

( ∑
x∈Xμ

μ−α(i,k)

q�(x)Tx

)
,

where hμ
−(i,k) =

{
1 (i �= n),

LN − Qk+1 (i = n) (N = |μ(1)| + · · · + |μ(k)|).

Proof. This is a direct consequence of the definitions and Lemma 4.3.
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This lemma implies the following proposition.

Proposition 6.11. For (i, k), (j, l) ∈ Γ ′, we have the following relations.
(i) If (i, k) �= (j, l) then we have

ϕ+
(i,k)ϕ

−
(j,l) − ϕ−

(j,l)ϕ
+
(i,k) = 0.

(ii) If (i, k) = (j, l) and i �= n, then we have

ϕ+
(i,k)ϕ

−
(i,k) − ϕ−

(i,k)ϕ
+
(i,k) =

κ(i,k)κ
−
(i+1,k) − κ−

(i,k)κ(i+1,k)

q − q−1
.

(iii) If (i, k) = (j, l) = (n,k), then we have

ϕ+
(n,k)ϕ

−
(n,k) − ϕ−

(n,k)ϕ
+
(n,k)

= −γk+1

κ(n,k)κ
−
(1,k+1) − κ−

(n,k)κ(1,k+1)

q − q−1

+ κ(n,k)κ
−
(1,k+1)(q

−1σ(n,k) − qσ(1,k+1)).

Proof. By Lemma 6.10, for μ ∈ Λn,r and (i, k), (j, l) ∈ Γ ′, we have

ϕ+
(i,k)ϕ

−
(j,l)(mμ)

= ϕ+
(i,k)

(
q−μ

(l)
j +1mμ−α(j,l)

hμ
−(j,l)

( ∑
x∈Xμ

μ−α(j,l)

q�(x)Tx

))

= q−μ
(l)
j +1q−(μ−α(j,l))

(k)
i+1+1mμ

( ∑
y∈X

(μ−α(j,l))

(μ−α(j,l))+α(i,k)

q�(y)Ty

)
hμ

−(j,l)

×
( ∑

x∈Xμ
μ−α(j,l)

q�(x)Tx

)
.

On the other hand, we have

ϕ−
(j,l)ϕ

+
(i,k)(mμ)

= ϕ−
(i,k)

(
q−μ

(k)
i+1+1mμ+α(i,k)

( ∑
x∈Xμ

μ+α(i,k)

q�(x)Tx

))
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= q−μ
(k)
i+1+1q−(μ+α(i,k))

(l)
j +1mμh

μ+α(i,k)

−(j,l)

( ∑
y∈X

(μ+α(i,k))

(μ+α(i,k))−α(j,l)

q�(y)Ty

)

×
( ∑

x∈Xμ
μ+α(i,k)

q�(x)Tx

)
.

One sees that q−μ
(l)
j +1q−(μ−α(j,l))

(k)
i+1+1 = q−μ

(k)
i+1+1q−(μ+α(i,k))

(l)
j +1 for any

case. Put

A =
( ∑

y∈X
(μ−α(j,l))

(μ−α(j,l))+α(i,k)

q�(y)Ty

)
, B =

( ∑
x∈Xμ

μ−α(j,l)

q�(x)Tx

)
,

C =
( ∑

y∈X
(μ+α(i,k))

(μ+α(i,k))−α(j,l)

q�(y)Ty

)
, D =

( ∑
x∈Xμ

μ+α(i,k)

q�(x)Tx

)
.

Using this, one can prove the three assertions of the proposition as follows.
(i) First, we assume that (i, k) �= (j, l). Then we have hμ

−(j,l) = h
μ+α(i,k)

−(j,l) ,
and hμ

−(j,l) commutes with A. If (pj + l) − (pk + i) �= 1, then we have

X
(μ−α(j,l))

(μ−α(j,l))+α(i,k)
= Xμ

μ+α(i,k)
and X

(μ+α(i,k))

(μ+α(i,k))−α(j,l)
= Xμ

μ−α(j,l)
. Thus, we have

A = D and B = C. Moreover, one sees that A commutes with B. If (pj +1) −
(pk +i) = 1, then we have X

(μ−α(j,l))

(μ−α(j,l))+α(i,k)
= X

(μ+α(i,k))

(μ+α(i,k))−α(j,l)
and Xμ

μ−α(j,l)
=

Xμ
μ+α(i,k)

. Hence, we have A = C and B = D. This implies (i).
(ii) Next, we assume that (i, k) = (j, l) and i �= n. Then we have hμ

−(j,l) =

h
μ+α(i,k)

−(j,l) = 1. Put N =
∑k−1

l=1 |μ(l)| +
∑i

j=1 μ
(k)
j . Then by (6.9.4) and (6.9.2),

we have that

X
(μ−α(i,k))

(μ−α(i,k))+α(i,k)
=
{
1, sN , (sNsN+1), . . . , (sNsN+1 · · · s

N+μ
(k)
i+1−1

)
}
,(6.11.1)

X
(μ+α(i,k))

(μ+α(i,k))−α(i,k)
=
{
1, sN , (sNsN −1), . . . , (sNsN −1 · · · s

N −μ
(k)
i +1

)
}
.(6.11.2)

Combined with (6.9.2) and (6.9.4), we have AB − CD = B − D. Note that
mμTw = q�(w)mμ for w ∈ Sμ; then we have
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(ϕ+
(i,k)ϕ

−
(i,k) − ϕ−

(i,k)ϕ
+
(i,k))(mμ)

= q−μ
(k)
i −μ

(k)
i+1+1

((μ
(k)
i −1∑
a=0

(qa)2
)

−
(μ

(k)
i+1−1∑
b=0

(qb)2
))

mμ

=
κ(i,k)κ

−
(i+1,k) − κ−

(i,k)κ(i+1,k)

q − q−1
(mμ).

This implies (ii).
(iii) Finally, we assume that (i, k) = (j, l) = (n,k). Put N =

∑k
l=1 |μ(l)|;

then, we have hμ
−(n,k) = LN − Qk+1 and h

μ+α(n,k)

−(n,k) = LN+1 − Qk+1. Hence,
we have

(ϕ+
(n,k)ϕ

−
(n,k) − ϕ−

(n,k)ϕ
+
(n,k))(mμ)

= q−μ
(k)
n −μ

(k)
1 +1mμ(A · LN · B − LN+1 · C · D)(6.11.3)

− Qk+1q
−μ

(k)
n −μ

(k)
1 +1mμ(AB − CD).

In a way similar to the case of (ii), we have

q−μ
(k)
n −μ

(k)
1 +1mμ(AB − CD) =

κ(n,k)κ
−
(1,k+1) − κ−

(n,k)κ(1,k+1)

q − q−1
(mμ).(6.11.4)

By Lemma 5.4, we can prove the following formula by induction on c:

LN (TN −1TN −2 · · · TN −c)

= (q − q−1)
( c∑

ξ=1

TN −1TN −2 · · · ŤN −ξ · · · TN −cLN −ξ+1

)
(6.11.5)

+ TN −1TN −2 · · · TN −cLN −c,

where ŤN −ξ means removing TN −ξ from the product TN −1TN −2 · · · TN −c.
Combining this with (6.9.2), we have

LN · B = LN +
μ

(k)
n −1∑
c=1

(
qcLN (TNTN −1 · · · TN −c)

)

= LN +
μ

(k)
n −1∑
c=1

{
qc(q − q−1)
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×
( c∑

ξ=1

TN −1TN −2 · · · Ťn−ξ · · · TN −cLN −ξ+1

)
+ qcTN −1TN −2 · · · TN −cLN −c

}
(6.11.6)

= LN +
μ

(k)
n −1∑
ξ=1

(μ
(k)
n −1∑
c=ξ

qc(q − q−1)TN −1TN −2 · · · Ťn−ξ · · · TN −c

)
× LN −ξ+1

+
μ

(k)
n −1∑
c=1

qcTN −1 · · · TN −cLN −c

Similarly, we have

LN+1 · C = LN+1

+
μ

(k)
n −1∑
ξ=0

(μ
(k)
n −1∑
c=ξ

qc+1(q − q−1)TNTN −1 · · · Ťn−ξ · · · TN −c

)
(6.11.7)

× LN −ξ+1

+
μ

(k)
n −1∑
c=0

qc+1TNTN −1 · · · TN −cLN −c

by using the formula. We also have

LN+1(TN+1TN+2 · · · TN+c)

=
(

(q−1 − q)c +
c∑

ξ=1

(q−1 − q)c−ξ(6.11.8)

×
( ∑

(i1,...,iξ) s.t.

1≤i1<i2<· · ·<iξ ≤c

TN+i1TN+i2 · · · TN+iξ

))
· LN+c+1,

which is proved by induction on c thanks to Lemma 5.4. Relations (6.11.6)
and (6.11.7), by making use of (6.11.1) and (6.11.2), combined with
Lemma 5.4, imply that
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A · LN · B − LN+1 · C · D

= LN · B −
(
1 + q(q − q−1)(6.11.9)

+
μ

(k)
n −1∑
c=1

(qc+1(q − q−1)TN −1TN −2 · · · TN −c

)
· LN+1 · D.

Note that mμTw = q�(w)mμ for w ∈ Sμ, and so (6.11.6) implies that

mμ · (LN · B) = mμq2(μ
(k)
n −1)(LN + LN −1 + · · · + L

N −μ
(k)
n +1

).(6.11.10)

Similarly, (6.9.4) and (6.11.8) imply that

mμ ·
(
1 + q(q − q−1) +

μ
(k)
n −1∑
c=1

(qc+1(q − q−1)TN −1TN −2 · · · TN −c

)
· LN+1 · D(6.11.11)

= mμq2(μ
(k)
n )(LN+1 + LN+2 + · · · + L

N+μ
(k+1)
1

).

By (6.11.9)–(6.11.11), we have

q−μ
(k)
n −μ

(k)
1 +1mμ(A · LN · B − LN+1 · C · D)

= mμqμ
(k)
n −μ

(k+1)
1
(
q−1(LN + LN −1 + · · · + L

N −μ
(k)
n +1

)
(6.11.12)

− q(LN+1 + LN+2 + · · · + L
N+μ

(k+1)
1

)
)

= κn,kκ
−
(1,k+1)(q

−1σ(n,k) − qσ(1,k+1))(mμ).

Now (6.11.3), (6.11.4), and (6.11.12) imply (iii).

We can now prove Proposition 6.4.

Proof of Proposition 6.4. By relations (6.5.1), (6.5.2), and (6.8.1)–(6.8.4)
together with Proposition 6.11, one sees that the homomorphism ρ̃ in Propo-
sition 6.4 is well defined. On the other hand, by Proposition 6.7, we have
ρ̃(Ũ ≥0

q ) = S ≥0
n,r and ρ̃(Ũ ≤0

q ) = S ≤0
n,r . Moreover, we know that Sn,r = S ≤0

n,r ×
S ≥0

n,r by Theorem 5.6. Thus, we see that ρ̃ is surjective.
By Theorem 4.6(iii),(iv) combined with Theorem 5.6, ρ̃ |

AŨq
gives a sur-

jection from AŨq to ASn,r. The proposition is now proved.
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§7. Presentations of cyclotomic q-Schur algebras

In this section, we give two presentations of cyclotomic q-Schur algebras
by generators and defining relations (see Theorem 7.16(ii),(iii)).

Recall that Sn,r is the cyclotomic q-Schur algebra over K = Q(q, γ1, . . . ,

γr) with parameters q, γ1, . . . , γr.

7.1.
For presenting cyclotomic q-Schur algebras by generators and relations,

we prepare some notations. Let K 〈x1, . . . , xm−1〉 be the noncommutative
polynomial ring over K with indeterminate elements x1, . . . , xm−1. Note that
K 〈x1, . . . , xm−1〉 is isomorphic to the free K-algebra generated by x1, . . . ,

xm−1. Put x = {x1, . . . , xm−1}. For (i, k) ∈ Γ ′, set x(i,k) = xpk+i, where
pk = (k − 1)n. Thus, we have x = {x(i,k) | (i, k) ∈ Γ ′ } and K 〈x1, . . . , xm−1〉 =
K 〈x〉 = K 〈x(i,k) | (i, k) ∈ Γ ′ 〉.

For g(x) ∈ K 〈x〉, let g(ϕ+) (resp., g(ϕ−)) be the element of Sn,r obtained
by replacing x(i,k) with ϕ+

(i,k) (resp., ϕ−
(i,k)) in g(x). Then, we have the

following lemma.

Lemma 7.2. For λ ∈ Λn,r and (i, k) ∈ Γ , there exists an element

gλ
(i,k) =

∑
j

rjg
−
j (x) ⊗ g+

j (x) ∈ K 〈x〉 ⊗K K 〈x〉 (rj ∈ K, g−
j (x), g+

j (x) ∈ K 〈x〉)

such that σλ
(i,k) =

∑
j rjg

−
j (ϕ−)g+

j (ϕ+)ϕ1
λ,λ.

Proof. By Theorem 5.6(iii), we have Sn,r = S ≤0
n,r · S ≥0

n,r . On the other
hand, by Proposition 6.7, S ≤0

n,r (resp., S ≥0
n,r ) is generated by ϕ−

(i,k) (resp.,
ϕ+

(i,k)) for (i, k) ∈ Γ ′ and by κ±
(i,k) for (i, k) ∈ Γ . Recall that κ±

(i,k) =∑
μ∈Λn,r

q±μ
(k)
i ϕ1

μ,μ and that ϕ1
μ,μ is the identity map on Mμ and the zero

map on M τ (τ �= μ). Moreover, {ϕ1
μ,μ | μ ∈ Λn,r } is a set of pairwise orthog-

onal idempotents. Combined with relations (6.8.1) and (6.8.2), we obtain
the lemma.

7.3.
In general, the element gλ

(i,k) ∈ K 〈x〉 ⊗K K 〈x〉 satisfying the condition in
Lemma 7.2 is not unique. Throughout the rest of this article, for (i, k) ∈ Γ ′

and λ ∈ Λn,r, we fix gλ
(i,k) once and for all.

Let K 〈F1, . . . , Fm−1,E1, . . . ,Em−1〉 be the noncommutative polynomial
ring over K with indeterminate elements F1, . . . , Fm−1,E1, . . . ,Em−1. Put
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F = {Fi | 1 ≤ i ≤ m − 1}, and put E = {Ei | 1 ≤ i ≤ m − 1}. For (i, k) ∈ Γ ′,
set F(i,k) = Fpk+i, and set E(i,k) = Epk+i. For g(x) ∈ K 〈x〉, let g(F ) (resp.,
g(E)) be the element of K 〈F 〉 (resp., K 〈E〉) obtained by replacing x(i,k) with
F(i,k) (resp., E(i,k)) in g(x). For gλ

(i,k) =
∑

j rjg
−
j (x) ⊗ g+

j (x) ∈ K 〈x〉 ⊗K K 〈x〉
((i, k) ∈ Γ,μ ∈ Λn,r) in Lemma 7.2, put

gλ
(i,k)(F,E) =

∑
j

rjg
−
j (F ) · g+

j (E) ∈ K 〈F,E〉.(7.3.1)

7.4.
Let Sn,r be the associative algebra over Q(q, γ1, . . . , γr) with 1 generated

by E(i,k), F(i,k) ((i, k) ∈ Γ ′) and 1λ (λ ∈ Λn,r) with the following defining
relations:

1λ1μ = δλ,μ1λ,
∑

λ∈Λn,r

1λ = 1;(7.4.1)

E(i,k)1λ =

{
1λ+α(i,k)

E(i,k) if λ + α(i,k) ∈ Λn,r,

0 otherwise;
(7.4.2)

F(i,k)1λ =

{
1λ−α(i,k)

F(i,k) if λ − α(i,k) ∈ Λn,r,

0 otherwise;
(7.4.3)

1λE(i,k) =

{
E(i,k)1λ−α(i,k)

if λ − α(i,k) ∈ Λn,r,

0 otherwise;
(7.4.4)

1λF(i,k) =

{
F(i,k)1λ+α(i,k)

if λ + α(i,k) ∈ Λn,r,

0 otherwise;
(7.4.5)

E(i,k)F(j,l) − F(j,l)E(i,k) = δ(i,k),(j,l)

∑
λ∈Λn,r

ηλ
(i,k);(7.4.6)

E(i±1,k)(E(i,k))
2 − (q + q−1)E(i,k)E(i±1,k)E(i,k)(7.4.7)

+ (E(i,k))
2E(i±1,k) = 0;

E(i,k)E(j,l) = E(j,l)E(i,k)

(
|(pk + i) − (pl + j)| ≥ 2

)
;

F(i±1,k)(F(i,k))
2 − (q + q−1)F(i,k)F(i±1,k)F(i,k)(7.4.8)

+ (F(i,k))
2F(i±1,k) = 0;

F(i,k)F(j,l) = F(j,l)F(i,k)

(
|(pk + i) − (pl + j)| ≥ 2

)
,
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where

ηλ
(i,k) =

⎧⎪⎪⎨⎪⎪⎩
(

−γk+1[λ
(k)
n − λ

(k+1)
1 ]

+ qλ
(k)
n −λ

(k+1)
1 (q−1gλ

(n,k)(F,E) − qgλ
(1,k+1)(F,E))

)
1λ if i = n,

[λ(k)
i − λ

(k)
i+1]1λ otherwise.

7.5.
It is clear that Sn,r is a homomorphic image of S̃q(Λn,r) defined in Sec-

tion 2. Thus, Sn,r is a homomorphic image of Ũq. In fact, as the following
lemma shows, Sn,r is isomorphic to S ηΛn,r

q , where ηΛn,r = {ηλ
(i,k) | (i, k) ∈ Γ ′,

λ ∈ Λn,r }.

Lemma 7.6. For (i, k) ∈ Γ ′ and λ ∈ Λn,r, we have ηλ
(i,k) ∈ S̃ −

q S̃ +
q 1λ and

deg(ηλ
(i,k)) = 0. Thus, Sn,r is isomorphic to S ηΛn,r

q .

Proof. From the definitions of gλ
(n,k)(F,E) and gλ

(1,k+1)(F,E), it is clear

that ηλ
(i,k) ∈ S̃ −

q S̃ +
q 1λ. Note that σλ

(i,k) ∈ HomHn,r(M
λ,Mλ). Lemma 7.2,

together with the definitions of ϕ±
(j,l), implies that deg(gλ

(i,k)(F,E)) = 0.
Thus, we have deg(ηλ

(i,k)) = 0.

From now on, under the isomorphism Sn,r
∼= S ηΛn,r

q , we apply to Sn,r the
results in Sections 2 and 3 for S ηΛn,r

q . Recall that ρ̃ : Ũq → Sn,r and Ψ : Ũq →
Sn,r are surjective homomorphisms of algebras given in Proposition 6.4 and
Section 2.5, respectively. We have the following proposition.

Proposition 7.7. There exists a surjective homomorphism of algebras
Φ : Sn,r → Sn,r such that

Φ(E(i,k)) = ϕ+
(i,k), Φ(F(i,k)) = ϕ−

(i,k), Φ(1λ) = ϕ1
λ,λ.(7.7.1)

In particular, the surjection ρ̃ : Ũq → Sn,r factors through the algebra Sn,r;
namely, we have ρ̃ = Φ ◦ Ψ. Moreover, by restricting Φ to A Sn,r, we have a
surjective homomorphism Φ |A Sn,r : A Sn,r → ASn,r.

Proof. First, we prove that Φ gives a well-defined algebra homomorphism
from Sn,r to Sn,r. One can easily check that relations (7.4.1)–(7.4.5) hold
in the images of Φ for the corresponding generators. By (6.8.3) and (6.8.4),
relations (7.4.7) and (7.4.8) hold in the image of Φ. Proposition 6.11 together
with the definition of ηλ

(i,k) implies that (7.4.6) holds in the image of Φ. Thus,
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Φ is well defined. By investigating the images of generators under each map,
we have ρ̃ = Φ ◦ Ψ, and Φ is surjective. The last assertion follows from the
restriction of ρ̃ = Φ ◦ Ψ to AŨq together with Proposition 6.4.

Since ϕ1
λ,λ �= 0 in Sn,r for λ ∈ Λn,r, and since Φ(1λ) = ϕ1

λ,λ, we have the
following corollary.

Corollary 7.8. For λ ∈ Λn,r, 1λ �= 0 in Sn,r.

7.9.
For λ = (λ(1), . . . , λ(r)) ∈ Λn,r, we say that λ is an r-partition of size n

if all λ(k) (1 ≤ k ≤ r) are partitions; namely, all λ(k) are weakly decreasing
sequences. On the other hand, we have Λ+

n,r = {λ ∈ Λn,r | 1λ /∈ Sn,r(> λ)} by
(2.10.1). Then, we obtain the parameterization of the isomorphism classes
of simple Sn,r-modules as follows.

Lemma 7.10. For Sn,r(∼= S ηΛn,r
q ), Λ+

n,r = {λ ∈ Λn,r | 1λ /∈ Sn,r(> λ)} coin-
cides with the set of r-partitions of size n. In particular, the isomorphism
classes of simple Sn,r-modules are parameterized by Λ+

n,r.

Proof. Let (i, k) ∈ Γ ′ be such that i �= n. For a ∈ Z>0 and λ ∈ Λn,r, we
can prove, by induction on a ∈ Z>0 together with (7.4.6), that

Ea
(i,k)F

a
(i,k)1λ ≡ [a]!

( a∏
j=1

[λ(k)
i − λ

(k)
i+1 − a + j]

)
1λ mod Sn,r(> λ).(7.10.1)

Assume that λ ∈ Λn,r is not an r-partition. Then, there exists i, k such
that λ

(k)
i < λ

(k)
i+1, where 1 ≤ i ≤ n − 1 and 1 ≤ k ≤ r. Thus, by (7.10.1), we

have

E
λ
(k)
i +1

(i,k) F
λ
(k)
i +1

(i,k) 1λ

(7.10.2)

≡ [λ(k)
i + 1]!

(λ
(k)
i +1∏
j=1

[j − λ
(k)
i+1 − 1]

)
1λ mod Sn,r(> λ).

Since λ − (λ(k)
i +1)α(i,k) /∈ Λn,r, the left-hand side of (7.10.2) is equal to 0 by

(7.4.3). On the other hand, since λ
(k)
i < λ

(k)
i+1, we have [λ(k)

i +1]!
(∏λ

(k)
i +1

j=1 [j −
λ

(k)
i+1 − 1]

)
�= 0. Thus, (7.10.2) implies that 1λ ∈ Sn,r(> λ) if λ is not an
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r-partition. Hence, we have {λ ∈ Λn,r | λ : r-partition} ⊃ Λ+
n,r. By Theo-

rem 2.16(iii), the isomorphism classes of simple Sn,r-modules are parame-
terized by Λ+

n,r. On the other hand, through the surjection Φ : Sn,r → Sn,r

in Proposition 7.7, one can regard a simple Sn,r-module as a simple Sn,r-
module. Moreover, it is known that the isomorphism classes of simple Sn,r-
modules are parameterized by the set of r-partitions of size n by [DJM].
Thus, we obtain the lemma.

7.11.
Since Sn,r is a quotient algebra of Ũq, one can describe Sn,r by generators

and relations of Ũq together with some additional relations. Here, we give
such additional relations precisely. For (i, k) ∈ Γ ′ and λ ∈ Λn,r, we define
gλ
(i,k)(f, e) ∈ Ũq in a way similar to that in (7.3.1). Recall the bijection from

Λn,r to Λn,1 such that μ �→ μ in Section 5.2. For λ ∈ Λn,r, put Kλ = Kλ ∈ Ũq,
where Kλ is defined in (2.2.1). For (i, k) ∈ Γ ′, put

g(i,k)(f, e) =
∑

λ∈Λn,r

(
gλ
(i,k)(f, e)Kλ

)
,

and put

η(i,k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

−γk+1
K(n,k)K

−
(1,k+1)

−K−
(n,k)

K(1,k+1)

q−q−1

+ K(n,k)K
−1
(1,k+1)(q

−1g(n,k)(f, e) − qg(1,k+1)(f, e))
)

if i = n,
K(i,k)K

−
(i+1,k)

−K−
(i,k)

K(i+1,k)

q−q−1 otherwise.

Let Ĩn,r be the two-sided ideal of Ũq generated by τpk+i − η(i,k) ((i, k) ∈
Γ ′), K1K2 · · · Km − qn, and (Ki − 1)(Ki − q)(Ki − q2) · · · (Ki − qn) (1 ≤ i ≤
m). Let Un,r = Ũq/Ĩn,r be a quotient algebra of Ũq. One sees that Un,r is
isomorphic to the algebra generated by Ei, Fi (1 ≤ i ≤ m − 1) and K±

i (1 ≤
i ≤ m) with defining relations (1.5.1)–(1.5.3), (1.5.6), and (1.5.7) together
with the following relations:

e(i,k)f(j,l) − f(j,l)e(i,k) = δ(i,k),(j,l)η(i,k),(7.11.1)

K1K2 · · · Km = qn,(7.11.2)

(Ki − 1)(Ki − q)(Ki − q2) · · · (Ki − qn) = 0,(7.11.3)

where we identify e(i,k) ↔ epk+i, f(i,k) ↔ fpk+i and K±
(i,k) ↔ K±

pk+i.
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Proposition 7.12. Ĩn,r contains the kernel of the surjection Ψ : Ũq →
Sn,r. Thus, Ψ induces the surjection Ψ′ : Un,r → Sn,r. Moreover, Ψ′ gives an
isomorphism of algebras.

Proof. From the definition, we have Ψ(η(i,k)) =
∑

λ∈Λn,r
ηλ
(i,k); thus, we

have Ψ(τpk+i − η(i,k)) = 0. Note that Ψ(Ki) =
∑

λ∈Λn,r
qλi1λ; we see easily

that Ψ(K1 · · · Km) = qn and Ψ((Ki − 1)(Ki − q) · · · (Ki − qn)) = 0. Thus, we
have Ĩn,r ⊂ KerΨ, and Ψ induces the surjection Ψ′ : Un,r → Sn,r.

Let U0
n,r be the subalgebra of Un,r generated by Ki (1 ≤ i ≤ m). In a way

similar to that in the proof of [DDPW, Lemma 13.39], the restriction of Ψ′ to
U0

n,r gives an isomorphism U0
n,r

∼= S 0
n,r. (Note that, in the proof of [DDPW,

Lemma 13.39], the authors use only the relations of Ki which coincide with
the relations in U0

n,r.) Through the isomorphism U0
n,r

∼= S 0
n,r, we have

KλKμ = δλ,μKλ,
∑

λ∈Λn,r

Kλ = 1(7.12.1)

in Un,r. Moreover, for 1 ≤ i ≤ m and λ ∈ Λn,r, we have KiKλ = qλiKλ; thus,
we have

Ki = Ki

( ∑
λ∈Λn,r

Kλ

)
=
∑

λ∈Λn,r

qλiKλ.(7.12.2)

Let Ψ† : Sn,r → Un,r be the homomorphism of algebras given by Ψ†(E(i,k)) =
e(i,k), Ψ†(F(i,k)) = f(i,k), and Ψ†(1λ) = Kλ. In order to see that Ψ† is well
defined, we may check relations (7.4.1)–(7.4.8) in the image of Ψ† for the cor-
responding generators. Relation (7.4.1) follows from (7.12.1). We can check
relations (7.4.2)–(7.4.5) in a way similar to that in the proof of [DDPW,
Lemma 13.40]. Relation (7.4.6) follows from the definition of η(i,k). Rela-
tions (7.4.7) and (7.4.8) are just (1.5.6) and (1.5.7), respectively. Thus, Ψ†

is well defined. Moreover, by (7.12.2), we see that Ψ† is surjective and gives
the inverse map of Ψ′; thus, we have Un,r

∼= Sn,r.

7.13.
Our goal is to show that the surjection Φ : Sn,r → Sn,r in Proposition 7.7

is actually an isomorphism. Let{
ϕST

∣∣ S,T ∈ T (λ) for some λ ∈ Λ+
n,r

}
be the cellular basis of Sn,r constructed in [DJM], where T (λ) is the set
of semistandard tableaux of shape λ (see [DJM] for the definition). For
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λ ∈ Λ+
n,r, let Sn,r(≥ λ) (resp., Sn,r(> λ)) be a subspace of Sn,r spanned by

{ϕST | S,T ∈ T (μ) for some μ ∈ Λ+
n,r such that μ ≥ λ} (resp., {ϕST | S,T ∈

T (μ) for some μ ∈ Λ+
n,r such that μ > λ}); then both of Sn,r(≥ λ) and

Sn,r(> λ) are two-sided ideals of Sn,r.
It is known that ϕ1

λ,λ ∈ Sn,r(≥ λ) \ Sn,r(> λ) for λ ∈ Λ+
n,r. (ϕ1

λ,λ is denoted
by ϕT λT λ in [DJM].) For λ ∈ Λ+

n,r, the left Sn,r-module W (λ) of Sn,r (the
Weyl module) is defined by

W (λ) =
(
Sn,r · ϕ1

λ,λ + Sn,r(> λ)
)
/Sn,r(> λ).

Note that W (λ) is an Sn,r-submodule of Sn,r(≥ λ)/Sn,r(> λ). By [DR2,
Theorem 5.15] (and its proof), for S,T ∈ T (μ), we have

ϕST = ϕST μϕ1
μ,μϕT μT , where ϕST μ ∈ S ≤0

n,r and ϕT μT ∈ S ≥0
n,r .(7.13.1)

One sees from this that

W (λ) ∼= S ≤0 · ϕ1
λ,λ/
(
S ≤0 · ϕ1

λ,λ ∩ Sn,r(> λ)
)

as K-vector spaces.

It is known that {W (λ) | λ ∈ Λ+
n,r } gives a complete set of isomorphism

classes of (left) simple Sn,r-modules. Similarly, we have a complete set of
isomorphism classes of (right) simple Sn,r-modules {W �(λ) | λ ∈ Λ+

n,r } such
that

W �(λ) = ϕ1
λ,λ · S ≥0/

(
ϕ1

λ,λ · S ≥0
n,r ∩ Sn,r(> λ)

)
as K-vector spaces.

Recall that S ≤0
n,r (resp., S ≥0

n,r) is a subalgebra of Sn,r defined in Section 2.17.
Then we have the following lemma.

Lemma 7.14. The restriction of the surjection Φ (in Proposition 7.7) to
S ≤0

n,r (resp., S ≥0
n,r) gives an isomorphism Φ |S ≤0

n,r
: S ≤0

n,r → S ≤0
n,r (resp., Φ |S ≥0

n,r
:

S ≥0
n,r → S ≥0

n,r ) of algebras.

Proof. By Proposition 6.7, the restriction of ρ̃ (in Proposition 6.4) to Ũ ≤0
q

gives a surjective homomorphism ρ̃ |
Ũ ≤0

q
: Ũ ≤0

q → S ≤0
n,r . Since Φ ◦ Ψ = ρ̃ (see

Proposition 7.7) and Ψ(Ũ ≤0
q ) = S ≤0

n,r , we have a surjective homomorphism
Φ |S ≤0

n,r
: S ≤0

n,r → S ≤0
n,r .

On the other hand, thanks to Theorem 4.12, we can define a homo-
morphism Φ′ ≤0 of algebras from S ≤0

n,1 to Un,r by sending the elements fi

(1 ≤ i ≤ m − 1) and K±
i (1 ≤ i ≤ m) of S ≤0

n,1 to the corresponding elements
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of Un,r. Combining this with isomorphisms S ≤0
n,1

∼= S ≤0
n,r and Un,r

∼= Sn,r,
Φ′ ≤0 induces a surjective homomorphism from S ≤0

n,r to S ≤0
n,r . Thus, Φ |S ≤0

n,r

is an isomorphism. The case of S ≥0
n,r is similar.

Lemma 7.15. For λ ∈ Λ+
n,r, the restriction of Φ to Sn,r(≥ λ) (resp., Sn,r(>

λ)) gives a surjective homomorphism of (Sn,r, Sn,r)-bimodules Φ |Sn,r(≥λ):
Sn,r(≥ λ) → Sn,r(≥ λ) (resp., Φ |Sn,r(>λ): Sn,r(> λ) → Sn,r(> λ)).

Proof. Note that Φ(1μ) = ϕ1
μ,μ, and note that ϕ1

μ,μ ∈ Sn,r(≥ λ) if μ ≥ λ.
We have Φ(Sn,r(≥ λ)) ⊂ Sn,r(≥ λ) since Sn,r(≥ λ) is a two-sided ideal of
Sn,r.

On the other hand, one sees easily that

Sn,r(≥ λ) =
∑

μ∈Λ+
n,r

μ≥λ

S ≤0
n,r1μS ≥0

n,r.

Combining this with (7.13.1) and Lemma 7.14, we have ϕST ∈ Φ(Sn,r(≥
λ)) for any S,T ∈ T (μ) (μ ∈ Λ+

n,r such that μ ≥ λ). Thus, Φ |Sn,r(≥λ) is a
surjection from Sn,r(≥ λ) to Sn,r(≥ λ). The case of Sn,r(> λ) is similar.

The following theorem is the main result of our article.

Theorem 7.16. We have the following.
(i) Φ : Sn,r → Sn,r gives an isomorphism of algebras. Moreover, by res-

tricting Φ to A Sn,r, Φ |A Sn,r gives an isomorphism from A Sn,r to ASn,r.
(ii) Sn,r is presented by generators E(i,k), F(i,k) ((i, k) ∈ Γ ′) and 1λ (λ ∈

Λn,r) with the defining relations (7.4.1)–(7.4.8).
(iii) Sn,r is also presented by generators ei, fi (1 ≤ i ≤ m − 1) and K±

i

(1 ≤ i ≤ m) with the defining relations (1.5.1)–(1.5.3), (1.5.6), (1.5.7),
and (7.11.1)–(7.11.3).

Proof. Through the surjection Φ : Sn,r → Sn,r, we can regard the simple
Sn,r-module W (λ) (λ ∈ Λ+

n,r) as a simple Sn,r-module, and {W (λ) | λ ∈
Λ+

n,r } gives a complete set of isomorphism classes of simple Sn,r-modules by
Lemma 7.10. As Ũq-modules, both Δ(λ) and W (λ) are highest-weight mod-
ules with a highest weight λ. Thus, by investigating the action on highest-
weight vectors of Δ(λ) and W (λ), we have a surjective homomorphism

Δ(λ) → W (λ) as Sn,r-modules.(7.16.1)

We claim the following.
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Claim. For any λ ∈ Λ+
n,r, we have

Δ(λ) ∼= W (λ) as left Sn,r-modules,

Δ�(λ) ∼= W �(λ) as right Sn,r-modules,

Δ(λ) ⊗K Δ�(λ) ∼= Sn,r(≥ λ)/Sn,r(> λ) as (Sn,r, Sn,r)-bimodules.

If we assume the claim, then we have

dimK Sn,r =
∑

λ∈Λ+
n,r

(
dimK Δ(λ)

)2
=
∑

λ∈Λ+
n,r

(
dimK W (λ)

)2
= dimK Sn,r.

This implies that Φ gives an isomorphism from Sn,r to Sn,r. Thus, it is
enough to show the claim.

We recall that

Δ(λ) ∼= S ≤0
n,r · 1λ/

(
S ≤0

n,r · 1λ ∩ Sn,r(> λ)
)
,(7.16.2)

W (λ) ∼= S ≤0 · ϕ1
λ,λ/
(
S ≤0 · ϕ1

λ,λ ∩ Sn,r(> λ)
)

(7.16.3)

as K-vector spaces. Lemma 7.14 implies the following isomorphism:

Φ |S ≤0
n,r1λ

: S ≤0
n,r1λ

∼= S ≤0
n,r ϕ1

λ,λ as K-vector spaces.(7.16.4)

We prove the claim by backward induction on the partial order of Λ+
n,r.

First, we suppose that λ is maximal in Λ+
n,r. In this case, we have

Sn,r(> λ) = {0} and Sn,r(> λ) = {0}. Thus, (7.16.1)–(7.16.4) imply that
Δ(λ) ∼= W (λ) as left Sn,r-modules. Similarly, we have Δ�(λ) ∼= W �(λ) as
right Sn,r-modules. Since Δ(λ) (resp., Δ�(λ)) is a simple left (resp., right)
Sn,r-module, the surjective homomorphism of Sn,r-bimodules Δ(λ) ⊗K
Δ�(λ) → Sn,r(≥ λ)/Sn,r(> λ) is an isomorphism.

Next, we suppose that λ is not maximal in Λ+
n,r. The induction hypothesis

implies that the surjection Φ |Sn,r(>λ): Sn,r(> λ) → Sn,r(> λ) in Lemma 7.15
is an isomorphism by comparing dimensions. Combined with (7.16.1)–
(7.16.4), this implies that Δ(λ) ∼= W (λ) as left Sn,r-modules. Similarly,
we have Δ�(λ) ∼= W �(λ) as right Sn,r-modules. This implies that Δ(λ) ⊗K
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Δ�(λ) ∼= Sn,r(≥ λ)/Sn,r(> λ). Thus, we have the claim and (i) follows. The
remaining assertions (ii) and (iii) follow from Section 7.4 and Proposi-
tion 7.12.

Remarks 7.17. (i) In the case where r = 1, generators and defining rela-
tions of Sn,r (resp., Un,r) in Section 7.4 (resp., 7.11) coincide with generators
and defining relations of q-Schur algebras of type A in Theorem 4.10 (resp.,
Theorem 4.9).

(ii) By an argument similar to the case where r = 1 (see Remark 4.11),
Sn,r (∼= Sn,r) satisfies conditions (A-1), (A-2), and (C-1).

§8. An algorithm for computing decomposition numbers

In this section, we give an algorithm for computing the decomposition
numbers of F Sn,r

∼= F Sn,r on an arbitrary field F and parameters q,Q1, . . . ,

Qr ∈ F . Throughout this section, we consider the objects over a fixed field F ,
so we will omit the subscript F (e.g., F Sn,r, F Δ(λ), . . .) unless it causes some
confusion.

8.1.
Since Sn,r satisfies condition (C-1), we can define a bilinear form 〈 , 〉ι :

Δ(λ) × Δ(λ) → F by

〈y1λ, x1λ〉ι1λ ≡ ι(y1λ)x1λ mod Sn,r(> λ) for x, y ∈ S −
n,r.

Note that 〈 , 〉ι is symmetric. Put radι Δ(λ) = {x ∈ Δ(λ) | 〈y,x〉ι = 0 for any
y ∈ Δ(λ)}. One sees easily that 〈y,x〉ι = 〈ι(y), x〉 for x, y ∈ Δ(λ); thus,
we have radι Δ(λ) = radΔ(λ). Hence, from now on we denote 〈 , 〉ι (resp.,
radι Δ(λ)) simply by 〈 , 〉 (resp., radΔ(λ)).

8.2.
For an Sn,r-module M , we have the weight-space decomposition

M =
⊕

μ∈Λn,r

Mμ,

where Mμ = 1μ · M . Since Δ(λ) = S −
n,r · 1λ, we see that λ ≥ μ if Δ(λ)μ �= 0.

It is clear that Δ(λ)μ is spanned by

Ξ(λ − μ) =
{
F

(c1)
(i1,k1)F

(c2)
(i2,k2) · · · F (cl)

(il,kl)
· 1λ | c1α(i1,k1)

+ c2α(i2,k2) + · · · + clα(il,kl) = λ − μ
}
.
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Note that Ξ(λ − μ) is a finite set. Then we can pick up a homogeneous basis
of Δ(λ)μ from Ξ(λ − μ). We take a homogeneous basis B(λ)μ of Δ(λ)μ, and
fix it.

For λ ∈ Λ+
n,r, μ ∈ Λn,r, let

M(λ)μ = (〈b′, b〉)b,b′ ∈ B(λ)μ

be the Gram matrix of the weight space Δ(λ)μ. Put radΔ(λ)μ = radΔ(λ) ∩
Δ(λ)μ; then we have the following lemma.

Lemma 8.3. We have

dimF radΔ(λ)μ = corankM(λ)μ.

Proof. For x ∈ Δ(λ)μ, y ∈ Δ(λ)ν , we have 〈y,x〉 = 0 unless μ = ν by
(2.13.3). Thus, x ∈ radΔ(λ)μ if and only if 〈b′, x〉 = 0 for any b′ ∈ B(λ)μ.
This implies the lemma.

Algorithm for computing decomposition numbers of Sn,r

Step 1. Compute the value of 〈b′, b〉 for all b, b′ ∈ B(λ)μ (λ ∈ Λ+
n,r, μ ∈

Λn,r).

Note that by (2.13.1) and the definition of the bilinear form, we can com-
pute 〈b′, b〉 by using the commutative relation (7.4.6) repeatedly.

Step 2. Compute the corank of M(λ)μ for all λ ∈ Λ+
n,r, μ ∈ Λn,r.

This is an elementary calculation of linear algebra.

Step 3. Compute dimF (L(λ)μ) for all λ ∈ Λ+
n,r, μ ∈ Λn,r.

Since L(λ) = Δ(λ)/ radΔ(λ), we have

dimF

(
L(λ)μ

)
= dimF

(
Δ(λ)μ

)
− dimF

(
radΔ(λ)μ

)
.

Thus, we can compute dimF (L(λ)μ) by Lemma 8.3 and Step 2.

Step 4. Compute the decomposition numbers dλμ = [Δ(λ) : L(μ)] for λ,μ ∈
Λ+

n,r by the following inductive process.

By Theorem 3.6, we have dλλ = 1 for λ ∈ Λ+
n,r. By induction, we may

assume that dλμ is known for μ ∈ Λ+
n,r such that λ ≥ μ > ν, and we compute

the decomposition number dλν .
Note the following facts:
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• radΔ(λ) is the unique maximal Sn,r-submodule of Δ(λ).
• dλμ �= 0 (λ �= μ) only if λ > μ.
• L(μ)ν �= 0 only if μ ≥ ν.
• dimF L(ν)ν = 1.
These facts imply that

dimF

(
radΔ(λ)ν

)
=

∑
μ∈Λ+

n,r \{λ}

dλμ ·
(
dimF L(μ)ν

)
(8.3.1)

=
∑

μ∈Λ+
n,r

λ>μ>ν

dλμ ·
(
dimF L(μ)ν

)
+ dλν .

By Lemma 8.3 and Step 2, we know that dimF (radΔ(λ)ν). By the assump-
tion of the induction together with Step 3, we know that

∑
μ∈Λ+

n,r
λ>μ>ν

dλμ ·

(dimF L(μ)ν). Thus, we can compute the decomposition number dλν from
equation (8.3.1).

Remarks 8.4. (i) In fact, in order to compute the decomposition num-
bers, it is enough to consider the Gram matrix M(λ)μ only for λ,μ ∈ Λ+

n,r

since we have

dimF L(μ)ν = dimF Δ(μ)ν −
∑

τ ∈Λ+
n,r

dμτ dimF L(τ)ν .

In this case, we should skip Step 3 and add the following process of another
induction on Λ+

n,r in Step 4:

dμτ is known for μ, τ ∈ Λ+
n,r such that λ > μ.

⇔ dimF L(μ)ν is known for μ ∈ Λ+
n,r, ν ∈ Λn,r such that λ > μ.

(ii) Thanks to Theorem 3.4 and [DR2, Theorem 5.16(f)] (or directly by
comparing the highest weights as Ũq-modules), we have F Δ(λ) ∼= F W (λ)
for λ ∈ Λ+

n,r. In particular, we have F Δ(λ) = F ⊗A AΔ(λ) since it is known
that F W (λ) = F ⊗A AW (λ).

(iii) Our algorithm can be applied to an arbitrary field which is not nec-
essarily of characteristic 0.

(iv) In order to implement this algorithm, we need the following two
data. One is a homogeneous basis B(λ)μ of Δ(λ)μ. Though we can pick up
a homogeneous basis B(λ)μ of Δ(λ)μ from the finite set Ξ(λ − μ), we do not
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know an algorithm to obtain such a basis. Another is a precise description
of ηλ

(i,k) ((i, k) ∈ Γ ′, λ ∈ Λn,r) in relation (7.4.6) by using the generators of
Sn,r. Actually, we can compute ηλ

(i,k) in Sn,r (see Lemma 7.2). However,
the calculations take too long, and there is no algorithm to give a precise
description of ηλ

(i,k) at this time.

(v) There exists a surjective homomorphism AŨ −
q → A S −

q as algebras,
and we have AŨ −

q
∼= AU −

q . Thus, we have a surjective homomorphism of
AU −

q -modules

AU −
q → AΔ(λ) (= A S −

q · 1λ) such that 1 �→ 1λ.

It may be useful that we take a homogeneous basis of AΔ(λ) from the image
of a certain homogeneous basis of AU −

q (e.g., monomial basis, Poincaré-
Birkhoff-Witt (PBW) basis, canonical basis).

(vi) We can apply this algorithm to compute the decomposition num-
bers of F Sq under the general setting in Section 3. Moreover, we can also
apply it to compute the decomposition numbers of F Sq associated to any
Cartan matrix of finite type, which includes the generalized q-Schur algebra
constructed in [Do].

Appendix A. A proof of Proposition 4.7

In this section, we give a proof of Proposition 4.7.

A.1.
Let V be a vector space over Q(q) with a basis {v1, . . . , vm}. Then, Uq =

Uq(glm) acts on V from the left by

ei · vj =

{
vj−1 if j = i + 1,

0 otherwise;

fi · vj =

{
vj+1 if j = i,

0 otherwise;

K±
i · vj =

{
q±1vj if j = i,

vj otherwise.
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This action is called the vector representation of Uq. We extend this action
to a tensor space V ⊗n by using the comultiplication Δ of Uq defined by

Δ(ei) = ei ⊗ KiK
−
i+1 + 1 ⊗ ei,

Δ(fi) = fi ⊗ 1 + K−
i Ki+1 ⊗ fi,

Δ(K±
i ) = K±

i ⊗ K±
i .

We denote this action by ρ′ : Uq(glm) → End(V ⊗n).
On the other hand, Hn acts on V ⊗n from the right as follows. We define

T̃ ∈ End(V ⊗ V )op by

(vi ⊗ vj) · T̃ =

⎧⎪⎨⎪⎩
qvi ⊗ vj if i = j,

vj ⊗ vi if i < j,

vj ⊗ vi + (q − q−1)vi ⊗ vj if i > j,

where End(V ⊗ V )op means the opposite algebra of End(V ⊗ V ). For i =
1, . . . , n − 1, we define T̃i ∈ End(V ⊗n)op by

T̃i = id⊗(i−1)
V ⊗T̃ ⊗ id⊗(n−1−i)

V .

Then, we define an algebra homomorphism θ : Hn → End(V ⊗n)op by
θ(Ti) = T̃i. By [J], it is known that the action of Uq and the action of Hn

on V ⊗n commute. Moreover, we have

ρ′(Uq) = EndHn(V ⊗n).

A.2.
For μ = (μ1, . . . , μm) ∈ Λn,1, let V ⊗n

μ be the subspace of V ⊗n spanned
by {vi1 ⊗ vi2 ⊗ · · · ⊗ vin | μj = �{k | ik = j} for j = 1, . . . ,m}. One sees easily
that V ⊗n

μ is the weight space of V ⊗n with weight μ as a Uq-module, and we
have the weight-space decomposition

V ⊗n =
⊕

μ∈Λn,1

V ⊗n
μ .

Since the action of Hn commutes with the action of Uq, V ⊗n
μ is invariant

under the action of Hn. For μ ∈ Λn,1, put

vμ = v1 ⊗ · · · ⊗ v1︸ ︷︷ ︸
μ1 terms

⊗ v2 ⊗ · · · ⊗ v2︸ ︷︷ ︸
μ2 terms

⊗ · · · ⊗ vm ⊗ · · · ⊗ vm︸ ︷︷ ︸
μm terms

.

Then, we have V ⊗n
μ = vμ · Hn. Moreover, one can check that there exists an

isomorphism V ⊗n
μ → Mμ of Hn-modules such that vμ �→ xμ. Thus, we have
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the following isomorphism of algebras:

ρ′(Uq) = EndHn(V ⊗n)

= EndHn

( ⊕
μ∈Λn,1

V ⊗n
μ

)
∼= EndHn

( ⊕
μ∈Λn,1

Mμ
)
.

This isomorphism gives the surjection ρ : Uq → Sn,1 in Theorem 4.6.

A.3.
For μ ∈ Λn,1, put

A = v1 ⊗ · · · ⊗ v1︸ ︷︷ ︸
μ1 terms

⊗ v2 ⊗ · · · ⊗ v2︸ ︷︷ ︸
μ2 terms

⊗ · · · ⊗ vi ⊗ · · · ⊗ vi︸ ︷︷ ︸
μi terms

,

B = vi+2 ⊗ · · · ⊗ vi+2︸ ︷︷ ︸
μi+2 terms

⊗ vi+3 ⊗ · · · ⊗ vi+3︸ ︷︷ ︸
μi+3 terms

⊗ · · · ⊗ vm ⊗ · · · ⊗ vm︸ ︷︷ ︸
μm terms

.

Then, we have

vμ = A ⊗ vi+1 ⊗ · · · ⊗ vi+1︸ ︷︷ ︸
μi+1 terms

⊗B,

vμ+αi = A ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vi+1︸ ︷︷ ︸
μi+1−1 terms

⊗B.

By the definitions, one can compute that

ρ′(ei)(vμ) =
μi+1∑
j=1

q−(μi+1−j)A ⊗ vi+1 ⊗ · · · ⊗ vi+1︸ ︷︷ ︸
j−1 terms

⊗vi ⊗ vi+1 ⊗ · · · ⊗ vi+1︸ ︷︷ ︸
μi+1−j terms

⊗B

= q−μi+1+1
∑

x∈Xμ
μ+αi

q�(x)v(μ+αi) · Tx.

Under the isomorphism V ⊗n
μ

∼= Mμ, this implies that ρ(ei)(mμ) = q−μi+1+1 ×
ψ1

μ+αi,μ(mμ). Thus, we have Proposition 4.7(i). We can prove Proposi-
tion 4.7(ii),(iii) in a similar way.
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Appendix B. Example: Cyclotomic q-Schur algebra of type G(2,1,2)

In this appendix, we consider a cyclotomic q-Schur algebra S2,2 of type
G(2,1,2), namely, that associated to the complex reflection group S2 �
(Z/2Z)2. In this case, we will describe elements ηλ

(i,k) explicitly and compute
the Gram matrices M(λ)μ and decomposition numbers of CS2,2. Through-
out this appendix, we replace γi with Qi (i = 1,2); thus, S2,2 is an algebra
over K = (q,Q1,Q2), where q,Q1,Q2 are indeterminate elements.

B.1.
The cyclotomic q-Schur algebra S2,2 of type G(2,1,2) is generated by

the generators E(1,1),E(2,1),E(1,2), F(1,1), F(2,1), F(1,2),1λ(λ ∈ Λ), where

Λ =

⎧⎪⎪⎨⎪⎪⎩
λ〈0〉 = ((2,0), (0,0)), λ〈1〉 = ((1,1), (0,0)), λ〈2〉 = ((1,0), (1,0)),
λ〈3〉 = ((1,0), (0,1)), λ〈4〉 = ((0,2), (0,0)), λ〈5〉 = ((0,1), (1,0)),
λ〈6〉 = ((0,1), (0,1)), λ〈7〉 = ((0,0), (2,0)), λ〈8〉 = ((0,0), (1,1)),
λ〈9〉 = ((0,0), (0,2))

⎫⎪⎪⎬⎪⎪⎭ ,

with the defining relations (7.4.1)–(7.4.8). By Lemma 7.10, we have

Λ+ = {λ〈0〉, λ〈1〉, λ〈2〉, λ〈7〉, λ〈8〉 }.

By Lemma 7.2 and (7.3.1), we have

g
λ〈1〉
(2,1)(F,E) = Q1

(
(q − q−1)F(1,1)E(1,1) + q−2

)
,

g
λ〈4〉
(2,1)(F,E) = Q1(q2 + 1),

g
λ〈5〉
(2,1)(F,E) = Q1,

g
λ〈6〉
(2,1)(F,E) = Q1,

g
λ〈2〉
(1,2)(F,E) = F(2,1)E(2,1) + Q2,

g
λ〈5〉
(1,2)(F,E) = F(1,1)F(2,1)E(2,1)E(1,1) + Q2,

g
λ〈7〉
(1,2)(F,E) = qF(2,1)E(2,1) + Q2(1 + q2),

g
λ〈8〉
(1,2)(F,E) = F(2,1)E(2,1) + Q2;

gλ
(2,1)(F,E) (resp., gλ

(1,2)(F,E)), which does not appear in the above list, is
equal to 0.
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As an example, we compute only g
λ〈1〉
(2,1)(F,E). By the definitions, we have

σ
λ〈1〉
(2,1)(mλ〈1〉 )

= mλ〈1〉 L2

= (L1 − Q2)(L2 − Q2)T1L1T1

= T1(L1 − Q2)L1(L2 − Q2)T1 (∵ Lemma 5.4(i),(iv))

= Q1T1(L1 − Q2)(L2 − Q2)T1

= Q1(L1 − Q2)(L2 − Q2)
(
(q − q−1)T1 + 1

)
(∵ T 2

1 = (q − q−1)T1 + 1)

= Q1

(
(q − q−1)mλ〈1〉 T1 + mλ〈1〉

)
,

where the fourth equality follows from L1 = T0 and T 2
0 = (Q1 + Q2)T0 −

Q1Q2. On the other hand, we have

ϕ−
(1,1)ϕ

+
(1,1)(mλ〈1〉 ) = q−1mλ〈1〉 (1 + qT1)

= mλ〈1〉 T1 + q−1mλ〈1〉 .

Thus, we have σ
λ〈1〉
(2,1) = Q1((q − q−1)ϕ−

(1,1)ϕ
+
(1,1) + q−2)ϕ1

λ〈1〉,λ〈1〉
. This implies

that
g

λ〈1〉
(2,1)(F,E) = Q1

(
(q − q−1)F(1,1)E(1,1) + q−2

)
.

Since ηλ
(2,1) =

(
−Q2[λ

(1)
2 − λ

(2)
1 ] + qλ

(1)
2 −λ

(2)
1 (q−1gλ

(2,1)(F,E) − qgλ
(1,2)(F,

E))
)
1λ, we have

η
λ〈1〉
(2,1) =

(
Q1(q − q−1)F(1,1)E(1,1) + (Q1q

−2 − Q2)
)
1λ〈1〉 ,

η
λ〈2〉
(2,1) = −F(2,1)E(2,1)1λ〈2〉 ,

η
λ〈4〉
(2,1) =

(
Q1(q3 + q) − Q2(q + q−1)

)
1λ〈4〉 ,

η
λ〈5〉
(2,1) =

(
−qF(1,1)F(2,1)E(2,1)E(1,1) + (Q1q

−1 − Q2q)
)
1λ〈5〉 ,

η
λ〈6〉
(2,1) = (Q1 − Q2)1λ〈6〉 ,

η
λ〈7〉
(2,1) = −F(2,1)E(2,1)1λ〈7〉 ,
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η
λ〈8〉
(2,1) = −F(2,1)E(2,1)1λ〈8〉 ,

η
λ〈0〉
(2,1) = η

λ〈3〉
(2,1) = η

λ〈9〉
(2,1) = 0.

B.2.

We can take a homogeneous basis of AΔ(λ) for λ ∈ Λ+ as follows.

Basis of AΔ(λ〈0〉)

Weight Basis

λ〈0〉 1λ〈0〉

λ〈1〉 F(1,1)1λ〈0〉

λ〈2〉 F(2,1)F(1,1)1λ〈0〉

λ〈3〉 F(1,2)F(2,1)F(1,1)1λ〈0〉

λ〈4〉 F
(2)
(1,1)

1λ〈0〉

λ〈5〉 F(2,1)F
(2)
(1,1)

1λ〈0〉

λ〈6〉 F(1,2)F(2,1)F
(2)
(1,1)

1λ〈0〉

λ〈7〉 F
(2)
(2,1)

F
(2)
(1,1)

1λ〈0〉

λ〈8〉 F(1,2)F
(2)
(2,1)

F
(2)
(1,1)

1λ〈0〉

λ〈9〉 F
(2)
(1,2)

F
(2)
(2,1)

F
(2)
(1,1)

1λ〈0〉

Basis of AΔ(λ〈1〉)

Weight Basis

λ〈1〉 1λ〈1〉

λ〈2〉 F(2,1)1λ〈1〉

λ〈3〉 F(1,2)F(2,1)1λ〈1〉

λ〈5〉 F(1,1)F(2,1)1λ〈1〉

λ〈6〉 F(1,2)F(1,1)F(2,1)1λ〈1〉

λ〈8〉 F(2,1)F(1,2)F(1,1)F(2,1)1λ〈1〉

Basis of AΔ(λ〈2〉)

Weight Basis

λ〈2〉 1λ〈2〉

λ〈3〉 F(1,2)1λ〈2〉

λ〈5〉 F(1,1)1λ〈2〉

λ〈6〉 F(1,2)F(1,1)1λ〈2〉

λ〈7〉 F(2,1)F(1,1)1λ〈2〉

λ〈8〉 F(2,1)F(1,2)F(1,1)1λ〈2〉 , F(1,2)F(2,1)F(1,1)1λ〈2〉

λ〈9〉 F(1,2)F(2,1)F(1,2)F(1,1)1λ〈2〉

Basis of AΔ(λ〈7〉)

Weight Basis

λ〈7〉 1λ〈7〉

λ〈8〉 F(1,2)1λ〈7〉 ,

λ〈9〉 F
(2)
(1,2)

1λ〈7〉

Basis of AΔ(λ〈8〉)

Weight Basis

λ〈8〉 1λ〈8〉
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B.3.
We can compute the Gram matrix of AΔ(λ)μ λ,μ ∈ Λ+ with respect to

the above basis. Here, as an example, we compute M(λ〈0〉)λ〈2〉 . Note that

AΔ(λ〈0〉)〈2〉 has a basis {F(2,1)F(1,1)1λ〈0〉 }. We have

1λ〈0〉 E(1,1)E(2,1)F(2,1)F(1,1)1λ〈0〉

= E(1,1)

(
Q1(q − q−1)F(1,1)E(1,1) + (Q1q

−2 − Q2)
)
F(1,1)1λ〈0〉

=
(
Q1(q − q−1)[2][2] + (Q1q

−2 − Q2)[2]
)
1λ〈0〉

(∵ E(1,1)F(1,1)1λ〈0〉 = [2]1λ〈0〉 )

= [2](Q1q
2 − Q2)1λ〈0〉 .

This implies that 〈F(2,1)F(1,1)1λ〈0〉 , F(2,1)F(1,1)1λ〈0〉 〉 = [2](Q1q
2 − Q2). Thus,

we have M(λ〈0〉)λ〈2〉 = ([2](Q1q
2 − Q2)).

In a similar way, we can compute the Gram matrix M(λ)μ for λ,μ ∈ Λ+
n,r,

and we have
Δ(λ〈0〉):

M(λ〈0〉)λ〈1〉 =
(
[2]
)

M(λ〈0〉)λ〈2〉 =
(
[2](q2Q1 − Q2)

)
M(λ〈0〉)λ〈7〉 =

(
(Q1 − Q2)(q2Q1 − Q2)

)
M(λ〈0〉)λ〈8〉 =

(
[2](Q1 − Q2)(q2Q1 − Q2)

)
Δ(λ〈1〉):

M(λ〈1〉)λ〈2〉 =
(
(q−2Q1 − Q2)

)
M(λ〈1〉)λ〈8〉 =

(
(Q1 − Q2)(q−2Q1 − Q2)

)
Δ(λ〈2〉):

M(λ〈2〉)λ〈7〉 =
(
q(q−2Q1 − Q2)

)
M(λ〈2〉)λ〈8〉 =

(
(Q1 − Q2) q(q−2Q1 − Q2)

q(q−2Q1 − Q2) [2]q(q−2Q1 − Q2)

)
(
detM(λ〈2〉)λ〈8〉 = (q−2Q1 − Q2)(q2Q1 − Q2)

)
Δ(λ〈7〉):

M(λ〈7〉)λ〈8〉 =
(
[2]
)
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B.4.

Let A → C be a ring homomorphism, and we express the image of q,Q1,

Q2 in C by the same symbol. We can compute the decomposition numbers

of CS2,2 = C ⊗A AS2,2 by using the algorithm in Section 8, and we have

the following decomposition matrix of CS2,2.

(q2 	= ±1,0, Q1 = Q2 	= 0)

Δ(λ)\L(μ) λ8 λ7 λ2 λ1 λ0

λ8 1
λ7 0 1

λ2 0 0 1
λ1 1 0 0 1

λ0 0 1 0 0 1

(q2 	= ±1,0, q−2Q1 = Q2 	= 0)

Δ(λ)\L(μ) λ8 λ7 λ2 λ1 λ0

λ8 1
λ7 0 1

λ2 0 1 1
λ1 0 0 1 1

λ0 0 0 0 0 1

(q2 	= ±1,0, q2Q1 = Q2 	= 0)

Δ(λ)\L(μ) λ8 λ7 λ2 λ1 λ0

λ8 1

λ7 0 1
λ2 1 0 1

λ1 0 0 0 1
λ0 0 0 1 0 1

(q2 = −1, ±Q1 	= Q2)

Δ(λ)\L(μ) λ8 λ7 λ2 λ1 λ0

λ8 1

λ7 1 1
λ2 0 0 1

λ1 0 0 0 1
λ0 0 0 0 1 1

(q2 = −1, Q1 = Q2 	= 0)

Δ(λ)\L(μ) λ8 λ7 λ2 λ1 λ0

λ8 1
λ7 1 1

λ2 0 0 1
λ1 1 0 0 1
λ0 1 1 0 1 1

(q2 = −1, −Q1 = Q2 	= 0)

Δ(λ)\L(μ) λ8 λ7 λ2 λ1 λ0

λ8 1
λ7 1 1

λ2 1 1 1
λ1 0 0 1 1
λ0 0 1 1 1 1

(q2 = 1, Q1 = Q2 = 0)

Δ(λ)\L(μ) λ8 λ7 λ2 λ1 λ0

λ8 1
λ7 0 1

λ2 1 1 1
λ1 1 0 1 1

λ0 0 1 1 0 1

(q2 	= −1,0, Q1 = Q2 = 0)

Δ(λ)\L(μ) λ8 λ7 λ2 λ1 λ0

λ8 1
λ7 0 1

λ2 1 1 1
λ1 1 0 1 1

λ0 0 1 1 0 1

(q2 = −1, Q1 = Q2 = 0)

Δ(λ)\L(μ) λ8 λ7 λ2 λ1 λ0

λ8 1

λ7 1 1
λ2 2 1 1

λ1 1 0 1 1
λ0 1 1 1 1 1
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Appendix C. Example: The case of ηλ
i = 0

In this appendix, we give an extreme example of an Sq which is not a
cyclotomic q-Schur algebra. In this example, we see that the isomorphism
classes of nonisomorphic simple Sq-modules are indexed by Λ (i.e., Λ+ = Λ),
and all simple Sq-modules are 1-dimensional. Moreover, this is an example
such that condition (C-2) does not hold. We also see that Sq is not semi-
simple over any field and parameters.

We take K = Q(q). Put Λ = {λ = (λ1, . . . , λm) ∈ Zm
≥0 | λ1 + · · · + λm = n},

and ηλ
i = 0 for any i = 1, . . . ,m − 1 and λ ∈ Λ. Then, Sq = S ηΛ

q is the algebra
generated by Ei, Fi (1 ≤ i ≤ m − 1) and 1λ (λ ∈ Λ) with the defining relations
(2.1.1)–(2.1.6), (2.1.8), and (2.1.9) together with the relation

EiFj − FjEi = 0.(2.1.7′)

In this case, one sees easily that Λ = Λ+. We denote a monomial of Fi

(resp., Ei) for i = 1, . . . ,m − 1 by X(F ) (resp., Y (E)). Then, one sees that

X(F )1λ /∈ Sq(> λ)
(
resp., 1λY (E) /∈ Sq(> λ)

)
,

if λ + deg(X(F )) ∈ Λ (resp., λ − deg(Y (E)) ∈ Λ). On the other hand, we
have

X(F )1λY (E) = X(F )Y (E)1λ−deg(Y (E))

= Y (E)X(F )1λ−deg(Y (E))

= Y (E)1λ−deg(Y (E))+deg(X(F ))X(F ).

Thus, we have X(F )1λY (E) = 0 if λ − deg(Y (E))+deg(X(F )) /∈ Λ. It hap-
pens that λ + deg(X(F )) ∈ Λ, λ − deg(Y (E)) ∈ Λ, and λ − deg(Y (E)) +
deg(X(F )) /∈ Λ. This shows that the natural surjection Δ(λ) ⊗K Δ�(λ) →
Sq(≥ λ)/Sq(> λ) is not an isomorphism in general. (Note that (C-2) ⇔
(C′-2).)

For λ,μ ∈ Λ+(= Λ), one sees that

M(λ)μ = 0 unless λ = μ,

where 0 means the zero matrix. This implies that dimK L(λ)μ = 0 unless
λ = μ, and that

[Δ(λ) : L(μ)] = dimK Δ(λ)μ.
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