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MATRIX COEFFICIENTS OF THE LARGE DISCRETE
SERIES REPRESENTATIONS OF Sp(2;R) AS

HYPERGEOMETRIC SERIES OF TWO VARIABLES

TAKAYUKI ODA

In Memoriam: Hiroshi Saito

Abstract. We investigate the radial part of the matrix coefficients with mini-
malK-types of the large discrete series representations of Sp(2;R). They satisfy

certain difference-differential equations derived from Schmid operators. This

system is reduced to a holonomic system of rank 4, which is finally found to

be equivalent to higher-order hypergeometric series in the sense of Appell and
Kampé de Fériet.
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Introduction

We investigate the radial part of the matrix coefficients of the large dis-

crete series representations with minimal K-type on the real symplectic

group G= Sp(2,R) of rank 2.

Given a Hilbert representation (π,H) of G, for some vectors v,w ∈H the

function cv,w : g ∈G→ (π(g)v,w)H is called a matrix element or a matrix
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coefficient of the representations π. Among the set of equivalence classes of

the discrete series representations of G (or the irreducible square integrable

representations of G), there are 4 = 8/2 = |WG|/|WK | different classes with
the same infinitesimal characters. Here, WG is the Weyl group of G, and

WK is the Weyl group of a maximal compact subgroup K, whose orders are

8 and 2, respectively.

In these four discrete series representations with the same infinitesimal

character, one belongs to the holomorphic discrete series and another to the

antiholomorphic discrete series. The Gelfand-Kirillov dimension of these

two representations is 3, and that of the remaining two discrete series rep-

resentations is 4, which is equal to the dimension of the maximal unipotent

subgroup. We call the latter two representations the large discrete series rep-

resentations, following Kostant and Vogan. This kind of representation is

rather different from the holomorphic discrete series; in particular, they have

the Whittaker model. But these representations are also very important. For

example, they also contribute to the relative Lie algebra cohomology.

If we realize a holomorphic discrete series representation in L2(G) and see

its double K-finite elements, then the restriction of these functions to the

split Cartan subgroup A in view of the Cartan decomposition G=KAK is

a (Laurent) rational function in the matrix entries of elements in A. This

follows the explicit formula by Hua of the Bergmann kernel.

If we consider the same problem for the large discrete series representa-

tions, we can guess that more difficult transcendental functions appear in

the matrix entries of the elements of A. However, as we have already shown

in [10] in the case of Whittaker functions, these functions are not as “tran-

scendental” as in the case when π is a principal series representation, where

they should appear as BC2-type hypergeometric functions (see [1], [2], [5],

[6], [7], [14], [15]).

Our target in this paper is to grasp these functions for the large discrete

series, which are mid -transcendental between rationals and BC2-type tran-

scendentals. The answer is the hypergeometric functions of two variables

in the sense of Appell and Kampé de Fériet. It is essentially F2 or, more

generally speaking, FD of Lauricella and a kind of half system of BC2-type

hypergeometric functions.

First, we want to have the holonomic system for the A-radial part of

the matrix coefficients with minimal K-type of the large discrete series

representations.
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In the G×G birepresentation on L2(G) via the right and the left reg-

ular representations, any discrete series representation π is realized as a

closed subspace in L2(G) isomorphic to the outer tensor product π∗ � π

(with multiplicity 1, a conclusion of the Plancherel theorem). Here π∗ is the

contragredient representation of G.

A deep result, but now rather well known, is that there exists the min-

imal K-type (τμ,Wμ) in π. Then τ∗μ � τμ is a finite-dimensional (K ×K)-

bimodule, consisting of real analytic functions on G.

There is a method to characterize those functions with these special dou-

ble K-types in π∗�π, by utilizing Schmid operators (see [16]). And there is

a way to compute the A-radial parts of these Schmid operators, though it

is rather tedious and long. Arranging these functions in a canonical way, we

have a (unique) vector-valued function on G, which is also the reproducing

kernel of this discrete series.

The purpose of this paper is to go through this procedure until we can

write the function in terms of the classical object, Appell’s hypergeometric

functions.

The organization of this paper is the following. Section 1 presents gener-

alities and basic symbols on our group G and its Lie subgroups and corre-

sponding Lie algebras; Section 2, basic results on the discrete series represen-

tations of G and the Schmid operators; Section 3, the explicit expression of

the Schmid operators with respect to the standard basis of K-modules, and

we detail a system of differential-difference equations in two variables. In

Section 4 the system of equations is rewritten in a new system of variables,

so that we have a more tractable system. In Section 5 we show the extremal

components of the radial part of the matrix coefficients satisfy Appell’s dif-

ferential equations of type 2, and we present a power series solution and an

integrable expression for these extremal components. In Section 6, power

series and integral expressions are extended for all components of the radial

parts of the matrix coefficients. Section 7 presents a short postscript for

further research.

Chronologically speaking, our first result on the special functions on

Sp(2,R) is [11], that is, the Whittaker functions belonging to the large

discrete series. Somewhat later, Miyazaki [10] pointed out that the “shape”

of K-types of the generalized principal series representations obtained by

the parabolic induction with respect to the Jacobi parabolic subgroup (cor-

responding to the long root) from a discrete series of SL(2,R), is the same as

that of the large discrete series. We can prove that the Whittaker function
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with the corner K-type is quite similar to that of the large discrete series

(see [10]). On the other hand, Iida [9] investigated the matrix coefficients

with minimal K-types of the principal series representations induced via

the minimal parabolic subgroup and those with the corner K-types of the

generalized principal series induced via the Jacobi parabolic subgroup. He

and others showed that the radial part of the matrix coefficients of the latter

representations satisfied a holonomic system in two variables of rank 4. We

note here that this 4 is the degree of the associate variety of our discrete

series.

Since the K-type of these representations is the same as that of the large

discrete series up to translation, it is reasonable to believe that the radial

parts of the matrix coefficients of the large discrete series are written by

similar functions. And we have confirmed that in this paper.

The holonomic system for cI in Section 2 itself was already obtained in

the fall of 1994. The solutions at peripheral entries were obtained relatively

early because the reduced holonomic system for them is similar to that

of Iida [9]. The whole system of solutions took until 1998. An informal

report on the result was contributed to RIMS, Kokyuroku (see [12], [13]).

I apologize to the mathematics community for taking so long to prepare the

final version of the paper.

Since my original intention was to apply this kernel function for trace for-

mulas, this opportunity seems to be adequate for me to publish my results.

Also I have to add that the ideas here originated from a talk with my

former teacher Ihara in the early 1980s, while we were sitting beside the

Yasuda auditorium at Hongo campus, about the article by Hirai [8] on the

character formula of the discrete series of Sp(2,R).

§1. Generalities on the real symplectic group of rank 2

1.1. The group and related subgroups and the corresponding

Lie algebras

Let Ei,j be the matrix unit in the space M4(R) of real square matrices

of size 4, with 1 as its (i, j)-component and 0 at the other entries. We set

J =E1,3 +E2,4 −E3,1 −E4,2. Then the real symplectic group G= Sp(2,R)

of rank 2 is a subgroup of the real special linear SL4(R) of size 4, defined

by

Sp(2,R) =
{
g ∈ SL4(R)

∣∣t gJg = J
}
.
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A maximal compact subgroup K of G is given by

K =

{(
A B

−B A

)
∈ Sp(2,R)

∣∣∣∣A,B ∈M2(R)

}
,

which is the fixed part of the associated Cartan involution θ : g �→ tg
−1

.

The Cartan symmetric decomposition for the corresponding Lie algebras is

denoted as

g= k⊕ p.

Here we use the standard convention to denote the Lie algebra of a Lie

group X by the corresponding German lowercase letter x.

A maximal abelian subalgebra a in p is chosen as

a=
{
diag(x1, x2,−x1,−x2)

∣∣ x1, x2 ∈R
}
,

with the standard basisH1 = diag(1,0,−1,0) andH2 = diag(0,1,0,−1), and

we put A= exp(a). It defines a split Cartan subgroup of G. The root system

for (g,a) is realized as

Φ(g,a) = {±2e1,±2e2,±e1 ± e2}

with respect to the standard basis {e1 = (1,0), e2 = (0,1)} in the 2-dimen-

sional Euclidean space, with e1(x1, x2) = x1 and e2(x1, x2) = x2, or equiva-

lently, ei(Hj) = δij (δij being the Kronecker delta).

We fix a positive system by the simple roots {e1 − e2,2e2}; then the

unipotent radical n of the corresponding Borel subalgebra is given by

n=REe1−e2 ⊕RE2e1 ⊕REe1+e2 ⊕RE2e2 ,

with

Ee1−e2 =E1,2 −E4,3, E2e1 =E1,3,

Ee1+e2 =E2,3 +E1,4, E2e2 =E2,4.

Set N = exp(n). Then we have Iwasawa decompositions

g= k⊕ a⊕ n and G=KAN.

The homogeneous spaceG/K is a Hermitian symmetric space of CII -type,

and its complex structure on the tangent space p at the origin [K] ∈G/K
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is given by the adjoint action of the central element ι= (1/
√
2)
(

12 12
−12 12

)
in

K. The eigenspaces of Adp(ι) with the eigenvalues ±
√
−1 in the complexi-

fication pC = p⊗R C are given by

p± =

{(
C ±

√
−1C

±
√
−1C −C

)
∈ g

∣∣∣∣C ∈M2(C)

}
.

1.2. Cartan decomposition of the basis of p±
Let a= diag(a1, a2, a

−1
1 , a−1

2 ) ∈A be a regular element of A; that is,

ai �= 1 (i= 1,2), a1 �= a2, and a1a2 �= 1.

Then we have Cartan double coset decompositions

g=Ad(a−1)k⊕ a⊕ k and g=Ad(a)k⊕ a⊕ k.

Here we collect the formulas of Cartan decompositions of standard basis

of p±. First, we consider the case g=Ad(a−1)k⊕ a⊕ k. Before stating the

formulas, we describe the standard basis of p±.

Notation 1.1. For a square matrix x of size 2, we set

p+(x) :=

(
x

√
−1x√

−1x −x

)
, p−(x) :=

(
x −

√
−1x

−
√
−1x −x

)
.

Then we define a basis in each of p± by

X(2,0) = p+(e11), X(1,1) = p+(e12 + e21), X(0,2) = p+(e22) ∈ p+;

X(−2,0) = p−(e11), X(−1,−1) = p−(e12 + e21), X(0,−2) = p−(e22) ∈ p−

with the matrix units in M2(C):

e11 :=

(
1 0

0 0

)
, e12 :=

(
0 1

0 0

)
, e21 =

te12, e22 :=

(
0 0

0 1

)
.

The inverse of the mapping(
A B

−B A

)
∈ k �→A+ iB ∈ u(2)

is denoted by κ, and its complexification M2(C) ∼= kC is denoted by the

same symbol. We put

H ′
i := κ(eii) (i= 1,2), X := κ(e12), X̄ := κ(e21).

Moreover, we set

E−2ei =
tE2ei (i= 1,2), E−e1±e2 =

t Ee1∓e2 .
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For our later convenience, we introduce some notation for hyperbolic

functions in logai.

Notation 1.2. For real positive numbers a,a1, a2, we set

sh(a) =
1

2
(a− a−1), ch(a) =

1

2
(a+ a−1),

th(a) = sh(a)/ch(a), cth(a) = ch(a)/sh(a), and

D =D(a1, a2) = sh2(a1)− sh2(a2) = ch2(a1)− ch2(a2).

Note here that the last function is antisymmetric with respect to the per-

mutation of the variables (a1, a2)↔ (a2, a1). Moreover, for a= (a1, a2), we

introduce the other four functions:

epq(a) = (−1)p−1D−1sh(ap)ch(aq) (p, q ∈ {1,2}).

Lemma 1.1. With respect to the decomposition g=Ad(a−1)k⊕ a⊕ k, we

have

X(−2,0) =−sh(a21)
−1Ad(a−1)H

′
1 +H1 + ct(a21)H

′
1,

1

2
X(−1,−1) = e11(a)X + e22(a)X̄ − e12(a)Ad(a

−1)X − e21(a)Ad(a−1)X̄,

X(0,−2) =−sh(a22)
−1Ad(a−1)H

′
2 +H2 + ct(a22)H

′
2,

X(2,0) = sh(a21)
−1Ad(a−1)H

′
1 +H1 − ct(a21)H

′
1,

1

2
X(1,1) =−e22(a)X − e11(a)X̄ + e21(a)Ad(a−1)X + e12(a)Ad(a

−1)X̄,

X(0,2) = sh(a22)
−1Ad(a−1)H

′
2 +H2 − ct(a22)H

′
2.

Proof. Recall that

X(±2,0) =H1 ±
√
−1(E2e1 +E−2e1),

X(0,±2) =H2 ±
√
−1(E2e2 +E−2e2),

X(−1,−1) =−2X + 2Ee1−e2 − 2
√
−1Ee1+e2 ,

and

X(1,1) = 2X̄ + 2Ee1−e2 + 2
√
−1Ee1+e2 .
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It is enough to have Cartan decompositions for elements in p. For example,

for κ(
√
−1e11) =E1,3−E3,1 =E2e1 −E−2e1 , we have Ad(a−1) ·κ(

√
−1e11) =

a−2
1 E1,3 − a21E3,1. Apply the Cartan involution θ :W ∈ g �→ −tW . Then we

have

Ad(a−1)κ(
√
−1e11) =−sh(a21)(E1,3 +E3,1) + ch(a21)(E1,3 −E3,1)

or, equivalently,

i(E13 +E31) = sh−1(a1)Ad(a−1)κ(e11)− ct(a21)κ(e11).

This gives the decomposition for X(±2,0). The remaining cases are treated

similarly.

The other decomposition, g=Ad(a)k⊕ a⊕ k, is discussed similarly.

Lemma 1.2. We have

X(−2,0) = sh(a21)
−1Ad(a)H

′
1 +H1 − ct(a21)H

′
1,

1

2
X(−1,−1) =−e11(a)X − e22(a)X̄ + e12(a)Ad(a)X + e21(a)Ad(a)X̄,

X(0,−2) = sh(a22)
−1Ad(a)H

′
2 +H2 − ct(a22)H

′
2,

X(2,0) =−sh(a21)
−1Ad(a)H

′
1 +H1 + ct(a21)H

′
1,

1

2
X(1,1) = e22(a)X + e11(a)X̄ − e21(a)Ad(a)X − e12Ad(a)X̄,

X(0,2) =−sh(a22)
−1Ad(a)H

′
2 +H2 + ct(a22)H

′
2.

Proof. The proof is similar to that of Lemma 1.1.

1.3. Representations of the maximal compact subgroup

We recall some basic facts on the irreducible representations of the max-

imal compact subgroup K, because our explicit computations in the later

sections frequently use the K-types of the representations of G. The group

K is isomorphic to the compact unitary group U(2) of degree 2. The com-

plexification of the Lie algebra of U(2) has four generators:

Z =

(
1 0

0 1

)
, H ′ =

(
1 0

0 −1

)
, X =

(
0 1

0 0

)
, X̄ =

(
0 0

1 0

)
.

The irreducible finite-dimensional representation τλ of K with highest

weight λ = (l1, l2) ∈ Z⊕2 has the standard basis {vi}0≤i≤dλ (dλ = l1 − l2)
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in the representation space Wλ, so that the associated action of the Lie

algebra is given by

Zvi = (l1 + l2)vi, H ′vi = (2i− dλ)vi,

Xvi = (i+ 1)vi+1, X̄vi = (dλ + 1− i)vi−1.

Now let us consider the irreducible decomposition of the tensor product

Wλ ⊗W(k+1,k−1)
∼=Wμ1 ⊕Wμ2 ⊕Wμ3 ,

with μ1 = (l1 + k + 1, l2 + k − 1), μ2 = (l1 + k, l2 + k), and μ3 = (l1 + k −
1, l2 + k+ 1).

We need explicit computation of Clebsch-Gordan coefficients, which is

well known for the case KC
∼=GL(2,C).

Lemma 1.3. Let {v′i} be the standard basis of each target space Wμk
(k =

1, 2, 3).

(i) Let P down be the projector from Wλ⊗Wk+1,k−1 to Wμ3 . Then in terms

of standard basis, up to scalar multiple, it is given by

P down(vi ⊗w2) = v′i (0≤ i≤ d− 2),

P down(vi ⊗w1) =−2v′i−1 (1≤ i≤ d− 1),

P down(vi ⊗w0) = v′i−2 (2≤ i≤ d).

For other standard generators, we have P down(vi ⊗ wj) = 0, if either

i+ j > d or i+ j < 2.

(ii) Let P even be the projector Wλ ⊗W(k+1,k−1) →Wμ2 . Then up to scalar

multiple, it is given by

P even(vi ⊗w2) = (i+ 1)v′i+1 (0≤ i≤ d− 1),

P even(vi ⊗w1) = (d− 2i)v′i (0≤ i≤ d),

P even(vi ⊗w0) =−(d+ 1− i)v′i−1 (1≤ i≤ d),

and P even(vd ⊗w2) = P even(v0 ⊗w0) = 0.

(iii) Let P up be the projector from Wλ⊗Wk+1,k−1 to Wμ1 . Then it is given

by

P up(vi ⊗w2) =
(i+ 1)(i+ 2)

2
v′i+2,
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P up(vi ⊗w1) = (i+ 1)(d+ 1− i)v′i+1,

P up(vi ⊗w0) =
(d+ 1− i)(d+ 2− i)

2
v′i−1,

for 0≤ i≤ d.

Proof. This is an elementary fact. See Lemmas 2.1–2.3 of [11].

§2. The discrete series representations of Sp(2;R)

Let Ĝ be the unitary dual of a real semisimple Lie group G with finite

center, that is, the set of unitary equivalence classes [π] of irreducible unitary

representation π of G, equipped with the dual topology. Then π is called a

discrete series representation if [π] is isolated in Ĝ.

The group G has discrete series if and only if rankG = rankK, that

is, if and only if G has a compact Cartan subgroup T . Harish-Chandra

gave a description of the subset ĜDS of Ĝ consisting of the discrete series

representations in terms of the unitary characters of T .

For G= Sp(2,R), we have the following description.

2.1. Parameterization of the discrete series

The root system of G with respect to a compact Cartan subgroup

T = exp
(
R(E1,3 −E3,1) +R(E2,4 −E4,2)

)
is also given by a set of vectors in the Euclidean plane:

{±2ε1,±2ε2,±ε1 ± ε2}.

Here

ε1
(
r1(E1,3 −E3,1) + r2(E2,4 −E4,2)

)
=
√
−1r1,

ε2
(
r1(E1,3 −E3,1) + r2(E2,4 −E4,2)

)
=
√
−1r2.

We fix a subset of simple roots and the associated positive roots by

{ε2, ε1 − ε2}, {2ε1, ε1 + ε2, ε1 − ε2,2ε2},

respectively.

Let T be a compact Cartan subgroup; then the set of the unitary charac-

ters (or their derivations) is identified naturally with Z⊕Z, and the subset

consisting of dominant integral weights is

Ξ =
{
(n1, n2)

∣∣ ni ∈Z, n1 ≥ n2

}
.
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Because an isomorphism class of finite-dimensional irreducible representa-

tions of K is determined by its highest weight, there is a bijection between

K̂ and Ξ.

Because the half-sum of the positive roots is integral, the discrete series

representations of Sp(2;R) are parameterized by the subset of regular ele-

ments in Ξ:

Ξ′ =
{
ν = (n1, n2)

∣∣ ni ∈Z, n1 > n2, n1 �= 0, n2 �= 0, n1 + n2 �= 0
}
.

The subsets ΞI = {(n1, n2) | n1 > n2 > 0} and ΞIV = {(n1, n2) | 0 > n1 >

n2} parameterize the holomorphic discrete series and the antiholomorphic

discrete series, respectively. Set

ΞII =
{
(n1, n2)

∣∣ n1 > 0> n2, n1 + n2 > 0
}
,

and set

ΞIII =
{
(n1, n2)

∣∣ n1 > 0> n2,0> n1 + n2

}
.

Then the union ΞII ∪ΞIII parameterizes the large discrete series.

2.2. Formulation of the main problem

In general, given a discrete series representation (π,H) of a semisimple

Lie group G, the matrix coefficients

cv,w(x) :=
(
π(x)v,w

)
(v,w ∈H)

are square-integrable, that is, they belong to L2(G). Because of the inter-

twining property

cv,w(xg) = cπ(g)v,w(x) (x, g ∈G)

and the orthogonality relation of Godement for square-integrable represen-

tations of G, for a fixed nonzero vector w ∈H , the map

v ∈H �→ cv,w ∈ L2(G)

defines an injective intertwining isometry between unitary G-modules, if one

regards L2(G) as a G-module via the right regular action. Similarly, for a

fixed v ∈H , the map

w ∈H �→ cv,w ∈ L2(G)

defines an intertwining isometry from the contragredient representation π∗

of π to the left regular G-module L2(G). Move both v and w in H ; then the
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coefficients cv,w generate a G×G birepresentation π∗ �̂π which occurs with

multiplicity 1 inside the (G×G)-module L2(G) by the Plancherel theorem.

Let (τ,W ) be the K-module, contragredient to the minimal K-type τ∗ of

π with representation space W ∗ ↪→H , and let us choose a basis {vi}1≤i≤m

in W and the dual basis {v∗j }1≤j≤m in the dual space W ∗ of W . Then

the contragredient representation τ on W is the minimal K-type of π∗. We

choose another basis {wj}1≤j≤m, which is possibly different from {v∗j }1≤j≤m.

Put

Φ(g) =
∑
i

∑
j

cv∗i ,w∗
j
(g)vi ⊗wj ,

which is a (W ⊗C W ∗)-valued function on G. Clearly, this does not depend

on the choice of basis.

Let us consider the discrete series representation πΛ with Harish-Chandra

parameter Λ ∈ ΞIII . Let λ= (l1, l2) be the highest weight of (τ,W ); that is,

its dual (−l2,−l1) is the Blattner parameter, which is the parameter of the

minimal K-type τ∗λ of πΛ.

Notation 2.1. Let us choose a standard basis {vi}0≤i≤d in W , and let

{v∗i }0≤i≤d be its dual basis in W ∗. Let us also choose a standard basis

{wj}0≤j≤d in W ∗, and let {w∗
j}0≤j≤d be its dual in W .

Then we put

Φ(g) =
∑
i

∑
j

cv∗i ,w∗
j
(g)vi ⊗wj ,

which is a (W ⊗C W ∗)-valued function on G.

The main problem of this paper is to determine the A-radial part of

this Φ.

2.3. Realization of the discrete series via Schmid equations

First, we recall the definition of the gradient operators.

Notation 2.2. For two continuous finite-dimensional representations

(τi,Wi) (i= 1,2) of K, we set

C∞
τ1,τ2(K\G/K) :=

{
f :G→W1 ⊗W2,C

∞-function
∣∣

f(k1xk2) = τ1(k1)τ2(k2)
−1f(x) ∀k1, k2 ∈K,x ∈G

}
.

Let a basis {Xi} of p and its dual basis {X∗
j } in the dual p∗ be such that

〈Xi,X
∗
j 〉= δij . Then we can define the right gradient operator as

∇R
τ1,τ2 :C

∞
τ1,τ2(K\G/K)→C∞

τ1,τ2⊗Adp∗
(K\G/K).
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Here for f ∈C∞
τ1,τ2(K\G/K), we set

∇R
τ1,τ2(f) :=

∑
i

RXi(f)⊗X∗
i .

Here RX(f) is the right derivation:

RX(f)(g) := lim
t→0

1

t

{
f
(
g · exp(tX)

)
− f(g)

}
.

Similarly, we can define the left gradient operator

∇L
τ1,τ2 :C

∞
τ1,τ2(K\G/K)→C∞

τ1⊗Adp,τ2(K\G/K)

by

∇L
τ1,τ2(f) :=

∑
i

LXi(f)⊗X∗
i .

Here LX(f) is the left derivation:

LX(f)(g) := lim
t→0

1

t

{
f
(
exp(−tX) · g

)
− f(g)

}
.

If we decompose the complexification pC into a direct sum p+⊕ p− of holo-

morphic part and antiholomorphic part, then ∇♥ (♥ ∈ {R,L}) is a sum

∇♥
+ +∇♥

−. Let {Yi} be a basis of p−, and let {Y ∗
j } be its dual basis in p∗−

which is identified with p+ via the Killing form. Then we put

∇R
τ1,τ2,+

(
f(g)

)
:=

∑
i

RYi(f)⊗ Y ∗
i ,

and we define the other three operators ∇R
τ1,τ2,−,∇L

τ1,τ2,+,∇L
τ1,τ2,− similarly.

Now let τ∗μ be the minimal K-type of the discrete series representation.

Then by the minimality property of the K-type τ∗μ , we have

P even · ∇R
τλ,τμ,+

Φ= 0,

P down · ∇R
τλ,τμ,+

Φ= 0,

P down · ∇R
τλ,τμ,−Φ= 0.

Here P even, P odd are the linear operators

C∞
τλ,τ∗μ⊗Adp∗±

(K\G/K)→C∞
τλ,τμi

(K\G/K)
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corresponding to the projectors to the simple K-modules τμi in the Clebsch-

Gordan decomposition τ∗μ ⊗ p∗± ∼=
⊕3

i=1 τμi , with P even for μi = μ∗ ± (1,1)

and P down for μi = μ∗ ± (0,2) (see also [11, Lemmas 3.1–3.3]).

Schmid [16] proved the converse. Namely, we have the following.

Proposition 2.1. The discrete series representation π∗
Λ, contragredient

to πΛ, is realized in the closure of the solution of the above three equations

in C∞
τμ (G/K), if Λ is sufficiently regular.

Remark. The condition “sufficiently regular” was necessary to assure

the ellipticity of certain operators, and so forth. This is not necessary at

least for Sp(2,R). Anyway, we do not use this result on the sufficiency.

2.4. Radial part of the gradient operators

Our function φ belongs to the space

C∞
τL,τR

(K\G/K) :=
{
f :G→WτR ⊗WτL

∣∣
f(k1gk2) = τL(k1)τR(k2)

−1f(g), k1, k2 ∈K,g ∈G
}

with some K-types (τL, τR).

Notation 2.3. In the following, we denote by ρA(∇∗
∗) the A-radial part

of ∇∗
∗s. We suppress the subscripts τL, τR in ∇ to simplify the notation. We

also denote by ∂1 and ∂2 the Euler operators ai
∂
∂ai

(i= 1,2), respectively.

Computation. By the Cartan double K decomposition, we have

ρA(RX(−2,0)
)φ=

{
∂1 − sh−1(a21) · τL(H ′

1)− cth(a21) · τR(H ′
1)
}
φ.

Then we have

{
ρA(RX(−2,0)

)φ
}
⊗X(2,0)

=
{
∂1 − sh−1(a21) · τL(H ′

1)− cth(a21) · (τR ⊗Adp+)(H
′
1)
}
(φ⊗X(2,0))

+ cth(a21)φ⊗ [H ′
1,X(2,0)]

=
{
∂1 − sh−1(a21) · τL(H ′

1)− cth(a21) · (τL ⊗Adp+)(H
′
1) + 2cth(a21)

}
× (φ⊗X(2,0)).

Here we note that [H ′
1,X(2,0)] = 2X(2,0).
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The Cartan decomposition implies also that

1

2
ρA(RX(−1,−1)

)φ

=
{
−e12(a)τL(X)− e21(a)τL(X̄)− e11(a)τR(X)− e22(a)τR(X̄)

}
φ.

Hence, we have{
1

2
ρA(RX(−1,−1)

)φ

}
⊗X(1,1)

=−
{
e12(a)τL(X) + e21(a)τL(X̄)

}
(φ⊗X(1,1))

− e11(a)(τR ⊗Adp+)(X)(φ⊗X(1,1)) + e11(a)φ⊗ [X,X(1,1)]

− e22(a)(τR ⊗Adp+)(X̄)(φ⊗X(1,1)) + e22(a)φ⊗ [X̄,X(1,1)]

=
{
−e12(a)τL(X)− e21(a)τL(X̄)

− e11(a)(τR ⊗Adp+)(X)− e22(a)(τR ⊗Adp+)(X̄)
}
(φ⊗X(1,1))

+ 2e11(a)(φ⊗X(2,0)) + 2e22(a)(φ⊗X(0,2)).

Finally, noting that [H ′
2,X(0,2)] = 2X(0,2), we have{

ρA(RX(0,−2)
)φ
}
⊗X(0,2)

=
{
∂2 − sh−1(a22) · τL(H ′

2)− cth(a22)(τR ⊗Adp+)(H
′
2)
}
(φ⊗X(0,2))

+ cth(a22)(φ⊗ [H ′
2,X(0,2)])

=
{
∂2 − sh−1(a22) · τL(H ′

2)− cth(a22)(τR ⊗Adp+)(H
′
2) + 2cth(a22)

}
× (φ⊗X(0,2)).

Summing up these computations, we have

Proposition 2.2.

ρA(∇R
τL,τR,+)φ

=
{
∂1 − sh−1(a21)τL(H

′
1)− cth(a21)(τR ⊗Adp+)(H

′
1)

+ 2cth(a21) + 2e11(a)
}
(φ⊗X(2,0))

+
{
−e12(a)τL(X)− e21(a)τL(X̄)− e11(a)(τR ⊗Adp+)(X)

− e22(a)(τR ⊗Adp+)(X̄)
}
(φ⊗X(1,1))
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+
{
∂2 − sh−1(a22)τL(H

′
2)− cth(a22)(τR ⊗Adp+)(H

′
2)

+ 2cth(a22) + 2e22(a)
}
(φ⊗X(0,2)).

Similarly we have

ρA(∇R
τL,τR,−)φ

=
{
∂1 + sh−1(a21)τL(H

′
1) + cth(a21)(τR ⊗Adp−)s(H

′
1)

+ 2cth(a21) + 2e11(a)
}
(φ⊗X(2,0))

+
{
e21(a)τL(X) + e12(a)τL(X̄)

+ e22(a)(τR ⊗Adp−) + e11(a)(τR ⊗Adp−)(X̄)
}
(φ⊗X(1,1))

+
{
∂2 + sh−1(a22)τL(H

′
2) + cth(a22)(τR ⊗Adp+)(H

′
2)

+ 2cth(a22) + 2e22(a)
}
(φ⊗X(0,2)).

For the left gradient operators, we have

Proposition 2.3.

ρA(∇L
τL,τR,−)φ

= {−∂1 − sh−1(a21)τR(H
′
1)− cth(a21)(τL ⊗Adp−)(H

′
1)

− 2cth(a21) + 2e11(a)}(φ⊗X(−2,0))

+
{
−e21(a)τR(X)− e12(a)τR(X̄) + e11(a)(τL ⊗Adp−)(X)

+ e22(a)(τL ⊗Adp−)(X̄)
}
(φ⊗X(−1,−1))

+
{
−∂2 − sh−1(a22)τR(H

′
2)− cth(a22)(τL ⊗Adp−)(H

′
2)

− 2cth(a22) + 2e22(a)
}
(φ⊗X(0,−2)).

ρA(∇L
τL,τR,+)φ

=
{
−∂1 + sh−1(a21)τR(H

′
1) + cth(a21)(τL ⊗Adp+)s(H

′
1)

− 2cth(a21) + 211(a)
}
(φ⊗X(2,0))

+
{
e12(a)τR(X) + e21(a)τL(X̄)− e11(a)(τL ⊗Adp+)(X)

− e22(a)(τL ⊗Adp+)(X̄)
}
(φ⊗X(1,1))

+
{
−∂2 + sh−1(a22)τR(H

′
2) + cth(a22)(τL ⊗Adp+)(H

′
2)

− 2cth(a22) + 2e22(a)
}
(φ⊗X(0,2)).
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§3. Explicit formulas of Schmid operators

We write Schmid operators in terms of coefficients explicitly.

We write λ= (l1, l2), μ= (m1,m2), and λ′, μ′ the target K-types

Ψ(a) := P♥∇♠
τλ,τμ,ε

(Φ)|A(a) =

dμ′∑
i=1

dμ′∑
j=1

di,j(a)(w
′
i ⊗ v′j),

where ♥∈ {even,down}, ♠∈ {R,L}, and ε ∈ {+,−}.

3.1. Schmid operators

3.1.1. Right actions.

Lemma 3.1 (Chirality operators).

(i) Let Ψ= P even · ρA(∇R
τλ,τμ,+

)Φ. Then μ′ = (m1 − 1,m2 − 1), and

dR;even
i,j;+

= i
{
∂1 − (l2 + j)sh(a21)

−1 − (m2 + i− 1)ct(a21)− (dμ − 2i)e11(a)
}
ci−1,j

+ (dμ − 2i)
{
−je12(a)ci,j−1 − (dλ − j)e21(a)ci,j+1

}
− (dμ − i)

{
∂2 − (l1 − j)sh(a22)

−1 − (m1 − i− 1)ct(a22)

+ (dμ − 2i)e22(a)
}
ci+1,j .

(ii) Let Ψ= P down · ρA(∇R
τλ,τμ,+

)Φ. Then μ′ = (m1 − 2,m2), and

dR;down
i,j;+

=
{
∂1 − (l2 + j)sh(a21)

−1 − (m2 + i)ct(a21) + 2(i+ 1)e11(a)
}
ci,j

+ 2je12(a)ci+1,j−1(a) + 2(dλ − j)e21(a)ci+1,j+1

+
{
∂2 − (l1 − j)sh(a22)

−1 − (m1 − i− 2)ct(a22)

+ 2(dμ − i− 1)e22(a)
}
ci+2,j .

Here we assume that 0≤ i≤ dμ′ = dμ − 2.

(iii) (Adjoint operator). Let Ψ = P down · ρA(∇R
τλ,τμ,−)Φ. Then μ′ = (m1,

m2 + 2), and for 0≤ i≤ dμ − 2 = dμ′ ,0≤ j ≤ dλ, we have

dR;down
i,j;−

=
{
∂1 + (l2 + j)sh(a21)

−1 + (m2 + i+ 2)ct(a21)
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+ 2(dμ − i− 1)e11(a)
}
ci+2,j

+ 2je21(a)ci+1,j−1 + 2(dλ − j)e11(a)ci+1,j+1

+
{
∂2 + (l1 − j)sh(a21)

−1 + (m1 − i)ct(a22) + 2(i+ 1)e22(a)
}
ci,j .

Proof. This proposition and the next are shown by direct computation

employing Propositions 2.2 and 2.3 and Lemma 1.3. We indicate here only

the key points of the computation.

To prove (i), we start from the first formula in Proposition 2.2 with

τR = τμ and τL = τλ. Note that

P even
{
(τμ ⊗Adp+)(Y )(Φ⊗X(a,b)) = τμ′(Y )P even(Φ⊗X(a,b))

}
for any Y ∈ kC and X(a,b) ∈ p+. Next we identify X(2,0),X(1,1),X(0,2) with

w2,w1,w0 of Lemma 2.3. Now note that the operators before P even(Φ ⊗
X(2,0)) and P even(Φ⊗X(0,2)) are diagonal operators. Therefore, their con-

tributions to the coefficients of v′i ⊗wj come up from the coefficients ci−1,j

and ci+1,j , respectively, with corresponding operators. The factors before

the brackets {∗} come up by Lemma 2.3.

The remaining are four terms involving the functions epq(a). They come

from the operator before Φ⊗X(1,1). Among them, two involving τλ have no

relation with the gradient and the projector. The actions of τλ(X), τλ(X̄)

appear as the coefficients −j and dλ − j. Finally, there remain two terms,

which should be handled most carefully.

3.1.2. Left actions.

Lemma 3.2 (Chirality operators).

(i) Let Ψ= P even ·ρA(∇L
τλ,τμ,−)Φ, and let λ′ = (l1, l2). Then for 0≤ j ≤ dλ,

dL;eveni,j;−

= (dλ − j)
{
∂1 + (m2 + i)sh(a21)

−1 + (l2 + j + 1)ct(a21)

+ (dλ − 2j)e11(a)
}
ci,j+1

+ (dλ − 2j)
{
+ie21(a)ci−1,j + (dμ − i)e12(e)ci+1,j

}
− j

{
∂2 + (m1 − i)sh(a22)

−1 + (l1 − j + 1)ct(a22)

− (dλ − 2j)e22(a)
}
ci,j−1.
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(ii) Let Ψ= P down · ρA(∇L
τλ,τμ,−)Φ, and let λ′ = (l1, l2 + 2). Then

dL;down
i,j;−

=
{
−∂1 − (m2 + i)sh(a21)

−1 − (l2 + j + 2))ct(a21)

+ 2(dλ − j − 1)e11(a)
}
ci,j+2

+
{
−∂2 − (m1 − i)sh(a22)

−1 − (l1 − j)ct(a22) + 2(j + 1)e22(a)
}
ci,j

− 2ie21(a)ci−1,j+1 − 2(dμ − i)e12(a)ci+1,j+1.

Here we assume that 0≤ j ≤ dλ′ = dλ − 2.

(iii) (Adjoint operator). Assume that λ′ = (l1 − 2, l2) and that Ψ= P down ·
ρA(∇L

τλ,τμ,+
)Φ. Then for 0≤ i≤ dμ,0≤ j ≤ dλ′ = dλ − 2, we have

dL;down
i,j;+

=−
{
∂1 − (m2 + i)sh(a21)

−1 − (l2 + j)ct(a21) + 2(j + 1)e11(a)
}
ci,j

− 2ie12(a)ci−1,j+1 − 2(dμ − i)e21(a)ci+1,j+1

−
{
∂2 − (m1 − i)sh(a22)

−1 − (l1 − j − 2)ct(a22)

+ 2(dλ − j − 1)e22(a)
}
ci,j+2.

3.2. The Schmid equations

The Schmid operators are obtained by setting Ψ = 0, that is, di,j = 0, in

the formulas of the previous section. By adding some equations, we have

simpler equations.

3.2.1. The right equations.

Proposition 3.1. The system of equations

P even · ∇R
τλ,τμ,+

Φ= 0,

P down · ∇R
τλ,τμ,+

Φ= 0,

P down · ∇R
τλ,τμ,−Φ= 0

is represented by the following system in terms of the coefficients {ci,j} of Φ.

Right chirality equations:
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{
∂1 − (l2 + j)sh(a21)

−1 − (m2 + i)ct(a21) + (i+ 1)e11(a)
}
ci,j

+ (dμ − i− 1)e22(a)ci+2,j + je12(a)ci+1,j−1(R+.1)

+ (dλ − j)e12(a)ci+1,j+1 = 0,{
∂2 − (l1 − j)− (m1 − i− 2)ct(a22) + (dμ − i− 1)e22(a)

}
ci+2,j

+ (i+ 1)e11(a)ci,j + je12(a)ci+1,j−1(R+.2)

+ (dλ − j)e21(a)ci+1,j+1 = 0.

Right adjoint equations:

{
∂1 + (l2 + j)sh(a21)

−1 + (m2 + i+ 2)ct(a21) + 2(dμ − i− 1)e11(a)
}
ci+2,j

+ 2je21(a)ci+1,j−1 + 2(dλ − j)e12(a)ci+1,j+1
(R−.3)

+
{
∂2 + (l1 − j)sh(a22)

−1 + (m1 − i)ct(a22)

+ 2(i+ 1)e22(a)
}
ci,j = 0.

3.2.2. The left equations. Similarly to the right Schmid equations, we

can consider the left system.

Proposition 3.2. The explicit formulas of the left Schmid equations

P even · ∇L
τλ,τμ,−Φ= 0,

P down · ∇L
τλ,τμ,−Φ= 0,

P down · ∇L
τλ,τμ,+

Φ= 0

in terms of the coefficients of Φ are given as follows.

Left chirality equations:

{
∂1 + (m2 + i)sh(a21)

−1 + (l2 + j + 2)ct(a21)

+ (dλ − j − 1)e11(a)
}
ci,j+2(L−.1)

+ (dμ − i)e12(a)ci+1,j+1 + ie21(a)ci−1,j+1 + (j + 1)e22(a)ci,j = 0,{
∂2 + (m1 − i)sh(a22)

−1 + (l1 − j)ct(a22) + (j + 1)e22(a)
}
ci,j

+ ie21(a)ci−1,j+1 + (dμ − i)e12ci+1,j+1(L−.2)

+ (dλ − j − 1)e11(a)ci,j+2 = 0.
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Left adjoint equations:{
∂1 − (m2 + i)sh(a21)

−1 − (l2 + j)ct(a21) + 2(j + 1)e11(a)
}
ci,j

+ 2ie12(a)ci−1,j+1 + 2(dμ − i)e21(a)ci+1,j+1
(L+.3)

+
{
∂2 − (m1 − i)sh(a21)

−1 − (l1 − j − 2)ct(a22)

+ 2(dλ − j − 1)e22(a)
}
ci,j+2 = 0.

3.2.3. Derivation of a holonomic system from the Schmid operators. We

prepare some macro symbols to denote our difference-differential equations.

With the help of these symbols, some symmetries of the system become

apparent. These are some symbols concerning the indices I = (i, j) = (i1, i2)

which belong to the product set {0, d}2, {0, d} being the set of numbers

{0,1, . . . , d− 1, d}.

Notation 3.1. For I = (i, j), we define integers

s(I) =
1

2
(d− i− j), w(I) = |s(I)|,

c1(I) =
1

2
(i− j −L), c2(I) =

1

2
(j − i−L).

Here we recall that we set L= l1 + l2. The last number w(I) is called the

weight of the index I . Moreover, for p ∈ {1,2}, we set

∂±
p (I) := ∂p ∓ s(I)ct(ap)− cp(I)th(ap).

Finally, for the indices I = (i, j), we set I(a,b) = (i + a, j + b) for a, b ∈ Z.

When we use this notation in the subscript, say, cI(+1,−1), the use of double

subscripts is avoided.

Proposition 3.3. Here are the differential-difference equations given by

the Schmid operators.

(a) (Chirality equations):{
∂+
1 (I(0,2)) + (d− j − 1)e11(a)

}
cI(0,2) + (d− i)e12(a)cI(1,1)

(C1+)
+ (j + 1)e22(a)cI + ie21(a)cI(−1,1)

= 0,{
∂−
1 (I) + (i+ 1)e11(a)

}
cI + je12(a)cI(1,−1)

(C1−)
+ (d− j)e21(a)cI(1,1) + (d− i− 1)e22(a)cI(2,0) = 0,
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{
∂+
2 (I(2,0)) + (d− i− 1)e22(a)

}
cI(2,0) + (d− j)e21(a)cI(1,1)

(C2+)
+ je12(a)cI(1,−1)

+ (i+ 1)e11(a)cI = 0,{
∂−
2 (I) + (j + 1)e22(a)

}
cI + ie21(a)cI(−1,1)

(C2−)
+ (d− i)e12(a)cI(1,1) + (d− j − 1)e11(a)cI(0,2) = 0.

(b) (Adjoint equations):{
∂−
2 (I) + 2c2(I)th(a2) + 2(i+ 1)e22(a)

}
cI + 2je21(a)cI(1,−1)

+
{
∂+
1 (I(2,0)) + 2c1(I(2,0))th(a1) + 2(d− i− 1)e11(a)

}
cI(2,0)(C3r)

+ 2(d− j)e12(a)cI(1,1) = 0,{
∂−
1 (I) + 2c1(I)th(a1) + 2(j + 1)e11(a)

}
cI + 2ie12(a)cI(−1,1)

+
{
∂+
2 (I(0,2)) + 2c2(I(0,2))th(a2) + 2(d− j − 1)e22(a)

}
cI(0,2)(C3l)

+ 2(d− i)e21(a)cI(1,1) = 0.

Proof. This is just a paraphrase of Propositions 3.1 and 3.2.

3.2.4. Symmetry with respect to the indices I. We define an involutive

automorphism on the set {0, d}2 of indices by

I = (i, j)→ I ′ = (d− j, d− i).

Obviously, we have

s(I ′) =−s(I), ck(I
′) = ck(I) (k = 1,2).

Hence,

∂±
k (I

′) = ∂∓
k (I) (k = 1,2).

Also for ε1, ε2 ∈ {0,±1,±2},

{I(ε1,ε2)}′ = I ′(−ε2,−ε1)
.

Apply the involution ′ to the equations of our holonomic system, say, to

(1.±). Then it is transformed to similar equations (1.∓). Therefore, we have

the following.

Corollary 3.1. If we replace the functions {cI} by another system {c̃I}
defined

c̃I = cI′ = cd−j,d−i for each I = (i, j),

then they satisfy the same holonomic system as for {cI}.
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3.3. Linear relations among coefficients cI
To proceed further, we need some simple linear relations among the coef-

ficients {cI}.

Lemma 3.3. We have the six-term relations

(j − 1)cI(0,−2)
− (d− i− 1)cI(+2,0)

+
ch(a1)

ch(a2)

{
icI(−1,−1)

− (d− j)cI(+1,+1)

}

− 2s(I)ct(a1)th(a2)cI − 2s(I)
sh(a1)

sh(a2)
cI(+1,−1)

= 0

(0≤ i≤ d− 1,1≤ j ≤ d),

(F6A)I

(i− 1)cI(−2,0) − (d− j − 1)cI(0,+2)

+
ch(a2)

ch(a1)

{
jcI(−1,−1) − (d− i)cI(+1,+1)

}

− 2s(I)ct(a2)th(a1)cI − 2s(I)
sh(a2)

sh(a1)
cI(−1,+1) = 0

(1≤ i≤ d,0≤ j ≤ d− 1).

(F6B)I

Proof. To get (F6A), apply the shift I �→ I(0,−2) to (C1+). Then sub-

tract (C1−) from that. Note that d − i − j = 2s(I) and ∂+
1 (I) − ∂+

1 (I) =

−2s(I)ct(a1). Then the result is

−2s(I)
{
ct(a1)− e11(a)

}
cI + 2s(I)e12(a)cI(+1,−1)

+ ie21(a)cI(−1,−1) − (d− j)e21(a)cI(+1,+1)

+ (j − 1)e22(a)cI(0,−2) − (d− i− 1)e22(a)cI(2,0) = 0.

The coefficient of cI is equal to

2s(I)ct(a1)
{
−1 + sh2(a1)/D

}
= 2s(I)ct(a1)sh

2(a2)/D.

Therefore, dividing the whole formula by e22(a), we have (F6A).

To get (F6B), apply the shift I �→ I(−2,0) to (C2+) and subtract (C2−).
After that, divide by e11(a).
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Lemma 3.4. We have the following two kinds of nine-term relations:

2(i− 1)cI(−2,0) − (j − 1)cI(0,−2)

− 2(d− j − 1)cI(0,+2) + (d− i− 1)cI(+2,0)

+
{
−(l1 + l2 − i+ j)

D

ch(a1)ch(a2)
+ (2j − i)

ch(a1)

ch(a2)

}
cI(−1,−1)

− 2s(I)
{ D

sh(a1)sh(a2)
+ 2

sh(a2)

sh(a1)

}
cI(−1,+1)

− 2s(I)ct(a1)th(a2)cI + 2s(I)
sh(a2)

sh(a1)
cI(+1,−1)

+
{
(l1 + l2 − i+ j)

D

ch(a1)ch(a2)
− (d+ j − 2i)

sh(a1)

sh(a2)

}
× cI(+1,+1) = 0,

(F9A)I

and (F9B), obtained similarly.

Remark 3.1. We do not give the relation (F9B) explicitly, which is

obtained by symmetry. It is deduced from (F9A) and the symmetrized nine-

term relation (F6A) + (F6B), because the latter is equivalent to (F9A) +

(F9B). So we omit it here; however, we have its equivalent form in Lem-

ma 4.5(ii).

Proof of Lemma 3.4. Compute

(C1+)I(+1,−1) − (C3r)I(−1,+1) − (C1−)I(−1,−1) + (C3l)I(−1,−1).

Here (C1+)I(+1,−1) means the formula obtained from (C1+)I after applica-

tion of the shift I �→ I(1,−1) to the index I , and the other terms have similar

meaning. Then we have

2(i− 1)e12(a)cI(−2,0) − (j − 1)e12(a)cI(0,−2)

+ (d− i− 1)e12(a)cI(+2,0) − 2(d− j − 1)e12(a)cI(0,+2)

+
{
2c1(I(−1,−1))th(a1) + (2j − i)e11(a)

}
cI(−1,−1)

−
{
2c1(I(+1,+1))th(a1) + (d− 2i+ j)e11(a)

}
c(I(+1,+1)

+ 2s(I)e21(a)cI − 2s(I(+1,+1)e22(a)cI(+1,−1)

− 2s(I(+1,−1))
{
ct(a2)− 2e22(a)

}
cI(−1,+1) = 0.

Divide this by e12(a) to get the formula (F9A).
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Lemmas 3.3 and 3.4 imply the following linear relations among five adja-

cent coefficients.

Lemma 3.5. We have

− (L− i− j)sh(a1)sh(a2)cI(−1,−1)

− 2s(I)ch(a1)ch(a2)cI(−1,+1) + 4s(I)cI

− 2s(I)ch(a1)ch(a2)cI(+1,−1)

+ (L− 2d+ i+ j)sh(a1)sh(a2)cI(+1,+1) = 0

(1≤ i, j ≤ d− 1).

(F5)I

Remark 3.2. The above five-term relations decay for I around the corner

(0,0) or (1,0), (0,1). This means that the systems of transcendentals {cI}
which are solutions of our holonomic system in Proposition 3.3 are essen-

tially of dimension 4 over the rational function field C[th(a1)
±1, th(a2)].

The number 4 is found to be the rank of our holonomic system and also the

degree of the associated variety of the discrete series πΛ.

§4. Reduction of the holonomic system

4.1. Change of functions and variables

Up to the previous section, we had an explicit system of differential equa-

tions in terms of the coefficients {cI}. In order to make this system simpler

to handle, we introduce new functions {hI}, which differ from {cI} by simple

multipliers. Also, we change the variables ai by −sh2(ai).

Definition 4.1 (Multipliers). We set

μ±
I (a) =

{
sh(a1)sh(a2)

}±s(I)
2∏

i=1

ch(ai)
ci(I)

=
{
sh(a1)sh(a2)

}±(d−i−j)/2 ·{
ch(a1)ch(a2)

}−L/2{
ch(a1)/ch(a2)

}(i−j)/2
.

Definition 4.2 (New functions). We set

cI(a) = μ+
I (a)h

+
I (a) = μ−

I (a)h
−
I (a).

We consider mainly only h+I in the later sections for the reason of symmetry

between the systems {h±I }. Therefore, we drop the superscript + in the

symbol from now on.
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Remark 4.1 (Symmetry for the multipliers). We have μ−
I′(a) = μ+

I (a).

Definition 4.3 (Change of variables). We set

xi =−sh2(ai) (i= 1,2).

Obviously, ch2(ai) = 1− xi =−(xi − 1). Note that

∂

∂xi
=− 1

sh(a2i )
∂i =− 1

2sh(ai)ch(ai)
∂i (i= 1,2).

Now we rewrite the equations for {cI} in Proposition 3.3 in terms of new

functions {hI} and new variables xi, which are found to be a holonomic

system for {hI}.

Proposition 4.1.

(a) (Chirality equations) We have

{ ∂

∂x1
+

d− j − 1

2(x1 − x2)

}
hI(0,2) +

d− i

2(x1 − x2)
hI(1,1)

+
(j + 1)x2
2(x1 − x2)

hI +
ix2

2(x1 − x2)
hI(−1,1) = 0,

(H1+)

{
x1

∂

∂x1
+ s(I) +

(i+ 1)x1
2(x1 − x2)

}
hI +

jx1
2(x1 − x2)

hI(1,−1)

+
d− j

2(x1 − x2)
hI(1,1) +

d− i− 1

2(x1 − x2)
hI(2,0) = 0,

(H1−)

{ ∂

∂x2
− d− i− 1

2(x1 − x2)

}
hI(2,0) −

d− j

2(x1 − x2)
hI(1,1)

− jx1
2(x1 − x2)

hI(1,−1) −
(i+ 1)x1
2(x1 − x2)

hI = 0,

(H2+)

{
x2

∂

∂x2
+ s(I)− (j + 1)x2

2(x1 − x2)

}
hI −

ix2
2(x1 − x2)

hI(−1,1)

− d− i

2(x1 − x2)
hI(1,1) −

d− j − 1

2(x1 − x2)
hI(0,2) = 0.

(H2−)
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(b) (Adjoint equations) We have

(x2 − 1)
{
x2

∂

∂x2
+ s(I) + c2(I)

x2
x2 − 1

− (i+ 1)x2
x1 − x2

}
hI

− j
(x1 − 1)x2
x1 − x2

hI(1,−1) − (d− j)
x2 − 1

x1 − x2
hI(1,1)

− (x1 − 1)
{ ∂

∂x1
+

c1(I(2,0))

x1 − 1
+

d− i− 1

x1 − x2

}
hI(2,0) = 0,

(H3r)

(x1 − 1)
{
x1

∂

∂x1
+ s(I) + c1(I)

x1
x1 − 1

+
(j + 1)x1
x1 − x2

}
hI

+ i
x1(x2 − 1)

x1 − x2
hI(−1,1) + (d− i)

x1 − 1

x1 − x2
hI(1,1)

− (x2 − 1)
{ ∂

∂x2
+

c2(I(0,2))

x2 − 1
− d− j − 1

x1 − x2

}
hI(0,2) = 0.

(H3l)

Proof. These are immediately derived from the system for {cI}. We

should note the identity

μ+
I (a)

−1 · ∂i
{
μ+
I (a)f(a)

}
=
{
∂i + s(I)ct(ai) + ci(I)th(ai)

}
f.

Remark 4.2 (Symmetry). By the involution I → I ′ = (d− j, d− i), the

system of equations for {hI} (s(I) ≥ 0) can be regarded as a system of

equations for {h−I } (s(I ′)≤ 0).

4.2. Inductive equations

We derive from the basic system of the previous section for {hI}, some

simpler equations in this section. We call them inductive equations because

they will be used to find solutions for general I from peripheral entries, such

as h0,0, h0,1.

Lemma 4.1. We have

∂

∂x1
hI(0,2) +

∂

∂x2
hI(1,1) −

i

2
hI(−1,1) −

j + 1

2
hI = 0

(I = (i, j) ∈ {0, d− 1} × {−1, d− 2}),
(i)

∂

∂x1
hI(1,1) +

∂

∂x2
hI(2,0) −

i+ 1

2
hI −

j

2
hI(1,−1) = 0

(I = (i, j) ∈ {−1, d− 2} × {0, d− 1}).
(ii)
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Proof. Shift the index I in the formula (H2+) by I → I(−1,1), and add

the obtained formula to (H1+) in Proposition 4.1. The equation (ii) is just

the index shift I → I(1,−1) in (i).

Lemma 4.2 (Inductive equations of type I). We have

(i)
∂

∂x1
hI(0,2) =−

(
x2

∂

∂x2
+ s(I)

)
hI (j ∈ {0, d− 2}),

(ii)
∂

∂x2
hI(2,0) =−

(
x1

∂

∂x1
+ s(I)

)
hI (i ∈ {0, d− 2}),

∂

∂x1
hI(1,1) −

j

2
hI(1,−1) −

(
x1

∂

∂x1
+ s(I) +

i+ 1

2

)
hI = 0

(
I = (i, j) ∈ {0, d− 2} × {0, d− 1}

)
,

(iii)

∂

∂x2
hI(1,1) −

i

2
hI(−1,1) −

(
x2

∂

∂x2
+ s(I) +

j + 1

2

)
hI = 0

(
I = (i, j) ∈ {0, d− 1} × {0, d− 2}

)
.

(iv)

Proof. Add (H1+) and (H2−) to get (i), and add (H1−) and (H2+) to

get (ii). To show (iii) (resp., (iv)), subtract (ii) (resp., (i)) of the present

lemma from (ii) (resp., (i)) of Lemma 4.1.

Remark 4.3. Note that up to this point, we use only the chirality equa-

tions.

We have more complicated inductive equations derived from the right

and left adjoint equations.

Lemma 4.3 (Inductive equations of type II). We have

(x2 − 1)
{ ∂

∂x2
+

d− j − 1 + c2(I(0,2))

x2 − 1

}
hI(0,2) + ihI(−1,1)

− (x1 − 1)
{
x1

∂

∂x1
+ 2x2

∂

∂x2
+ 3s(I) + j + 1+

c1(I)x1
x1 − 1

}
hI = 0,

(v)

(x1 − 1)
{ ∂

∂x1
+

d− i− 1 + c1(I(2,0))

x1 − 1

}
hI(2,0) + jhI(1,−1)

− (x2 − 1)
{
2x1

∂

∂x1
+ x2

∂

∂x2
+ 3s(I) + i+ 1+

c2(I)x2
x2 − 1

}
hI = 0.

(vi)

Proof. Subtract (H3l) (resp., (H3r)) from (H2−) × 2(x1 − 1) (resp.,

(1−)× 2(x2 − 1)) to get (v) (resp., (iv)).
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4.3. Linear relations in terms of {hI}
By eliminating the derivative terms in the equations by addition and

subtraction among them, we have various linear relations of hI .

Lemma 4.4 (Six-term relations). We have

s(I)x2hI + s(I)x1hI(1,−1) +
j − 1

2
x1x2hI(0,−2)

+
i

2
x1x2hI(−1,−1) −

d− j

2
hI(1,1) −

d− i− 1

2
hI(2,0) = 0

(I = (i, j) ∈ {0, d− 1} × {1, d}).

(F6-i)

Proof. This is just a paraphrase of Lemma 3.3. The direct way to get this

is to apply the shift I → I(0,−2) to (H1+); then we have{ ∂

∂x1
+

d+ 1− j

2(x1 − x2)

}
hI +

d− i

2(x1 − x2)
hI(1,−1) +

(j − 1)x2
2(x1 − x2)

hI(0,−2)

+
ix2

2(x1 − x2)
hI(−1,−1) = 0 (j ∈ {1, d});

multiply this by x1, and subtract (H1−). Note that d− i− j = 2s(I).

Remark 4.4. By eliminating ∂2 in place of ∂1 of the proof of Lemma 4.4,

we have a similar six-term linear relation. It is identical to Lemma 4.4 up

to the shift. For the convenience of reference, we write it explicitly here:

s(I)x2hI(−1,1) + s(I)x1hI +
j

2
x1x2hI(−1,−1) +

i− 1

2
x1x2hI(−2,0)

− d− j − 1

2
hI(0,2) −

d− i

2
hI(1,1) = 0 (i ∈ {1, d}, j ∈ {0, d− 1}).

(F6-ii)

Lemma 4.5 (Nine-term linear relations). We have

x1x2
{
2(i− 1)(x2 − 1)hI(−2,0) − (j − 1)(x1 − 1)hI(0,−2)

+
{
(2j − i)(x1 − 1) + (i− j −L)(x1 − x2)

}
hI(−1,−1)

+ 2s(I)(x1 + x2)(x2 − 1)hI(−1,1) + 2s(I)(x1 − 1)x2hI

− 2s(I)(x1 − 1)x2hI(1,−1)

+ (d− i− 1)(x1 − 1)hI(2,0) − 2(d− j − 1)(x2 − 1)hI(0,2)

−
{
(d− 2i+ j)(x1 − 1) + (i− j −L)(x1 − x2)

}
hI(1,1) = 0

(i ∈ {1, d− 1}, j ∈ {1, d− 1}),

(i)
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x1x2
{
2(j − 1)(x1 − 1)hI(0,−2) − (i− 1)(x2 − 1)hI(−2,0)

+
{
(j − 2i)(x2 − 1) + (j − i−L)(x1 − x2)

}
hI(−1,−1)

+ 2s(I)x1(x2 − 1)hI(−1,1) − 2s(I)x1(x2 − 1)hI

− s(I)(x1 − 1)(x1 + x2)hI(1,−1)

+ 2(d− i− 1)(x1 − 1)hI(2,0) − (d− j − 1)(x2 − 1)hI(0,2)

+
{
(d− 2j + i)(x2 − 1)− (j − i−L)(x1 − x2)

}
hI(1,1) = 0

(i, j ∈ {1, d− 1}).

(ii)

Proof. We have the following.

(i) Set

A= (H1+)I(1,−1) · (x1 − 1) + (H3r)I(−1,1).

Then

e(x)−1A=
{
−(d+ j − 2i) · (x1 − 1)− c1(I(1,1)) · 2(x1 − x2)

}
hI(1,1)

+ (d− i− 1)(x1 − 1)hI(2,0) − 2(d− j − 1)(x2 − 1)hI(0,2)

+ j(x1 − 1)x2hI(1,−1) + (i− 2j − 1)(x1 − 1)x2hI

+ (x2 − 1) · 2(x1 − x2)
{
x2

∂

∂x2
+ s(I(−1,1))

+ c2(I(−1,1))
x2

x2 − 1
− 2ix2e(x)

}
hI(−1,1)

(i ∈ {1, d− 1}, j ∈ {0, d− 1}).

Set

B =
{
(H1−)I(−1,−1) · (x1 − 1) + (H3l)I(−1,−1)

}
x2.

Then

e(x)−1B = (x2 − 1) · 2(x1 − x2)
{
x2

∂

∂x2
+ c2

(
I(−1,1)

) x2
x2 − 1

− 2(d− j)x2e(x)
}
hI(−1,1)

+ (−d+ 2i− j − 1)(x1 − 1)x2hI + (d− i)(x1 − 1)x2hI(1,−1)

+ (j − 1)(x1 − 1)x1x2hI(0,−2) − 2(i− 1)x1x2(x2 − 1)hI(−2,0)
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+ (x1 − 1)
{
(i− 2j) + c1

(
I(−1,−1)

) 1

x1 − 1
· 2(x1 − x2)

}
× x1x2hI(−1,−1) = 0 (i ∈ {1, d}, j ∈ {1, d− 1}).

The subtraction (A−B)e(x)−1 yields formula (i).

(ii) By symmetry, compute

(H2+)I(−1,1) · (x2 − 1) + (H3l)I(1,−1)

− x2
{
(x2 − 1) · (H2−)I(−1,−1) − (H3r)I(−1,−1)

}
.

Lemma 4.6 (Five-term relations). For i, j ∈ {1, d− 1}, we have

(d− i− j)
{
2hI + (x1 − 1)hI(1,−1) + (x2 − 1)hI(−1,1)

}
+ (i+ j −L)x1x2hI(−1,−1) + (i+ j +L− 2d)hI(1,1) = 0.

Remark 4.5. We may rewrite the above relation as

s(I)
{
2hI + (x1 − 1)hI(1,−1) + (x2 − 1)hI(−1,1)

}
+
{
(d−L)/2− s(I)

}
x1x2hI(−1,−1) −

{
(d−L)/2 + s(I)

}
hI(1,1) = 0.

Proof. Compute first a combination of the six-term relations:

2(x1 − 1)× (F6-i) + (−4)(x2 − 1)× (F6-ii),

which equals

2s(I)
{
(x1 − 1)x2 − 21(x2 − 1)

}
hI

2s(I)x1(x1 − 1)hI(1,−1) − 4s(I)x2(x2 − 1)hI(−1,1){
ix1x2(x1 − 1)− 2jx1x2(x2 − 1)

}
hI(−1,−1)

+ (j − 1)x1x2(x1 − 1)hI(0,−2) − 2(i− 1)x1x2(x2 − 1)hI(−2,0){
−(d− j)(x1 − 1) + 2(d− i)(x2 − 1)

}
hI(1,1)

− (d− i− 1)(x1 − 1)hI(2,0) + 2(d− j − 1)(x2 − 1)hI(0,2) = 0

(i, j ∈ {1, d}).

After that, add the nine-term relation (i) of Lemma 4.5. Then we have
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4s(I)(x1 − x2)hI + 2s(I)(x1 − x2)(x1 − 1)

× hI(1,−1) + 2s(I)(x1 − x2)(x2 − 1)hI(−1,1)

x1x2 · (i+ j −L)(x1 − x2)hI(−1,−1)

+ (2d− i− j −L)(x1 − x2)hI(1,1) = 0.

Divide the last equality by (x1 − x2) to get Lemma 4.6.

Lemma 4.7 (Initial values). For i, j ∈ {1, d− 1}, at (x1, x2) = (0,0), we

have

s(I)
{
2hI(0)− hI(1,−1)(0)− hI(−1,1)(0)

}
=
{
s(I) +

d−L

2

}
hI(1,1)(0).

Proof. Set x1 = x2 = 0 in Lemma 4.6.

4.4. The initial values hI(0,0)

We determine the values of hI(x1, x2) at the origin (0,0). We start with

the case of diagonal entries hI with s(I) = 0.

Lemma 4.8. If s(I) = 0 (i.e., j = d− i), then

hI(0,0) = hi,d−i(0) = c0(−1)i
(
d

i

)−1

= c0(−1)(i−j+d)/2 i!j!

d!
,

where c0 is a constant independent of i.

Proof. The normalization condition for the matrix coefficient Φ(a1, a2)

should be Φ(1,1) = 1d+1, with 1d+1 being the unit matrix of size d+1, if Φ

is written in terms of some basis in the representation space of the minimal

K-type of the left side and its dual basis in the minimal K-type of the right

side. However, our formulation uses the standard basis for the K-types of

both sides. In view of the relation between the standard basis and the dual

basis for them, this condition for Φ(1,1) is equivalent to

ci,j =

{
c0(−1)i

(
d
i

)−1
if i+ j = d,

0, if i+ j �= d.

Note finally that hi,d−i(0) = ci,d−i(0) if s(I) = 0 by definition.

Remark 4.6. The constant c0 depends on the choice of the identification

of the standard basis in W and the dual basis in the same W of the standard
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basis in the contragredient space W ∗. There is no canonical way to specify

it completely. Even if one fixes the length of the standard basis and the

dual standard basis, c0 still has ambiguity up to a complex number with

modulus 1.

Next we consider the relation between hI(0) with the same s(I).

Lemma 4.9.

(d− j)hi,j+1(0) + (d− i)hi+1,j(0) = 0.

Proof. Input x1 = 0, x2 = 0 in Lemma 4.4 (the six-term relations). Then

(d− j)hi+1,j+1(0) + (d− i− 1)hi+2,j(0) = 0.

Replace i by i− 1 to get our lemma.

Now we determine the value hI(0) for general I with s(I)≥ 0. By Lem-

ma 4.6 (the five-term relation) or Lemma 4.7, we have

s(I)
{
2hI(0)− hI(−1,1)(0)− hI(1,−1)(0)

}
=
(1
2
(d−L) + s(I)

)
hI(1,1)(0).

On the other hand, Lemma 4.8 shows that

2hI(0)− hI(−1,1) − hI(1,−1)

=
1

(d− i)(d− j)

{
2(d− i)(d− j) + (d− i)(d− i+ 1)

+ (d− j + 1)(d− j)
}
hI(0)

=
(2d+ 1− i− j)(2d− i− j)

(d− i)(d− j)
hI(0).

Thus, we have the following.

Lemma 4.10. For I = (i, j),

hI(0) =

(
s(I) + 1

2(d−L)
)
(d− i)(d− j)

s(I)(2d+ 1− i− j)(2d− i− j)
hI(1,1)(0).

Summing up these equalities, we have the following.

Proposition 4.2. If s(I)≥ 0, then

1

d+ 1
hI(0) = c0(−1)(i−j+d)/2

(1
2(d−L) + s(I)

s(I)

)
(d− i)!(d− j)!

(2d+ 1− i− j)!
.
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Proof. When s(I) = 0, the right-hand side RHS(I) of our statement,

which is a function in I = (i, j) = (i, d− i), equals

c0(−1)i
(d− i)!i!

(d+ 1)!
=

1

d+ 1
hi,d−i(0)

by Lemma 4.8. So this case is settled.

For the case s(I)> 0, by definition we have the first equality for the ratio

RHS
(
I(−1,−1)

)
/RHS(I)

=
s(I) + 1

2(d−L) + 1

s(I) + 1

(d+ 1− i)(d+ 1− j)

(2d+ 3− i− j)(2d+ 2− i− j)

= hI(−1,−1)(0)/hI(0),

and the second equality was shown in Lemma 4.10. Hence, our proposition

follows immediately by induction with respect to s(I).

§5. Modified system of F2 for extremal entries

In order to solve this involved system of difference-differential equations

for hI , we have to borrow an idea from chess: “checkmate by two knights,”

that is, force the opponent’s king to a corner first, and checkmate!

We have to find the holonomic system for the corner entries of the func-

tions hI . We show that the extremal entries hI with s(I) =±[d2 ] are solutions

of certain holonomic systems of rank 4 with singularities along the divisor

x1x2(x1 − 1)(x2 − 1)(x1 − x2) = 0 and at infinity, which is called the modi-

fied system of (Appell’s) F2 in Takayama [17, Section 2], that consists of an

Euler-Darboux equation (Proposition 5.1) and a Poisson equation (Propo-

sition 5.2) These two equations are deduced from part of the inductive

equations in Section 4.2.

We treat the Euler-Darboux equation first.

5.1. The Euler-Darboux equation for extremal entries

We want to determine hI when the index I attains the highest possible

weight w(I) = |s(I)|= [d/2], that is, when{
I = (0,0) or I = (d, d) for d even,

I ∈ {(0,1), (1,0), (d, d− 1), (d− 1, d)} for d odd.

By symmetry, it suffices to consider only positive s(I), that is, I = (0,1), I =

(1,0) if d is odd. When d is even, it is convenient to discuss also h1,1, not only
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h0,0. To simplify the notation, we suppress the parentheses of the subscript

in h(i,j), to write hi,j .

Proposition 5.1 (Euler-Darboux equations).

(a) If d is even, both h0,0 and h1,1 satisfy the equation

{ ∂2

∂x1∂x2
− d+ 1

2

1

x1 − x2

( ∂

∂x1
− ∂

∂x2

)}
hi,i = 0 (i= 0,1).

(b) If d is odd, h0,1 and h1,0 satisfy the equations

{ ∂2

∂x1∂x2
− d+ 2

2

1

x1 − x2

∂

∂x1
+

d

2

1

x1 − x2

∂

∂x2

}
h0,1 = 0

and { ∂2

∂x1∂x2
− d

2

1

x1 − x2

∂

∂x1
+

d+ 2

2

1

x1 − x2

∂

∂x2

}
h1,0 = 0,

respectively.

Proof. If d is even, we have

∂

∂xi
h1,1 =

(
xi

∂

∂xi
+

d+ 1

2

)
h0,0 (i= 1,2),

by setting I = (0,0) in Lemma 4.2(iii),(iv) among the inductive equations

of type I.

Now apply the operator ∂
∂x2

to one of the last formulas, and utilize the

remaining one, to get

∂2

∂x1∂x2
h1,1 =

(
x1

∂

∂x1
+

d+ 1

2

) ∂

∂x2
h0,0

= x−1
2

(
x1

∂

∂x1
+

d+ 1

2

)( ∂

∂x2
h1,1 −

d+ 1

2
h0,0

)
.

Multiply x2 to the above formula to have

x2
∂2

∂x1∂x2
h1,1 =

(
x1

∂

∂x1
+

d+ 1

2

) ∂

∂x2
h1,1 −

d+ 1

2

∂

∂x1
h1,1

= x1
∂

∂x1∂x2
h1,1 −

d+ 1

2

( ∂

∂x1
− ∂

∂x2

)
h1,1,

which is the equation in question for h1,1.
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For h0,0, we have

∂2

∂x1∂x2
h1,1 =

∂

∂x1

(
x2

∂

∂x2
+

d+ 1

2

)
h0,0 =

(
x2

∂2

∂x1∂x2
+

d+ 1

2

∂

∂x1

)
h0,0.

Change the role of the variables x1, x2 to get the other formula, and subtract

it from the original one. Then we have the asymmetric equality

{(
x1

∂2

∂x1∂x2
+

d+ 1

2

∂

∂x2

)
−
(
x2

∂2

∂x1∂x2
+

d+ 1

2

∂

∂x1

)}
h0,0 = 0,

which is the desired equation for h0,0. Thus, (a) is proved.

Now we settle the case of d odd. Set I = (0,−1) in (H1+), and set I =

(−1,0) in (H2+). Then

( ∂

∂x1
+

d

2

1

x1 − x2

)
h0,1 +

d

2

1

x1 − x2
h1,0 = 0

and ( ∂

∂x2
− d

2

1

x1 − x2

)
h1,0 −

d

2

1

x1 − x2
h0,1 = 0.

Eliminate h1,0 in the second formula by using the first one. Then we have the

equation for h0,1. Eliminate h0,1 in the first formula by the second formula.

Then we have the other equation for h1,0.

5.2. The Poisson equations for the peripheral and extremal

entries

We deduce the other partial differential equations for the extremal hI .

We start with an equation valid for each of the peripheral entries, that is,

for hI with i= 0 (or j = 0 by symmetry).

Lemma 5.1. If I = (0, j), that is, i= 0, we have an equation

{ 2∑
k=1

xi(xi − 1)
∂2

∂x2i
+ 2(x1 − 1)x2

∂2

∂x1∂x2

}
hI

+
2∑

k=1

{(d−L

2
+ d− j + 3

)
xi −

(
s(I) + 1

)} ∂

∂xi
hI

− (d+ 1)
∂

∂x1
hI +

(d− j

2
+ 1

)(d−L

2
+

d− j

2
+ 1

)
hI = 0.

(#)j
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Proof. Set i= 0 in Lemma 4.3(v) of the inductive equation. Then we have

(x2 − 1)
( ∂

∂x2
+

d− j − 1 + c2(I(0,2))

x2 − 1

)
hI(0,2)

− (x1 − 1)
(
x1

∂

∂x1
2x2

∂

∂x2
+ 3s(I) + j + 1+

c1(I)x1
x1 − x2

)
hI = 0.

Apply the operator ∂
∂x1

to the above formula. Then, since the operator on

the function hI(0,2) depends only on the variable x2, it commutes with ∂
∂x1

.

Recalling the inductive equation

∂

∂x1
hI(0,2) =−

(
x2

∂

∂x2
+ s(I)

)
hI ,

we have an equation

∂

∂x1

{
(x1 − 1)

(
x1

∂

∂x1
+ 2x2

∂

∂x2
+ 3s(I) + j + 1+

c1(I)x1
x1 − 1

)
hI

}

+
{
(x2 − 1)

∂

∂x2
+ d− j − 1 + c2(I(0,2))

}(
x2

∂

∂x2
+ s(I)

)
hI = 0.

Note here that

3s(I) + j + 1+ c1(I) = 2s(I) + j + 1+
{
s(I) + c1(I)

}
= 2s(I) +

d−L

2
+ 1 =

d−L

2
+ d− j + 1.

Then the last equation is found to be the desired equation by direct com-

putation.

The following Poisson equations are obtained from the above lemma.

Proposition 5.2.

(a) If d is even,

{ 2∑
k=1

xk(xk − 1)
∂2

∂x2i
+ (d+ 1)

x1(x1 − 1)

x1 − x2

∂

∂x1
− (d+ 1)

x2(x2 − 1)

x1 − x2

∂

∂x2

+
2∑

k=1

{(d−L

2
+ 2

)
xk −

(d
2
+ 1

)} ∂

∂xk

+
(d
2
+ 1

)(d−L

2
+

d

2
+ 1

)}
h0,0 = 0.
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(b) If d is odd,

{ 2∑
k=1

xk(xk − 1)
∂2

∂x2i
+ (d+ 2)

x1(x1 − 1)

x1 − x2

∂

∂x1
− d

x2(x2 − 1)

x1 − x2

∂

∂x2

+

2∑
k=1

{(d−L

2
+ 2k− 2

)
xk −

(d+ 2k− 3

2

)} ∂

∂xk

+
(d− 1

2
+ 1

)(d−L

2
+

d− 1

2
+ 1

)}
h0,1 = 0

and

{ 2∑
k=1

xk(xk − 1)
∂2

∂x2i
+ d

x1(x1 − 1)

x1 − x2

∂

∂x1
− (d+ 2)

x2(x2 − 1)

x1 − x2

∂

∂x2

+
2∑

k=1

{(d−L

2
+ 4− 2k

)
xk −

(d+ 3− 2k

2

)} ∂

∂xk

+
(d− 1

2
+ 1

)(d−L

2
+

d− 1

2
+ 1

)}
h1,0 = 0.

Proof. When d is even (resp., odd), set j = 0 (resp., j = 1) in formula

(#)j of Lemma 5.1, and applying the Euler-Darboux equation, replace the

term 2(x1 − 1)x2
∂2

∂x1∂x2
by

(d+ 1+ j)
(x1 − 1)x2
x1 − x2

∂

∂x1
− (d+ 1− j)

(x1 − 1)x2
x1 − x2

∂

∂x1

= (d+ 1+ j)
x1(x1 − 1)

x1 − x2

∂

∂x1
− (d+ 1− j)

x2(x2 − 1)

x1 − x2

∂

∂x1

− (d+ 1+ j)
x1 − 1

x1 − x2

∂

∂x1
− (d+ 1− j)

x2
x1 − x2

∂

∂x2

with j = 0 (resp., j = 1).

5.3. The solutions for the modified system of F2

We recall some basic facts on the regular solutions of the modified system

of F2 (see [1], [2], [9, Section 8.2]).
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Notation 5.1. We define an operator QB1,B2 , called the Euler-Darboux

operator, by

QB1,B2 =
∂2

∂x1∂x2
− B2

x1 − x2

∂

∂x1
+

B1

x1 − x2

∂

∂x2
.

Here B1,B2 are constants in x1 and x2.

Lemma 5.2. If a function h(x1, x2), analytic around the origin, satisfies

the equation

QB1,B2h= 0 (B1 > 0,B2 > 0),

it has a power series expansion of the form

h(x1, x2) =
∑

m1,m2≥0

(B1)m1(B2)m2ξ(m1 +m2)

m1!m2!
xm1
1 xm2

2 ,

with some series {ξ(k)}k∈N. Here we set

(B)k =
Γ(B + k)

Γ(B)
.

Moreover, let Fh(z) be a function in one variable z, regular around z = 0,

defined by the restriction of h to the diagonal:

h(z, z) =
Γ(B1)Γ(B2)

Γ(B1 +B2)
Fh(z) =

∑
k≥0

(B1 +B2)k
k!

ξ(k)zk.

Then the Eulerian integral formula for the β-function implies an integral

expression

h(x1, x2) =

∫ 1

0
Fh

(
tx1 + (1− t)x2

)
tB1−1(1− t)B2−1 dt,

if the integral of the right-hand side converges.

The modified F2 system consists of the above QB1,B2 and a Poisson oper-

ator P = PA,B1,B1,C;λ. The key property of the Poisson operator is the fol-

lowing “intertwining property” for the series of the above type.

Lemma 5.3. Assume that h satisfies the condition in Lemma 5.2,

QB1,B2h= 0,
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and let Fh(z) be the associated power series of one variable defined there.

Let

P =

i∑
i=1

xi(xi − 1)
∂2

∂x2i

+
{
(A+B1 −B2 + 1)x1 +B2 −C + 2B2

x1(x1 − 1)

x1 − x2

} ∂

∂x1

+
{
(A−B1 +B2 + 1)x2 +B1 −C − 2B1

x2(x2 − 1)

x1 − x2

} ∂

∂x2
− λ.

Then h1 = Ph also satisfies QB1,B2h1 = 0, and for the operator

L= z(z − 1)
d2

dz2
−
{
C − (A+B1 +B2 + 1)z

} d

dz
− λ,

we have an intertwining property:

FPh(z) = L · Fh(z).

Remark 5.1. This is an analogy of [9, Lemma 8.6, p. 720]. Though Iida

formulated this for the integral expression of h, strictly speaking, to justify

it one needs extra work to verify its convergence in the definite interval

[0,1]. So we prefer to formulate in terms of (formal) power series.

Proof. Since QB1,B2h= 0, we have an equality

Ph=
{
P + 2(x1 − 1)x2QB1,B2 − (x1 − x2)QB1,B2

}
h.

Set

P0h=
2∑

i=1

2∑
j=1

xixj
∂2

∂xi∂xj
+ (A+B1 +B2 + 1)

2∑
i=1

xi
∂

∂xi
λ,

and set

P1 =−
2∑

i=1

∂2

∂x21
− (x1 + x2)

∂2

∂x1∂x2
−C

( ∂

∂x1
+

∂

∂x2

)

=−
( 2∑
i=1

xi
∂

∂xi
+C

)
·
( ∂

∂x1
+

∂

∂x2

)
.

Then by direct computation, we have an equality between operators:

P + 2(x1 − 1)x2QB1,B2 − (x1 − x2)QB1,B2 = P0 + P1.
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The power series P0h is given by

∑ (B1)m1(B2)m2

m1!m2!

{
(m1 +m2)

2 + (A+B1 +B2)(m1 +m2)− λ
}

× ξ(m1 +m2)x
m1
1 xm2

2 ,

and the power series P1h is given by

−
∑ (B1)m1(B2)m2

m1!m2!
(m1 +m2 +B1 +B2)(m1 +m2 +C)

× ξ(m1 +m2 + 1)xm1
1 xm2

2 .

Hence, h1 = Ph is equal to

∑ (B1)m1(B2)m2

m1!m2!
η(m1 +m2)x

m1
1 xm2

2 ,

with

η(k) =
{
k2 + (A+B1 +B2)k− λ

}
ξ(k)− (k+B1 +B2)(k+C)ξ(k+ 1)

for each natural number k.

Now it is obvious that QB1,B2h1 = 0 from the last power series expression

of h1, and for Fh1 we have

Γ(B1)Γ(B2)

Γ(B1 +B2)
Fh1(z) =

∑
k≥0

(B1 +B2)k
k!

η(k)zk

by definition. In turn, it is equal to the sum of

∑ (B1 +B2)k
k!

{
k2 + (A+B1 +B2)k− λ

}
ξ(k)zk

=
{(

z
d

dz

)2
+ (A+B1 +B2)

(
z
d

dz

)
− λ

}{Γ(B1)Γ(B2)

Γ(B1 +B2)
Fh(z)

}

and

−
∑
k≥0

(B1 +B2)k
k!

(k+B1 +B2)(k+C)ξ(k+ 1)zk

=−
∞∑
k=0

(B1 +B2)k+1

(k+ 1)!
(k+ 1+C − 1)ξ(k+ 1)

d

dz
(zk+1)



242 T. ODA

=− d

dz

{ ∞∑
n=0

(n+C − 1)ξ(n)zn
}

=− d

dz

(
z
d

dz
+C − 1

)Γ(B1)Γ(B2)

Γ(B1 +B2)
Fh(z).

Therefore, canceling the same factor Γ(B1)Γ(B2)/Γ(B1 +B2), we have

Fh1(z) =
{(

z
d

dz

)2
+ (A+B1 +B2)

(
z
d

dz

)
− λ− d

dz

(
z
d

dz
+C − 1

)}
Fh(z),

as desired.

5.4. The solutions for the extremal entries

Now we can describe the solutions for the extremal entries h0,0 (when d

is even) and h0,1, h1,0 (when d is odd). We see in Section 5.2 that for even d,

Q(d+1)/2,(d+1)/2h0,0 = 0 and Q(d+1)/2,(d+1)/2h1,1 = 0,

and for odd d,

Qd/2,(d+2)/2h0,1 = 0 and Q(d+2)/2,d/2h1,0 = 0.

Thus, we have the following immediately by Lemma 5.2.

Lemma 5.4.

(i) If d is even, h0,0 and h1,1 are constant multiples of the formal power

series hP0,0 and hP1,1 of the form

hPi,i =
∑

m1≥0,m2≥0

(B1)m1(B2)m2

m1!m2!
ξi,i(m1 +m2)x

m1
1 xm2

2 (i= 0,1),

with B1 =B2 = (d+ 1)/2, for some series {ξi,i(k) | k ∈N} (i= 0,1).

(ii) If d is odd, h0,1 and h1,0 have power series expressions:

hPi,1−i =
∑

m1,m2≥0

(B1)m1(B2)m2

m1!m2!
ξi,1−i(m1 +m2)x

m1
1 xm2

2 (i= 0,1),

with B1 = (d/2)+ i,B2 = (d/2)+1− i, for some series {ξi,1−i(k) | k ∈N}
(i= 0,1).

We can apply Lemma 5.3 here to get the following.
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Proposition 5.3.

(i) The series {ξ0,0(k)} is given by

ξ0,0(k) = ξ1,1(k+ 1) = c0

(
d+2
2

)
k

(
d+2
2 + d−L

2

)
k(

d+ 3
2

)
k
(d+ 1)k

for k ∈ {0,∞}

with some constant c0.

(ii) For the series {ξ0,1(k)} we have

ξ0,1(k) =−ξ1,0(k) = c1

(
d+1
2

)
k

(
d+1
2 + d−L

2

)
k(

d+ 1
2

)
k
(d+ 1)k

for k ∈ {0,∞}

with some constant c1.

Proof. Since h0,0 satisfies the Poisson equation Ph0,0 = 0 with parameters

A=
d−L

2
+ 1, B1 =B2 = (d+ 1)/2,

C = d+
3

2
, λ=−

(d
2
+ 1

)(d−L

2
+

d

2
+ 1

)
,

the associated function Fh0,0(z), which is a solution of the hypergeometric

equation LF = 0 regular at the origin, should be a constant multiple of the

hypergeometric series

2F1

(d
2
+ 1,

d−L

2
+

d

2
+ 1;d+

3

2
;z
)
.

Therefore, the series {ξ0,0(k)} is given as above.

Similarly for d odd, h0,1 satisfies the Poisson equation Ph0,1 = 0 with

parameters

A=
d−L

2
, B1 = d/2, B2 = d/2 + 1,

C = d+ 1, λ=−
(d− 1

2
+ 1

)(d−L

2
+

d− 1

2
+ 1

)
.

Hence, we have the series {ξ0,1(k)} above. The equality

ξ1,0(k) =−ξ0,1(k) for any k

follows immediately from

∂h0,1
∂x1

+
∂h1,0
∂x2

= 0.

Now we have the following formulas for h0,0 for even d and h0,1, h1,0 for

odd d.
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Proposition 5.4.

(i) If d is even,

h0,0(x1, x2) = c0

∫ 1

0
2F1

(d
2
+ 1,

d−L

2
+

d

2
+ 1;d+

3

2
;x1t+ x2(1− t)

)
× t(d+1)/2(1− t)(d+1)/2 dt.

(ii) If d is odd,

h0,1(x1, x2)

= c1

∫ 1

0
2F1

(d− 1

2
+ 1,

d−L

2
+

d− 1

2
+ 1;d+

1

2
;x1t+ x2(1− t)

)
× t(d−2)/2(1− t)d/2 dt.

Remark 5.2. We do not know the value ξ1,1(0) for even d. But this will

be known by Lemma 6.2 in the next section.

Now the chess game part is finished. To have solutions for all entries, next

we face a kind of a jigsaw puzzle: to guess the next pieces, starting from the

corners. We need some patience here.

§6. Power series solutions and integral solutions for general entries

6.1. The power series solutions for general hI
In this section, we determine the (unique) power series expansion of the

solutions of the holonomic system for {hI | s(I)≥ 0}, which is regular at the

origin.

Theorem 6.1. The holonomic system for {hI | d ≡ i+ j(mod 2)} given

by Proposition 4.1 has a unique system of solutions regular at the origin

(x1, x2) = (0,0), up to nonzero constant multiple. Moreover, these power

series expansions are given as follows.

(i) If d is even and s(L)≥ 0 for I = (i, j),

hI(x1, x2) = c′0(−1)(i−j+d)/2

·
∑

m1,m2≥0

(
d+1
2

)
m1−[j/2]

(
d+1
2

)
m2−[i/2]

m1!m2!
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[i/2]∏
�=1

(m1 + s(I) + �) ·
[j/2]∏
�=1

(m2 + s(I) + �)

× ξ00
(
m1 +m2 − (i+ j)/2

)
xm1
1 xm2

2 .

Here

ξ00(k) =

(
d+2
2

)
k

(
d+2
2 + d−L

2

)
k(

d+ 3
2

)
k
(d+ 1)k

for k ∈ {−d/2,∞}.

(ii) If d is odd and s(I)≥ 0,

hI(x1, x2) = c′1(−1)(i−j+d)/2
∑

m1,m2≥0

(
d
2

)
m1+1−[(j+1)/2]

(
d
2

)
m2+1−[(i+1)/2]

m1!m2!

[i/2]∏
�=1

(
m1 + s(I) + �

) [j/2]∏
�=1

(
m2 + s(I) + �

)
× ξ01

(
m1 +m2 − (i+ j − 1)/2

)
xm1
1 xm2

2 .

Here

ξ01(k) =

(
d+1
2

)
k

(
d+1
2 + d−L

2

)
k(

d+ 1
2

)
k
(d+ 1)k

for k ∈ {−d/2,∞}.

Finally, c′0, c
′
1 are constants independent of i, j.

The proof is given in the following way. For the extremal entries h(0,0)
or h(1,0), h(0,1), we know the solution already, which is regular at the origin

(x1, x2) = (0,0) and unique up to nonzero constant multiple. The inductive

equations (Lemmas 4.2 and 4.3) determine almost all the coefficients of the

formal power series solutions for hI . The problem is that we cannot get the

information on the coefficients hI with peripheral indices directly, that is,

those I = (i, j) with ij = 0. On the other hand, the linear relations give the

initial values hI(0,0). Thus, the problem was to know hI when ij = (0,0)

but with I �= (0,0). Anyway, we have to guess at the correct system of

power series solutions somehow. And once this is obtained, we can prove

our theorem in the following three steps.

Step 1: Let {hPI } denote the system of the power series defined by the

right-hand sides of our theorem. Then, Lemma 6.2 shows that the initial
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values hI(0) coincide with the constant terms hPI (0) of the power series

solutions hPI .

Step 2: Proposition 6.1 claims that the system {hPI } is a special solution

of our holonomic system.

Step 3: We show that the difference hPI (x1, x2)− hI(x1, x2) is zero.

This is the outline of our proof.

6.2. Integral expression of the solutions

In this section, we give an integral expression of Euler type for the system

of solutions for {hI}, because it is deduced rather immediately from the

power series expression given in the previous section. The first step in this

procedure is to represent hI by simpler power series.

Lemma 6.1. Assume that s(I) ≥ 0. Let c′0 (resp., c′1) be the constant

defined in Theorem 6.1 for even (resp., odd) d. We set for I = (i1, i2)

HI(x1, x2) =
∑

m1,m2≥0

1

m1!m2!

(d+ 1

2

)
m1−[i2/2]

(d+ 1

2

)
m2−[i1/2]

× ξ00

(
m1 +m2 −

1

2
(i+ j)

)
xm1
1 xm2

2 (if d is even),

(d
2

)
m1+1−[(i2+1)/2]

(d
2

)
m2+1−[(i1+1)/2]

× ξ01

(
m1 +m2 −

1

2
(i+ j − 1)

)
xm1
1 xm2

2 (if d is odd ).

Then

hI = c′∗ × (x1x2)
−s(I)

( ∂

∂x1

)[i1/2]( ∂

∂x2

)[i2/2]{
(x1x2)

s(I)x
[i1/2]
1 x

[i2/2]
2 HI

}
.

Proof. It suffices to check the corresponding statement termwise:

(x1x2)
−s(I)

( ∂

∂x1

)[i1/2]( ∂

∂x2

)[i2/2]{
(x1x2)

s(I)x
[i1/2]
1 x

[i2/2]
2 xm1

1 xm2
2

}

=

[i1/2]∏
�=1

(
m1 + s(I) + �

) [i2/2]∏
�=1

(
m2 + s(I) + �

)
xm1
1 xm2

2 .
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The next step is to find an integral expression for HI . Note that now it

satisfies the Euler-Darboux equations with

B1 = (d+ 1)/2− [i2/2], B2 = (d+ 1)/2− [i1/2] if d is even,

B1 = (d+ 2)/2 + [−i2/2], B2 = (d+ 2)/2 + [−i1/2] if d is odd.

Theorem 6.2. We have an integral expression for {HI}.
(a) The case of even d:

(i) If both i1 and i2 are even,

HI(x1, x2) =HI(0)
Γ
(
d+ 1− i1+i2

2

)
Γ
(
d+1−i1

2

)
Γ
(
d+1−i2

2

)
×
∫ 1

0
2F1

(
s(I) + 1,

1

2
(d−L) + s(I) + 1;

d+ 3

2
+ s(I); tx1 + (1− t)x2

)
× t

d+1−i2
2

−1(1− t)
d+1−i1

2
−1 dt.

Here the constant HI(0) is given by

HI(0)
Γ
(
d+ 1− i1+i2

2

)
Γ
(
d+1−i1

2

)
Γ
(
d+1−i2

2

)
= c′0(−1)(i−j+d)/2Γ

(
d+ 1− i1+i2

2

)
Γ
(
d+1
2

)
Γ
(
d+1
2

) ξ00

(
− i1 + i2

2

)

= c′0(−1)(i−j+d)/2

× Γ(d+ 1)

Γ
(
d+1
2

)2
(
d+3
2 + s(I)

)
(i1+i2)/2

(s(I) + 1)(i1+i2)/2

(
1
2(d−L) + s(I) + 1

)
(i1+i2)/2

.

(ii) If both i1 and i2 are odd,

HI(x1, x2) =HI(0)
Γ
(
d+ 1− i1+i2

2 + 1
)

Γ
(
d+2−i1

2

)
Γ
(
d+2−i2

2

)
G(0)

×
∫ 1

0
G
(
tx1 + (1− t)x2

)
t
d+2−i2

2
−1(1− t)

d+2−i1
2

−1 dt,
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where

G(z) =
(
z
d

dz
+ d+ 1− i1 + i2

2

)

× 2F1

(
s(I) + 1,

1

2
(d−L) + s(I) + 1;

d+ 3

2
+ s(I);z

)
.

Moreover, the constant HI(0) is given by

HI(0)
Γ
(
d+ 2− i1+i2

2

)
Γ
(
d+2−i1

2

)
Γ
(
d+2−i2

2

)
G(0)

= c
′
0(−1)(i−j+d)/2Γ

(
d+ 1− i1+i2

2

)
Γ
(
d+1
2

)
Γ
(
d+1
2

) ξ00

(
− i1 + i2

2

)

= c
′
0(−1)(i−j+d)/2

× Γ(d+ 1)

Γ(d+1
2 )2

(
d+3
2 + s(I)

)
(i1+i2)/2

(s(I) + 1)(i1+i2)/2

(
1
2(d−L) + s(I) + 1

)
(i1+i2)/2

.

(b) The case of odd d:

HI(x1, x2) =HI(0)
Γ
(
d+ 1− i1+i2

2 + 1
2

)
Γ
(
d
2 −

[
i1
2

])
Γ
(
d
2 −

[
i2
2

])
×
∫ 1

0
2F1

(
s(I) + 1,

1

2
(d−L) + s(I) + 1;

d+ 2

2
+ s(I); tx1 + (1− t)x2

)

×
{
t
d+1−i2

2
−1(1− t)

d+2−i1
2

−1 dt (if i1 even, i2 odd),

t
d+2−i2

2
−1(1− t)

d+1−i1
2

−1dt (if i1 odd, i2 even).

The constant HI(0) is given by

HI(0)
Γ
(
d+ 3

2 −
i1+i2

2

)
Γ
(
d
2 −

[
i1
2

])
Γ
(
d
2 −

[
i2
2

])
= c′1(−1)(i−j+d)/2Γ

(
d+ 3

2 −
i1+i2

2

)
Γ
(
d
2

)
Γ
(
d
2

) ξ01

(
− i1 + i2

2
+

1

2

)
.
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6.3. Preparation for the proof of Theorem 6.1

We denote by hPi,j the power series of the right-hand side of the equalities

in Theorem 6.1.

We first confirm that the constant terms hPi,j(0) of h
P
i,j are consistent with

the known values of the constants hi,j(0).

Lemma 6.2. We have hI(0) = hPI (0) for all I.

Proof. It suffices to show the following two statements.

(i) If hi,j(0) = hPi,j(0), then hi∓1,j±1(0) = hPi∓1,j±1(0) for i+ j ≤ d.

(ii) If hi,j(0) = hPi,j(0), then

hi+1,j+1(0) = hPi+1,j+1(0) for i+ j ≤ d− 2.

To show (i), it suffices to show an equivalent (single) statement:

hi−1,j+1(0)/hi,j(0) =−(d+ 1− i)/(d− j) = hPi−1,j+1(0)/h
P
i,j(0).

The first equality is immediate from Proposition 4.2. We want to show

the second one. Set

f1(d; i, j) =

{(
d+1
2

)
−[j/2]

(
d+1
2

)
−[i/2]

if d is even,(
d
2

)
−[(j−1)/2]

(
d
2

)
−[(i−1)/2]

if d is odd.

Moreover, set

f2(d; i, j) =

[i/2]∏
�=1

(1
2
(d− i− j) + �

) [j/2]∏
�=1

(1
2
(d− i− j) + �

)
.

Then by definition,

hPi,j(0) =

{
c′0(−1)(i−j+d)/2ξ00

(
− i+j

2

)
f1(d; i, j)f2(d; i, j) if d is even,

c′1(−1)(i−j+d)/2ξ01
(
− i+j

2 + 1
2

)
f1(d; i, j)f2(d; i, j) if d is odd.

Hence,

hPi−1,j+1(0)/h
P
i,j(0) = (−1)

f1(d; i− 1, j + 1)

f1(d; i, j)

f2(d; i− 1, j + 1)

f2(d; i, j)
.

Since

f1(d; i− 1, j + 1)/f1(d; i, j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d−i
2 (d, i, j all even),(d−j
2

)−1
(d even, i, j odd),(d−j

2

)−1(d−i+1
2

)
(d, i odd, j even),

1 (d, j odd, i even)
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and

f2(d; i− 1, j + 1)/f2(d; i, j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(d−j
2

)−1
(d, i, j all even),(

d+1−i
2

)
(d even, i, j odd),

1 (d, i odd, j even),(d−j
2

)−1(d−i+1
2

)
(d, j odd, i even),

we have the desired equality:

hPi−1,j+1(0)/h
P
i,j(0) =−(d+ 1− i)/(d− j).

(ii) We know already that

hi+1,j+1(0)

hi,j(0)
=

(
d+ 1

2 −
i+j
2

)(
d− i+j

2

)(
d
2 −

i+j
2

)
(
d− 1

2 −
i+j
2

)(
d
2 −

i
2

)(
d
2 −

j
2

) .

It suffices to compute hPi+1,j+1(0)/h
P
i,j(0). When d is even, it is equal to

ξ0,0

(
− i+ j

2
− 1

)/
ξ0,0

(
− i+ j

2

)

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1× 1×
1
2
(d−i−j)

{ 1
2
(d−i−j)+ i

2
}

1
2
(d−i−j){

1
2
(d−i−j)+ j

2

}
(if i, j even),(

d+1
2 − j+1

2

)−1 ×
(
d+1
2 − i+1

2

)−1 × 1
2(d− i− j)× 1

2(d− i− j)

(if i, j odd),

which is in turn equal to(
c0 − i+j

2 − 1
)(
d+ 1− i+j

2 − 1
)

(
a0 − i+j

2 − 1
)(
b0 − i+j

2 − 1
) × (d− i− j)2

(d− i)(d− j)
=

hi+1,j+1(0)

hi,j(0)
,

as desired.

When d is odd,

hPi+1,j+1(0)/h
P
i,j(0) = ξ01

(
− i+ j

2
− 1

2

)/
ξ01

(
− i+ j

2
+

1

2

)

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
d
2 −

j
2

)−1 × 1× 1
2(d− i− j)×

1
2
(d−i−j)

{ 1
2
(d−i−j)+ j

2
}

(if i odd, j even),

1×
(
d
2 −

i
2

)
×

1
2
(d−i−j)

{ 1
2
(d−i−j)+ i

2
} ×

1
2(d− i− j)

(if i even, j odd).
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It in turn is equal to(
d− i+j

2

)(
d+ 1

2 −
i+j
2

)
(
ã0 − i+j

2

)(
b̃0 − i+j

2

) × (d− i− j)2

(d− i)(d− j)
= hi+1,j+1(0)/hi,j(0).

Thus, the proof of the lemma is completed.

Here is another ingredient for the proof of Theorem 6.1.

Proposition 6.1. The system of power series {hPi,j | i+ j ≤ d} satisfies

the following equations:

(i)
∂

∂x1
hPi,j+2 =−

(
x2

∂

∂x2
+

d− i− j

2

)
hPi,j ,

(ii)
∂

∂x2
hPi;2,j =−

(
x1

∂

∂x1
+

d− i− j

2

)
hPi,j ,

(x2 − 1)
{ ∂

∂x2
+ (d− j − 1)− L+ i− j − 2

2

1

x2 − 1

}
hPi,j+2

=−i · hPi−1,j+1 + (x1 − 1){
x1

∂

∂x1
+ 2x2

∂

∂x2
+

3

2
(d− i− j) + (j + 1)

− L− i+ j

2

x1
x1 − 1

}
hPi,j ,

(iii)

(x1 − 1)
{ ∂

∂x1
+ (d− i− 1)− L− i+ j − 2

2

1

x1 − 1

}
hPi+2,j

=−j · hPi+1,j−1 + (x2 − 1){
2x1

∂

∂x1
+ x2

∂

∂x2
+

3

2
(d− i− j) + (i+ 1)

− L+ i− j

2

x2
x2 − 1

}
hPi,j .

(iv)

Proof. We have the following.

(i) The coefficient of xm1
1 xm2

2 in the right-hand side is given as

c′0(−1)(i−j+d)/2 · (−1) ·
(B1)m1−[j/2](B2)m2−[i/2]

m1!m2!

×
[i/2]∏
�=1

(
m1 +

1

2
(d− i− j) + �

)
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×
[j/2]∏
�=1

{(
m2 +

1

2
(d− i− j) + �

)

·
(
m2 +

1

2
(d− i− j)

)}
.

On the other hand, the coefficients at xm1+1
1 xm2

2 of hPi,j+2 times (m1 + 1)

equal

c′0(−1)(i−j+d−2)/2 ·
(B1)m1+1−[(j+2)/2](B2)m2−[i/2]

m1!m2!

×
[i/2]∏
�=1

(
(m1 + 1) +

1

2
(d− i− j − 2) + �

)

×
[(j+2)/2]∏

�=1

{(
m2 +

1

2
(d− i− j − 2) + �

)
·
(
m2 +

1

2
(d− i− j)

)}
.

Since these two numbers are equal, (i) is true. The proof of (ii) is the same,

changing the roles of x1 and x2.

(iii) We first rewrite the equation: set

f1 =
{
x2

∂

∂x2
+
(
d− L

2
+

i+ j

2

)}
hPi,j+2

− x1

{
x1

∂

∂x1
2x2

∂

∂x2
+

3

2
d− L

2
− i− j + 1

}
hPi,j

and

f2 =
∂

∂x2
hPi,j+2 − hPi−1,j+1

−
{
x1

∂

∂x1
2x2

∂

∂x2
+

3

2
d− 3

2
i− 1

2
j + 1

}
hPi,j .

Then the equality (iii) is equivalent to f1 = f2. First, we compute the coef-

ficients of the power series f1.

Lemma 6.3. The coefficient of xm1
1 xm2

2 in the power series f1 is given by

the following.
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(i) If d is even

fλ
m1,m2

ξ0,0

(
m1 +m2 −

i+ j

2
− 1

)
(m1 +m2 + a0 − 1)

·
(
m1 +m2 + a0 − 1− i+ j

2

)(
m1 +m2 + b0 − 1− i+ j

2

)
,

with

fλ
m1,m2

= c′0(−1)(i−j+d)/2−1

(
d+1
2

)
m1−[j/2]−1

(
d+1
2

)
m2−[i/2]

m1!m2!

×
[i/2]∏
�=1

(
m1 +

1

2
(d− i− j) + �− 1

) [j/2]∏
�=1

(
m2 +

1

2
(d− i− j) + �

)

and

a0 =
d+ 2

2
, b0 =

d+ 2

2
+

d−L

2
.

(ii) If d is odd,

fλ
m1,m2

ξ0,1

(
m1 +m2 −

i+ j

2
− 1

2

)(
m1 +m2 + ã0 −

1

2
(i+ j)

)

×
(
m1 +m2 + b̃0 −

1

2
(i+ j)

)
,

with

fλ
m1,m2

= c′1(−1)(i−j+d)/2−1
(d
2

)
m1−[(j+1)/2]

(d
2

)
m2+1−[(i+1)/2]

×
[i/2]∏
�=1

(
m1 +

1

2
(d− i− j) + �− 1

) [j/2]∏
�=1

(
m2 +

1

2
(d− i− j) + �

)

and

ã0 =
d

2
, b̃0 =

d

2
+

d−L

2
.

Proof. We have the following.

(i) If d is even, the first term of f1 equals∑
m1,m2≥0

fλ
m1,m2

(
m2 +

1

2
(d− i− j)

)(
m2 + b0 − 1− i+ j

2

)

× ξ0,0

(
m1 +m2 −

i+ j

2
− 1

)
xm1
1 xm2

2 ,
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and the second term equals∑
m1,m2≥0

fλ
m1,m2

m1

(
m1 − 1 + 2m2 +

d

2
+ b0 − i− j

)

× ξ
(
m1 +m2 −

i+ j

2
− 1

)
xm1
1 xm2

2 .

Hence, the sum of the coefficients at xm1
1 xm2

2 is equal to

fλ
m1,m2

ξ0,0

(
m1 +m2 −

i+ j

2
− 1

)

×
(
m2 +

1

2
(d− i− j)

)(
m2 + b0 − 1− i+ j

2

)

+m1

(
m1 + 2m2 +

d

2
+ b0 − 1− i− j

)

= (m1 + m̃2)
2 +

(d
2
+ b0 − 1

)
m̃2 +

(d
2
+ b0 − 1

)
m1 +

d

2
(b0 − 1)

=
(
m1 + m̃2 +

d

2

)
(m1 + m̃2 + b0 − 1),

if we write m̃2 =m2 − (i+ j)/2. Thus, the case of even d is proved.

(ii) For odd d, the coefficient at xm1
1 xm2

2 of the first term in f1 is given by

fλ
m1,m2

(
m2 +

1

2
(d− i− j)

)(
m2 + b̃0 −

i+ j

2

)
ξ
(
m1 +m2 −

i+ j

2
− 1

2

)
,

and that of the second term by

fλ
m1,m2

(
m1 + 2m2 + b̃0 +

d

2
− i− j

)
ξ0,1

(
m1 +m2 −

i+ j

2
− 1

2

)
.

The sum of these two coefficients equals

fλ
m1,m2

ξ0,1

(
m1 +m2 −

i+ j

2
− 1

2

)

×
(
m2 +

1

2
(d− i− j)

)(
m2 + b̃0 −

i+ j

2

)

+m1

(
m1 + 2m2 +

d

2
+ b̃0 − i− j

)

=
(
m1 +m2 +

d

2
− i+ j

2

)
·
(
m1 +m2 + b̃0 −

i+ j

2

)
,

and our lemma is shown.

Now we compute the other side, f2.
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Lemma 6.4. The coefficient of xm1
1 xm2

2 in the power series f2 is given by

the following.

(i) For even d,

fρ
m1,m2

ξ0,0

(
m1 +m2 −

i+ j

2

)(
m1 +

1

2
(d− i− j)

)

×
(
m1 +m2 + d− i+ j

2

)(
m1 +m2 + d− i+ j

2
+

1

2

)
,

with

fρ
m1,m2

= c′0(−1)(i−j+d)/2−1
(d+ 1

2

)
m1−[j/2]−1

(d+ 1

2

)
m2−[i/2]

×
[i/2]−1∏
�=1

(
m1 +

1

2
(d− i− j) + �

) [j/2]∏
�=1

(
m2 +

1

2
(d− i− j) + �

)
.

(ii) For odd d,

fρ
m1,m2

ξ0,1

(
m1 +m2 −

i+ j

2

)(
m1 +

1

2
(d− i− j)

)

×
(
m1 +m2 + d− i+ j

2
− 1

2

)(
m1 +m2 + d− i+ j

2
+

1

2

)
,

with

fρ
m1,m2

= c′1(−1)(i−j+d)/2−1
(d
2

)
m1−[(j+1)/2]

(d
2

)
m2+1−[(i+1)/2]

×
[i/2]−1∏
�=1

(
m1 +

1

2
(d− i− j)

)
+ �)

[j/2]∏
�=1

(
m2 +

1

2
(d− i− j) + �

)
.

Proof. First, for
(

∂
∂x2

)
hi,j+2, we have the following.

Sublemma 2A. The coefficient of xm1
1 xm2

2 in the power series ∂
∂x2

hPi,j+2

equals

fρ
m1,m2

×
{
ξ0,0

(
m1 +m2 − i+j

2

)
(if d even),

ξ0,1
(
m1 +m2 − i+j

+
1
2

)
(if d odd)

times(
m2 +

1

2
(d− i) +

1

2

)(
m2 +

1

2
(d− i− j) + 1

)(
m1 +

1

2
(d− i− j)

)
.
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Proof of Sublemma 2A. If d is even, ∂
∂x2

hi,j+2 equals

∑
fρ
m1,m2

(
m2 +

d+ 2

2
−
[ i
2

])(
m2 +

1

2
(d− i− j) +

[ j
2

]
+ 1

)

×
(
m1 +

1

2
(d− i− j)

)
ξ0,0

(
m1 +m2 −

i+ j

2

)
xm1
1 xm2

2 .

We can confirm that(
m2 +

d+ 1

2
−
[ i
2

])(
m2 +

1

2
(d− i− j) +

[j
2

]
+ 1

)

=
(
m2 +

1

2
(d− i) +

1

2

)(
m2 +

1

2
(d− i) + 1

)
either if i, j are both odd or if i, j are both even.

If d is odd,
(

∂
∂x2

)
hi,j+2 equals

∑
fρ
m1,m2

(
m2 +

d

2
+ 1−

[ i+ 1

2

])(
m2 +

1

2
(d− i− j) +

[j
2

]
+ 1

)

×
(
m1 +

1

2
(d− i− j)

)
ξ0,1

(
m1 +m2 −

i+ j

2
+

1

2

)
xm1
1 xm2

2 .

Note here that(
m2 +

d

2
+ 1−

[ i+ 1

2

])(
m2 +

1

2
(d− i− j) +

[j
2

]
+ 1

)

=
(
m2 +

1

2
(d− i) +

1

2

)(
m2 +

1

2
(d− i) + 1

)
,

either if i is odd and j is even or if i is even and j is odd.

Thus, Sublemma 2A is proved.

For −ihPi−1,j+1, we have the following.

Sublemma 2B. The coefficient of xm1
1 xm2

2 in the power series hPi−1,j+1

is equal to

fρ
m1,m2

×
{
ξ0,0

(
m1 +m2 − i+j

2

)
(if d even),

ξ0,1
(
m1 +m2 − i+j

2 + 1
2

)
(if d odd)

times

−i ·
(
m1 +

1

2
(d− j)− 1

2

)(
m2 +

1

2
(d− i) +

1

2

)
.
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Proof of Sublemma 2B. If d, i, j are all even, the coefficient in question is

fρ
m1,m2

ξ0,1

(
m1 +m2 −

i+ j

2

)

× (−i)
(d+ 1

2
+m1 −

j

2
− 1

)(d+ 1

2
+m2 −

i

2

)

by definition of hPi−1,j+1. If d is even and i, j are both odd, it reads

fρ
m1,m2

ξ0,0

(
m1 +m2 −

i+ j

2

)

× (−i)
(
m1 +

1

2
(d− i− j) +

[ i
2

])(
m2 +

1

2
(d− i− j) +

[j + 1

2

])
.

Since (
m1 +

1

2
(d− i− 1) +

[ i
2

])(
m2 +

1

2
(d− i− j) +

[j + 1

2

])

=
(
m1 +

1

2
(d− j)− 1

2

)(
m2 +

1

2
(d− i) +

1

2

)
for i, j odd,

Sublemma 2B is true for even d.

If d is odd, the coefficient in question is equal to

fρ
m1,m2

ξ0,1

(
m1 +m2 −

i+ j

2
+

1

2

)
times

(−i) ·
{(

d
2 +m2 −

[
i
2

])(
m1 +

1
2(d− i− j) +

[
i−1
2

])
(i odd, j even),(

d
2 +m1 −

[ j+2
2

])(
m2 +

1
2(d− i− j) +

[ j+1
2

])
(i even, j odd).

In cases where either i is odd and j is even or i is even and j is odd, the

last number is the same:

(−i)
(
m1 +

1

2
(d− j)− 1

2

)(
m2 +

1

2
(d− i) +

1

2

)
.

Hence, Sublemma 2B is shown for the case of odd d, too.

For

−
(
x1

∂

∂x1
+ 2x2

∂

∂x2
+

3

2
d− 3

2
i− 1

2
j + 1

)
hPi,j ,

we have the following.
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Sublemma 2C. The coefficient of xm1
1 xm2

2 in the power series

−
(
x1

∂

∂x1
+ 2x2

∂

∂x2
+

3

2
d− 3

2
i− 1

2
j + 1

)
hPi,j

is equal to

fρ
m1,m2

×
{
ξ0,0

(
m1 +m2 − i+j

2

)
(if d even),

ξ0,1
(
m1 +m2 − i+j

2 + 1
2

)
(if d odd)

times(
m1 +

1

2
(d− j)

)(
m1 +

1

2
(d− j)− 1

2

)(
m1 + 2m2 +

3

2
d− 3

2
i− 1

2
j + 1

)
.

Proof of Sublemma 2C. If d is even, the coefficient in question is

fρ
m1,m2

ξ0,0

(
m1 +m2 −

i+ j

2

)(
m1 +

d+ 1

2
−
[j
2

]
− 1

)

×
(
m1 + (d− i− j);

[ i
2

])(
m1 + 2m2 +

3

2
d− 3

2
i− 1

2
j + 1

)
.

Thus, the equality(
m1 +

d+ 1

2
−
[ j
2

]
− 1

)(
m1 +

1

2
(d− i− j) +

[ i
2

])

=
(
m1 +

1

2
(d− j)− 1

2

)(
m1 +

1

2
(d− i)

)
,

which is valid either when both i and j are even or when both i and j are

odd, implies Sublemma 2C.

If d is odd, the coefficient in question is

fρ
m1,m2

ξ0,1

(
m1 +m2 −

i+ j

2
+

1

2

)(
m1 +

d

2
−
[ j
2

])

×
(
m1 + 2m2 +

3

2
d− 3

2
i− 1

2
j + 1

)(
m1 +

1

2
(d− i− j) +

[ i
2

])
.

The equality (
m1 +

d

2
−
[ j
2

])(
m1 +

1

2
(d− i− j) +

[ i
2

])

=
(
m1 +

1

2
(d− j)

)(
m2 +

1

2
(d− j)− 1

2

)
is valid either when i is odd and j is even or when i is even and j is odd.

Hence, Sublemma 2C is proved.



MATRIX COEFFICIENTS 259

6.3.1. Conclusion of the proofs of Lemma 6.4 and Proposition 6.1. In

view of Sublemmas 2A, 2B, and 2C, the proof of Lemma 6.4 is reduced to

show the following equality:(
m2 +

1

2
(d− i) + 1

)(
m2 +

1

2
(d− i) +

1

2

)(
m1 +

1

2
(d− i− j)

)

− i
(
m1 +

1

2
(d− j)− 1

2

)(
m2 +

1

2
(d− i) +

1

2

)

+
(
m1 +

1

2
(d− j)

)(
m1 + 2m2 +

3

2
d− 3

2
i− 1

2
j + 1

)

×
(
m1 +

1

2
(d− j)− 1

2

)

=
(
m1 +

1

2
(d− i− j)

)(
m1 +m2 + d− i+ j

2

)

×
(
m1 +m2 + d− i+ j

2
+

1

2

)
,

which is confirmed by direct computation.

Now let us return to the proof of Proposition 6.1(iii). We have to show

that f1 = f2. By Lemmas 6.3 and 6.4, it is reduced to the equality

fλ
m1,m2

ξ0,0

(
m1 +m2 −

i+ j

2
− 1

)

×
(
m1 +m2 + a0 − 1− i+ j

2

)(
m1 +m2 + b0 − 1− i+ j

2

)

= fρ
m1,m2

ξ0,0

(
m1 +m2 −

i+ j

2

)

×
(
m1 +

1

2
(d− i− j)

)(
m1 +m2 + d− i+ j

2

)

×
(
m1 +m2 + d− i+ j

2
+

1

2

)
if d is even, and to

fλ
m1,m2

ξ0,1

(
m1 +m2 −

i+ j

2
− 1

2

)

×
(
m1 +m2 + ã0 −

i+ j

2

)(
m1 +m2 + b̃0 −

i+ j

2

)

= fρ
m1,m2

ξ0,1

(
m1 +m2 −

i+ j

2
+

1

2

)
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×
(
m1 +

1

2
(d− i− j)

)(
m1 +m2 + d− i+ j

2

)

×
(
m1 +m2 + d− i+ j

2
+

1

2

)
if d is odd.

Either d is even or it is odd; thus, we have

fλ
m1,m2

= fρ
m1,m2

(
m1 +

1

2
(d− i− j)

)
by definition. So at last we have to show that

ξ0,0(k− 1)(k+ a0 − 1)(k+ b0 − 1) = ξ0,0(k+ d)
(
k+ d+

1

2

)
,

for k =m1 +m2 − (i+ j)/2, if d is even. If d is odd, we have to check that

ξ0,1(k− 1)
(
k− 1 + ã0 +

1

2

)(
k− 1 + b̃0 +

1

2

)
= ξ0,1(k)

(
k+ d− 1

2

)
(k+ d)

with k =m1+m2−(i+j)/2+1/2 ∈Z. Since these are exactly the recurrence

relations defining ξ0,0(k) and ξ0,1(k), respectively, we complete the proof of

f1 = f2.

6.4. Proof of Theorem 6.1

When d is even, Theorem 6.1 is true for h0,0 by Proposition 5.3, and when

d is odd, it is also true for h0,1 and h1,0 by Proposition 5.3.

We proceed by induction on the indices I = (i, j). The first step of the

induction is to show Theorem 6.1 when i ≤ 1 or j ≤ 1. By symmetry, it

suffices to discuss only the case i≤ 1. Moreover, we may assume that j ≥ 2.

Since
∂

∂x1
hi,j =−

{
x2

∂

∂x2
+

d− i− j + 2

2

}
hi,j−2

by an inductive equation of type I (Lemma 4.2), and since

∂

∂x1
hPi,j =−

{
x2

∂

∂x2
+

d− i− j + 2

2

}
hPi,j−2

by Proposition 6.1, the hypothesis of the induction

hi,j−2 = hPi,j−2

implies that
∂

∂x1
(hi,j − hPi,j) = 0.
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Hence,

hi,j = hPi,j + F (x2),

where F (x2) is a power series only in the variable x2, regular at x2 = 0. By

Proposition 6.1(iii) and by the corresponding equation for hi,j , we have

(x2 − 1)
{ ∂

∂x2
+
(
d− j − 1− L+ i− j

2

) 1

x2 − 1

}
(hi,j − hPi,j) = 0,

since hi,j−2 = hPi,j−2 and hi−1,j−1 = hPi−1,j−1 by the hypothesis of induction.

Therefore, we have

(x2 − 1)
{ ∂

∂x2
+
(
d− j − 1− L+ i− j

2

) 1

x2 − 1

}
F (x2) = 0;

that is,

F (x2) =C ′(x2 − 1)d+1−L/2−(i+j)/2

with a constant of integration C ′. Then

hi,j(0) = hPi,j(0) + F2(0) = hPi,j(0) +C ′.

But we already know that hi,j(0) = hPi,j(0) by Lemma 6.2. Thus, C ′ = 0,

that is, F2(x2) = 0, which means that hi,j = hPi,j .

The next and last step of induction is to discuss the case when i, j ≥ 2.

In this case we use the equations

∂

∂x1
hi,j =−

{
x2

∂

∂x2
+

d− i− j + 2

2

}
hi,j−2

and
∂

∂x2
hi,j =−

{
x1

∂

∂x1
+

d− i− j + 2

2

}
hi−2,j .

Since the corresponding equations are valid for hPi,j , the hypothesis of induc-

tion,

hi,j−2 = hPi,j−2, hi−2,j = hPi−2,j ,

implies that
∂

∂x1
(hi,j − hPi,j) =

∂

∂x2
(hi,j − hPi,j) = 0;

that is,

hi,j = hPi,j +C with a constant of integration C.

Since Lemma 6.2 implies that C = hi,j(0) − hPi,j(0) = 0, we complete the

proof of the equality hi,j = hPi,j for i+ j ≤ d.
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§7. Postscript

7.1. Comparison with the case SU(2,2)

Here we discuss a problem of the behavior of the matrix coefficients at

infinity.

When G/K is of Hermitian type, the matrix coefficients of holomor-

phic and antiholomorphic discrete series with the minimal K-types are

the Bergmann kernel. In this case, its A-radial part is a Laurent polyno-

mial function in the coordinates (i.e., in the matrix entries of A ⊂ G ↪→
GL(N,C)). No transcendental function appears in this case.

Some years ago, I together with Takahiro Hayata and Harutaka Koseki

had an explicit formula of the radial part of the middle discrete series of

SU(2,2) (see [3]). As a corollary of this result, we can say that the matrix

coefficients have logarithmic singularities at infinity (see [4]).

Our main results also seem to give the asymptotic expansion at infinity.

But the characteristic indices are always halves of integers; hence, we have

no logarithmic singularities.

7.2. A conjecture, or a hope?

Conjecture. Given a discrete series representation π of a semisimple

Lie group G with Cartan decomposition G=KAK, the A-radial part of the

matrix coefficients of K-finite types of π is an elementary transcendental

function in the matrix variables in the coordinates of A. Here elementary

transcendental functions are rational expressions of logarithms, hyperbolic

sines, and algebraic functions.

This means that our job is not finished even for the case of the group

Sp(2,R). We have to find a better expression than the main theorems,

Theorems 6.1 and 6.2.
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[14] E. M. Opdam, Root systems and hypergeometric functions, III, Compos. Math. 67
(1988), 21–49.

[15] , Root systems and hypergeometric functions, IV, Compos. Math. 67 (1988),
191–209.

[16] W. Schmid, On the realization of the discrete series of a semisimple Lie group, Rice
Univ. Studies 56 (1970), 99–108.

[17] N. Takayama, Propagation of singularities of solutions of the Euler-Darboux equation
and a global structure of the space of holonomic solutions, II, Funkcial. Ekvac. 36
(1993), 187–234.

Graduate School of Mathematical Sciences

University of Tokyo

Komaba Meguro-Ku, Tokyo 153-8914 Japan

takayuki@ms.u-tokyo.ac.jp

mailto:takayuki@ms.u-tokyo.ac.jp

	Introduction
	Generalities on the real symplectic group of rank 2
	The group and related subgroups and the corresponding Lie algebras
	Cartan decomposition of the basis of p±
	Representations of the maximal compact subgroup

	The discrete series representations of Sp(2;R)
	Parameterization of the discrete series
	 Formulation of the main problem
	Realization of the discrete series via Schmid equations
	Radial part of the gradient operators

	Explicit formulas of Schmid operators
	Schmid operators
	Right actions
	Left actions

	The Schmid equations
	The right equations
	The left equations
	Derivation of a holonomic system from the Schmid operators
	Symmetry with respect to the indices I

	Linear relations among coefﬁcients cI

	Reduction of the holonomic system
	Change of functions and variables
	Inductive equations
	Linear relations in terms of {hI}
	The initial values hI(0,0)

	Modiﬁed system of F2 for extremal entries
	The Euler-Darboux equation for extremal entries 
	The Poisson equations for the peripheral and extremal entries
	The solutions for the modiﬁed system of F2
	The solutions for the extremal entries

	Power series solutions and integral solutions for general entries
	The power series solutions for general hI
	Integral expression of the solutions
	Preparation for the proof of Theorem 6.1
	Conclusion of the proofs of Lemma 6.4 and Proposition 6.1

	 Proof of Theorem 6.1 

	Postscript
	Comparison with the case SU(2,2)
	A conjecture, or a hope?

	Acknowledgments
	References
	Author's Addresses

