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80th birthday

Abstract. For self-injective algebras, Rickard proved that each derived equiv-
alence induces a stable equivalence of Morita type. For general algebras, it is

unknown when a derived equivalence implies a stable equivalence of Morita

type. In this article, we first show that each derived equivalence F between

the derived categories of Artin algebras A and B arises naturally as a func-
tor F̄ between their stable module categories, which can be used to compare

certain homological dimensions of A with that of B. We then give a suffi-
cient condition for the functor F̄ to be an equivalence. Moreover, if we work

with finite-dimensional algebras over a field, then the sufficient condition guar-
antees the existence of a stable equivalence of Morita type. In this way, we

extend the classical result of Rickard. Furthermore, we provide several induc-
tive methods for constructing those derived equivalences that induce stable

equivalences of Morita type. It turns out that we may produce a lot of (usually

not self-injective) finite-dimensional algebras that are both derived-equivalent

and stably equivalent of Morita type; thus, they share many common invari-
ants.

§1. Introduction

As is well known, derived equivalence and stable equivalence of Morita
type are two fundamental types of equivalences in algebras. Roughly, the
former is the equivalence of the derived categories of their module cate-
gories, while the latter is the equivalence of their module categories modulo
projective direct summands, where the equivalence is given by tensoring a

Received November 17, 2009. Revised February 15, 2010. Accepted February 24, 2010.
2000 Mathematics Subject Classification. Primary 18E30, 16G10; Secondary 18G20,

16D90.
Xi’s work partially supported by the National Natural Science Foundation of China

grant (10731070).

© 2011 by The Editorial Board of the Nagoya Mathematical Journal

http://dx.doi.org/10.1215/00277630-2010-014
http://www.ams.org/msc/


108 W. HU AND C. C. XI

two-sided module (see Section 2 for more detail). They play an important
role in the modern representation theory of groups and algebras, transfer
information from one algebra to another, and provide a convenient bridge
between two different (derived or stable) categories. In particular, derived
equivalences preserve many significant invariants, for example, the center of
an algebra, the number of nonisomorphic simple modules, the Hochschild
cohomology groups, and Cartan determinants. Stable equivalences of Morita
type, introduced in around 1990 (see, e.g., [3]) and appearing frequently in
the block theory of finite groups, preserve also many nice invariants, for
instance, the global, finitistic, and representation dimensions (see [19]) as
well as the representation types (see [8]). For self-injective algebras, the two
notions are closely related to each other; this was revealed by a well-known
result of Rickard [15], which states that a derived equivalence between self-
injective algebras always induces a stable equivalence of Morita type. More-
over, the remarkable abelian defect group conjecture of Broué, which states
that the module categories of a block algebra A of a finite group algebra
and its Brauer correspondent B should have equivalent derived categories
if their common defect group is abelian (see [16]), makes the two concepts
more attractive and intimate. For general finite-dimensional algebras, how-
ever, derived equivalence and stable equivalence of Morita type seem to be
completely different from each other; for example, a representation-finite
algebra may be derived-equivalent to a representation-infinite algebra via
a tilting module, and consequently, they neither are stably equivalent of
Morita type nor have the same representation dimension. Thus, a natural
question arises: what kind of relationship between a derived equivalence and
a stable equivalence of Morita type for general finite-dimensional algebras
could exist? In other words, we consider the following question.

Question. When does a derived equivalence between two finite-
dimensional (not necessarily self-injective) algebras A and B induce a stable
equivalence of Morita type between them?

Thus, a positive answer to the above question would let us know more
invariants between the algebras A and B. However, to date, little is known
about this question. One does not even know when a derived equivalence
induces a stable equivalence for general finite-dimensional algebras.

In this article, we provide some answers to this question. To state our
main result, let us introduce the notion of an almost ν-stable functor. Sup-
pose that F is a derived equivalence between two Artin algebras A and B,
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with a quasi-inverse functor G. Further, suppose that

T • : · · · −→ 0 −→ T −n −→ · · · −→ T −1 −→ T 0 −→ 0 −→ · · ·

is a radical tilting complex over A associated to F , and suppose that

T̄ • : · · · −→ 0 −→ T̄ 0 −→ T̄ 1 −→ · · · −→ T̄n −→ 0 −→ · · ·

is a radical tilting complex over B associated to G. The functor F is called
almost ν-stable if add(

⊕−n
i=−1 T i) = add(

⊕−n
i=−1 νAT i), and add(

⊕n
i=1 T̄ i) =

add(
⊕n

i=1 νBT̄ i), where νA is the Nakayama functor of A. Note that the
summations exclude only the term in degree 0. If A and B are self-injective,
then every derived equivalence between A and B is almost ν-stable (by
Proposition 3.8 below). Surprisingly, even beyond the class of self-injective
algebras, there are plenty of almost ν-stable derived equivalences, for exam-
ple, the derived equivalences constructed in [6, Corollary 3.8] and in Propo-
sition 3.11 below. In fact, we give a general machinery below to produce
such derived equivalences.

With this notion in mind, our main result can be stated as follows.

Theorem 1.1. Let A and B be Artin algebras, and let F be a derived
equivalence between A and B. Then,

(1) F induces a functor F̄ from the stable module category over A to that
over B;

(2) if F is almost ν-stable, then the functor F̄ defined in (1) is an equiv-
alence, and further, if F is an almost ν-stable derived equivalence between
finite-dimensional algebras A and B over a field k, then there is a stable
equivalence Φ of Morita type between A and B such that Φ(X) � F̄ (X) for
all objects X in the stable module category over A.

As a consequence of the proof of Theorem 1.1, we have the following facts
on homological dimensions of algebras.

Corollary 1.2. Let A and B be Artin algebras, and let F be a derived
equivalence between A and B. If add(

⊕−n
i=−1 T i) = add(

⊕−n
i=−1 νAT i), then

(1) gl.dim(A) ≤ gl.dim(B);
(2) fin.dim(A) ≤ fin.dim(B);
(3) dom.dim(A) ≥ dom.dim(B);

where gl.dim(A), fin.dim(A), and dom.dim(A) stand for the global, finitistic,
and dominant dimensions of A, respectively.
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Note that if A and B are finite-dimensional self-injective, we reobtain
the well-known result of Rickard [15] from Theorem 1.1: derived-equivalent
self-injective algebras are stably equivalent of Morita type. Moreover, The-
orem 1.1 allows us to obtain a lot of (usually not self-injective) algebras
which are both derived-equivalent and stably equivalent of Morita type. By
the corollary below, we can even repeatedly construct derived equivalences
satisfying the almost ν-stable condition.

Corollary 1.3. Let k be a field, and let F be an almost ν-stable derived
equivalence between two finite-dimensional k-algebras A and B. Then,

(1) for any finite-dimensional self-injective k-algebra C, there is an almost
ν-stable derived equivalence between the two tensor products A ⊗k C and
B ⊗k C;

(2) let F̄ be the stable equivalence induced by F in Theorem 1.1; then, for
each A-module X, there is an almost ν-stable derived equivalence between
the endomorphism algebras EndA(A ⊕ X) and EndB(B ⊕ F̄ (X));

(3) if X is an A-module such that F (X) is isomorphic to a B-module Y ,
then there is an almost ν-stable derived equivalence between the one-point
extensions A[X] and B[Y ].

This article is organized as follows. In Section 2, we recall some basic
definitions and facts required in proofs. In Section 3, we first show that
every derived equivalence F between two Artin algebras A and B gives rise
to a functor F̄ between their stable module categories, and we then give
a sufficient condition for the functor F̄ to be an equivalence. In Section 4,
we deduce some properties of the functor F̄ and then compare homological
dimensions of A with that of B. In particular, we get Corollary 1.2. As a
by-product, we reobtain a result in [12] that a derived equivalence preserves
the finiteness of finitistic dimension. In Section 5, we show that the condi-
tion given in Section 3 is sufficient for F to induce a stable equivalence of
Morita type when we work with finite-dimensional algebras over a field. In
Section 6, we give several methods to construct inductively derived equiv-
alences satisfying the almost ν-stable condition. Finally, in Section 7, we
exhibit a couple of examples to explain our points about the main result.

§2. Preliminaries

In this section, we recall basic definitions and facts required in our proofs.
Let C be an additive category.
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Convention. For two morphisms f : X → Y and g : Y → Z in C, the
composition of f with g is written as fg, which is a morphism from X

to Z. But for two functors F : C → D and G : D → E of categories, their
composition is denoted by GF .

For an object X in C, we denote by add(X) the full subcategory of C
consisting of all direct summands of finite direct sums of copies of X .

Throughout this article, unless specified otherwise, all algebras will be
Artin algebras over a fixed commutative Artin ring R. All modules will
be finitely generated unitary left modules. If A is an Artin algebra, the
category of all modules over A is denoted by A-mod; the full subcategory
of A-mod consisting of projective (resp., injective) modules is denoted by
A-proj (resp., A-inj). We denote by D the usual duality on A-mod. The dual-
ity HomA(−,A) from A-proj to Aop-proj is denoted by ∗; that is, for each
projective A-module P , the projective Aop-module HomA(P,A) is denoted
by P ∗. We denote by νA the Nakayama functor D HomA(−,A) : A-proj −→
A-inj.

The stable module category A-mod of an algebra A is, by definition, an
R-category in which objects are the same as the objects of A-mod and, for
two objects X,Y in A-mod, their morphism set, denoted by HomA(X,Y ),
is the quotient of HomA(X,Y ) modulo the homomorphisms that factorize
through projective modules. Two algebras are said to be stably equivalent
if their stable module categories are equivalent as R-categories.

For finite-dimensional algebras over a field k, there is a special class of
stable equivalences, namely, stable equivalences of Morita type. Recall that
two finite-dimensional algebras A and B over a field k are called stably equiv-
alent of Morita type if there are two bimodules AMB and BNA satisfying
the following properties:

(1) all of the one-sided modules AM , MB , BN , and NA are projective,
and

(2) there is an A-A-bimodule isomorphism AM ⊗B NA � A ⊕ U for a
projective A-A-bimodule U , and there is a B-B-bimodule isomorphism
BN ⊗A MB � B ⊕ V for a projective B-B-bimodule V .

If two finite-dimensional algebras A and B over a field are stably equiv-
alent of Morita type, then the functor TN : A-mod −→ B-mod defined by
BN ⊗A − is an equivalence and is also called a stable equivalence of Morita
type. (Note that if we extend the definition of a stable equivalence of Morita
type from finite-dimensional algebras to R-projective Artin R-algebras, then



112 W. HU AND C. C. XI

there is an open problem of whether TN could induce a stable equivalence
on stable module categories, namely, whether AU ⊗A X is projective for
every A-module X .)

Now we recall some definitions relevant to derived equivalences.
Let C be an additive category. A complex X• over C is a sequence of

morphisms di
X between objects Xi in C : · · · → Xi−1 di−1

X−→ Xi di
X−→ Xi+1 di+1

X−→
Xi+2 → · · · such that di

Xdi+1
X = 0 for all i ∈ Z. We write X• = (Xi, di

X).
For each complex X•, the brutal truncation σ<iX

• is a quotient complex
of X• such that (σ<iX

•)k is Xk for all k < i and zero otherwise. We define
σ≥iX

• similarly. The category of complexes over C is denoted by C (C).
The homotopy category of complexes over C is denoted by K (C). When C
is an abelian category, the derived category of complexes over C is denoted
by D(C). The full subcategory of K (C) and D(C) consisting of bounded
complexes over C is denoted by K b(C) and Db(C), respectively. Moreover,
we denote by C −(C) the category of complexes bounded above, and by
K −(C) the homotopy category of C −(C). Similarly, we have the category
C +(C) of complexes bounded below and the homotopy category K +(C) of
C +(C). As usual, for a given Artin algebra A, we simply write C (A) for
C (A-mod), K (A) for K (A-mod), and K b(A) for K b(A-mod). Similarly,
we write D(A) and Db(A) for D(A-mod) and Db(A-mod), respectively.

It is well known that, for an Artin algebra A, the categories K (A) and
D(A) are triangulated categories. For basic results on triangulated cate-
gories, we refer to Happel [5]. Throughout this article, we denote by X[n]
rather than TnX the object obtained from X by shifting n times. In par-
ticular, for a complex X• in K (A) or D(A), the complex X•[1] is obtained
from X• by shifting X• to the left by one degree.

Let A be an Artin algebra. A homomorphism f : X −→ Y of A-modules is
called a radical map if, for any A-module Z and homomorphisms h : Z −→
X and g : Y −→ Z, the composition hfg is not an isomorphism. A complex
over A-mod is called a radical complex if all of its differential maps are
radical. We have the following basic properties of radical complexes.

(a) Every complex over A-mod is isomorphic in the homotopy cate-
gory K (A) to a radical complex. Indeed, let X• = (Xi, di

X) be a com-
plex in K (A), and let d0

X be not radical. Then there is an indecomposable
A-module Y and maps f : Y −→ X0 and g : X1 −→ Y such that fd0

Xg = 1Y .

Let Y • be the complex · · · → 0 → Y
1Y−→ Y → 0 → · · · with the left Y in

degree 0. We can define a chain map s• : Y • −→ X• with s0 = f , s1 = fd0
X ,
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and si = 0 for all i 	= 0,1. Let Z• be a cokernel of s• in C (A). Then we have
an exact sequence of complexes: 0 −→ Y • −→ X• −→ Z• −→ 0 in C (A).
Moreover, for each integer i, the exact sequence 0 −→ Y i −→ Xi −→ Zi −→ 0
is split-exact. By [5, Chapter I, Sections 2 and 3.2], we have a distinguished
triangle Y • −→ X• −→ Z• −→ Y •[1] in K (A). Since Y • � 0 in K (A), we
see that X• � Z• in K (A). In this way, we can reduce every nonradical
differential map of a complex to a radical map in K (A).

(b) If two radical complexes X• and Y • are isomorphic in K (A), then X•

and Y • are isomorphic in C (A). In fact, if f • : X• → Y • and g• : Y • → X•

are morphisms in C (A) such that f •g• − 1 is null-homotopic, then there is
a map si : Xi → Xi−1 such that f igi − 1 = di

Xsi+1 + sidi−1
X for each i. The

conclusion now follows from the fact that di
X and di

Y are radical maps for
all i.

(c) For a radical complex X• = (Xi, di) ∈ C b(A) with all terms projec-
tive, if HomDb(A)(X•,A[m]) = 0 for all m > 0, then Xi = 0 for all i < 0.
Indeed, we may suppose that there is a maximal integer t ≥ 0 such that
X−t 	= 0. Then there is a homomorphism f : X−t → A, which is not a radi-
cal map. Since X• is a radical complex, we see that f , considered as a chain
map from X• to A[t], is nonzero in K b(A); this contradicts our assumption.
Thus, (c) holds. Similarly, we can prove the following.

(d) For a radical complex Y • = (Y i, di) ∈ C b(A) with all terms projective,
if HomDb(A)(A,Y •[m]) = 0 for all m > n, then Y i = 0 for all i > n.

Two algebras A and B are said to be derived-equivalent if their derived
categories Db(A) and Db(B) are equivalent as triangulated categories.
Rickard [14] proved that two algebras are derived-equivalent if and only
if there is a complex T • in K b(A-proj) satisfying

(1) HomDb(A)(T •, T •[n]) = 0 for all n 	= 0, and
(2) add(T •) generates K b(A-proj) as a triangulated category,

such that B � EndDb(A)(T •). A complex in K b(A-proj) satisfying the above
two conditions is called a tilting complex over A. By condition (2), each
indecomposable projective A-module is a direct summand of T i for some
integer i. It is known that, given a derived equivalence F between A and B,
there is a unique (up to isomorphism) tilting complex T • over A such that
F (T •) � B. This complex T • is called a tilting complex associated to F .

Let F be a derived equivalence between two Artin algebras A and B, and
let Q• be a tilting complex associated to F . Without loss of generality, we
may assume that Q• is radical, that Qi = 0 for i < −n and i > 0, and that
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Q0 	= 0 	= Q−n. Then we have the following fact; for the convenience of the
reader, we include here a proof.

Lemma 2.1. Let A and B be two Artin algebras, and let F and Q• be
as above. If G : Db(B) −→ Db(A) is a quasi-inverse of F , then there is a
radical tilting complex Q̄• associated to G of the following form:

0 Q̄0 Q̄1 · · · Q̄n 0.

Proof. Note that the tilting complex Q• associated to F is radical and of
the form

0 Q−n · · · Q−1 Q0 0.

Let Q̄• be a radical complex in K b(B-proj) such that Q̄• is isomorphic to
F (A) in Db(B). Then G(Q̄•) � GF (A) � A in Db(A), which means that Q̄•

is a tilting complex associated to G. Moreover, on the one hand, we have

HomDb(B)(Q̄
•,B[m]) � HomDb(A)(A,Q•[m]) = 0

for all m > 0, and consequently, Q̄• has zero terms in all negative degrees.
On the other hand, we have

HomDb(B)(B, Q̄•[m]) � HomDb(A)(Q
•,A[m]) = 0

for all m > n and HomDb(B)(B, Q̄•[n]) 	= 0. Thus, the complex Q̄• has zero
terms in all degrees larger than n, and its nth term is nonzero.

The following lemma will be used frequently in our proofs. Again, we
include here a proof for the convenience of the reader.

Lemma 2.2. Let A be an arbitrary ring, and let A-Mod be the category
of all left (not necessarily finitely generated) A-modules. Suppose that X•

is a complex over A-Mod bounded above, and suppose that Y • is a complex
over A-Mod bounded below. Let m be an integer. If one of the following two
conditions holds:

(1) Xi is projective for all i > m and Y j = 0 for all j < m;
(2) Y j is injective for all j < m and Xi = 0 for all i > m,

then θX•,Y • : HomK (A-Mod)(X•, Y •) → HomD(A-Mod)(X•, Y •) induced by
the localization functor θ : K (A-Mod) → D(A-Mod) is an isomorphism.
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Proof. For simplicity, we write K = K (A-Mod) and D = D(A-Mod).
The category of all left (not necessarily finitely generated) projective A-
modules is denoted by A-Proj. By applying the shift functor, we may assume
that m = 0. Suppose that (1) is satisfied.

First, we consider the case Xi = 0 for all i < 0. Let

· · · P −1 P 0
π

X0 0

be a projective resolution of X0. Then the complex

· · · P −1 P 0
πd0

X

X1 X2 · · · ,

denoted by P •
X , is in K (A-Proj) and bounded above since Xi is projective for

all i > 0 by our assumption, and there is a quasi-isomorphism π• : P •
X → X•:

· · · P −1 P 0

π

πd0
X

X1 · · ·

0 X0
d0

X

X1 · · ·

We claim that HomK (π•, Y •) : HomK (X•, Y •) → HomK (P •
X , Y •) induced

by π• is an isomorphism. Actually, if f • ∈ HomK (P •
X , Y •), then f0 fac-

torizes through the map π : P 0 → X0. Suppose that f0 = πg0 for some
g0 : X0 → Y 0. Let gi := f i for all i > 0. Then g• = (gi) is a chain map
from X• to Y • and f • = π•g•. Consequently, the map HomK (π•, Y •) is
surjective. Further, we shall show that the map HomK (π•, Y •) is injec-
tive. In fact, if π•α• = 0 for a morphism α• in HomK (X•, Y •), then there
is map hi : Xi → Y i−1 for all integers i ≥ 1 such that πα0 = πd0

Xh1 and
αi = di

Xhi+1 + hidi−1
Y for all i > 0. Thus, α0 = d0

Xh1 since π is an epimor-
phism. Hence, α• = 0, which implies that HomK (π•, Y •) is injective. It
follows that HomK (π•, Y •) is an isomorphism.

Note that π• induces a commutative diagram:

HomK (X•, Y •)
θX• ,Y •

−−−−→ HomD(X•, Y •)

(π•,Y •)

⏐⏐� (π•,Y •)

⏐⏐�
HomK (P •

X , Y •)
θP •

X,Y •
−−−−→ HomD(P •

X , Y •)
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Since π• is a quasi-isomorphism, the right vertical map is an isomorphism.
We have shown that the left vertical map is an isomorphism. Moreover, since
P •

X is a complex in K (A-Proj) and bounded above, the map θP •
X ,Y • is an

isomorphism. It follows that θX•,Y • : HomK (X•, Y •) −→ HomD(X•, Y •) is
an isomorphism.

Now, let X• be an arbitrary complex satisfying condition (1). Then there
is a distinguished triangle

σ<0X
•[−1] −→ σ≥0X

• p−→ X• −→ σ<0X
•

in K . This triangle can be viewed as a distinguished triangle in D . Applying
the functors HomK (−, Y •) and HomD(−, Y •) to this triangle, we have an
exact commutative diagram

HomK (σ<0X
•, Y •) HomK (X•, Y •)

K (p,Y •)

θX•,Y •

HomK (σ≥0X
•, Y •)

θσ≥0X•,Y •

HomD(σ<0X
•, Y •) HomD(X•, Y •)

D(p,Y •)

HomD(σ≥0X
•, Y •)

HomK (σ<0X
•[−1], Y •)

θσ<0X•[−1],Y •

HomD(σ<0X
•[−1], Y •)

By our assumption, we have Y i = 0 for all i < 0, and therefore HomK (σ<0X
•,

Y •) = 0. Note that σ<0X
• is isomorphic in D to a complex P •

1 in K (A-Proj)
such that P i

1 = 0 for all i ≥ 0. It follows that HomD(σ<0X
•, Y •) � HomD(P •

1 ,

Y •) � HomK (P •
1 , Y •) = 0. Thus, both maps K (p,Y •) and D(p,Y •) are

injective. Note that σ≥0X
• is a complex satisfying condition (1) and that

the terms of σ≥0X
• in all negative degrees are zero. By the first part of

the proof, we see that the map θσ≥0X•,Y • is an isomorphism. It follows that
θX•,Y • is injective. In particular, the map θσ<0X•[−1],Y • is injective. By the
five lemma (see [18, Exercise 1.3.3, page 13]), the map θX•,Y • is surjective.
Thus, θX•,Y • is an isomorphism.

The proof for situation (2) proceeds similarly.

Remark. Suppose that X• and Y • are given as in Lemma 2.2. It follows
from Lemma 2.2 that if the pair (X•, Y •) satisfies one of the conditions
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in Lemma 2.2 and if the pair (Y •,X•) satisfies one of the conditions in
Lemma 2.2, then an isomorphism of X• with Y • in D(A-Mod) induces an
isomorphism of X• with Y • in K (A-Mod).

In the following, we point out a relationship between the Nakayama func-
tor and a derived equivalence. Let F : Db(A) −→ Db(B) be a derived equiv-
alence between Artin algebras A and B over a commutative Artin ring
R. By [14, Theorem 6.4], F induces an equivalence from K b(A-proj) to
K b(B-proj). Note that the Nakayama functor νA : A-proj −→ A-inj induces
an equivalence from K b(A-proj) to K b(A-inj), which is again denoted by
νA. When A and B are finite-dimensional algebras over a field k, Rickard [15]
shows that F (νAP •) � νBF (P •) in Db(B) for P • ∈ K b(A-proj). We can
prove this isomorphism for Artin algebras by using the notion of Auslander-
Reiten triangle. Recall that a distinguished triangle X

f−→ M
g−→ Y

w−→
X[1] in Db(A) is called an Auslander-Reiten triangle if

(AR1) X and Y are indecomposable,
(AR2) w 	= 0, and
(AR3) if t : U −→ Y is not a split epimorphism, then tw = 0.

For a given object Y in Db(A), if there is an Auslander-Reiten triangle

X
f−→ M

g−→ Y
w−→ X[1], then it is unique up to isomorphism [5, Proposi-

tion 4.3, page 33].
The first statement of the next lemma is essentially due to Happel (see

[5, Theorem 4.6, page 37]), where the case of finite-dimensional algebras
was considered. The second statement follows from the uniqueness of an
Auslander-Reiten triangle ending at Y.

Lemma 2.3. Let A be an Artin algebra over a commutative Artin ring
R. Then, for each indecomposable complex P • in K b(A-proj), there is an
Auslander-Reiten triangle

(νAP •)[−1] −→ L• −→ P • −→ νAP •

in Db(A). Furthermore, we have F (νAP •) � νBF (P •) in Db(B).

Finally, let us remark that, given a functor F : C → D, if we fix an object
FX in D for each object X in C such that FX � F (X), then there is a functor
F ′ : C → D such that F ′ � F and F ′(X) = FX for every X in C. Actually,
let sX denote a fixed isomorphism from FX to F (X) for each X , and define
F ′(f) := sXF (f)s−1

Y for each f : X → Y . Then F ′ is a desired functor.
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§3. Stable equivalences induced by derived equivalences

In this section, we first construct a functor F̄ : A-mod −→ B-mod between
the stable module categories of two Artin algebras A and B from a given
derived equivalence F : Db(A) −→ Db(B), and then we give a sufficient con-
dition to ensure that the functor F̄ is an equivalence. In Section 5, we shall
see a stronger conclusion when we work with finite-dimensional algebras
instead of general Artin algebras.

Let us first recall some notions and notations. Let A be an Artin alge-
bra. The homotopy category K b(A-proj) can be considered as a triangu-
lated full subcategory of Db(A). Let Db(A)/K b(A-proj) be the Verdier
quotient of Db(A) by the subcategory K b(A-proj). (For the definition, we
refer the reader to the excellent book [11].) Then there is a canonical func-
tor Σ′ : A-mod −→ Db(A)/K b(A-proj) obtained by composing the natural
embedding of A-mod into Db(A) with the quotient functor from Db(A)
to Db(A)/K b(A-proj). Clearly, Σ′(P ) is isomorphic to zero for each pro-
jective A-module P , so Σ′ factorizes through the canonical functor from
A-mod to A-mod. This gives rise to an additive functor Σ : A-mod −→
Db(A)/K b(A-proj).

Rickard [13] proved that Σ is an equivalence provided that the algebra A

is self-injective. But for an arbitrary algebra, this is no longer true in general;
for instance, if A is a nonsemisimple Artin algebra of finite global dimension,
then the quotient category Db(A)/K b(A-proj) is zero, and therefore the
functor Σ is a zero functor, which cannot be an equivalence.

Let A and B be two Artin algebras. Suppose that F : Db(A) −→ Db(B)
is a derived equivalence between A and B. Then F induces an equiv-
alence between the quotient categories Db(A)/K b(A-proj) and Db(B)/
K b(B-proj). For simplicity, we denote this induced equivalence also by F .
Thus, if A and B are self-injective, then A-mod and B-mod are equiva-
lent. However, this is not true in general for arbitrary finite-dimensional
algebras; namely, we cannot get an equivalence of stable module categories
from a given derived equivalence in general. Nevertheless, we may ask if
there is any “good” functor F̄ : A-mod −→ B-mod induced by F , which
could be a possible candidate for a stable equivalence under certain addi-
tional conditions and would cover the most interesting known situations.

In the following, we shall construct an additive functor F̄ : A-mod −→
B-mod from F such that the diagram
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A-mod Σ−−−−→ Db(A)/K b(A-proj)

F̄

⏐⏐� ⏐⏐�F

B-mod Σ−−−−→ Db(B)/K b(B-proj)

of additive functors is commutative up to natural isomorphism. Further-
more, we shall construct a possible candidate for the inverse of F̄ under an
additional condition.

From now on, A and B are Artin R-algebras and F is a derived equiva-
lence between A and B with a quasi-inverse G. Let Q• be a tilting complex
over A associated to F of the form

Q• : 0 Q−n · · · Q−1 Q0 0

such that all differentials are radical maps. By Lemma 2.1, there is a tilting
complex Q̄• associated to G of the form

Q̄• : 0 Q̄0 Q̄1 · · · Q̄n 0

with all differentials being radical maps. We define Q =
⊕n

i=1 Q−i and Q̄ =⊕n
i=1 Q̄i. Furthermore, we assume throughout the article that Q0 	= 0 	=

Q−n.

Lemma 3.1. Let X be an A-module. Then F (X) is isomorphic in Db(B)
to a radical complex Q̄•

X of the form

0 Q̄0
X Q̄1

X · · · Q̄n
X 0

with Q̄i
X ∈ add(BQ̄) for all i = 1,2, . . . , n. Moreover, the complex Q̄•

X of this
form is unique up to isomorphism in C b(B). In particular, if X is projective,
then Q̄•

X is isomorphic in C b(B) to a complex in add(Q̄•).

Proof. Let H i be the ith cohomology functor on complexes. First of all,
we have H i(F (X)) � HomDb(B)(B,F (X)[i]) � HomDb(A)(Q•,X[i]) = 0 for
all i > n and all i < 0, which means that F (X) has trivial homology in
negative degrees and degrees larger than n. Clearly, we may assume that X

is indecomposable.
If X is projective, then X is isomorphic to a direct summand of A. Con-

sequently, F (X) is isomorphic in Db(B) to a direct summand L• of the
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complex Q̄•. Since all terms of Q̄• in positive degrees are in add(BQ̄), all
terms of L• in positive degrees are in add(BQ̄). This shows that for every
projective A-module P , the complex F (P ) is isomorphic in Db(B) to a
complex with all of its terms in positive degrees in add(BQ̄). Now we show
that if P • is a complex in K b(A-proj) with P i = 0 for all i > 0, then F (P •)
is isomorphic in Db(B) to a complex in which all of its terms in positive
degrees belong to add(BQ̄). In fact, if P • has only one nonzero term, then
we may write P • = P [t] for a projective A-module P and a nonnegative
integer t. In this case, F (P •) is isomorphic to a direct summand of Q̄•[t]
in which all terms in positive degrees are in add(BQ̄), as desired. Now, we
assume that P • has at least two nonzero terms. Then there is an integer
s < 0 such that the brutal truncations σ<sP

• and σ≥sP
• have fewer nonzero

terms than P • does. By induction, the complexes F (σ<sP
•) and F (σ≥sP

•)
are respectively isomorphic to complexes Y • and Z• in K b(A-proj), such
that their terms in all positive degrees are in add(BQ̄). Since P • is the map-
ping cone of the map ds−1

P from (σ<sP
•)[−1] to σ≥sP

•, the complex F (P •)
is isomorphic to the mapping cone of a chain map from Y •[−1] to Z•, and
consequently, all of its terms in positive degrees lie in add(BQ̄).

Now, suppose that X is an arbitrary indecomposable A-module and sup-
pose that P • = (P i, di) is a minimal projective resolution of X . We denote
by Ωn(X) the nth syzygy of X and by P •

1 the complex

0 P −n+1 P −n+2 · · · P 0 0.

Then we have a distinguished triangle in Db(A):

Ωn(X)[n − 1] P •
1 X Ωn(X)[n].

From this triangle one gets the following distinguished triangle in Db(B):

F
(
Ωn(X)

)
[n − 1] F (P •

1 ) F (X) F
(
Ωn(X)

)
[n].

The complex P •
1 is in K b(A-proj), and all the terms of P •

1 in positive
degrees are zero. Hence, F (P •

1 ) is isomorphic to a complex Q•
1 in K b(B-proj)

with Qi
1 in add(BQ̄) for all i > 0. Since Ωn(X) is an A-module, the com-

plex F (Ωn(X)) has trivial homology in all degrees larger than n. Thus, the
complex F (Ωn(X)) is isomorphic in D(B) to a complex P •

2 ∈ K −(B-proj)
with zero terms in all degrees larger than n. It follows that P •

2 [n − 1] has
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zero terms in all degrees larger than 1. Hence, F (X) is isomorphic to the
mapping cone con(μ) of a map μ from P •

2 [n − 1] to Q•
1, and all the terms of

con(μ) in positive degrees are in add(BQ̄). Note that F (X) has zero homol-
ogy in all negative degrees and degrees larger than n. Thus, con(μ) has the
same homology property and is isomorphic in D(B) to a radical complex

0 Q̄0
X Q̄1

X · · · Q̄n
X 0

with Q̄i
X ∈ add(BQ̄) for all i = 1,2, . . . , n.

Suppose that U • and V • are two radical complexes of the form inLemma3.1
such that both U • and V • are isomorphic to F (X) in Db(B). Then U • and
V • are isomorphic in K b(B) by Lemma 2.2. Since U • and V • are radical
complexes, we know that U • and V • are isomorphic as complexes.

If X is projective, then X ∈ add(A) and F (X) ∈ add(F (A)). Since F (A) �
FG(Q̄•) � Q̄• in Db(B), we see that F (X) is isomorphic in K b(B-proj) to
a complex Y • ∈ add(Q̄•). Thus, Q̄•

X is isomorphic in Db(B) to Y •. Since
Y • is a complex with the properties in Lemma 3.1, we have Y • � Q̄•

X as
complexes by the uniqueness of Q̄•

X . This shows that Q̄•
X ∈ add(Q̄•). Thus,

Lemma 3.1 is proved.

Similarly, we have the following lemma.

Lemma 3.2. Let U be a B-module. Then G(U) is isomorphic in Db(A)
to a radical complex Q•

U of the form

0 Q−n
U

· · · Q−1
U Q0

U 0

with Q−i
U ∈ add(νAQ) for all i = 1,2, . . . , n. Moreover, the complex Q•

U of
this form is unique up to isomorphism in C b(A).

Remark. One can easily see that if X � Y ⊕ Z in A-mod, then the
complex Q̄•

X defined in Lemma 3.1 is isomorphic in C b(B) to the direct
sum of Q̄•

Y and Q̄•
Z . Similarly, if U � V ⊕ W in B-mod, then the complex

Q•
U defined in Lemma 3.2 is isomorphic in C b(A) to the direct sum of Q•

V

and Q•
W .

The next lemma is useful in our proofs.

Lemma 3.3. Let A be an Artin algebra, and let f : X −→ Y be a homo-
morphism between two A-modules X and Y . Suppose that P • is a complex
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in K b(A) with P i projective for all i ≥ 0 and injective for all i < 0. If
f factorizes in Db(A) through P •, then f factorizes through a projective
A-module.

Proof. Suppose that

f = gh for g ∈ HomDb(A)(X,P •) and h ∈ HomDb(A)(P
•, Y ).

By Lemma 2.2(2), we have g = g• in Db(A) for some chain map g• from X

to P •, and by Lemma 2.2(1), we get h = h• in Db(A) for some chain map h•

from P • to Y . Hence, f = g0h0 in Db(A). Since A-mod is fully embedded
in Db(A), we see that f = g0h0 factorizes through the projective A-module
P 0 in A-mod.

Now we define the functor F̄ . Pick an A-module X ; by Lemma 3.1, we
know that F (X) is isomorphic in Db(B) to a radical complex Q̄•

X of the
form

0 Q̄0
X Q̄1

X · · · Q̄n
X 0

with Q̄i
X ∈ add(BQ̄) for all i = 1,2, . . . , n. From now on, for each A-module

X , we choose (once and for all) such a complex Q̄•
X . For each homomorphism

f : X −→ Y , we denote by f the image of f under the canonical surjective
map from HomA(X,Y ) to HomA(X,Y ).

Proposition 3.4. Let F : Db(A) −→ Db(B) be a derived equivalence
between Artin algebras A and B. Then there is an additive functor F̄ :
A-mod −→ B-mod sending X to Q̄0

X such that the diagram of additive func-
tors

A-mod Σ−−−−→ Db(A)/K b(A-proj)

F̄

⏐⏐� ⏐⏐�F

B-mod Σ−−−−→ Db(B)/K b(B-proj)

is commutative up to natural isomorphism.

Proof. By Lemma 3.1 and the remark at the end of Section 2, we may
assume that F (X) is just Q̄•

X for each A-module X , where Q̄•
X is the com-

plex that we have fixed above. Let Q̄+
X denote the complex σ≥1Q̄

•
X . Then

we have a distinguished triangle in Db(B):

Q̄+
X

iX
F (X)

πX

Q̄0
X

αX

Q̄+
X [1].
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For each homomorphism f : X −→ Y of A-modules X and Y , there is a
commutative diagram

Q̄+
X

iX−−−−→ F (X) πX−−−−→ Q̄0
X

αX−−−−→ Q̄+
X [1]⏐⏐�af

⏐⏐�F (f)

⏐⏐�bf

⏐⏐�af [1]

Q̄+
Y

iY−−−−→ F (Y ) πY−−−−→ Q̄0
Y

αY−−−−→ Q̄+
Y [1]

The map af exists because iXF (f)πY belongs to HomDb(B)(Q̄
+
X , Q̄0

Y ) �
HomK b(B)(Q̄

+
X , Q̄0

Y ) = 0. Since B-mod is fully embedded in D(B), the mor-
phism bf is a homomorphism of modules. If we have another A-module
homomorphism b′

f such that πXb′
f = F (f)πY , then πX(bf − b′

f ) = F (f)πY −
F (f)πY = 0 and bf − b′

f factorizes through Q̄+
X [1]. By Lemma 3.3, the

B-module homomorphism bf − b′
f factorizes through a projective B-module.

Thus, for each A-module homomorphism f in HomA(X,Y ), the morphism
bf in HomB(Q̄0

X , Q̄0
Y ) is uniquely determined by f .

Suppose that f : X −→ Y and g : Y −→ Z are two homomorphisms of
A-modules; we can see that F (fg)πZ = πXbfg and F (fg)πZ = πX(bfbg).
By the uniqueness of bfg, we have bfg = bfbg.

Moreover, if X is a projective A-module, then F (X) � Q̄•
X and Q̄•

X ∈
add(Q̄•) by Lemma 3.1. In particular, Q̄0

X is projective. Thus, if f factorizes
through a projective module P , say, f = gh with g ∈ HomA(X,P ) and h ∈
HomA(P,Y ), then bf factorizes through a projective B-module since bf =
bgh = (bgh − bgbh)+bgbh and since both bgh − bgbh and bgbh factorize through
projective B-modules.

For each A-module X , we define F̄ (X) = Q̄0
X . Note that Q̄0

X is, up to
isomorphism, uniquely determined by X (see Lemma 3.1). For each homo-
morphism f in HomA(X,Y ), we set F̄ (f) = bf . Then the above discussions
show that F̄ is well defined on Hom-sets and that F̄ is a functor from A-mod
to B-mod. Note that F̄ is additive since F is additive.

To finish the proof of the proposition, it remains to show that πX : F (X) −→
F̄ (X) is a natural isomorphism in the quotient category Db(B)/K b(B-proj).
That the morphism πX is an isomorphism follows from the fact that Q̄+

X is
isomorphic to the zero object in Db(B)/K b(B-proj). Clearly, πX is natural
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in X since we have a commutative diagram

F (X) πX−−−−→ Q̄0
X

F (f)

⏐⏐� ⏐⏐�bf

F (Y ) πY−−−−→ Q̄0
Y

in the quotient category Db(B)/K b(B-proj).

Now, it is appropriate to introduce a name for the functor F̄ . Given a
derived equivalence F , the functor F̄ constructed in Proposition 3.4 is called
a stable functor of F throughout this article.

Proposition 3.5. If add(AQ) = add(νAQ), then there is an additive
functor Ḡ : B-mod −→ A-mod sending U to Q0

U such that the diagram of
additive functors

B-mod Σ−−−−→ Db(B)/K b(B-proj)

Ḡ

⏐⏐� ⏐⏐�G

A-mod Σ−−−−→ Db(A)/K b(A-proj)

is commutative up to natural isomorphism.

Proof. The idea of the proof is similar to that of Proposition 3.4. We
outline only the key points of the construction of Ḡ.

For a B-module U , by Lemma 3.2, G(U) is isomorphic in Db(A) to a
complex Q•

U such that Qi
U ∈ add(νAQ) for all i < 0 and Qj

U = 0 for all
j > 0. By the remark at the end of Section 2, we can assume that G(U)
is just Q•

U . Let Q−
U denote the complex σ<0Q

•
U . We have a distinguished

triangle in Db(A):

Q−
U [−1]

βU

Q0
U

λU

G(U)
γU

Q−
U .

Now, if g : U −→ V is a homomorphism of B-modules, then we have a
commutative diagram

Q−
U [−1]

βU−−−−→ Q0
U

λU−−−−→ G(U)
γU−−−−→ Q−

U⏐⏐�vg [−1]

⏐⏐�ug

⏐⏐�G(g)

⏐⏐�vg

Q−
V [−1]

βV−−−−→ Q0
V

λV−−−−→ G(V )
γV−−−−→ Q−

V
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The existence of ug follows from the fact that the morphism λUG(g)γV

belongs to HomDb(A)(Q0
U ,Q−

V ) � HomK b(A)(Q0
U ,Q−

V ) = 0. Since A-mod is
fully embedded in D(A), the map ug can be chosen to be an A-module
homomorphism. Moreover, if u′

g : Q0
U −→ Q0

V is another morphism such
that u′

gλV = λUG(g), then (ug − u′
g)λV = 0 and ug − u′

g factorizes through
Q−

V [−1]. Since add(AQ) = add(νAQ), all the terms of the complex Q−
V [−1]

are projective-injective. By Lemma 3.3, the morphism ug − u′
g factorizes

through a projective module. Thus, for each B-module homomorphism g,
the morphism ug in HomA(Q0

U ,Q0
V ) is uniquely determined by g.

As in the proof of Proposition 3.4, we can show that the composition of
two morphisms is preserved; namely, ugh = uguh for all g ∈ HomB(U,V ) and
all h ∈ HomB(V,W ).

Moreover, if P is a projective B-module, then Q•
P is isomorphic in Db(A)

to a complex Q•
1 in add(Q•). Since add(AQ) = add(νAQ), the complex Q•

1 is
of the form in Lemma 3.2. By the uniqueness of Q•

P , we have an isomorphism
Q•

P � Q•
1 in C b(A). Hence, Q0

P � Q0
1 and Q0

P is a projective A-module.
Thus, if g : U −→ V factorizes through a projective B-module P , that is, if
g = st for s : U −→ P and t : P −→ V , then ug = ust = (ust − usut) + usut

factorizes through a projective A-module. This shows that the map g 
→ ug

is well defined.
Now, we define Ḡ(U) := Q0

U for each B-module U and Ḡ(g) := ug for
each morphism g in B-mod. Note that Q0

U is, up to isomorphism, uniquely
determined by U (see Lemma 3.2). Thus, we obtain an additive functor Ḡ

from B-mod to A-mod. Moreover, the map λU is a natural isomorphism in
the quotient category Db(A)/K b(A-proj) since Q−

U is in K b(A-proj).

Proposition 3.6. Suppose that add(AQ) = add(νAQ). Let F̄ and Ḡ be
the functors constructed in Proposition 3.4 and Proposition 3.5, respectively.
Then the composition ḠF̄ is naturally isomorphic to the identity functor
1A-mod. In particular, Ḡ is dense, and the restriction of Ḡ to Im(F̄ ) is full.

Proof. For each A-module X , we may assume that F (X) is the complex
Q̄•

X defined in Lemma 3.1. For each B-module U , we assume that G(U)
is the complex Q•

U defined in Lemma 3.2. We set Q̄+
X = σ≥1Q̄

•
X and Q−

U =
σ<0Q

•
U . Then all the terms of Q−

U are projective-injective since add(AQ) =
add(νAQ). By definition, we have F̄ (X) = Q̄0

X for each A-module X (see
Proposition 3.4) and Ḡ(U) = Q0

U for each B-module U (see Proposition 3.5).
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Thus, for each A-module X , there is a distinguished triangle

Q̄+
X

iX
F (X)

πX

F̄ (X)
αX

Q̄+
X [1]

in Db(B) and a distinguished triangle

Q−
F̄X

[−1]
βF̄X

ḠF̄ (X)
λF̄X

GF̄ (X)
γF̄X

Q−
F̄X

in Db(A). Applying G to the first triangle, we obtain the following commu-
tative diagram in Db(A):

GQ̄+
X

GiX−−−−→ GF (X) GπX−−−−→ GF̄ (X) GαX−−−−→ GQ̄+
X [1]⏐⏐�qX [−1]

⏐⏐�ηX

∥∥∥ ⏐⏐�qX

Q−
F̄X

[−1]
βF̄X−−−−→ ḠF̄ (X)

λF̄X−−−−→ GF̄ (X)
γF̄X−−−−→ Q−

F̄X

The existence of ηX follows from the fact that G(πX)γF̄X belongs to

HomDb(A)

(
GF (X),Q−

F̄X

)
� HomDb(A)(X,Q−

F̄X
)

� HomK b(A)(X,Q−
F̄X

) = 0.

Since GF is naturally isomorphic to the identity functor 1Db(A), there is
a natural morphism εX : X −→ GF (X) in Db(A) for each A-module X .
Let θX be the composition εXηX . Then θX : X −→ ḠF̄ (X) is an A-module
homomorphism since A-mod is fully embedded in Db(A).

We claim that θX is a natural map in A-mod. Indeed, for any A-module
homomorphism f : X → Y , by the proof of Proposition 3.4, we have a homo-
morphism bf : F̄ (X) −→ F̄ (Y ) of B-modules such that πXbf = F (f)πY in
Db(B). By the proof of Proposition 3.5, there is a homomorphism ubf

:
Ḡ(F̄ (X)) −→ Ḡ(F̄ (Y )) of A-modules such that ubf

λF̄ Y = λF̄XG(bf ) in
Db(A). Thus, we have in Db(A):

(θXubf
− fθY )λF̄ Y = (εXηXubf

− fεY ηY )λF̄ Y

=
(
εXηXubf

− εXGF (f)ηY

)
λF̄ Y

= εX

(
ηXubf

λF̄ Y − GF (f)ηY λF̄ Y

)
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= εX

(
ηXλF̄XG(bf ) − GF (f)ηY λF̄ Y

)
= εX

(
G(πX)G(bf ) − GF (f)G(πY )

)
= εX

(
G(πX)G(bf ) − G(F (f)πY )

)
= εX

(
G(πX)G(bf ) − G(πXbf )

)
= 0.

This implies that the map θXubf
− fθY factorizes through Q−

F̄ Y
[−1]. It

follows by Lemma 3.3 that θXubf
− fθY factorizes through a projective

module. Note that ubf
= ḠF̄ (f). Thus, θXḠF̄ (f) − fθY = 0 in A-mod and

θX is natural in X .
To finish the proof, we have to show that θX is an isomorphism in A-mod

for each A-module X . Clearly, we can assume that X is an indecomposable
nonprojective A-module. Using the method similar to that in the proof of
Lemma 3.1, we can prove that G(Q̄+

X) is isomorphic in Db(A) to a radical
complex Q•

1 in K b(A-proj) with Qi
1 ∈ add(AQ) for all i ≤ 0. Since both X

and GF̄ (X) have zero homology in positive degrees, the complex G(Q̄+
X)

has zero homology in degrees greater than 1, and therefore Qi
1 = 0 for all

i > 1. Now we may form the following commutative diagram in Db(A):

Q•
1

φX−−−−→ X
λ−−−−→ con(φX) −−−−→ Q•

1[1]⏐⏐�s

⏐⏐�εX

⏐⏐�t

⏐⏐�s[1]

G(Q̄+
X) GiX−−−−→ GF (X) GπX−−−−→ GF̄ (X) −−−−→ G(Q̄+

X)[1]⏐⏐�ηX

∥∥∥
ḠF̄X

λF̄X−−−−→ GF̄ (X)

where s is an isomorphism from Q•
1 to G(Q+

X), φX = sG(iX)ε−1 is a chain
map, and λ is induced by the canonical map λ0 from X to Q1

1 ⊕ X defined by
the mapping cone. Since Qi

1 is in add(AQ) for all i ≤ 0 and zero for all i > 1,
the mapping cone con(φX) has terms in add(AQ) for all negative degrees
and zero for all positive degrees. Note that add(AQ) = add(νAQ) and that
the A-module Q is projective-injective. Consequently, the terms of con(φX)
in all negative degrees are projective-injective. Note that G(F̄ (X)) = Q•

F̄X
by our assumption. Thus, by definition (see Lemma 3.2), all terms of Q•

F̄X
in negative degrees are projective-injective. Moreover, both con(φX) and
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Q•
F̄X

have zero terms in all positive degrees. By Lemma 2.2(2), we have
HomDb(A)(con(φX),Q•

F̄X
) = HomK b(A)(con(φX),Q•

F̄X
). Since the two mor-

phisms εX and s are isomorphisms in Db(A), the morphism t is also an
isomorphism in Db(A). Hence, t is an isomorphism from con(φX) to Q•

F̄X

in K b(A). Moreover, since X is indecomposable and nonprojective, the
complex con(φX) is a radical complex. Thus, the chain map t is actu-
ally an isomorphism between con(φX) and Q•

F̄X
in C b(A), and the mor-

phism t0 : (con(φX))0 = Q1
1 ⊕ X −→ Q0

F̄X
in degree 0 is an isomorphism of

A-modules. From the above commutative diagram, we have θXλF̄X − λt = 0
in Db(A). By Lemma 2.2(2), we see that θXλF̄X − λt is null-homotopic
in C b(A). This means that θX − λ0t0 factorizes through the projective
A-module Q−1

F̄X
. Hence, θX = λ0t0 is an isomorphism in A-mod since λ0

and t0 both are isomorphisms in A-mod.

Remark. Without the condition add(AQ) = add(νAQ) in Proposition 3.5,
we can similarly define a functor Ḡ′ : B-mod −→ A-mod, as was done in
Proposition 3.4. But the disadvantage of using Ḡ′ is that we do not know
any behavior of the composition of F̄ with Ḡ′.

We say that a derived equivalence F between Artin algebras A and B is
almost ν-stable if add(AQ) = add(νAQ) and add(BQ̄) = add(νBQ̄).

The following theorem shows that the almost ν-stable condition is suffi-
cient for F̄ to be an equivalence.

Theorem 3.7. Let A and B be two Artin R-algebras, and let F :
Db(A) −→ Db(B) be a derived equivalence. If F is almost ν-stable, then
the stable functor F̄ is an equivalence.

Proof. Since F is almost ν-stable, we have add(AQ) = add(νAQ). By
Proposition 3.6, we have ḠF̄ � 1A-mod. Since F is almost ν-stable, we
also have add(BQ̄) = add(νBQ̄). With a proof similar to that of Proposi-
tion 3.6, we can show that F̄ Ḡ is naturally isomorphic to the identity functor
1B-mod. Thus, F̄ and Ḡ are equivalences of categories.

Theorem 3.7 gives rise to a method of getting stable equivalences from
derived equivalences. In Section 5, we shall prove that, for finite-dimensional
algebras, one can even get a stable equivalence of Morita type, which has
many pleasant properties (see [3], [19], [20] and the references therein).

In the following, we develop some properties of almost ν-stable functors,
which will be used in Section 5.
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Let AE be a direct sum of all those nonisomorphic indecomposable pro-
jective-injective A-modules X that have the property that νi

AX is again
projective-injective for every i > 0. The A-module AE is unique up to iso-
morphism and is called the maximal ν-stable A-module. Similarly, we have a
maximal ν-stable B-module BĒ. Note that the maximal ν-stable modules,
and their endomorphism rings, have previously played an important role in
the study of stable equivalences in [10].

The following result shows that an almost ν-stable functor is closely
related to the maximal ν-stable modules.

Proposition 3.8. The following are equivalent:

(1) F is almost ν-stable; that is, add(νAQ) = add(AQ) and add(νBQ̄) =
add(BQ̄).

(2) AQ ∈ add(AE), and BQ̄ ∈ add(BĒ).
(3) AQ and νBQ̄ are projective-injective.

Proof. Clearly, we have (1) ⇒ (2) ⇒ (3). Now we show that (3) implies (1).
Assume that AQ is injective. By Lemma 3.2, G(B) is isomorphic in Db(A)
to a radical complex Q•

B = (Qi
B, di) with Qi

B in add(νAQ) for all i < 0. In
particular, Qi

B is injective for all i < 0. Since G(B) � Q•, the complexes Q•

and Q•
B are isomorphic in Db(A). Since AQ is injective by assumption, all

the terms of Q• in negative degrees are injective. By Lemma 2.2, the com-
plexes Q• and Q•

B are isomorphic in K b(A). Since both Q• and Q•
B are

radical, they are also isomorphic in C b(A). In particular, we have Qi � Qi
B

for all i < 0, and therefore AQ :=
⊕−n

i=−1 Qi �
⊕−n

i=−1 Qi
B ∈ add(νAQ). Since

AQ and νAQ have the same number of isomorphism classes of indecompos-
able direct summands, we have add(AQ) = add(νAQ). Similarly, we have
add(BQ̄) = add(νBQ̄). This proves (3) ⇒ (1).

Remark. From Proposition 3.8, we can see that every derived equiva-
lence between two self-injective Artin algebras induces an almost ν-stable
derived equivalence. Thus, we can reobtain the result of Rickard [13, Corol-
lary 2.2] by Theorem 3.7.

Lemma 3.9. Suppose that Q ∈ add(AE) and that Q̄ ∈ add(BĒ). Then,

(1) for each P • in K b(add(AE)), the complex F (P •) is isomorphic in
Db(B) to a complex in K b(add(BĒ));

(2) for each P̄ • in K b(add(BĒ)), the complex G(P̄ •) is isomorphic in
Db(A) to a complex in K b(add(AE)).
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Proof. (1) It suffices to show that, for each indecomposable A-module U

in add(AE), the complex F (U) is isomorphic to a complex in K b(add(BĒ)).
Suppose that U ∈ add(AE). By Lemma 3.1, F (U) is isomorphic in Db(B)
to a radical complex Q̄•

U :

0 Q̄0
U Q̄1

U · · · Q̄n
U 0,

with Q̄i
U ∈ add(BQ̄) for all i > 0. For simplicity, we assume that F (U) is

just Q̄•
U . Since Q̄i

U ∈ add(BQ̄) ⊆ add(BĒ) for i > 0, it remains to show that
Q̄0

U is in add(BĒ). Clearly, Q̄0
U is projective since U is projective. Note

that we have an isomorphism νBF (U) � F (νAU) in Db(B), that is, that
νBQ̄•

U is isomorphic to Q̄•
νAU . Note that νBQ̄i

U ∈ add(νBQ̄) for all i > 0
and that add(νBQ̄) ⊆ add(BĒ) by the definition of BĒ. Thus, νBQ̄i

U is
projective-injective for all i > 0, and νBQ̄•

U and Q̄•
νAU are isomorphic in

K b(B) by Lemma 2.2. Since both νBQ̄•
U and Q̄•

νAU are radical complexes,
νBQ̄•

U and Q̄•
νAU are actually isomorphic in C b(B), and particularly we

have νBQ̄0
U � Q̄0

νAU . Note that if U ∈ add(AE), then νi
AU ∈ add(AE) for

all i ≥ 0 by definition. Hence, for each integer m > 0, we have νm
B (Q̄0

U ) �
νm−1

B (Q̄0
νAU ) � · · · � Q̄0

νm
A U , and therefore νm

B (Q̄0
U ) is projective-injective.

Thus, Q̄0
U ∈ add(BĒ) by definition.

Statement (2) is a dual statement of (1).

The next result is a consequence of Lemma 3.9.

Corollary 3.10. If F is an almost ν-stable derived equivalence between
Artin algebras A and B, then there is a derived equivalence between the
self-injective algebras EndA(E) and EndB(Ē).

Proof. By Lemma 3.9, F induces an equivalence between K b(add(AE))
and K b(add(BĒ)) as triangulated categories. Since K b(add(AE)) and
K b(End(AE)-proj) are equivalent as triangulated categories, we obtain an
equivalence between K b(End(AE)-proj) and K b(End(BĒ)-proj) as tri-
angulated categories. By [14, Theorem 6.4], the algebras EndA(E) and
EndB(Ē) are derived-equivalent. Note that EndA(E) is self-injective (see
[10]).

Let us end this section by the following result, which tells us how to get
an almost ν-stable derived equivalence from a tilting module.

Let A be an Artin algebra. Recall that an A-module T is called a tilting
module if



DERIVED EQUIVALENCES AND STABLE EQUIVALENCES OF MORITA TYPE, I 131

(1) the projective dimension of T is finite,
(2) Exti

A(T,T ) = 0 for all i > 0, and
(3) there is an exact sequence 0 −→ A −→ T 0 −→ · · · −→ Tm −→ 0 of

A-mod with each T i in add(AT ).
It is well known that a tilting A-module AT induces a derived equiv-

alence between A and EndA(T ) (see [5, Theorem 2.10, page 109] and [4,
Theorem 2.1]).

Proposition 3.11. Let A be an Artin algebra. Suppose that AT is a
tilting A-module with B = EndA(T ). Let

0 −→ Pn
dn−→ Pn−1 −→ · · · −→ P0

d0−→ T −→ 0

be a minimal projective resolution of AT . Set P :=
⊕n−1

i=0 Pi. If add(AP ) =
add(νAP ), then there is an almost ν-stable derived equivalence between A

and B.

Proof. By [4, Theorem 2.1], the functor F ′ = AT ⊗L
B − : Db(B) −→ Db(A)

is a derived equivalence. Now we denote F ′[−n] by F . Let P • be the complex

0 −→ Pn
dn−→ Pn−1 −→ · · · −→ P0 −→ 0

with Pn in degree 0. Then we have F (B) = (AT ⊗L
B B)[−n] = AT [−n] � P •

in Db(A). Let G be a quasi-inverse of F . Then G(P •) � G(F (B)) � B in
Db(B), and therefore P • is a radical tilting complex associated to G.

Since add(νAP ) = add(AP ), the module AP is projective-injective. Thus,
AP ∈ add(AT ) and Pi ∈ add(AT ) for all 0 ≤ i ≤ n − 1. We denote by T • the
complex

0 −→ Pn−1 ⊕ P

[
dn−1

0

]
−→ Pn−2 −→ · · · −→ P0

d0−→ T −→ 0

with T in degree 0. Then Hom•
A(T,T •) is a complex in K b(B-proj), and

F
(
Hom•

A(T,T •)
)

= AT ⊗L
B Hom•

A(T,T •)[−n] � AT ⊗•
B Hom•

A(T,T •)[−n]

� T •[−n] � Pn ⊕ P

in Db(A). Since P • is a tilting complex over A, we have AA ∈ add(Pn ⊕
P ). Thus, there is a radical complex P̄ • in K b(B-proj) such that P̄ • ∈
add(Hom•

A(T,T •)) and F (P̄ •) � A in Db(A). By definition, P̄ • is a tilting
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complex associated to F . (For the unexplained notations appearing in this
proof, we refer the reader to Section 5 below.)

We claim that G is almost ν-stable. In fact,
⊕−n

i=−1 P̄ i is in add(HomA(T,

P )), and
⊕n

i=1 P i =
⊕n−1

i=0 Pi = P . Let AE (resp., BĒ) be the maximal
ν-stable A-module (resp., B-module). Then AP ∈ add(AE). Note that we
have the following isomorphisms of B-modules:

νB HomA(T,P ) = D HomB

(
HomA(T,P ),HomA(T,T )

)
� D HomA(P,T ) � D(P ∗ ⊗A T ) � HomA(T,νAP ).

Since add(AP ) = add(νAP ), we have

add
(
νB HomA(T,P )

)
= add

(
HomA(T,P )

)
,

that is, HomA(T,P ) ∈ add(BĒ). It follows that
⊕−n

i=−1 P̄ i is in add(BĒ). By
Proposition 3.8, the functor G is almost ν-stable.

Remark. Let A be a self-injective Artin algebra, and let X be an A-mod-
ule. By [6, Corollary 3.7], there is a derived equivalence between EndA(A ⊕
X) and EndA(A ⊕ ΩA(X)), which is induced by the almost add(A)-split
sequence 0 → ΩA(X) → PX → X → 0, where PX is a projective cover of
X . By Proposition 3.11, it is easy to check that this derived equivalence is
almost ν-stable. Thus, the algebras EndA(A ⊕ X) and EndA(A ⊕ ΩA(X))
are stably equivalent by Theorem 3.7.

§4. Comparison of homological dimensions

In this section, we shall deduce some basic homological properties of
the functor F̄ and compare homological dimensions of A with that of B.
Throughout this article, we keep the notation introduced in the previous
sections.

Recall that the finitistic dimension of an Artin algebra A, denoted by
fin.dim(A), is defined to be the supremum of the projective dimensions of
finitely generated A-modules of finite projective dimension. The finitistic
dimension conjecture states that fin.dim(A) should be finite for any Artin
algebra A. Concerning the new advances on this conjecture, we refer the
reader to [21] and the references therein.

For an A-module X , we denote by pd(AX) the projective dimension of
X , and by gl.dim(A) the global dimension of A, which is by definition the
supremum of the projective dimensions of all finitely generated A-modules.
Clearly, if gl.dim(A) < ∞, then fin.dim(A) = gl.dim(A).



DERIVED EQUIVALENCES AND STABLE EQUIVALENCES OF MORITA TYPE, I 133

Proposition 4.1. Let F̄ be the stable functor of F defined in Proposi-
tion 3.4. Then,

(1) for each exact sequence 0 −→ X
f−→ Y

g−→ Z −→ 0 in A-mod, there
is an exact sequence

0 −−−−→ F̄ (X)
[a,f ′]−−−−→ P ⊕ F̄ (Y )

[
b
g′

]
−−−−→ F̄ (Z) −−−−→ 0

in B-mod, where P ∈ add(BQ̄), F̄ (f) = f ′, and F̄ (g) = g′;
(2) for each A-module X, we have a B-module isomorphism: F̄ (ΩA(X)) �

ΩB(F̄ (X)) ⊕ P , where P is a projective B-module and Ω is the syzygy oper-
ator;

(3) for each A-module X, we have

pd
(
B
F̄ (X)

)
≤ pd(AX) ≤ pd

(
B
F̄ (X)

)
+ n;

(4) if F̄ is an equivalence, then A and B have the same finitistic and
global dimensions.

Proof. For each A-module X , we may assume that F (X) is the complex
Q̄•

X defined in Lemma 3.1.

(1) From the exact sequence 0 −→ X
f−→ Y

g−→ Z −→ 0 in A-mod, we
have a distinguished triangle in Db(A):

X
f−−−−→ Y

g−−−−→ Z
ε−−−−→ X[1].

Applying the functor F , we get a distinguished triangle

Q̄•
X

F (f)−−−−→ Q̄•
Y

F (g)−−−−→ Q̄•
Z

F (ε)−−−−→ Q̄•
X [1]

in Db(B). Moreover, by Lemma 2.2, the morphisms F (f) and F (g) are
induced by chain maps p• and q•, respectively. So, we may assume that
F (f) = p• and F (g) = q•. Let con(q•) be the mapping cone of the chain
map q•. Then we have a commutative diagram in Db(B),

Q̄•
Z [−1] −−−−→ Q̄•

X

p•
−−−−→ Q̄•

Y

q•
−−−−→ Q̄•

Z∥∥∥ s

⏐⏐� ∥∥∥ ∥∥∥
Q̄•

Z [−1] −−−−→ con(q•)[−1] π•
−−−−→ Q̄•

Y

q•
−−−−→ Q̄•

Z
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for some isomorphism s, where π• = (πi), with πi : Q̄i
Y ⊕ Q̄i−1

Z −→ Q̄i
Y the

canonical projection for each integer i. By Lemma 2.2, the morphism s is
induced by a chain map s•. By definition, con(s•) is the complex

0 −−−−→ Q̄0
X

[−d,s0]−−−−→ Q̄1
X ⊕ Q̄0

Y

[
−d u v
0 −d q0

]
−−−−−−−→ Q̄2

X ⊕ Q̄1
Y ⊕ Q̄0

Z

−−−−→ · · · −−−−→ Q̄n
Z −−−−→ 0,

where s1 = [u, v] : Q̄1
X −→ Q̄1

Y ⊕ Q̄0
Z and the modules Q̄i

X , Q̄i
Y , and Q̄i

Z are
projective for i > 0. Since s is an isomorphism in Db(B), the mapping cone
con(s•) of s• is an acyclic complex. Note that the map −d : Q̄0

Y −→ Q̄1
Y

is a radical map. Thus, dropping the split direct summands of the acyclic
complex con(s•), we get an exact sequence

(∗) 0 −−−−→ Q̄0
X

[a,s0]−−−−→ P ⊕ Q̄0
Y

[b,q0]T−−−−→ Q̄0
Z −−−−→ 0

in B-mod, where P is a direct summand of Q̄1
X and a and b are some homo-

morphisms of B-modules. It follows from p• − s•π• = 0 that the morphism
p• − s•π• is null-homotopic by Lemma 2.2. Therefore, p0 − s0 factorizes
through Q̄1

X , and p0 = s0. By setting f ′ = s0 and g′ = q0, we rewrite (∗) as

0 −−−−→ F̄ (X)
[a,f ′]−−−−→ P ⊕ F̄ (Y )

[
b
g′

]
−−−−→ F̄ (Z) −−−−→ 0

with P ∈ add(BQ̄), F̄ (f) = f ′, and F̄ (g) = g′. This proves (1).
(2) Let X be an A-module. We have an exact sequence 0 −→ ΩA(X) −→

PX −→ X → 0 in A-mod with PX projective. By (1), we get an exact
sequence 0 −→ F̄ (ΩA(X)) −→ P ⊕ F̄ (PX) −→ F̄ (X) −→ 0 in B-mod for
some projective B-module P . By the definition of F̄ , the B-module F̄ (PX)
is projective. Thus, (2) follows.

(3) The inequality pd(BF̄ (X)) ≤ pd(AX) follows from (2). In fact, we
may assume that pd(AX) = m < ∞. Then Ωm

A (X) is projective. Therefore,
Ωm

B (F̄ (X)) is projective by (2), and pd(BF̄ (X)) ≤ m.
For the second inequality in (3), we may assume that pd(BF̄ (X)) = m <

∞. Let Y be an A-module. We claim that

Exti
A(X,Y ) � HomDb(A)(X,Y [i]) � HomDb(B)

(
F (X), F (Y )[i]

)
= 0

for all i > m + n. Indeed, by Lemma 3.1, the complex F (X) is isomorphic
in Db(B) to a complex Q̄•

X with Qi
X being projective for all i > 0. Since
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pd(BQ̄0
X) = pd(BF̄ (X)) = m, we see that Q̄•

X is isomorphic in Db(B) to a
complex P • in K b(B-proj) with P k = 0 for all k < −m. Note that F (Y ) is
isomorphic to the complex Q̄•

Y with Q̄k
Y = 0 for all k > n. Clearly, we have

HomDb(B)

(
F (X), F (Y )[i]

)
� HomDb(B)(P

•, Q̄•
Y [i])

= HomK b(B)(P
•, Q̄•

Y [i]) = 0

for all i > m + n. Then the second inequality follows.
(4) This is a consequence of (2). In fact, suppose that F̄ is an equivalence.

Then, for an A-module X and a positive integer m, the A-module Ωm
A (X)

is projective if and only if F̄ (Ωm
A (X)) is projective. By (2), F̄ (Ωm

A (X)) is
projective if and only if Ωm

B (F̄ (X)) is projective. It follows that pd(AX) ≤ m

if and only if pd(BF̄ (X)) ≤ m, and consequently, pd(AX) = pd(BF̄ (X)) for
arbitrary A-module X . Thus, (4) follows.

Remark. Proposition 4.1(3) can be regarded as an alternative proof of
the result in [12] that if two Artin algebras A and B are derived-equivalent,
then fin.dim(A) < ∞ if and only if fin.dim(B) < ∞.

In Proposition 3.5, we have constructed a functor Ḡ : B-mod −→ A-mod
under the condition add(AQ) = add(νAQ). This functor Ḡ has many prop-
erties similar to those of F̄ .

Proposition 4.2. Suppose that add(AQ) = add(νAQ). Let

Ḡ : B-mod −→ A-mod

be the functor defined in Proposition 3.5. Then,

(1) for each exact sequence 0 −→ U
f−→ V

g−→ W −→ 0 in B-mod, there
is an exact sequence

0 −−−−→ Ḡ(U)
[a,f ′]−−−−→ P ⊕ Ḡ(V )

[
b
g′

]
−−−−→ Ḡ(W ) −−−−→ 0

in A-mod, where P ∈ add(AQ), Ḡ(f) = f ′, and Ḡ(g) = g′;
(2) for each B-module Y , we have Ḡ(ΩB(Y )) � ΩA(Ḡ(Y )) ⊕ P in A-mod

for a projective A-module P ;
(3) for each B-module Y , we have pd(AḠ(Y )) ≤ pd(BY );
(4) if I is an injective B-module, then Ḡ(I) is an injective A-module,

and moreover, Ḡ(D(B)) � νAQ0.
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Proof. Statements (1), (2), and (3) are dual statements of Proposition 4.1,
and their proofs will be omitted here. We prove only (4). Let I be an injective
B-module. Then I = νBP for a projective B-module P . Since G(B) � Q•,
we know that G(P ) is isomorphic in K b(A-proj) to a radical complex Q•

1 ∈
add(Q•). Thus, the complex Q•

I defined in Lemma 3.2 is isomorphic to
G(I) � νAG(P ) � νAQ•

1 by Lemma 2.3. Moreover, all the terms of νAQ•
1 in

negative degrees are in add(νAQ). Thus, by Lemma 3.2, the complexes Q•
I

and νAQ•
1 are isomorphic in C b(A), and consequently, Ḡ(I) = Q0

I � νAQ0
1 is

injective. In particular, if we take P = BB and Q•
1 = Q•, then Ḡ(D(B)) =

Ḡ(νBB) � νAQ0.

Let A be an Artin algebra, and let X be an A-module. Suppose that
0 −→ X −→ I0 −→ I1 −→ · · · is a minimal injective resolution of X with
all Ij injective. The dominant dimension of X , denoted by dom.dim(X), is
defined to be

dom.dim(X) := sup{m | Ii is projective for all 0 ≤ i ≤ m − 1}.

The dominant dimension of the algebra A, denoted by dom.dim(A), is
defined to be the dominant dimension of the module AA. Concerning the
dominant dimension of an Artin algebra, the Nakayama conjecture states
that an Artin algebra with infinite dominant dimension should be self-
injective. It is well known that the finitistic dimension conjecture implies
the Nakayama conjecture.

Usually, a derived equivalence does not preserve the global, finitistic, and
dominant dimensions of an algebra. However, under the condition add(AQ) =
add(νAQ), we have the following inequalities about these homological dimen-
sions.

Corollary 4.3. Let F : Db(A) −→ Db(B) be a derived equivalence be-
tween Artin algebras A and B. If add(AQ) = add(νAQ), then

(1) fin.dim(A) ≤ fin.dim(B),
(2) gl.dim(A) ≤ gl.dim(B),
(3) dom.dim(A) ≥ dom.dim(B).

Proof.
(1) and (2) For each A-module X , we have pd(AX) = pd(AḠF̄ (X)) by

Proposition 3.6. According to Proposition 4.2(3), we have pd(AḠF̄ (X)) ≤
pd(BF̄ (X)). By Proposition 4.1(3), we have another inequality pd(BF̄ (X)) ≤
pd(AX). Thus, pd(AX) = pd(BF̄ (X)). This implies that gl.dim(A) ≤



DERIVED EQUIVALENCES AND STABLE EQUIVALENCES OF MORITA TYPE, I 137

gl.dim(B). Moreover, if pd(AX) < ∞, we have pd(AX) = pd(BF̄ (X)) ≤
fin.dim(B). Hence, fin.dim(A) ≤ fin.dim(B). This proves (1) and (2).

(3) Suppose that dom.dim(B) = m. Let 0 −→ BB −→ I0 −→ I1 −→ · · ·
be a minimal injective resolution of BB. Then, by definition, the injective
B-modules I0, . . . , Im−1 are all projective. By Proposition 4.2(1), we get an
exact sequence

0 −→ AQ0 −→ P0 ⊕ Ḡ(I0) −→ P1 ⊕ Ḡ(I1) −→ · · ·

with Pi ∈ add(AQ). From this sequence we get another exact sequence

0 −→ AQ0 ⊕ AQ −→ P0 ⊕ Ḡ(I0) ⊕ AQ −→ P1 ⊕ Ḡ(I1) −→ · · · .

Since add(AQ) = add(νAQ) and Ḡ(Ii) is injective for all i by Proposition 4.2,
the A-module Pi ⊕ Ḡ(Ii) is injective for all i. Thus, the above exact sequence
actually gives an injective resolution of AQ0 ⊕ AQ. Set I ′

0 := P0 ⊕ Ḡ(I0) ⊕ AQ,
and set I ′

i := Pi ⊕ Ḡ(Ii) for i > 0. Since Ii is projective for all i ≤ m − 1,
we see that Ḡ(Ii) is projective for all 0 ≤ i ≤ m − 1, and consequently,
I ′
i is projective for all 0 ≤ i ≤ m − 1. Hence, dom.dim(AQ ⊕ AQ0) ≥ m.

Moreover, since Q• is a tilting complex, we have AA ∈ add
(⊕

i Q
i
)
; that is,

AA ∈ add(AQ ⊕ AQ0). Hence, dom.dim(A) ≥ m = dom.dim(B).

§5. Stable equivalences of Morita type induced by derived equiv-
alences

In this section, we shall prove that an almost ν-stable derived equivalence
F between two finite-dimensional algebras actually induces a stable equiv-
alence of Morita type. Our result in this section generalizes a well-known
result of Rickard [15, Corollary 5.5], which states that, for finite-dimensional
self-injective algebras, a derived equivalence induces a stable equivalence of
Morita type.

Throughout this section, we keep the notations introduced in Section 3
and consider exclusively finite-dimensional algebras over a field k.

Let Λ be an algebra. By C +(Λ) (resp., C −(Λ)) we denote the full sub-
category of C (Λ) consisting of all complexes bounded below (resp., bounded
above). Analogously, one has the corresponding homotopy categories
K +(Λ) and K −(Λ) as well as the corresponding derived categories D+(Λ)
and D −(Λ). Recall that the category D −(Λ) is equivalent to the category
K −(Λ-proj) and that the category D+(Λ) is equivalent to the category
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K +(Λ-inj) (see, e.g., [18, Theorem 10.4.8, page 388]). Thus, for each com-
plex U • in D −(Λ) (resp., D+(Λ)), we can find a complex P •

U ∈ K −(Λ-proj)
(resp., I•

U ∈ K +(Λ-inj)) that is isomorphic to U • in D(Λ).
Now, let X• be a complex in D −(Λop), and let Y • be a complex in D −(Λ).

By X• ⊗•
Λ Y • we mean the total complex of the double complex with (i, j)-

term Xi ⊗ΛY j , and by X• ⊗L
Λ Y • we mean the complex X• ⊗•

Λ P •
Y . Up to iso-

morphism of complexes in D(k), we know that X• ⊗L
ΛY • does not depend on

the choice of P •
Y . It is known that X• ⊗L

Λ − is a functor from D −(Λ) to D −(k)
and is called the left derived functor of X• ⊗•

Λ − : K −(Λ) −→ K −(k). Note
that if we choose P •

X ∈ D −(Λop) such that P •
X � X• in D(Λop), then there

is a natural isomorphism between X• ⊗•
Λ P •

Y and P •
X ⊗•

Λ Y • in D(k) (see [18,
Exercise 10.6.1, page 395]). Thus, X• ⊗L

Λ Y • can be calculated by P •
X ⊗•

Λ Y •.
Let X•

1 be a complex in D −(Λop), and let X•
2 be a complex in D+(Λ).

By Hom•
Λ(X•

1 ,X•
2 ) we denote the total complex of the double complex

with (i, j)-term HomΛ(X−i
1 ,Xj

2). Choose I•
X2

∈ K +(Λ-inj) with I•
X2

� X•
2

in D(Λ). We define RHomΛ(X•
1 ,X•

2 ) = Hom•
Λ(X•

1 , I•
X2

). It is known that
RHomΛ(X•

1 , −) : D+(Λ) −→ D+(k) is a functor. This functor is called the
right derived functor of Hom•

Λ(X•
1 , −) : K +(Λ) −→ K +(k). Note that if

we choose P •
X1

∈ K −(Λ-proj) with P •
X1

� X•
1 in D(Λ), then the complexes

Hom•
Λ(P •

X1
,X•

2 ) and Hom•
Λ(X•

1 , I•
X2

) are naturally isomorphic in D(k) (see
[18, Exercise 10.7.1, page 400]). Thus, RHomΛ(X•

1 ,X•
2 ) can be calculated

by Hom•
Λ(P •

X1
,X•

2 ).
Suppose that Λ1 and Λ2 are two algebras. Let T •

i be a tilting complex
over Λi with Γi = EndDb(Λi)(T

•
i ) for i = 1,2. By a result of Rickard [15,

Theorem 3.1], T •
1 ⊗•

k T •
2 is a tilting complex over Λ1 ⊗k Λ2, and the endo-

morphism algebra of T •
1 ⊗•

k T •
2 is canonically isomorphic to Γ1 ⊗k Γ2. Thus,

the tensor products Λ1 ⊗k Λ2 and Γ1 ⊗k Γ2 are derived-equivalent.
Recall that Q• is a tilting complex over A with the endomorphism algebra

B. By [14, Proposition 9.1], Hom•
A(Q•,A) is a tilting complex over Aop

with the endomorphism algebra Bop. Also, Q̄• is a tilting complex over B

with the endomorphism algebra A, and therefore Hom•
B(Q̄•,B) is a tilting

complex over Bop with the endomorphism algebra A. Thus, by taking tensor
products, we get four derived-equivalent algebras A ⊗k Aop, A ⊗k Bop, B ⊗k

Bop, and B ⊗k Aop. Table 1, taken from [15], describes the corresponding
objects in various equivalent derived categories.

Using Table 1, one can easily find the corresponding objects in the above
four equivalent derived categories. For instance, we consider the derived
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Table 1

Db(A ⊗k Aop) Db(A ⊗k Bop) Db(B ⊗k Bop) Db(B ⊗k Aop)

Q• ⊗•
k AA Q• ⊗•

k Hom•
B(Q̄•,B) BB ⊗•

k Hom•
B(Q̄•,B) BB ⊗k AA

Q• ⊗•
k Hom•

A(Q•,A) Q• ⊗•
k BB BB ⊗k BB BB ⊗•

k Hom•
A(Q•,A)

AA ⊗•
k Hom•

A(Q•,A) AA ⊗k BB Q̄• ⊗•
k BB Q̄• ⊗•

k Hom•
A(Q•,A)

AA ⊗k AA AA ⊗•
k Hom•

B(Q̄•,B) Q̄• ⊗•
k HomB(Q̄•,B) Q̄• ⊗•

k AA

AAA Θ•
BBB Δ•

equivalence F̂ : Db(A ⊗k Aop) −→ Db(B ⊗k Aop) induced by the tilting com-
plex Q• ⊗•

k AA. Table 1 shows that F̂ sends Q• ⊗•
k AA to BB ⊗k AA, Q• ⊗•

k

Hom•
A(Q•,A) to BB ⊗•

k Hom•
A(Q•,A), AA ⊗•

k Hom•
A(Q•,A) to Q̄• ⊗•

k AA,
and AAA to Δ•. The following lemma collects some properties of these com-
plexes (see [15]).

Lemma 5.1. Let Δ• and Θ• be the complexes defined in Table 1. We have
the following.

(1) Δ• ⊗L
A Θ• � BBB in Db(B ⊗k Bop).

(2) Θ• ⊗L
B Δ• � AAA in Db(A ⊗k Aop).

(3) The functor Δ• ⊗L
A − : Db(A) −→ Db(B) is a derived equivalence

with Δ• ⊗L
A X• � F (X•) for all X• ∈ Db(A).

(4) The functor Θ• ⊗L
B − : Db(B) −→ Db(A) is a derived equivalence

with Θ• ⊗L
B U • � G(U •) for all U • ∈ Db(B).

(5) Θ• � RHomB(Δ•,B) in Db(A ⊗k Bop).
(6) Δ• is isomorphic to Q̄• when considered as an object in Db(B) and

to HomA(Q•,A) when considered as an object in Db(Aop).
(7) Θ• is isomorphic to Q• when considered as an object in Db(A) and

to HomB(Q̄•,B) when considered as an object in Db(Bop).

Proof. Statements (1)–(5) follow from [15, Theorem 3.3, Proposition 4.1]
and the remarks after [15, Definition 4.2]. Statements (6) and (7) are taken
from [15, Proposition 3.1].

Note that it is an open question in [15] whether the two functors F and
Δ• ⊗L

A − are naturally isomorphic, although they have isomorphic images
on each object by Lemma 5.1(3).

Recall that a complex T • in Db(A ⊗k Bop) is called a two-sided tilting
complex over A ⊗k Bop if there is a complex T̄ • in Db(B ⊗k Aop) such that
T • ⊗L

B T̄ • � AAA in Db(A ⊗k Aop) and T̄ • ⊗L
A T • � BBB in Db(B ⊗k Bop).
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In this case, the complex T̄ • is called an inverse of T •. From Lemma 5.1,
we see that Δ• and Θ• defined in Table 1 are mutually inverse two-sided
tilting complexes over A ⊗k Bop and B ⊗k Aop, respectively.

The following lemma, which is crucial in our later proofs, describes some
properties of the terms of the two-sided tilting complex Δ• in Table 1.

Lemma 5.2. The two-sided tilting complex Δ• is isomorphic in Db(B ⊗k

Aop) to a radical complex

0 −→ Δ0 −→ Δ1 −→ · · · −→ Δn −→ 0

with Δi ∈ add(BQ̄ ⊗k Q∗
A) for all i > 0.

Proof. Thanks to Table 1, there is a derived equivalence F̂ : Db(A ⊗k

Aop) −→ Db(B ⊗k Aop). Moreover, the complexes Q• ⊗•
k AA and Q̄• ⊗•

k AA

are the associated tilting complexes to F̂ and its quasi-inverse, respectively.
Note that the two complexes are radical and have the shape as assumed in
Section 3. By Table 1, the two-sided tilting complex Δ• over B ⊗k Aop is
isomorphic in Db(B ⊗k Aop) to F̂ (AAA), and therefore, by Lemma 3.1, the
complex Δ• is isomorphic in Db(B ⊗k Aop) to a radical complex R•:

0 −→ R0 −→ R1 −→ · · · −→ Rn −→ 0,

with Ri ∈ add(BQ̄ ⊗k AA) for all i > 0.
Similarly, by Table 1, there is a derived equivalence F̃ : Db(B ⊗k Bop) −→

Db(B ⊗k Aop) induced by the tilting complex BB ⊗•
k Hom•

B(Q̄•,B) over
B ⊗k Bop. From Table 1, we know that the complex BB ⊗•

k Hom•
A(Q•,A) is

a tilting complex associated to the quasi-inverse of F̃ . Moreover, it follows
from Table 1 that F̃ (BBB) � Δ• in Db(B ⊗k Aop). By Lemma 3.1, F̃ (BBB)
is isomorphic in Db(B ⊗k Aop) to a radical complex S•:

0 −→ S0 −→ S1 −→ · · · −→ Sn −→ 0,

with Si ∈ add(BB ⊗k Q∗
A) for all i > 0. Thus, both R• and S• are isomorphic

to Δ• in Db(B ⊗k Aop). By Lemma 2.2, the complexes R• and S• are
isomorphic in the homotopy category K b(B ⊗k Aop). Since R• and S•

are radical complexes, they are isomorphic in C b(B ⊗k Aop). In particular,
Ri � Si as B-A-bimodules for all i. Thus, for each i > 0, the bimodule
Ri lies in both add(BB ⊗k Q∗

A) and add(BQ̄ ⊗k AA). As a result, we have
Ri ∈ add(BQ̄ ⊗k Q∗

A) for all i > 0.
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Using Lemma 5.2, we now prove the following main result in this section.

Theorem 5.3. Let A and B be two finite-dimensional algebras over a
field k, and let F : Db(A) −→ Db(B) be a derived equivalence. If F is almost
ν-stable, then there is a stable equivalence φ : A-mod −→ B-mod of Morita
type such that φ(X) � F̄ (X) for any A-module X, where F̄ is defined in
Proposition 3.4.

Proof. First, we show that A may be assumed to be indecomposable.
In fact, if A = A1 × A2 is a direct product of two algebras Ai, then the
complex Q• associated to F has a decomposition Q• = Q•

1 ⊕ Q•
2 such that

Q•
1 ∈ K b(A1-proj) and Q•

2 ∈ K b(A2-proj). Correspondingly, the algebra
B, which is isomorphic to the endomorphism algebra of Q•, is a product of
two algebras, say, B = B1 × B2, such that Bi � EndDb(Ai)(Q

•
i ) for i = 1,2.

Thus, the derived equivalence F : Db(A) −→ Db(B) induces two derived
equivalences Fi : Db(Ai) −→ Db(Bi) for i = 1,2. Moreover, for each i, the
complex Q•

i is a tilting complex associated to Fi, and the tilting complex
associated to the quasi-inverse of Fi is isomorphic to Fi(Ai) � F (Ai), which
is a direct summand of Q̄•. Thus, if F is almost ν-stable, then Fi is almost
ν-stable for i = 1,2. Furthermore, if Ai and Bi are stably equivalent of
Morita type for i = 1,2, then A1 × A2 and B1 × B2 are stably equivalent of
Morita type. Thus, we may assume that A is indecomposable.

Since derived equivalence preserves the semisimplicity of algebras, we
know that A is semisimple if and only if B is semisimple. Hence, we can
further assume that A is nonsemisimple. Now, let A be nonsemisimple and
indecomposable. Then B is also nonsemisimple and indecomposable.

Let Δ• be the complex in Table 1. By Lemma 5.2, the complex Δ• is
isomorphic in Db(B ⊗k Aop) to a radical complex

0 −→ Δ0 −→ Δ1 −→ · · · −→ Δn −→ 0,

with Δi in add(BQ̄ ⊗k Q∗
A) for all i > 0. For simplicity, we assume that Δ• is

the above complex. By Lemma 5.1(6), the complex Q̄• is isomorphic to Δ•

in Db(B). Thus, there is a chain map α : Q̄• → Δ• such that the mapping
cone con(α) is acyclic. Since the terms of con(α) in positive degrees are
all projective, the acyclic complex con(α) splits. This means that BΔ0 is a
projective B-module. Thus, all terms of Δ• are projective as left B-modules.
Similarly, by the fact that Δ• is isomorphic to HomA(Q•,A) in Db(Aop), we
infer that Δ0

A is a projective right A-module and that all the terms of Δ• are
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projective as right A-modules. Consequently, the complex RHomB(Δ•,B)
is isomorphic in Db(A ⊗k Bop) to the complex Hom•

B(Δ•,B):

0 HomB(Δn,B) · · · HomB(Δ1,B)

HomB(Δ0,B) 0.

Since Δi ∈ add(BQ̄ ⊗k Q∗
A) for all positive i, we find that the A-B-bimodule

HomB(Δi,B) is in add(HomB(BQ̄ ⊗k Q∗
A,B)) for each positive integer i.

Recall that there is a natural isomorphism

HomB(BQ̄ ⊗k Q∗
A,B) � νAQ ⊗k Q̄∗.

Since add(AQ) = add(νAQ), the term HomB(Δi,B) is in add(Q ⊗ Q̄∗) for all
i > 0. As to HomB(BΔ0

A,B), we can use Lemma 5.1(7) and similarly prove
that HomB(BΔ0

A,B) is projective as a one-sided module on both sides.
Next, we show that Δ0 and HomB(Δ0,B) define a stable equivalence

of Morita type between A and B. Indeed, by Lemma 5.1(5), the two-
sided tilting complex Θ• defined in Table 1 is isomorphic in Db(A ⊗k

Bop) to RHomB(Δ•,B), and the latter is isomorphic in Db(A ⊗k Bop)
to Hom•

B(Δ•,B). For simplicity, we assume that Θ• equals Hom•
B(Δ•,B).

Since all the terms of Δ• are projective as right A-modules, the complex
Δ• ⊗L

A Θ• is isomorphic in Db(B ⊗k Bop) to the complex Δ• ⊗•
A Θ•. The

mth term of Δ• ⊗•
A Θ• is⊕

i+j=m

(Δi ⊗A Θj) =
⊕

i+j=m

(
Δi ⊗A HomB(Δ−j ,B)

)
.

Let AE be the maximal ν-stable A-module, and let BĒ be the maxi-
mal ν-stable B-module (see Section 3). Since add(AQ) = add(νAQ) and
add(BQ̄) = add(νBQ̄), we have AQ ∈ add(AE) and BQ̄ ∈ add(BĒ). By Lem-
mata 5.1(3) and 3.9, the complex Δ• ⊗•

A E is isomorphic in Db(B) to a
complex in K b(add(BĒ)). Since Δi ∈ add(BQ̄ ⊗k QA) for i > 0, the ith
term Δi ⊗A E of Δ• ⊗•

A E is in add(BQ̄) ⊆ add(BĒ) for all i > 0. It follows
that Δ0 ⊗A E is in add(BĒ), and therefore

E∗ ⊗A Θ0 = E∗ ⊗A HomB(Δ0,B) � HomB(Δ0 ⊗A E,B) ∈ add(Ē∗).

Note that, for each i > 0, we have Δi ∈ add(Q̄ ⊗k Q∗) ⊆ add(Ē ⊗k E∗) and
Θ−i = HomB(Δi,B) ∈ add(Q ⊗k Q̄∗) ⊆ add(E ⊗k Ē∗). Thus, it is not hard
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to see that Δi ⊗A Θj is in add(Ē ⊗k Ē∗) for all i and j with i + j 	= 0. This
means that all terms in nonzero degrees of Δ• ⊗•

A Θ• are in add(Ē ⊗k Ē∗).
For the term in degree 0 of Δ• ⊗•

A Θ•, except Δ0 ⊗A Θ0, all of its other
direct summands are in add(Ē ⊗k E∗ ⊗A E ⊗k Ē∗), which is contained in
add(Ē ⊗k Ē∗). Note that all the bimodules in add(BĒ ⊗k Ē∗

B) are projective-
injective.

Now, we have Δ• ⊗•
A Θ• � BBB in Db(B ⊗k Bop) by Lemma 5.1(1). Thus,

the complex Δ• ⊗•
A Θ• has zero homology and projective-injective terms in

all nonzero degrees, and therefore it splits and is isomorphic to BBB in
the homotopy category K b(B ⊗k Bop). Since B is indecomposable and
nonsemisimple, the bimodule BBB is indecomposable and nonprojective,
and therefore it is a direct summand of Δ0 ⊗A Θ0. It follows that Δ0 ⊗A Θ0 �
BBB ⊕ U for a projective-injective B-B-bimodule U . Similarly, we have
Θ0 ⊗B Δ0 � AAA ⊕ V for a projective-injective A-A-bimodule V . Hence, A

and B are stably equivalent of Morita type.
Let φ : A-mod −→ B-mod be the stable equivalence induced by Δ0 ⊗A −.

It follows from Lemmata 5.1(3) and 3.1 that φ(X) � F̄ (X) in B-mod for all
A-modules X .

Let A be an algebra. An A-module M is called a generator-cogenerator for
A-mod if A ⊕ D(A) ∈ add(M). The representation dimension of A, denoted
by rep.dim(A), is defined to be

rep.dim(A)

:= inf
{
gl.dim

(
EndA(M)

) ∣∣ M is a generator-cogenerator for A-mod
}
.

This notion was introduced by Auslander [1] to measure homologically how
far an algebra is from being representation-finite and has been studied by
many authors in recent years (see [17] and the references therein).

The following result is a consequence of Theorem 5.3 since stable equiv-
alences of Morita type preserve representation dimensions (see [19]).

Corollary 5.4. If F is an almost ν-stable derived functor between A and
B, then A and B have the same representation and dominant dimensions.

As another consequence of Theorem 5.3, we reobtain the following result
of Rickard [13] since every derived equivalence between self-injective alge-
bras is, up to shift, almost ν-stable by Proposition 3.8.
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Corollary 5.5. Let A and B be finite-dimensional self-injective alge-
bras. If A and B are derived-equivalent, then they are stably equivalent of
Morita type.

Remark. (1) Let A be a finite-dimensional self-injective algebra, and
let X be an A-module. By the remark at the end of Section 3, there is
a derived equivalence between the algebras EndA(A ⊕ X) and EndA(A ⊕
Ω(X)) satisfying the almost ν-stable condition. Thus, we have an alternative
proof of the result of Liu and Xi [9, Corollary 1.2] by applying Theorem 5.3.

(2) Theorem 5.3 may be false if only one of the two equalities of the
almost ν-stable condition is satisfied. For a counterexample, we refer the
reader to Example 7.2 in Section 7.

§6. Inductive constructions of almost ν-stable derived equiva-
lences

In this section, we shall give several inductive constructions of almost
ν-stable derived equivalences. As a consequence, one can produce a lot of
(usually not self-injective) finite-dimensional algebras that are both derived-
equivalent and stably equivalent of Morita type.

In this section, we keep the notations introduced in Section 3. Our first
inductive construction is the following proposition.

Proposition 6.1. Suppose that F is an almost ν-stable derived equiva-
lence between finite-dimensional algebras A and B over a field k. Let F̄ be
the stable functor of F defined in Proposition 3.4, and let X be an A-module.
Then there is an almost ν-stable derived equivalence between the endomor-
phism algebras EndA(A ⊕ X) and EndB(B ⊕ F̄ (X)).

Proof. We keep the notations in the proof of Theorem 5.3. By the last part
of the proof of Theorem 5.3, the two-sided tilting complexes Δ• and Θ• have
the properties Δ• ⊗•

A Θ• � BBB in K b(B ⊗k Bop) and Θ• ⊗•
B Δ• � AAA

in K b(A ⊗k Aop). It follows that the functor (Δ• ⊗•
A Θ•) ⊗•

B − is naturally
isomorphic to the identity functor 1K b(B) and that (Θ• ⊗•

B Δ•) ⊗•
A − is

naturally isomorphic to the identity functor 1K b(A). Thus, Δ• ⊗•
A − and

Θ• ⊗•
B − induce mutually inverse equivalences between K b(A) and K b(B).

Now we prove that the restrictions of these two functors to K b(add(A ⊕ X))
and to K b

(
add(B ⊕ F̄ (X))

)
are also mutually inverse equivalences for each

A-module X .
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In fact, the complex Δ• ⊗•
A X is of the form

0 Δ0 ⊗A X Δ1 ⊗A X · · · Δn ⊗A X 0.

Since Δi is a projective bimodule for all i > 0, the term Δi ⊗A X is a
projective B-module for all i > 0. Moreover, by Theorem 5.3, we have
Δ0 ⊗A X � F̄ (X) in B-mod, and therefore Δ0 ⊗A X is a direct summand
of F̄ (X) ⊕ P for some projective B-module P . Hence, the complex Δ• ⊗•

A

X is in K b
(
add(B ⊕ F̄ (X))

)
. Note that, for each projective A-module

P1, the complex Δ• ⊗•
A P1 is in add(Q̄•). Thus, for each complex X• in

K b(add(A ⊕ X)), the complex Δ• ⊗•
A X• is in K b

(
add(B ⊕ F̄ (X))

)
. Simi-

larly, the functor Θ• ⊗•
B − takes complexes in K b

(
add(B ⊕ F̄ (X))

)
to com-

plexes in K b(add(A ⊕ X)). Thus, Δ• ⊗•
A − and Θ• ⊗•

B − induce mutually
inverse equivalences between the triangulated categories K b(add(A ⊕ X))
and K b

(
add(B ⊕ F̄ (X))

)
.

Let Λ = EndA(A ⊕ X), and let Γ = EndB(B ⊕ F̄ (X)). Then K b(Λ-proj)
and K b(Γ-proj) are canonically equivalent to K b(add(A ⊕ X)) and
K b

(
add(B ⊕ F̄ (X))

)
, respectively. By [14, Theorem 6.4], there is a derived

equivalence F̂ between Λ and Γ. Moreover, the tilting complexes asso-
ciated to F̂ and its quasi-inverse are Hom•

A(A ⊕ X,Q• ⊕ Θ• ⊗•
B F̄ (X))

and Hom•
B(B ⊕ F̄ (X), Q̄• ⊕ Δ• ⊗•

A X), respectively. By the proof of The-
orem 5.3, the ith term Θi of Θ• is in add(Q ⊗k Q̄∗) for all i < 0. Hence,
Θi ⊗B F̄ (X) is in add(Q) for all i < 0, and all the terms in negative degrees
of Hom•

A(A ⊕ X,Q• ⊕ Θ• ⊗•
B F̄ (X)) are in add(HomA(A ⊕ X,Q)). Similarly,

all the terms in positive degrees of Hom•
B(B ⊕ F̄ (X), Q̄• ⊕ Δ• ⊗•

A X) are in
add

(
HomB(B ⊕ F̄ (X), Q̄)

)
. Note that we have the following isomorphisms:

νΛ

(
HomA(A ⊕ X,Q)

)
= D HomΛ

(
HomA(A ⊕ X,Q),HomA(A ⊕ X,A ⊕ X)

)
� D HomA(Q,A ⊕ X)

� D
(
HomA(Q,A) ⊗A (A ⊕ X)

)
� HomA

(
A ⊕ X,D HomA(Q,A)

)
= HomA(A ⊕ X,νAQ).

Since add(AQ) = add(νAQ), we have

add
(
HomA(A ⊕ X,Q)

)
= add

(
νΛ(HomA(A ⊕ X,Q))

)
.
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Similarly, we have add
(
HomB(B ⊕ F̄ (X), Q̄)

)
= add

(
νΓ(HomB(B ⊕ F̄ (X),

Q̄))
)
. This shows that the derived equivalence between Λ and Γ induced by

the tilting complex Hom•
A(A ⊕ X,Q• ⊕ Θ• ⊗•

B F̄ (X)) is almost ν-stable.

Our next construction uses tensor products.

Proposition 6.2. Let k be a field. Suppose that F is an almost ν-stable
derived equivalence between finite-dimensional k-algebras A and B. Then,
for each finite-dimensional self-injective k-algebra C, there is an almost ν-
stable derived equivalence between the tensor products A ⊗k Cop and B ⊗k

Cop.

Proof. By [15, Theorem 2.1], F induces a derived equivalence F̂ between
A ⊗k Cop and B ⊗k Cop. Let Q• and Q̄• be the associated tilting complexes
of F and its quasi-inverse, respectively. From Table 1 we know that Q• ⊗•

k CC

and Q̄• ⊗•
k CC are the associated tilting complexes of F̂ and its quasi-inverse,

respectively. Now we have the following isomorphisms:

νA⊗kCop(AQ ⊗k CC) = D HomA⊗kCop(AQ ⊗k CC ,AA ⊗k CC)

� D
(
HomA(AQ,AA) ⊗k HomCop(CC ,CC)

)
� D HomA(AQ,AA) ⊗k D HomCop(CC ,CC)

� νAQ ⊗k νC
opCC

� νAQ ⊗k CC (because C is self-injective).

Since F is almost ν-stable, we have add(Q) = add(νAQ), and therefore

add
(
νA⊗kCop(AQ ⊗k CC)

)
= add(AQ ⊗k CC).

Similarly, we have add(νB⊗kCop(BQ̄ ⊗k CC)) = add(BQ̄ ⊗k CC). Hence, F̂ is
almost ν-stable, and the proof is complete.

Let A be a finite-dimensional algebra over a field k, and let X be an
A-module. The one-point extension of A by X , denoted by A[X], is the tri-
angular matrix algebra

[
k 0
X A

]
. The canonical projection A[X] −→ A shows

that A is a quotient algebra of A[X] and that A-mod can be viewed as a
full subcategory of A[X]-mod. Let X̃ denote the A[X]-module

[
k
X

]
. Then,

for each A-module M , we have HomA[X](M,X̃) � HomA(M,X).
Our third construction of an almost ν-stable derived equivalence is given

by one-point extensions.
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Proposition 6.3. Let k be a field. Suppose that F is an almost ν-stable
derived equivalence between finite-dimensional k-algebras A and B. If X is
an A-module such that F (X) is isomorphic in Db(B) to a B-module Y ,
then there is an almost ν-stable derived equivalence between the one-point
extensions A[X] and B[Y ].

Proof. Let G be a quasi-inverse of F . Recall that Q• and Q̄• denote
the radical tilting complexes associated to F and G, respectively. Then Q•

can be viewed as a complex in K b(A[X]-proj). By a result of Barot and
Lenzing [2], the complex Q• ⊕ X̃ is a tilting complex over A[X] such that
its endomorphism algebra is isomorphic to B[Y ], where X̃ is regarded as
a complex concentrated only on degree 0. Moreover, Q̄• ⊕ Ỹ is a tilting
complex associated to the quasi-inverse of the derived equivalence induced
by Q• ⊕ X̃ . Recall that Q is the direct sum of all the terms of Q• in negative
degrees. Then add(νAQ) = add(AQ) by assumption. Since the direct sum of
all terms in negative degrees of Q• ⊕ X̃ equals Q, we have to show that
add(νA[X]Q) = add(A[X]Q).

Since Q is projective, there is a unique maximal submodule L of X with
respect to the property HomA(Q,L) = 0. By assumption, F (X) is isomor-
phic in Db(B) to the B-module Y ; hence, we have Hom(Q•,X[i]) = 0 for all
i 	= 0. This shows that 0 = HomDb(A)(Q•,X[i]) � HomDb(A)(Q•, (X/L)[i])
for all integers i > 0. If X/L 	= 0, then HomA(Q, soc(X/L)) 	= 0 by the def-
inition of L. This implies that HomDb(A)(Q•, (X/L)[i]) 	= 0 for some i > 0,
a contradiction. Thus, X/L = 0, HomA(Q,X) = 0, and HomA[X](Q,X̃) = 0.
Consequently,

νA[X]Q = D HomA[X](Q,A[X]) � D HomA[X](Q,A ⊕ X̃)

= D HomA[X](Q,A) � νAQ.

Hence, add(νA[X]Q) = add(A[X]Q). Similarly, we have add(νB[Y ]Q̄) =
add(B[Y ]Q̄). This finishes the proof.

§7. Examples and questions

In the following, we shall illustrate our results with examples.

Example 1. Let A and B be finite-dimensional k algebras given by
quivers with relations in Figure 1 and Figure 2, respectively. Let PA(i),
IA(i), and SA(i) denote the indecomposable projective, injective, and simple
A-modules corresponding to the vertex i, respectively. We take a nonzero
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•
α1 2

•

β

•3

γ

αβγα = βγαβ = γαβγ = 0

Figure 1

•
α

•
1 2β

γ

•
3δ

αγ = δβ = 0
αβα = δγδ = βα − γδ = 0.

Figure 2

homomorphism f : PA(2) → PA(1). Then there is a tilting complex of A-
modules

Q• : 0 PA(2) ⊕ PA(2) ⊕ PA(3)
[f,0,0]T

PA(1) 0.

The endomorphism algebra of Q• is isomorphic to B. Let F : Db(A) →
Db(B) be a derived equivalence with Q• as its associated tilting complex.
Clearly, F is almost ν-stable since A and B are symmetric algebras. Now
we consider the quotient algebras Ā = A/soc(PA(1)) and B̄ = B/soc(PB(1)).
Then one can check that the complex

Q•
1 : 0 PĀ(2) ⊕ PĀ(2) ⊕ PĀ(3)

[f̄ ,0,0]T

PĀ(1) 0

is a tilting complex over Ā and that the endomorphism algebra of Q•
1 is

isomorphic to B̄. In other words, Q•
1 induces a derived equivalence F1 :

Db(Ā) −→ Db(B̄). This follows also from [7, Theorem 4.3]. Moreover, the
tilting complex associated to a quasi-inverse of F1 is of the following form:

Q̄•
1 : 0 −→ PB̄(1) −→ PB̄(2) ⊕ PB̄(2) ⊕ PB̄(3) −→ 0.

Clearly, the two complexes satisfy the conditions add(ĀQ1) = add(νĀQ1)
and add(B̄Q̄1) = add(νB̄Q̄1). Hence, the algebras Ā and B̄ are both derived-
equivalent and stably equivalent of Morita type by Theorem 5.3. We know
that F1(SĀ(1)) is isomorphic to the simple B̄-module SB̄(1).

The one-point extensions Ā[SĀ(1)] and B̄[SB̄(1)] are given in Figure 3
and Figure 4, respectively.

By Proposition 6.3, there is a derived equivalence between Ā[SĀ(1)] and
B̄[SB̄(1)], which induces a stable equivalence of Morita type.
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•
4

η

•
α

1 2
•

β

•
3

γ

αβγ = βγαβ = γαβγ = ηα = 0

Figure 3

• 4

η

•
α

•
1 2β

γ

•
3δ

ηα = αβ = δγδ = βα − γδ = αγ = δβ = 0.

Figure 4

•
1 2α

•
β

•
δ

•
γ 34

αβγδ = βγδα = γδαβγ = 0

Figure 5

•
η

•
α

•
1 2β

4

δ

•
γ 3

αδ = γβ = βα − δηγ = γδη = ηγδ = 0.

Figure 6

A calculation shows that F1(IĀ(1)) is isomorphic to the B̄-module IB̄(1).
The algebras EndĀ(Ā ⊕ IĀ(1)) and EndB̄(B̄ ⊕ IB̄(1)) are given by Figures 5
and 6, respectively. Thus, they are derived-equivalent and stably equivalent
of Morita type by Proposition 6.1.

The next example, taken from [13], shows that Theorem 5.3 may fail if
only one of the conditions of an almost ν-stable functor is satisfied.

Example 2. Let A be the 17-dimensional algebra given by the quiver

•
ε1 2

•
δ

α

•
γ

•
β 34

with relations γαβ = γδ = εαβ = 0, δε = αβγ. As before, we denote by PA(i)
the indecomposable projective A-module corresponding to the vertex i. Let
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Q• be the direct sum of the following two complexes:

0 −→ PA(1) −→ PA(2) −→ 0,
0 −→ 0 −→ PA(2) ⊕ PA(3) ⊕ PA(4) −→ 0,

where PA(1) is in degree −1. One can check that Q• is a tilting complex
over A. Let B = EndDb(A)(Q•). Then B is a 20-dimensional algebra given
by the quiver

•
α1 2

•

β

•

δ

•
γ 34

with relations αβγδα = 0 = δαβγ, where the indecomposable projective
B-modules at vertices 1, 2, 3, and 4 correspond respectively to the indecom-
posable direct summands PA(1) → PA(2), PA(2), PA(3), and PA(4) of the
complex Q•. Let F : Db(A) −→ Db(B) be the derived equivalence induced
by the tilting complex Q•. Then F (PA(i)) = PB(i) for i = 2,3,4. Let Q•

1 be
the direct summand PA(1) → PA(2) of Q•. Applying F to the distinguished
triangle in Db(A)

PA(2)[−1] −→ Q•
1[−1] −→ PA(1) −→ PA(2),

we see that F (PA(1)) is of the form

0 −→ PB(2) −→ PB(1) −→ 0,

where PB(2) is in degree 0. Thus, F (A) is isomorphic in Db(B) to a complex
Q̄•, which is the direct sum of the following two complexes:

0 −→ PB(2) −→ PB(1) −→ 0,
0 −→ PB(2) ⊕ PB(3) ⊕ PB(4) −→ 0 −→ 0.

Let G be a quasi-inverse of F . Then Q̄• is a tilting complex associated
to G. Clearly, AQ = Q−1 = PA(1) and BQ̄ = Q̄1 = PB(1). It is easy to see
that F satisfies the condition add(BQ̄) = add(νBQ̄) but not the condition
add(AQ) = add(νAQ). Note that B is a Nakayama algebra and has 16 non-
projective indecomposable modules, while A has more than 16 nonprojective
indecomposable modules. Thus, A and B cannot be stably equivalent.

This example also shows that Corollary 3.10 may be false for derived
equivalences in general. In fact, we have BĒ = PB(1) and AE = 0 in this
example.
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Finally, we mention the following questions suggested by the results in
this paper.

(1) What new conditions for a derived equivalence induce a stable equiv-
alence of Morita type?

(2) Suppose that R is an arbitrary commutative Artin ring. Does Theo-
rem 5.3 hold true for Artin R-algebras A and B such that A and B both
are projective over R?

Note that if A and B both are projective over R, then a two-sided tilting
complex over A ⊗R B exists. However, we do not know whether X ⊗R Y

is an injective A ⊗R B-module if X and Y are injective over A and B,
respectively.

(3) Let F : Db(A) −→ Db(B) be a derived equivalence between Artin
algebras A and B, and let Q• be the tilting complex associated to F . If
add(AQ) = add(νAQ), is it true that rep.dim(A) ≤ rep.dim(B)?
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