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ROUQUIER BLOCKS OF THE CYCLOTOMIC HECKE
ALGEBRAS OF G(de, e, r)

MARIA CHLOUVERAKI

Abstract. The Rouquier blocks of the cyclotomic Hecke algebras, introduced
by Rouquier, are a substitute for the families of characters defined by Lusztig

for Weyl groups, which can be applied to all complex reflection groups. In this

article, we determine them for the cyclotomic Hecke algebras of the groups of

the infinite series G(de, e, r), thus completing their calculation for all complex
reflection groups.

Introduction

Until recently, the lack of Kazhdan-Lusztig bases for the non-Coxeter
complex reflection groups did not allow the generalization of the notion of
families of characters from Weyl groups to all complex reflection groups.
However, thanks to the results of Gyoja [12] and Rouquier [21], we have
obtained a substitute for the families of characters that can be applied
to all complex reflection groups. In particular, Rouquier has proved that
the families of characters of a Weyl group W coincide with the Rouquier
blocks of the Iwahori-Hecke algebra of W , that is, its blocks over a suitable
coefficient ring. This definition generalizes to all complex reflection groups,
and we are grateful for this for the following reasons.

On the one hand, since the families of characters of a Weyl group play
an essential role in the definition of the families of unipotent characters of
the corresponding finite reductive group (see [14]), the families of characters
of the cyclotomic Hecke algebras could play a key role in the organization
of families of unipotent characters in general. On the other hand, for some
(non-Coxeter) complex reflection groups W , we have data that seem to
indicate that behind the group W , there exists another mysterious object—
the Spets (see [3], [18])—that could play the role of the “series of finite
reductive groups of Weyl group W .”
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In [2], Broué and Kim presented an algorithm for the determination of the
Rouquier blocks of the cyclotomic Hecke algebras of the groups G(d,1, r).
Using the generalization of some classic results, known as Clifford theory,
they were able to obtain the Rouquier blocks for G(d, d, r) from those of
G(d,1, r). Later, Kim [13] generalized the methods used in [2] in order to
obtain the Rouquier blocks of the cyclotomic Hecke algebras of G(de, e, r)
from those of G(de,1, r).

As far as the exceptional complex reflection groups are concerned, some
special cases were treated by Malle and Rouquier in [19]. Finally, in [5],
the author gives the complete classification of the Rouquier blocks of the
cyclotomic Hecke algebras for all exceptional complex reflection groups.

However, recently it was realized that the algorithm of [2] for G(d,1, r)
does not work, unless d is a power of a prime number. In [7], the author gives
the correct algorithm, which is more complicated than the one in [2]. Now, it
remains to recalculate the Rouquier blocks of the cyclotomic Hecke algebras
of G(de, e, r) in order to complete the determination of the Rouquier blocks
for all complex reflection groups.

Using the same idea as in [13], we apply Clifford theory in order to obtain
the Rouquier blocks for G(de, e, r) from those of G(de,1, r). However, there
is one case where this is not possible, that is, when r = 2 and e is even. In
that case, we apply the same methods as in [5] in order to determine the
Rouquier blocks of the cyclotomic Hecke algebras of G(de,2,2), and then we
apply Clifford theory in order to obtain the Rouquier blocks for G(de, e,2).

Finally, to every irreducible character of a cyclotomic Hecke algebra of
a complex reflection group we can attach integers a and A, as Lusztig has
done for Weyl groups. In [15], Lusztig shows that these integers are constant
on families. Here, we complete the proof that a and A are constant on the
Rouquier blocks of the cyclotomic Hecke algebras of all irreducible complex
reflection groups, having already shown it for the exceptional ones (cf. [6])
and G(d,1, r) (cf. [7]).

§1. Blocks of symmetric algebras

All the results of this section are presented here for the convenience of
the reader. Their proofs can be found in [5, Chapter 2].
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1.1. Generalities on blocks
Let us assume that O is a commutative integral domain with field of

fractions F and that A is an O-algebra, free and finitely generated as an
O-module.

Definition 1.1. The block-idempotents (blocks) of A are the primitive
idempotents of ZA.

Let K be a field extension of F . Suppose that the K-algebra KA :=
K ⊗O A is semisimple. Then there exists a bijection between the set Irr(KA)
of irreducible characters of KA and the set Bl(KA) of blocks of KA:

Irr(KA) ↔ Bl(KA),

χ �→ eχ.

The following theorem establishes a relation between the blocks of the
algebra A and the blocks of KA.

Theorem 1.2. There exists a unique partition Bl(A) of Irr(KA) such
that

(1) for all B ∈ Bl(A), the idempotent eB :=
∑

χ∈B eχ is a block of A; and
(2) for every central idempotent e of A, there exists a subset Bl(A,e) of

Bl(A) such that
e =

∑
B∈Bl(A,e)

eB.

In particular, the set {eB }B∈Bl(A) is the set of all the blocks of A.

If χ ∈ B for some B ∈ Bl(A), then we say that χ belongs to the block eB .

1.2. Symmetric algebras
From now on, we make the following assumptions.

Assumptions 1.3.

(int) The ring O is a Noetherian and integrally closed domain with field of
fractions F , and A is an O-algebra that is free and finitely generated
as an O-module.

(spl) The field K is a finite Galois extension of F , and the algebra KA is
split (i.e., for every simple KA-module V , EndKA(V ) � K) semisim-
ple.
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Definition 1.4. We say that a linear map t : A → O is a symmetrizing
form on A or that A is a symmetric algebra if
(a) t is a trace function, that is, t(ab) = t(ba) for all a, b ∈ A; and
(b) the morphism

t̂ : A → HomO(A, O), a �→
(
x �→ t̂(a)(x) := t(ax)

)
is an isomorphism of A-modules-A.

Example 1.5. In the case where O = Z and A = Z[G] (G a finite group),
we can define the following symmetrizing form (canonical) on A:

t : Z[G] → Z,
∑
g∈G

agg �→ a1,

where ag ∈ Z for all g ∈ G.

From now on, let us suppose that A is a symmetric algebra with sym-
metrizing form t. By [9], we have the following results.

Theorem 1.6. (1) We have

t =
∑

χ∈Irr(KA)

1
sχ

χ,

where sχ is the Schur element of χ with respect to t.
(2) For all χ ∈ Irr(KA), the central primitive idempotent associated to χ is

eχ =
1
sχ

∑
i∈I

χ(e′
i)ei,

where (ei)i∈I is a basis of A over O and (e′
i)i∈I is the dual basis with

respect to t (i.e., t(eie
′
j) = δij).

Corollary 1.7. The blocks of A are the nonempty subsets B of Irr(KA)
minimal with respect to the property

∑
χ∈B

1
sχ

χ(a) ∈ O, for all a ∈ A.

Let us suppose now that O is a discrete valuation ring with unique prime
ideal p and that K is the field of fractions of O. Then the following result
gives a criterion for a block to be a singleton.
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Proposition 1.8. Let χ ∈ Irr(KA). The character χ is a block of A by
itself if and only if sχ /∈ p.

Proof. If sχ /∈ p, then 1/sχ ∈ O and Corollary 1.7 implies that the char-
acter χ is a block of A by itself. The inverse is a consequence of a theorem
by Geck and Rouquier (see [10, Proposition 4.4]).

1.3. Twisted symmetric algebras of finite groups
Let A be an O-algebra such that Assumptions 1.3 are satisfied with a

symmetrizing form t. Let Ā be a subalgebra of A free and of finite rank as
an O-module.

Definition 1.9. We say that Ā is a symmetric subalgebra of A if it
satisfies the following two conditions:

(1) Ā is free (of finite rank) as an O-module and the restriction ResA
Ā
(t) of

the form t to Ā is a symmetrizing form on Ā; and
(2) A is free (of finite rank) as an Ā-module for the action of left multipli-

cation by the elements of Ā.

We denote by

IndA
Ā :Ā mod →A mod and ResA

Ā :A mod →Ā mod

the functors defined as usual by

IndA
Ā := A ⊗Ā, where A is viewed as an A-module-Ā

and
ResA

Ā := A ⊗A, where A is viewed as an Ā-module-A.

In the next sections, we will work on the Hecke algebras of complex
reflection groups, which are symmetric. Sometimes the Hecke algebra of
a group W appears as a symmetric subalgebra of the Hecke algebra of
another group W ′, which contains W . Since we are mostly interested in the
determination of the blocks of these algebras, it would be helpful to obtain
the blocks of the former from the blocks of the latter. This is possible with
the use of a generalization of some classic results, already introduced above
as Clifford theory (see, e.g., [8]), to the twisted symmetric algebras of finite
groups and, more precisely, of finite cyclic groups.
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Definition 1.10. We say that a symmetric O-algebra (A, t) is the twisted
symmetric algebra of a finite group G over the subalgebra Ā if the following
conditions are satisfied.

• Ā is a symmetric subalgebra of A.
• There exists a family {Ag |g ∈ G} of O-submodules of A such that

(a) A =
⊕

g∈G Ag;
(b) AgAh = Agh for all g,h ∈ G;
(c) A1 = Ā;
(d) t(Ag) = 0 for all g ∈ G,g �= 1;
(e) Ag ∩ A× �= ∅ for all g ∈ G (where A× is the set of units of A).

In particular, if ag ∈ Ag ∩ A×, then we have Ag = agĀ = Āag.

Action of G on ZĀ

From now on, we assume that (A, t) is the twisted symmetric algebra of
a finite group G over Ā and that K is an extension of F such that the
algebras KA, KĀ, and KG are split semisimple.

Theorem–Definition 1.11. Let ā ∈ ZĀ, and let g ∈ G. There exists a
unique element g(ā) of Ā satisfying

g(ā)g = gā for all g ∈ Ag.

If ag ∈ A× such that Ag = agĀ, then

g(ā) = agāa−1
g .

The map ā �→ g(ā) defines an action of G as ring automorphism of ZĀ.

Induction and restriction of KA-modules and KĀ-modules
For all χ̄ ∈ Irr(KĀ), we denote by ē(χ̄) the block-idempotent of KĀ

associated to χ̄. If g ∈ G, then g(ē(χ̄)) is also a block of KĀ. Since KĀ

is split semisimple, it must be associated to an irreducible character g(χ̄)
of KĀ. Thus, we can define an action of G on Irr(KĀ) such that for all
g ∈ G, ē(g(χ̄)) = g(ē(χ̄)). We denote by Gχ̄ the stabilizer of the character
χ̄ in G, and we denote by Ω̄ the orbit of χ̄ under the action of G. We have
|Ω̄| = |G|/|Gχ̄|. We define

ē(Ω̄) :=
∑

g∈G/Gχ̄

ē
(
g(χ̄)

)
=

∑
g∈G/Gχ̄

g
(
ē(χ̄)

)
.
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Case where G is cyclic. Since the group G is abelian, the set Irr(KG) forms
a group denoted by G∨. The application ψ �→ ψ · ξ, where ψ ∈ Irr(KA) and
ξ ∈ G∨, defines an action of G∨ on Irr(KA). Then we have the following
result.

Proposition 1.12. If the group G is cyclic, there exists a bijection

Irr(KĀ)/G ↔̃ Irr(KA)/G∨,

Ω̄ ↔ Ω

such that

ē(Ω̄) = e(Ω), |Ω̄||Ω| = |G|,

and

{
∀χ ∈ Ω, ResKA

KĀ
(χ) =

∑
χ̄∈Ω̄ χ̄,

∀χ̄ ∈ Ω̄, IndKA
KĀ(χ̄) =

∑
χ∈Ω χ.

Moreover, for all χ ∈ Ω and χ̄ ∈ Ω̄, we have

sχ = |Ω|sχ̄.

Blocks of A and blocks of Ā

Denote by Bl(A) the set of blocks of A, and denote by Bl(Ā) the set of
blocks of Ā. For b̄ ∈ Bl(Ā), we set

Tr(G, b̄) :=
∑

g∈G/Gb̄

g(b̄).

The algebra (ZĀ)G is contained in both ZĀ and ZA, and the set of its
blocks is

Bl
(
(ZĀ)G

)
=

{
Tr(G, b̄) | b̄ ∈ Bl(Ā)/G

}
.

Moreover, Tr(G, b̄) is a sum of blocks of A, and we define the subset Bl(A, b̄)
of Bl(A) as follows:

Tr(G, b̄) :=
∑

b∈Bl(A,b̄)

b.

Lemma 1.13. Let b̄ be a block of Ā and B̄ := Irr(KĀb̄). Then
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(1) for all χ̄ ∈ B̄, we have Gχ̄ ⊆ Gb̄;
(2) we have

Tr(G, b̄) =
∑

χ̄∈B̄/G

Tr
(
G, ē(χ̄)

)
=

∑
{Ω̄|Ω̄∩B̄ �=∅}

ē(Ω̄).

Now let G∨ := Hom(G,K×). We suppose that K = F . The multiplication
of the characters of KA by the characters of KG defines an action of the
group G∨ on Irr(KA). This action is induced by the operation of G∨ on the
algebra A, which is defined in the following way:

ξ · (āag) := ξ(g)āag for all ξ ∈ G∨, ā ∈ Ā, g ∈ G.

In particular, G∨ acts on the set of blocks of A. Let b be a block of A.
Denote by ξ · b the product of ξ and b, and denote by (G∨)b the stabilizer
of b in G∨. We set

Tr(G∨, b) :=
∑

ξ∈G∨/(G∨)b

ξ · b.

The set of blocks of the algebra (ZA)G∨
is given by

Bl
(
(ZA)G∨ )

=
{
Tr(G∨, b) | b ∈ Bl(A)/G∨}

.

The following lemma is the analogue of Lemma 1.13.

Lemma 1.14. Let b be a block of A and B := Irr(KAb). Then,
(1) for all χ ∈ B, we have (G∨)χ ⊆ (G∨)b;
(2) we have

Tr(G∨, b) =
∑

χ∈B/G∨

Tr
(
G∨, e(χ)

)
=

∑
{Ω|Ω∩B �=∅}

e(Ω).

Case where G is cyclic. For every orbit Y of G∨ on Bl(A), we denote by
b(Y) the block of (ZA)G∨

defined by

b(Y) :=
∑
b∈ Y

b.

For every orbit Ȳ of G on Bl(Ā), we denote by b̄(Ȳ) the block of (ZĀ)G

defined by
b̄(Ȳ) :=

∑
b̄∈ Ȳ

b̄.

The following proposition results from Proposition 1.12 and Lemmas 1.13
and 1.14.
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Proposition 1.15. If the group G is cyclic, there exists a bijection

Bl(Ā)/G ↔̃ Bl(A)/G∨,

Ȳ ↔ Y

such that
b̄(Ȳ) = b(Y);

that is,
Tr(G, b̄) = Tr(G∨, b) for all b̄ ∈ Ȳ and b ∈ Y.

In particular, the algebras (ZĀ)G and (ZA)G∨
have the same blocks.

Corollary 1.16. If the blocks of A are stable by the action of G∨, then
the blocks of A coincide with the blocks of (ZĀ)G.

§2. Hecke algebras of complex reflection groups

2.1. Generic Hecke algebras
Let μ∞ be the group of all the roots of unity in C, and let K be a number

field contained in Q(μ∞). We denote by μ(K) the group of all the roots of
unity of K. For every integer d > 1, we set ζd := exp(2πi/d) and we denote
by μd the group of all the dth roots of unity.

Let V be a K-vector space of finite dimension r. Let W be a finite
subgroup of GL(V ) generated by (pseudo)reflections acting irreducibly on
V . Let us denote by A the set of the reflecting hyperplanes of W . We
set M := C ⊗ V −

⋃
H∈ A C ⊗ H . For x0 ∈ M, let P := Π1(M, x0) and let

B := Π1(M/W,x0). Then there exists a short exact sequence (see [4]):

{1} → P → B → W → {1}.

We denote by τ the central element of P defined by the loop

[0,1] → M, t �→ exp(2πit)x0.

For every orbit C of W on A, we denote by eC the common order of
the subgroups WH , where H is any element of C and WH is the subgroup
formed by idV and all the reflections fixing the hyperplane H .

We choose a set of indeterminates u = (uC,j)(C ∈ A/W )(0≤j≤eC −1), and we
denote by Z[u,u−1] the Laurent polynomial ring in all the indeterminates
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u. We define the generic Hecke algebra H of W to be the quotient of the
group algebra Z[u,u−1]B by the ideal generated by the elements of the form

(s − uC,0)(s − uC,1) · · · (s − uC,eC −1),

where C runs over the set A/W and s runs over the set of monodromy
generators around the images in M/W of the elements of the hyperplane
orbit C.

We make some assumptions for the algebra H. Note that they have been
verified for all but a finite number of irreducible complex reflection groups
[3, remarks before (1.17), §2]; [11].

Assumptions 2.1. The algebra H is a free Z[u,u−1]-module of rank |W |.
Moreover, there exists a linear form t : H → Z[u,u−1] with the following
properties.

(1) The map t is a symmetrizing form on H.
(2) Via the specialization uC,j �→ ζj

eC , the form t becomes the canonical sym-
metrizing form on the group algebra ZKW.

(3) If we denote by α �→ α∗ the automorphism of Z[u,u−1] consisting of
the simultaneous inversion of the indeterminates, then for all b ∈ B, we
have

t(b−1)∗ =
t(bτ)
t(τ)

.

We know that the form t is unique [3, (2.1)]. From now on, let us suppose
that the Assumptions 2.1 are satisfied. Then we have the following result
by Malle [17, (5.2)].

Theorem 2.2. Let v = (vC,j)(C ∈ A/W )(0≤j≤eC −1) be a set of
∑

C ∈ A/W eC

indeterminates such that, for every C, j, we have v
|μ(K)|

C,j = ζ−j
eC uC,j . Then

the K(v)-algebra K(v)H is split semisimple.

By Tits’s deformation theorem (cf., e.g., [3, (7.2)]), it follows that the
specialization vC,j �→ 1 induces a bijection χ �→ χv from the set Irr(K(v)H)
of absolutely irreducible characters of K(v)H to the set Irr(W ) of absolutely
irreducible characters of W .

The following result concerning the form of the Schur elements associated
with the irreducible characters of K(v)H is proved in [5, Theorem 4.2.5],
using case-by-case analysis.
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Theorem 2.3. The Schur element sχ(v) associated with the character
χv of K(v)H is an element of ZK [v,v−1] of the form

sχ(v) = ξχNχ

∏
i∈Iχ

Ψχ,i(Mχ,i)nχ,i ,

where

• ξχ is an element of ZK ;
• Nχ =

∏
C,j v

bC,j

C,j is a monomial in ZK [v,v−1] such that
∑eC −1

j=0 bC,j = 0 for
all C ∈ A/W ;

• Iχ is an index set;
• (Ψχ,i)i∈Iχ is a family of K-cyclotomic polynomials in one variable (i.e.,

minimal polynomials of the roots of unity over K);
• (Mχ,i)i∈Iχ is a family of monomials in ZK [v,v−1], and if Mχ,i =∏

C,j v
aC,j

C,j , then gcd(aC,j) = 1 and
∑eC −1

j=0 aC,j = 0 for all C ∈ A/W ; and
• (nχ,i)i∈Iχ is a family of positive integers.

This factorization is unique in K[v,v−1]. Moreover, the monomials
(Mχ,i)i∈Iχ are unique up to inversion, whereas the coefficient ξχ is unique
up to multiplication by a root of unity.

Let A := ZK [v,v−1], and let p be a prime ideal of ZK .

Definition 2.4. Let M =
∏

C,j v
aC,j

C,j be a monomial in A such that
gcd(aC,j) = 1. We say that M is p-essential for a character χ ∈ Irr(W )
if there exists a K-cyclotomic polynomial Ψ such that

• Ψ(M) divides sχ(v), and
• Ψ(1) ∈ p.

We say that M is p-essential for W if there exists a character χ ∈ Irr(W )
such that M is p-essential for χ.

The following proposition (see [5, Proposition 3.1.3]) gives a characteri-
zation of p-essential monomials, which plays an essential role in the proof
of Theorem 2.11.

Proposition 2.5. Let M =
∏

C,j v
aC,j

C,j be a monomial in A such that
gcd(aC,j) = 1. We set qM := (M − 1)A + pA. Then

(1) the ideal qM is a prime ideal of A,
(2) M is p-essential for χ ∈ Irr(W ) if and only if sχ(v)/ξχ ∈ qM .
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If M is a p-essential monomial for W , then Theorem 2.11 establishes a
relation between the blocks of the algebra AqM H and the Rouquier blocks.
The following results concerning the blocks of AqM H are proven in [5, Propo-
sitions 3.2.3 and 3.2.5].

Proposition 2.6. Let M =
∏

C,j v
aC,j

C,j be a monomial in A such that
gcd(aC,j) = 1 and qM := (M − 1)A + pA. Then

(1) if two irreducible characters are in the same block of ApAH, then they
are in the same block of AqM H;

(2) if C is a block of ApAH and M is not p-essential for any irreducible
character in C, then C is a block of AqM H.

2.2. Cyclotomic Hecke algebras
Let y be an indeterminate. We set q := y|μ(K)|.

Definition 2.7. A cyclotomic specialization of H is a ZK -algebra morph-
ism φ : ZK [v,v−1] → ZK [y, y−1] with the following properties:

• φ : vC,j �→ ynC,j , where nC,j ∈ Z for all C and j;
• for all C ∈ A/W , and assuming that z is another indeterminate, the ele-

ment of ZK [y, y−1, z] defined by

ΓC (y, z) :=
eC −1∏
j=0

(z − ζj
eC ynC,j )

is invariant by the action of Gal(K(y)/K(q)).

If φ is a cyclotomic specialization of H, the corresponding cyclotomic
Hecke algebra is the ZK [y, y−1]-algebra, denoted by Hφ, which is obtained
as the specialization of the ZK [v,v−1]-algebra H via the morphism φ. It also
has a symmetrizing form tφ defined as the specialization of the canonical
form t.

Remark. Sometimes we describe the morphism φ by the formula

uC,j �→ ζj
eC qnC,j .

The following result is proved in [5, Proposition 4.3.4].

Proposition 2.8. The algebra K(y)Hφ is split semisimple.
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For y = 1 this algebra specializes to the group algebra KW (the form tφ
becoming the canonical form on the group algebra). Thus, by Tits’s defor-
mation theorem, the specialization vC,j �→ 1 induces the following bijections:

Irr
(
K(v)H

)
↔ Irr

(
K(y)Hφ

)
↔ Irr(W ),

χv �→ χφ �→ χ.

2.3. Rouquier blocks of the cyclotomic Hecke algebras
Definition 2.9. We call the Rouquier ring of K, and we denote by

RK(y), the ZK -subalgebra of K(y)

RK(y) := ZK [y, y−1, (yn − 1)−1
n≥1].

Let φ : vC,j �→ ynC,j be a cyclotomic specialization, and let Hφ be the
corresponding cyclotomic Hecke algebra. The Rouquier blocks of Hφ are the
blocks of the algebra RK(y)Hφ.

Remark. If we set q := y|μ(K)|, then the corresponding cyclotomic Hecke
algebra Hφ can be considered either over the ring ZK [y, y−1] or over the
ring ZK [q, q−1]. We define the Rouquier blocks of Hφ to be the blocks of
Hφ defined over the Rouquier ring RK(y) in K(y). However, in other texts
(e.g., [2]), the Rouquier blocks are determined over the Rouquier ring RK(q)
in K(q). Since RK(y) is the integral closure of RK(q) in K(y), [2, Propo-
sition 1.12] establishes a relation between the blocks of RK(y)Hφ and the
blocks of RK(q)Hφ. Moreover, in the case where H is an Ariki-Koike algebra
(see Section 3.2), they coincide (see [7, Proposition 3.6]).

Set O := RK(y), and let p be a prime ideal of ZK . The ring O is a
Dedekind ring (see, e.g., [5, Proposition 4.4.2]), and hence its localization
OpO at the prime ideal generated by p is a discrete valuation ring. Following
[7, Proposition 2.14], we have the following.

Proposition 2.10. Two characters χ,ψ ∈ Irr(W ) are in the same Rou-
quier block of Hφ if and only if there exist a finite sequence χ0, χ1, . . . , χn ∈
Irr(W ) and a finite sequence p1, . . . ,pn of prime ideals of ZK such that
• χ0 = χ and χn = ψ;
• for all j (1 ≤ j ≤ n), the characters χj−1 and χj belong to the same block

of Opj O Hφ.

The above proposition implies that if we know the blocks of the algebra
OpO Hφ for every prime ideal of ZK , then we know the Rouquier blocks of
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Hφ. In order to determine the former, we can use the following theorem [5,
Theorem 3.3.2].

Theorem 2.11. Let A := ZK [v,v−1], and let p be a prime ideal of ZK .
Let M1, . . . ,Mk be all the p-essential monomials for W such that φ(Mj) = 1
for all j = 1, . . . , k. Set q0 := pA, qj := pA + (Mj − 1)A for j = 1, . . . , k,
and set Q := {q0,q1, . . . ,qk }. Two irreducible characters χ,ψ ∈ Irr(W ) are
in the same block of OpO Hϕ if and only if there exist a finite sequence
χ0, χ1, . . . , χn ∈ Irr(W ) and a finite sequence qj1 , . . . ,qjn ∈ Q such that

• χ0 = χ and χn = ψ;
• for all i (1 ≤ i ≤ n), the characters χi−1 and χi are in the same block of

Aqji
H.

Let p be a prime ideal of ZK , and let φ : vC,j �→ ynC,j be a cyclotomic
specialization. If M =

∏
C,j v

aC,j

C,j is a p-essential monomial for W , then

φ(M) = 1 ⇔
∑

C,j

aC,jnC,j = 0.

Set m :=
∑

C ∈ A/W eC . The hyperplane defined in Cm by the relation

∑
C,j

aC,jtC,j = 0,

where (tC,j)C,j is a set of m indeterminates, is called a p-essential hyperplane
for W . A hyperplane in Cm is called essential for W if it is p-essential for
some prime ideal p of ZK . Respectively, a monomial is called essential for
W if it is p-essential for some prime ideal p of ZK .

Definition 2.12. Let φ : vC,j �→ ynC,j be a cyclotomic specialization such
that the integers nC,j belong to only one essential hyperplane H (resp., to no
essential hyperplane). We say that φ is a cyclotomic specialization associated
with the essential hyperplane H (resp., with no essential hyperplane). We call
Rouquier blocks associated with the hyperplane H (resp., with no essential
hyperplane), and denote by BH (resp., B ∅), the partition of Irr(W ) into
Rouquier blocks of Hφ.

With the help of the above definition and thanks to Proposition 2.10 and
Theorem 2.11, we obtain the following characterization for the Rouquier
blocks of a cyclotomic Hecke algebra.
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Proposition 2.13. Let φ : vC,j �→ ynC,j be a cyclotomic specialization. If
the integers nC,j belong to no essential hyperplane, then the Rouquier blocks
of the cyclotomic Hecke algebra Hφ coincide with the partition B ∅. Other-
wise, two irreducible characters χ,ψ ∈ Irr(W ) belong to the same Rouquier
block of Hφ if and only if there exist a finite sequence χ0, χ1, . . . , χn ∈ Irr(W )
and a finite sequence H1, . . . ,Hn of essential hyperplanes that the nC,j belong
to such that

• χ0 = χ and χn = ψ;
• for all i (1 ≤ i ≤ n), the characters χi−1 and χi belong to BHi .

2.4. Functions a and A

Following the notation in [3, (6B)], for every element P (y) ∈ C(y), we call

• valuation of P (y) at y, and denote by valy(P ), the order of P (y) at 0 (we
have valy(P ) < 0 if 0 is a pole of P (y) and valy(P ) > 0 if 0 is a zero of
P (y)), and

• degree of P (y) at y, and denote by degy(P ), the opposite of the valuation
of P (1/y).

Moreover, if q := y|μ(K)|, then

valq(P ) :=
valy(P )

|μ(K)| and degq(P ) :=
degy(P )

|μ(K)| .

For χ ∈ Irr(W ), we define

aχφ
:= valq

(
sχφ

(y)
)

and Aχφ
:= degq

(
sχφ

(y)
)
.

The following result is proved in [2, Proposition 2.9].

Proposition 2.14. Let χ,ψ ∈ Irr(W ). If χφ and ψφ belong to the same
Rouquier block, then

aχφ
+ Aχφ

= aψφ
+ Aψφ

.

The values of the functions a and A can be calculated from the generic
Schur elements. In order to explain how, we need to introduce the following
symbols.

Definition 2.15. Let n ∈ Z. We set

• n+ :=

{
n, if n > 0,

0, if n ≤ 0,
and (yn)+ := n+;
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• n− =

{
n, if n < 0,

0, if n ≥ 0,
and (yn)− := n−.

Now let us fix χ ∈ Irr(W ). Following the notations of Theorem 2.3, the
generic Schur element sχ(v) associated to χ is an element of ZK [v,v−1] of
the form

(†) sχ(v) = ξχNχ

∏
i∈Iχ

Ψχ,i(Mχ,i)nχ,i .

We fix the factorization (†) for sχ(v). The following result is used in [6]
in order to obtain that the functions a and A are constant on the Rouquier
blocks of the cyclotomic Hecke algebras of the exceptional complex reflection
groups.

Proposition 2.16. Let φ : vC,j �→ ynC,j be a cyclotomic specialization.
Then
• valy(sχφ

(y)) = φ(Nχ)+ + φ(Nχ)− +
∑

i∈Iχ
nχ,i deg(Ψχ,i)(φ(Mχ,i))−;

• degy(sχφ
(y)) = φ(Nχ)+ + φ(Nχ)− +

∑
i∈Iχ

nχ,i deg(Ψχ,i)(φ(Mχ,i))+.

§3. Rouquier blocks of the cyclotomic Hecke algebras of G(de, e, r),
r > 2

In [13], Kim determined the Rouquier blocks for the cyclotomic Hecke
algebras of G(de, e, r) following the method used in [2] for G(e, e, r). More
specifically, she applied Clifford theory to obtain the blocks of G(de, e, r)
from the blocks of G(de,1, r). However, due to the incorrect determination
of the Rouquier blocks for G(de,1, r) in [2] and further small mistakes in
[13], we will proceed here to some modifications to the results and their
proofs. Moreover, in the next section, the author explains why we have to
distinguish the case where r = 2 (more precisely, where r = 2 and e is even).

3.1. Combinatorics
Letλ = (λ1, λ2, . . . , λh) be apartition, that is, a finite decreasing sequence of

positive integers λ1 ≥ λ2 ≥ · · · ≥ λh ≥ 1. The integer |λ| := λ1 + λ2 + · · · + λh

is called the size of λ. We also say that λ is a partition of |λ|. The integer h

is called the height of λ, and we set hλ := h. To each partition λ we associate
its β-number, βλ = (β1, β2, . . . , βh), defined as follows:

β1 := h + λ1 − 1, β2 := h + λ2 − 2, . . . , βh := h + λh − h.
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Multipartitions
From now on, let d be a positive integer. Let λ = (λ(0), λ(1), . . . , λ(d−1)) be

a d-partition (i.e., a family of d partitions indexed by the set {0,1, . . . , d − 1}).
We set

h(a) := hλ(a) , β(a) := βλ(a) ,

and we have
λ(a) = (λ(a)

1 , λ
(a)
2 , . . . , λ

(a)

h(a)).

The integer

|λ| :=
d−1∑
a=0

|λ(a)|

is called the size of λ. We also say that λ is a d-partition of |λ|.

Ordinary symbols
If β = (β1, β2, . . . , βh) is a sequence of positive integers such that

β1 > β2 > · · · > βh and if m is a positive integer, then the m-“shifted” of β

is the sequence of numbers defined by

β[m] = (β1 + m,β2 + m, . . . , βh + m,m − 1,m − 2, . . . ,1,0).

Let λ = (λ(0), λ(1), . . . , λ(d−1)) be a d-partition. We call d-height of λ the
family (h(0), h(1), . . . , h(d−1)), and we define the height of λ to be the integer

hλ := max
{
h(a) | (0 ≤ a ≤ d − 1)

}
.

Definition 3.1. The ordinary standard symbol of λ is the family of num-
bers defined by Bλ = (B(0),B(1), . . . ,B(d−1)), where we have, for all cases of
a (0 ≤ a ≤ d − 1),

B(a) := β(a)[hλ − h(a)].

The ordinary content of a d-partition of ordinary standard symbol Bλ is
the multiset

Contλ = B(0) ∪ B(1) ∪ · · · ∪ B(d−1).

Charged symbols
Assume that we have a given weight system, that is, a family of integers

m := (m(0),m(1), . . . ,m(d−1)).

Let λ = (λ(0), λ(1), . . . , λ(d−1)) be a d-partition. We call (d,m)-charged
height of λ the family (hc(0), hc(1), . . . , hc(d−1)), where

hc(0) := h(0) − m(0), hc(1) := h(1) − m(1), . . . , hc(d−1) := h(d−1) − m(d−1).
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We define the m-charged height of λ to be the integer

hcλ := max
{
hc(a) | (0 ≤ a ≤ d − 1)

}
.

Definition 3.2. The m-charged standard symbol of λ is the family of
numbers defined by Bcλ = (Bc(0),Bc(1), . . . ,Bc(d−1)), where we have, for all
cases of a (0 ≤ a ≤ d − 1),

Bc(a) := β(a)[hcλ − hc(a)].

Remark. The ordinary standard symbol corresponds to the weight sys-
tem

m(0) = m(1) = · · · = m(d−1) = 0.

The m-charged content of a d-partition of m-charged standard symbol
Bcλ is the multiset

Contcλ = Bc(0) ∪ Bc(1) ∪ · · · ∪ Bc(d−1).

3.2. Ariki-Koike algebras
The group G(d,1, r) is the group of all monomial r × r matrices with

entries in μd. It is isomorphic to the wreath product μd � Sr, and its field
of definition is K := Q(ζd). Its irreducible characters are indexed by the
d-partitions of r. If λ is a d-partition of r, then we denote by χλ the corre-
sponding irreducible character of G(d,1, r).

The generic Ariki-Koike algebra is the algebra Hd,r generated over the
Laurent polynomial ring in d + 1 indeterminates

Z[u0, u
−1
0 , u1, u

−1
1 , . . . , ud−1, u

−1
d−1, x, x−1]

by the elements s, t1, t2, . . . , tr−1 satisfying the relations
• st1st1 = t1st1s, stj = tjs for j �= 1;
• tjtj+1tj = tj+1tjtj+1, titj = tjti for |i − j| > 1; and
• (s − u0)(s − u1) · · · (s − ud−1) = (tj − x)(tj + 1) = 0.

Let

φ :

{
uj �→ ζj

dq
mj (0 ≤ j < d),

x �→ qn

be a cyclotomic specialization for Hd,r. Thanks to Proposition 2.13, in order
to determine the Rouquier blocks of (Hd,r)φ for any φ, it suffices to deter-
mine the Rouquier blocks associated with no essential hyperplane and those
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associated with each essential hyperplane for G(d,1, r). Following [7], the
essential hyperplanes for G(d,1, r) are

• kN + Ms − Mt = 0, where −r < k < r and 0 ≤ s < t < d such that ζs
d − ζt

d

belongs to a prime ideal of Z[ζd], and
• N = 0.

We have proved the following (see [7, Propositions 3.12, 3.15, 3.17]).

Theorem 3.3.

(1) The Rouquier blocks associated with no essential hyperplane are trivial.
(2) Two irreducible characters χλ and χμ belong to the same Rouquier block

associated with the essential hyperplane kN + Ms − Mt = 0 if and only
if the following two conditions are satisfied:

• we have λ(a) = μ(a) for all a /∈ {s, t};
• if λst := (λ(s), λ(t)) and μst := (μ(s), μ(t)), then Contcλst = Contcμst

with respect to the weight system (0, k).

(3) Two irreducible characters χλ and χμ belong to the same Rouquier block
associated with the essential hyperplane N = 0 if and only if |λ(a)| =
|μ(a)| for all a = 0,1, . . . , d − 1.

Following Proposition 2.13, the above theorem gives us an algorithm for
the determination of the Rouquier blocks of any cyclotomic Ariki-Koike
algebra (see [7, Theorem 3.18]).

3.3. Rouquier blocks for G(de, e, r), r > 2
The group G(de, e, r) is the group of all r × r monomial matrices with

entries in μde such that the product of all nonzero entries lies in μd.
Following Ariki [1], we define the Hecke algebra of G(de, e, r), r > 2, to

be the algebra Hde,e,r generated over the Laurent polynomial ring in d + 1
indeterminates

Z[x0, x
−1
0 , x1, x

−1
1 , . . . , xd−1, x

−1
d−1, z, z−1]

by the elements a0, a1, . . . , ar satisfying the relations

• (a0 − x0)(a0 − x1) · · · (a0 − xd−1) = (aj − z)(aj + 1) = 0 for j = 1, . . . , r;
• a1a3a1 = a3a1a3, ajaj+1aj = aj+1ajaj+1 for j = 2, . . . , r − 1;
• a1a2a3a1a2a3 = a3a1a2a3a1a2;
• a1aj = aja1 for j = 4, . . . , r;
• aiaj = ajai for 2 ≤ i < j ≤ r with j − i > 1;
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• a0a1a2 = (z−1a1a2)2−ea2a0a1 + (z − 1)
∑e−2

k=1(z
−1a1a2)1−ka0a1 = a1a2a0;

and
• a0aj = aja0 for j = 3, . . . , r.

Let

ϑ :

{
xj �→ ζj

dq
mj (0 ≤ j < d),

y �→ qn

be a cyclotomic specialization for Hde,e,r. In order to determine the Rouquier
blocks of (Hde,e,r)ϑ, we might as well consider the cyclotomic specialization

φ :

{
xj �→ ζj

dq
emj (0 ≤ j < d),

y �→ qen.

Since the integers {(mj)0≤j<d, n} and {(emj)0≤j<d, en} belong to the same
essential hyperplanes for G(de, e, r), Proposition 2.13 implies that the Rou-
quier blocks of (Hde,e,r)ϑ coincide with the Rouquier blocks of (Hde,e,r)φ.

We now consider the generic Ariki-Koike algebra Hde,r generated over
the ring

Z[u0, u
−1
0 , u1, u

−1
1 , . . . , ude−1, u

−1
de−1, x, x−1]

by the elements s, t1, t2, . . . , tr−1 satisfying the relations described in Sec-
tion 3.2. Let

φ′ :

{
uj �→ ζj

deq
nj (0 ≤ j < de,nj := mj modd),

x �→ qen

be the “corresponding” cyclotomic specialization for Hde,r, that is, the spe-
cialization with respect to the weight system

(m0,m1, . . . ,md−1,m0,m1, . . . ,md−1, . . . ,m0,m1, . . . ,md−1).

Set H := (Hde,r)φ′ , and let H̄ be the subalgebra of H generated by

se, t̃1 := s−1t1s, t1, t2, . . . , tr−1.

We have

d−1∏
j=0

(se − ζj
dq

emj ) = (t̃1 − qen)(t̃1 + 1) = (ti − qen)(ti + 1) = 0



ROUQUIER BLOCKS OF THE CYCLOTOMIC HECKE ALGEBRAS OF G(de, e, r) 195

for i = 1, . . . , r − 1. Then, by [1, Proposition 1.16], we know that the algebra
(Hde,e,r)φ is isomorphic to the algebra H̄ via the morphism

a0 �→ se, a1 �→ t̃1, aj �→ tj−1 (2 ≤ j ≤ r).

We have the following result (see [13, Proposition 3.1]).

Proposition 3.4. The algebra H is a free H̄-module of rank e with basis
{1, s, . . . , se−1}; that is,

H = H̄ ⊕ sH̄ ⊕ · · · ⊕ se−1H̄.

By [3, Proposition 1.18], the algebra H is symmetric and H̄ is a symmetric
subalgebra of H. In particular, following Definition 1.10, H is the twisted
symmetric algebra of the cyclic group of order e over H̄ (since s is a unit
in H). Therefore, we can apply Proposition 1.15 and obtain the following
(using the notations of Section 1.3).

Proposition 3.5. If G is the cyclic group of order e and K := Q(ζde),
then the block-idempotents of (ZRK(q)H̄)G coincide with the block-idempo-
tents of (ZRK(q)H)G∨

, where RK(q) is the Rouquier ring of K.

The action of the cyclic group G∨ of order e on Irr(K(q)H) corresponds
to the action generated by the cyclic permutation by d-packages on the
de-partitions (see, e.g., [17, Section 4.A]):

τd : (λ(0), . . . , λ(d−1), λ(d), . . . , λ(2d−1), . . . , λ(ed−d), . . . , λ(ed−1))

�→ (λ(ed−d), . . . , λ(ed−1), λ(0), . . . , λ(d−1), . . . , λ(ed−2d), . . . , λ(ed−d−1)).

More generally, the symmetric group Sde acts naturally on the set of
de-partitions of r: if τ ∈ Sde and ν = (ν(0), ν(1), . . . , ν(de−1)) is a de-partition
of r, then τ(ν) := (ν(τ(0)), ν(τ(1)), . . . , ν(τ(de−1))). The group G∨ is the cyclic
subgroup of Sde generated by the element

τd =
d−1∏
j=0

e−1∏
k=1

(j, j + kd).

Recall that H is the cyclotomic Ariki-Koike algebra of G(de,1, r) corre-
sponding to the weight system

(m0,m1, . . . ,md−1,m0,m1, . . . ,md−1, . . . ,m0,m1, . . . ,md−1).
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Following Proposition 2.13, the Rouquier blocks of H are unions of the
Rouquier blocks associated with the essential hyperplanes of the form

Mj+kd = Mj+ld (0 ≤ j < d) (0 ≤ k < l < e).

In order to show that the Rouquier blocks of H are stable under the action
of G∨, it suffices to prove the following lemma.

Lemma 3.6. Let λ be a de-partition of r, let j ∈ {0, . . . , d − 1}, and let
k ∈ {1, . . . , e − 1}. If μ = (j, j + kd)λ, then χλ and χμ belong to the same
Rouquier block of H.

Proof. Suppose that e = pa1
1 pa2

2 · · · pam
m , where pi are prime numbers such

that ps �= pt for s �= t. For s ∈ {1,2, . . . ,m}, we set cs := e/pas
s . Then

gcd(cs) = 1 and, by Bezout’s theorem, there exist integers (bs)1≤s≤m such
that

∑m
s=1 bscs = 1. Consequently, k =

∑m
s=1 kbscs. We set ks := kbscs.

For all s ∈ {1,2, . . . ,m}, the element 1 − ζcs
e belongs to the prime ideal of

Z[ζde] lying over the prime number ps. So does 1 − ζks
e . Now set

l0 := 0 and ls :=
s∑

t=1

kt(mode).

We have that the element ζ
j+ls−1d
de − ζj+lsd

de = ζ
j+ls−1d
de (1 − ζks

e ) belongs to the
prime ideal of Z[ζde] lying over the prime number ps. Therefore, the hyper-
plane Mj+ls−1d = Mj+lsd is essential for G(de,1, r). Following the charac-
terization of the Rouquier blocks associated with that hyperplane by The-
orem 3.3 and the fact that the ordinary content is stable under the action
of a transposition, we obtain that the Rouquier blocks of H are stabilized
by the action of σs := (j + ls−1d, j + lsd). Set

σ := σ1 ◦ σ2 ◦ · · · ◦ σm−1 ◦ σm ◦ σm−1 ◦ · · · ◦ σ2 ◦ σ1.

Then the characters χλ and χσ(λ) belong to the same Rouquier block of H.
It is easy to check that σ(λ) = μ.

Now the following result is immediate.

Proposition 3.7. If λ is a de-partition of r, then the characters χλ

and χτd(λ) belong to the same Rouquier block of H. Therefore, the blocks of
RK(q)H are stable under the action of G∨.

Thanks to the above result, Proposition 3.5 now reads as follows.
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Corollary 3.8. The block-idempotents of (ZRK(q)H̄)G coincide with
the block-idempotents of RK(q)H.

Before we state our main result on the determination of the Rouquier
blocks of H, we will introduce the notion of “d-stuttering de-partition,”
following [13].

Definition 3.9. Let λ be a de-partition of r. We say that λ is d-stuttering
if it is fixed by the action of G∨, that is, if it is of the form

λ = (λ(0), . . . , λ(d−1), λ(0), . . . , λ(d−1), . . . , λ(0), . . . , λ(d−1)),

where the first d partitions are repeated e times.

We are now ready to prove the main result.

Theorem 3.10. Let λ be a de-partition of r, and let χλ be the corre-
sponding irreducible character of G(de,1, r). We define Irr(K(q)H̄)λ to be
the subset of Irr(K(q)H̄) with the property

ResK(q)H
K(q)H̄ χλ =

∑
χ̄∈Irr(K(q)H̄)λ

χ̄.

Then
(1) if λ is d-stuttering and χλ is a block of RK(q)H by itself, then there

are e irreducible characters (χ̄)χ̄∈Irr(K(q)H̄)λ
, each of which is a block of

RK(q)H̄ by itself;
(2) the other blocks of RK(q)H are in bijection with the blocks of RK(q)H̄

via the map of Proposition 1.15; that is, the corresponding block-
idempotents of RK(q)H coincide with the remaining block-idempotents
of RK(q)H̄.

Proof. We will use here the notations of Propositions 1.12 and 1.15.
If λ is a d-stuttering partition, then it is the only element in its orbit Ω

under the action of G∨. We have that |Ω||Ω̄| = |G| = e, whence there exist
e elements in Ω̄ = Irr(K(q)H̄)λ. If χ̄ ∈ Ω̄, then its Schur element sχ̄ is equal
to the Schur element sλ of χλ. If χλ is a block of RK(q)H by itself, then,
by Propositions 2.10 and 1.8, sλ is invertible in RK(q) and so is sχ̄. Thus,
χ̄ is a block of RK(q)H̄ by itself.

If λ is not a d-stuttering partition and if b is the block containing χλ,
then, in order to establish the desired bijection, we have to show that the
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block b̄ of RK(q)H̄ that contains a character in Irr(K(q)H̄)λ is fixed by the
action of G, that is, that b̄ = Tr(G, b̄). Thanks to Lemma 3.11, for all prime
divisors p of e, there exists a de-partition λ(p) of r such that χλ(p) belongs
to b and the order of G∨

χλ(p)
is not divisible by p. By Proposition 1.12,

we know that for each χ̄ ∈ Irr(K(q)H̄)λ(p), we have |G∨
χλ(p)

||Gχ̄| = e. Thus,
|Gχ̄| is divisible by the largest power of p dividing e. Since b = Tr(G, b̄),
the elements of Irr(K(q)H̄)λ(p) belong to blocks of RK(q)H̄ conjugate of b̄

by G, whose stabilizer is Gb̄. By Lemma 1.13(1), we obtain that, for every
prime number p, |Gb̄| is divisible by the largest power of p dividing e. Thus,
Gb̄ = G and Tr(G, b̄) = b̄.

It remains to show that if λ is a d-stuttering partition and χλ is not a
block of RK(q)H by itself, then there exists a partition μ such that χλ and
χμ belong to the same block of RK(q)H and μ is not d-stuttering. Then the
second case described above covers our needs.

If λ is a d-stuttering partition, then the description of the Schur elements
for H (see, e.g., [20, Corollary 6.5]) implies that the essential hyperplanes
of the form

Mj+kd = Mj+ld (0 ≤ j < d) (0 ≤ k < l < e)

are not essential for χλ. If now χλ is not a block of RK(q)H by itself, then,
by Proposition 2.13, there exists a de-partition μ �= λ such that χλ and
χμ belong to the same Rouquier block associated with another essential
hyperplane H for G(de,1, r) such that the integers {(nj)0≤j<de, en} belong
to H .

If H is N = 0, then, by Theorem 3.3, we have |λ(a)| = |μ(a)| for all
a = 0,1, . . . , de − 1. Since λ �= μ, there exists s ∈ {0,1, . . . , de − 1} such that
λ(s) �= μ(s). If ν is the partition obtained from λ by exchanging λ(s) and
μ(s), then χλ and χν belong to the same block of RK(q)H and ν is not
d-stuttering.

If H is of the form kN +Ms − Mt = 0, where −r < k < r and 0 ≤ s < t < de,
then λ(a) = μ(a) for all a �= s, t. If s �≡ tmodd or e > 2, then μ cannot be d-
stuttering. Suppose now that s ≡ tmodd and e = 2. As mentioned above,
the hyperplane Ms = Mt is not essential for χλ, whence k �= 0. Since the
integers {(nj)0≤j<de, en} belong to H and ns = nt, we must have n = 0. If
μ is d-stuttering, then μ(s) = μ(t), whence we deduce that |μ(s)| = |μ(t)| =
|λ(t)| = |λ(s)|. Let ν be the de-partition obtained from λ by replacing λ(t)

with μ(t). Then ν is not d-stuttering and the characters χλ and χν belong
to the same Rouquier block associated with the essential hyperplane N = 0.
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Since n = 0, Proposition 2.13 implies that χλ and χν belong to the same
block of RK(q)H.

Lemma 3.11. If λ is not a d-stuttering partition of r and p is a prime
divisor of e, then there exists a de-partition λ(p) of r such that χλ and χλ(p)

belong to the same block of RK(q)H and the order of G∨
χλ(p)

is not divisible
by p.

Proof. If λ = (λ(0), . . . , λ(d−1), λ(d), . . . , λ(2d−1), . . . , λ(ed−d), . . . , λ(ed−1)),
then, for i = 0,1, . . . , e − 1, we define the d-partition λi as follows:

λi := (λ(id), λ(id+1), . . . , λ(id+d−1)).

Then λ = (λ0, λ1, . . . , λe−1). Since λ is not d-stuttering, there exists m ∈
{0,1, . . . , e − 1} such that λ0 �= λm. We denote by λ(p) the partition obtained
from λ by exchanging λm and λe/p. Due to Lemma 3.6, the characters χλ

and χλ(p) belong to the same block of RK(q)H. Moreover, by construction,
the de-partition λ(p) is not fixed by the generator of the unique subgroup
of order p of G∨, which proves that the order of its stabilizer is prime to
p.

Functions a and A

• The description of the Rouquier blocks of H̄ by Theorem 3.10,
• the relation between the Schur elements of H̄ and the Schur elements of

H given by Proposition 1.12, and
• the invariance of the integers aχ and Aχ on the Rouquier blocks of H,

resulting from [2, Proposition 3.18] and [7, Proposition 3.21], imply the
following.

Proposition 3.12. The valuations aχ̄ and the degrees Aχ̄ of the Schur
elements are constant on the Rouquier blocks of H̄.

§4. Rouquier blocks of the cyclotomic Hecke algebras of G(de, e,2)

If the integer e is odd, then the Hecke algebra of the group G(de, e,2)
can be viewed as a symmetric subalgebra of a Hecke algebra of the group
G(de,1,2), and all the results of the previous section hold.

If e is even, this cannot be done because there exist three orbits of
reflecting hyperplanes under the action of the group. Following [1, Proposi-
tion 1.16], Malle shows [16, Proposition 3.9] that the Hecke algebra of the
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group G(de, e,2) can be viewed as a symmetric subalgebra of a Hecke alge-
bra of the group G(de,2,2), and thus we can apply Clifford theory in order
to obtain the blocks of the former from the blocks of the latter.

4.1. Rouquier blocks for G(2d,2,2)
Let d ≥ 1. The group G(2d,2,2) has 4d irreducible characters of degree

1,
χijk (0 ≤ i, j ≤ 1) (0 ≤ k < d),

and d2 − d irreducible characters of degree 2,

χ1
kl, χ

2
kl (0 ≤ k �= l < d),

with χ1,2
kl = χ1,2

lk .
The generic Hecke algebra of the group G(2d,2,2) is the algebra Hd

generated over the Laurent polynomial ring in d + 4 indeterminates

Z[x0, x
−1
0 , x1, x

−1
1 , y0, y

−1
0 , y1, y

−1
1 , z0, z

−1
0 , z1, z

−1
1 , . . . , zd−1, z

−1
d−1]

by the elements s, t, u satisfying the relations
• stu = tus = ust,
• (s − x0)(s − x1) = (t − y0)(t − y1) = (u − z0)(u − z1) · · · (u − zd−1) = 0.

The following theorem (see [16, Theorem 3.11]) gives a description of the
generic Schur elements for G(2d,2,2).

Theorem 4.1. Let us denote by Φ1 the first Q-cyclotomic polynomial
(i.e., Φ1(q) = q − 1). The generic Schur elements for Hd are given by

Φ1(xix
−1
1−i) · Φ1(yjy

−1
1−j) ·

d−1∏
l=0, l �=k

(
Φ1(zkz

−1
l ) · Φ1(xix

−1
1−iyjy

−1
1−jzkz

−1
l )

)

for the linear characters χijk, and

−2 ·
d−1∏

m=0,m �=k,l

(
Φ1(zkz

−1
m ) · Φ1(zlz

−1
m )

)

×
1∏

i=0

(
Φ1(XiX

−1
1−iYiY

−1
1−iZkZ

−1
l ) · Φ1(XiX

−1
1−iY1−iY

−1
i ZlZ

−1
k )

)
,

with X2
i := xi, Y 2

j := yj , Z2
k := zk for the characters χ1,2

kl of degree 2.
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The field of definition of G(2d,2,2) is K := Q(ζ2d). Following Theo-
rem 2.2, if we set

X |μ(K)|
i := (−1)−ixi for i = 0,1, Y |μ(K)|

j := (−1)−jyj for j = 0,1,

and
Z |μ(K)|

k := ζ−k
d zj for k = 0,1, . . . , d − 1,

then the algebra K(X0, X1, Y0, Y1, Z0, Z1, . . . , Zd−1)Hd is split semisimple.

Let I be the prime ideal of Z[ζ2d] lying over 2. The description of the
generic Schur elements by Theorem 4.1 implies that the essential monomials
for G(2d,2,2) are

• X0X −1
1 (I-essential);

• Y0Y −1
1 (I-essential);

• Zk Z −1
l , where 0 ≤ k < l < d are such that ζk

d − ζ l
d belongs to a prime ideal

p of Z[ζ2d] (p-essential);
• XiX −1

1−iYj Y −1
1−j Zk Z −1

l , where 0 ≤ i, j ≤ 1 and 0 ≤ k < l < d are such that
ζk
d − ζ l

d belongs to a prime ideal p of Z[ζ2d] (p-essential).

Let φ be a cyclotomic specialization for Hd, that is, a ZK -algebra morph-
ism of the form

φ : Xi �→ yai , Yj �→ ybj , Zk �→ yck .

Set q := y|μ(K)|. Then φ can be described as follows:

φ : xi �→ (−1)iqai , yj �→ (−1)jqbj , zk �→ ζk
d qck .

Due to Proposition 2.8, Tits’s deformation theorem implies that the spe-
cialization y �→ 1 induces a bijection

Irr
(
K(y)(Hd)φ

)
↔ Irr

(
G(2d,2,2)

)
,

χφ �→ χ.

For χ ∈ Irr(G(2d,2,2)), let sχφ
be the corresponding cyclotomic Schur ele-

ment. As in Section 2.4, we set

aχφ
:= valq(sχφ

(y)) =
valy(sχφ

(y))
|μ(K)|
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and

Aχφ
:= degq

(
sχφ

(y)
)

=
degy(sχφ

(y))
|μ(K)| .

Then, by Proposition 2.14, we have that if two irreducible characters χφ

and ψφ belong to the same Rouquier block of (Hd)φ, then

aχφ
+ Aχφ

= aψφ
+ Aψφ

.

Thanks to the formulas of Proposition 2.16, the following result derives
immediately from the description of the generic Schur elements by Theo-
rem 4.1.

Proposition 4.2. Let χ ∈ Irr(G(2d,2,2)). If χ is a linear character χijk,
then

aχφ
+ Aχφ

= d(ai − a1−i + bj − b1−j + 2ck) − 2
d−1∑
l=0

cl.

If χ is a character χ1,2
kl of degree 2, then

aχφ
+ Aχφ

= d(ck + cl) − 2
d−1∑
m=0

cm.

Following Proposition 2.13, in order to determine the Rouquier blocks
of the cyclotomic Hecke algebras of G(2d,2,2), it suffices to determine the
Rouquier blocks associated with its essential hyperplanes.

Theorem 4.3. For the group G(2d,2,2), we have the following.
(1) The nontrivial Rouquier blocks associated with no essential hyperplane

are
{χ1

kl, χ
2
kl} for all 0 ≤ k < l < d.

(2) The nontrivial Rouquier blocks associated with the I-essential hyper-
plane A0 = A1 are

{χ0jk, χ1jk } for all 0 ≤ j ≤ 1 and 0 ≤ k < d,

{χ1
kl, χ

2
kl} for all 0 ≤ k < l < d.

(3) The nontrivial Rouquier blocks associated with the I-essential hyper-
plane B0 = B1 are

{χi0k, χi1k } for all 0 ≤ i ≤ 1 and 0 ≤ k < d,

{χ1
kl, χ

2
kl} for all 0 ≤ k < l < d.
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(4) The nontrivial Rouquier blocks associated with the p-essential hyper-
plane Ck = Cl (0 ≤ k < l < d) are

{χijk, χijl} for all 0 ≤ i, j ≤ 1,

{χ1
km, χ2

km, χ1
lm, χ2

lm} for all 0 ≤ m < d with m /∈ {k, l},

{χ1
kl, χ

2
kl},

{χ1
rs, χ

2
rs} for all 0 ≤ r < s < d with r, s /∈ {k, l}.

(5) The nontrivial Rouquier blocks associated with the p-essential hyper-
plane Ai − A1−i +Bj − B1−j +Ck − Cl = 0 (0 ≤ i, j ≤ 1) (0 ≤ k < l < d)
are

{χijk, χ1−i,1−j,l, χ
1
kl, χ

2
kl},

{χ1
rs, χ

2
rs} for all 0 ≤ r < s < d with (r, s) �= (k, l).

Proof. Following Definition 2.12, in each case we need to determine the
Rouquier blocks of a cyclotomic Hecke algebra obtained via a specialization
associated with the corresponding essential hyperplane. We recall that, due
to Proposition 1.8, if a hyperplane is essential for an irreducible character
χ, then χ is not a Rouquier block by itself. Moreover, Proposition 2.6(1)
implies that the Rouquier blocks associated with an essential hyperplane
are unions of the Rouquier blocks associated with no essential hyperplane.
(1) Let φ be any cyclotomic specialization associated with no essential

hyperplane. Due to Proposition 1.8, each linear character is a Rouquier
block by itself, whereas any character of degree 2 is not. Now, by Propo-
sition 2.14, we have that if two irreducible characters χφ and ψφ belong
to the same Rouquier block of (Hd)φ, then aχφ

+Aχφ
= aψφ

+Aψφ
. The

formulas of Proposition 4.2 imply that the character χ1
kl (0 ≤ k < l < d)

can be in the same block only with the character χ2
kl.

(2) Let φ be any cyclotomic specialization associated with the I-essential
hyperplane A0 = A1. Since this is not an essential hyperplane for the
characters of degree 2, Proposition 2.6 implies that {χ1

kl, χ
2
kl} is a Rou-

quier block of (Hd)φ for all 0 ≤ k < l < d. Now, the hyperplane A0 = A1

is I-essential for all characters of degree 1, and thus, by Proposition 1.8,
the linear characters do not form blocks by themselves. Due to Proposi-
tion 2.14, the formulas of Proposition 4.2 imply that the character χ0jk

(0 ≤ j ≤ 1,0 ≤ k < d) can be in the same block only with the character
χ1jk.
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(3) For the I-essential hyperplane B0 = B1, we use the same method as in
the previous case.

(4) Let φ be a cyclotomic specialization associated with the p-essential
hyperplane Ck = Cl, where 0 ≤ k < l < d. Since the Rouquier blocks
associated with an essential hyperplane are unions of the Rouquier
blocks associated with no essential hyperplane, the characters χ1

rs and
χ2

rs are in the same Rouquier block of (Hd)φ for all 0 ≤ r < s < d.
The hyperplane Ck = Cl is p-essential for the linear characters

χijk, χijl for all 0 ≤ i, j ≤ 1,

and the characters of degree 2

χ1
km, χ2

km, χ1
lm, χ2

lm for all 0 ≤ m < d with m /∈ {k, l}.

Due to Proposition 2.14, the formulas of Proposition 4.2 imply that
• the character χijk (0 ≤ i, j ≤ 1) can be in the same block only with

the character χijl, and
• the character χ1

km (0 ≤ m < d and m /∈ {k, l}) can be in the same
block only with the characters χ2

km, χ1
lm, χ2

lm.
Let m ∈ {0,1, . . . , d − 1} \ {k, l}. We have that the characters χ1

km and
χ2

km are in the same Rouquier block of (Hd)φ. The same holds for the
characters χ1

lm and χ2
lm. Therefore, in order to obtain the desired result,

it is enough to show that {χ1
km, χ2

km} is not a Rouquier block of (Hd)φ.
Following [16, Table 3.10], there exists an element T1 of Hd such that

χ1
km(T1) = χ2

km(T1) = x0 + x1.

Let O be the Rouquier ring of K. Suppose that {χ1
km, χ2

km} is a block
of OpO(Hd)φ. Then, by Corollary 1.7, we must have

φ(χ1
km(T1))

φ(sχ1
km

)
+

φ(χ2
km(T1))

φ(sχ2
km

)
= φ(x0 + x1) ·

( 1
φ(sχ1

km
)

+
1

φ(sχ2
km

)

)
∈ OpO.

Since φ is associated with the hyperplane Ck = Cl, we have that

φ(x0 + x1) /∈ pO,

and thus we obtain that

1
φ(sχ1

km
)

+
1

φ(sχ2
km

)
∈ OpO.
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Using the formulas of Theorem 4.1, we can easily calculate that the
above element does not belong to OpO.

(5) Let φ be a cyclotomic specialization associated with the p-essential
hyperplane Ai − A1−i + Bj − B1−j + Ck − Cl = 0, where 0 ≤ i, j ≤ 1
and 0 ≤ k < l < d. This hyperplane is p-essential for the following char-
acters:

χijk, χ1−i,1−j,l and χ1
kl or χ2

kl.

Let O be the Rouquier ring of K. If the hyperplane is essential for only
three characters, then, due to Proposition 1.8, these three characters are
in the same block of OpO(Hd)φ. Otherwise, using the same argument
as in the previous case, we can prove that all four characters are in
the same block of OpO(Hd)φ. Now, by Proposition 2.10, the Rouquier
blocks of (Hd)φ are unions of the blocks of OpO(Hd)φ and OIO(Hd)φ.
Therefore, the nontrivial Rouquier blocks of (Hd)φ are

{χijk, χ1−i,1−j,l, χ
1
kl, χ

2
kl},

{χ1
rs, χ

2
rs} for all 0 ≤ r < s < d with (r, s) �= (k, l).

We are now going to prove the following desired result about the functions
a and A.

Proposition 4.4. Let φ : xi �→ (−1)iqai , yj �→ (−1)jqbj , zk �→ ζk
d qck be a

cyclotomic specialization for Hd. If the irreducible characters χφ and ψφ

belong to the same Rouquier block of (Hd)φ, then

aχφ
= aψφ

and Aχφ
= Aψφ

.

Proof. Thanks to Proposition 2.13, it suffices to show that the valuations
aχφ

and the degrees Aχφ
of the Schur elements are constant on the Rouquier

blocks associated with an essential hyperplane H (resp., no essential hyper-
plane), when the integers ai, bj , ck belong to the hyperplane H (resp., no
essential hyperplane).

First, due to the description of the Schur elements by Theorem 4.1 and
the formulas of Proposition 2.16, we can deduce that the Schur elements of
the characters χ1

kl and χ2
kl (0 ≤ k < l < d) have the same valuation and the

same degree for any cyclotomic specialization φ.
For the same reasons, we have that
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• if a0 = a1, then

aχ0jk
= aχ1jk

and Aχ0jk
= Aχ1jk

for all 0 ≤ j ≤ 1,0 ≤ k < d,

• if b0 = b1, then

aχi0k
= aχi1k

and Aχi0k
= Aχi1k

for all 0 ≤ i ≤ 1,0 ≤ k < d,

• if ck = cl (0 ≤ k < l < d), then

aχijk
= aχijl

and Aχijk
= Aχijl

for all 0 ≤ i, j ≤ 1,

a
χ1,2

km
= a

χ1,2
lm

and A
χ1,2

km
= A

χ1,2
lm

for all m ∈ {0,1, . . . , d − 1} \ {k, l}.

Now let us suppose that ai − a1−i+bj − b1−j +ck − cl = 0, with i, j ∈ {0,1},
k, l ∈ {0,1, . . . , d − 1}, and k < l. We have to show that

aχijk
= aχ1−i,1−j,l

= a
χ1,2

kl
and Aχijk

= Aχ1−i,1−j,l
= A

χ1,2
kl

.

Due to Proposition 2.14, it suffices to show that

aχijk
= aχ1−i,1−j,l

= a
χ1,2

kl
.

Using the notations of Proposition 2.16, Theorem 4.1 implies that

aχijk
= (ai − a1−i)− + (bj − b1−j)−

+
d−1∑

m=0,m �=k

[(ck − cm)− + (ai − a1−i + bj − b1−j + ck − cm)−],

aχ1−i,1−j,l
= (a1−i − ai)− + (b1−j − bj)−

+
d−1∑

m=0,m �=l

[(cl − cm)− + (a1−i − ai + b1−j − bj + cl − cm)−],

a
χ1,2

kl
=

d−1∑
m=0,m �=k,l

[(ck − cm)− + (cl − cm)−]

+ (1/2) ·
1∑

h=0

[(ah − a1−h + bh − b1−h + ck − cl)−

+ (ah − a1−h + b1−h − bh + cl − ck)−].
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Since ai − a1−i + bj − b1−j + ck − cl = 0, the above relations give

aχijk
= (ai − a1−i)− + (bj − b1−j)− +

d−1∑
m=0,m �=k

[(ck − cm)− + (cl − cm)−],

aχ1−i,1−j,l
= (a1−i − ai)− + (b1−j − bj)− +

d−1∑
m=0,m �=l

[(cl − cm)− + (ck − cm)−],

a
χ1,2

kl
=

d−1∑
m=0,m �=k,l

[(ck − cm)− + (cl − cm)−] + D,

where

D :=

{
(ai − a1−i)− + (bj − b1−j)− + (ck − cl)−, if i = j,

(a1−i − ai)− + (b1−j − bj)− + (cl − ck)−, if i �= j.

Obviously, if i = j, then a
χ1,2

kl
= aχijk

, and if i �= j, then a
χ1,2

kl
= aχ1−i,1−j,l

.
Therefore, it is enough to show that aχijk

= aχ1−i,1−j,l
, that is, that

(ai − a1−i)− + (bj − b1−j)− + (ck − cl)−

= (a1−i − ai)− + (b1−j − bj)− + (cl − ck)−.

Since n− − (−n)− = n, for all n ∈ Z and ai − a1−i + bj − b1−j + ck − cl = 0,
the above equality holds.

4.2. Rouquier blocks for G(2pd,2p,2)
Let p, d ≥ 1. We denote by H2pd,2p,2 the generic Hecke algebra of

G(2pd,2p,2) generated over the Laurent polynomial ring in d + 4 indeter-
minates

Z[X0,X
−1
0 ,X1,X

−1
1 , Y0, Y

−1
0 , Y1, Y

−1
1 ,Z0,Z

−1
0 ,Z1,Z

−1
1 , . . . ,Zd−1,Z

−1
d−1],

by the elements S,T,U satisfying the relations
• (S − X0)(S − X1)=(T − Y0)(T − Y1)=(U − Z0)(U − Z1) · · · (U − Zd−1)=0,
• STU = UST , TUS(TS)p−1 = U(ST )p.

Let

ϑ :

⎧⎪⎨
⎪⎩

Xi �→ (−1)iqai (0 ≤ i ≤ 1),

Yj �→ (−1)jqbj (0 ≤ j ≤ 1),

Zk �→ ζk
d qck (0 ≤ k < d)
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be a cyclotomic specialization for H2pd,2p,2. In order to determine the Rou-
quier blocks of (H2pd,2p,2)ϑ, we might as well consider the cyclotomic spe-
cialization

φ :

⎧⎪⎨
⎪⎩

Xi �→ (−1)iqpai (0 ≤ i ≤ 1),

Yj �→ (−1)jqpbj (0 ≤ j ≤ 1),

Zk �→ ζk
d qpck (0 ≤ k < d).

Since the integers {ai, bj , ck } and {pai, pbj , pck } belong to the same essential
hyperplanes for G(2pd,2p,2), Proposition 2.13 implies that the Rouquier
blocks of (H2pd,2p,2)ϑ coincide with the Rouquier blocks of (H2pd,2p,2)φ.

We now consider the generic Hecke algebra Hpd of G(2pd,2,2) generated
over the ring

Z[x0, x
−1
0 , x1, x

−1
1 , y0, y

−1
0 , y1, y

−1
1 , z0, z

−1
0 , z1, z

−1
1 , . . . , zpd−1, z

−1
pd−1]

by the elements s, t, u satisfying the relations described in the beginning of
Section 4.1. Let

φ′ :

⎧⎪⎨
⎪⎩

xi �→ (−1)iqpai (0 ≤ i ≤ 1),

yj �→ (−1)jqpbj (0 ≤ j ≤ 1),

zk �→ ζk
pdq

ek (0 ≤ k < pd, ek := ck modd)

be the “corresponding” cyclotomic specialization for Hpd. Set H := (Hpd)φ′ ,
and let H̄ be the subalgebra of H generated by s, t, and up. We have

(s − qpa0)(s + qpa1) = (t − qpb0)(t + qpb1) =
d−1∏
k=0

(up − ζk
d qpck) = 0.

Then (as stated in [16, Proposition 3.9]) [1, Proposition 1.16] implies that
the algebra (H2pd,2p,2)φ is isomorphic to the algebra H̄ via the morphism

S �→ s,T �→ t,U �→ up.

Under Assumptions 2.1, the algebra H is of rank (2pd)2, whereas the
algebra H̄ is of rank (2pd)2/p. The following is immediate.

Proposition 4.5. The algebra H is a free H̄-module with basis {1, u, . . . ,

up−1}; that is,
H = H̄ ⊕ uH̄ ⊕ · · · ⊕ up−1H̄.
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Again under Assumptions 2.1, the algebra H is symmetric and H̄ is a
symmetric subalgebra of H. In particular, following Definition 1.10, H is
the twisted symmetric algebra of the cyclic group of order p over H̄ (since u

is a unit in H). Therefore, we can apply Proposition 1.15 and obtain (using
the notation of Section 1.3) the following.

Proposition 4.6. If G is the cyclic group of order p and K := Q(ζ2pd),
then the block-idempotents of (ZRK(q)H̄)G coincide with the block-idempo-
tents of (ZRK(q)H)G∨

, where RK(q) is the Rouquier ring of K.

The action of the cyclic group G∨ of order p on Irr(K(q)H) corresponds
to the action

χi,j,k �→ χi,j,k+d (0 ≤ i, j ≤ 1) (0 ≤ k < pd),

χ1,2
k,l �→ χ1,2

k+d,l+d (0 ≤ k < l < pd),

where all the indexes are considered modpd. With the help of the following
lemma, we will show that the Rouquier blocks of H are stable under the
action of G∨. Here the results of Theorem 4.3 will be used as definitions.

Lemma 4.7. Let k1, k2, k3 be three distinct elements of {0,1, . . . , pd − 1}.
If the blocks of RK(q)H are unions of the Rouquier blocks associated with the
(not necessarily essential) hyperplanes Ck1 = Ck2 and Ck2 = Ck3 , then they
are also unions of the Rouquier blocks associated with the (not necessarily
essential) hyperplane Ck1 = Ck3 .

Proof. We only need to show that

(a) the characters χi,j,k1 and χi,j,k3 are in the same block of RK(q)H for
all 0 ≤ i, j ≤ 1, and

(b) the characters χ1,2
k1,m and χ1,2

k3,m are in the same block of RK(q)H for all
0 ≤ m < pd with m /∈ {k1, k3}.

Since the blocks of RK(q)H are unions of the Rouquier blocks associated
with the hyperplanes Ck1 = Ck2 and Ck2 = Ck3 , Theorem 4.3 yields that

(1) the characters χi,j,k1 and χi,j,k2 are in the same block of RK(q)H for
all 0 ≤ i, j ≤ 1;

(2) the characters χi,j,k2 and χi,j,k3 are in the same block of RK(q)H for
all 0 ≤ i, j ≤ 1;

(3) the characters χ1,2
k1,m and χ1,2

k2,m are in the same block of RK(q)H for all
0 ≤ m < pd with m /∈ {k1, k2}; and
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(4) the characters χ1,2
k2,m and χ1,2

k3,m are in the same block of RK(q)H for all
0 ≤ m < pd with m /∈ {k2, k3}.

We immediately deduce (a) for all 0 ≤ i, j ≤ 1, and (b) for all 0 ≤ m < pd

with m /∈ {k1, k2, k3}. Finally, (3) implies that the characters χ1,2
k1,k3

and
χ1,2

k2,k3
are in the same block of RK(q)H, whereas by (4), χ1,2

k1,k2
and χ1,2

k1,k3

are also in the same block of RK(q)H. Thus, the characters χ1,2
k1,k2

and χ1,2
k2,k3

belong to the same Rouquier block of H.

Theorem 4.8. The blocks of RK(q)H are stable under the action of G∨.

Proof. Following Proposition 2.13, the Rouquier blocks of H are unions
of the Rouquier blocks associated with all the essential hyperplanes of the
form

Ch+md = Ch+nd (0 ≤ h < d,0 ≤ m < n < p).

Recall that the hyperplane Ch+md = Ch+nd is actually essential for
G(2pd,2,2) if and only if the element ζh+md

pd − ζh+nd
pd belongs to a prime

ideal of Z[ζ2pd], that is, if and only if the element ζm
p − ζn

p belongs to a
prime ideal of Z[ζ2pd].

Suppose that p = pt1
1 pt2

2 · · · ptr
r , where the pi are distinct prime numbers.

For s ∈ {1,2, . . . , r}, we set hs := p/pts
s . Then gcd(hs) = 1 and, by Bezout’s

theorem, there exist integers (gs)1≤s≤r such that
∑r

s=1 gshs = 1. The ele-
ment 1 − ζgshs

p belongs to all the prime ideals of Z[ζ2pd] lying over the prime
number ps. Let h ∈ {0,1, . . . , d − 1}, and let m ∈ {0,1, . . . , p − 2}. Set

l0 := m and ls := (ls−1 + gshs)modp, for all s (1 ≤ s ≤ r).

We have that the element ζ
ls−1
p − ζ ls

p = ζ
ls−1
p (1 − ζgshs

p ) belongs to all the
prime ideals of Z[ζ2pd] lying over the prime number ps. Therefore, the hyper-
plane Ch+ls−1d = Ch+lsd is essential for G(2pd,2,2) for all s (1 ≤ s ≤ r). Since
l0 = m and lr = m+1, Lemma 4.7 implies that the Rouquier blocks of H are
unions of the Rouquier blocks associated with the (not necessarily essential)
hyperplane

Ch+md = Ch+(m+1)d,

following their description by Theorem 4.3. Since this holds for all m such
that 0 ≤ m ≤ p − 2, Lemma 4.7 again implies that the Rouquier blocks of
H are unions of the Rouquier blocks associated with all the hyperplanes of
the form

Ch+md = Ch+nd (0 ≤ m < n < p),
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for all h(0 ≤ h < d). We deduce that

(1) the characters (χi,j,h+md)0≤m<p belong to the same block of RK(q)H,
for all 0 ≤ i, j ≤ 1 and 0 ≤ h < d;

(2) the characters (χ1,2
h+md,h+nd)0≤m<n<p belong to the same block of

RK(q)H, for all 0 ≤ h < d; and
(3) the characters (χ1,2

h+md,h′+nd)0≤m,n<p belong to the same block of
RK(q)H, for all 0 ≤ h < h′ < d.

Hence, the blocks of RK(q)H are stable under the action of G∨.

Following Theorem 4.8, Proposition 4.6 now gives the following.

Corollary 4.9. If G is the cyclic group of order p and K := Q(ζ2pd), then
the block-idempotents of (ZRK(q)H̄)G coincide with the block-idempotents
of RK(q)H.

Now, let χ̄ ∈ Irr(K(q)H̄). Using the notation of Proposition 1.12, we have
that |Ω||Ω̄| = p. Since |Ω| = p, we obtain that |Ω̄| = 1, and thus e(χ̄) is fixed
by the action of G. Therefore, the block-idempotents of RK(q)H̄ are also
fixed by the action of G. Consequently, we obtain the following.

Proposition 4.10. The block-idempotents of RK(q)H̄ coincide with the
block-idempotents of RK(q)H.

Thanks to the above result, in order to determine the Rouquier blocks
of H̄, it suffices to calculate the Rouquier blocks of H and restrict all the
characters to H̄. The Rouquier blocks of H can be obtained with the use of
Theorem 4.3.

Now,

• the description of the Rouquier blocks of H̄ by Proposition 4.9,
• the relation between the Schur elements of H̄ and the Schur elements of

H given by Proposition 1.12, and
• the invariance of the integers aχ and Aχ on the Rouquier blocks of H,

resulting from Proposition 4.4, imply the following.

Proposition 4.11. The valuations aχ̄ and the degrees Aχ̄ of the Schur
elements are constant on the Rouquier blocks of H̄.
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