THE FIRST LINE OF THE BOCKSTEIN SPECTRAL SEQUENCE ON A MONOCHROMATIC SPECTRUM AT AN ODD PRIME

RYO KATO and KATSUMI SHIMOMURA

Abstract

The chromatic spectral sequence was introduced by Miller, Ravenel, and Wilson to compute the E_{2}-term of the Adams-Novikov spectral sequence for computing the stable homotopy groups of spheres. The E_{1}-term $E_{1}^{s, t}(k)$ of the spectral sequence is an Ext group of $B P_{*} B P$-comodules. There is a sequence of Ext groups $E_{1}^{s, t}(n-s)$ for nonnegative integers n with $E_{1}^{s, t}(0)=$ $E_{1}^{s, t}$, and there are Bockstein spectral sequences computing a module $E_{1}^{s, *}(n-$ s) from $E_{1}^{s-1, *}(n-s+1)$. So far, a small number of the E_{1}-terms are determined. Here, we determine the $E_{1}^{1,1}(n-1)=\operatorname{Ext}^{1} M_{n-1}^{1}$ for $p>2$ and $n>3$ by computing the Bockstein spectral sequence with E_{1}-term $E_{1}^{0, s}(n)$ for $s=1,2$. As an application, we study the nontriviality of the action of α_{1} and β_{1} in the homotopy groups of the second Smith-Toda spectrum $V(2)$.

§1. Introduction

Let p be a prime number, let $\mathcal{S}_{(p)}$ be the stable homotopy category of p local spectra, and let S be the sphere spectrum localized at p. Understanding homotopy groups $\pi_{*}(S)$ of S is one of the principal problems in stable homotopy theory. The main vehicle for computing $\pi_{*}(S)$ is the Adams-Novikov spectral sequence based on the Brown-Peterson spectrum $B P$. Spectrum $B P$ is the p-typical component of $M U$, the complex cobordism spectrum, and it has homotopy groups $B P_{*}=\pi_{*}(B P)=\mathbb{Z}_{(p)}\left[v_{1}, v_{2}, \ldots\right]$, where v_{n} is a canonical generator of degree $2 p^{n}-2$. In order to study the E_{2}-term of the Adams-Novikov spectral sequence, Miller, Ravenel, and Wilson [7] introduced the chromatic spectral sequence. It was designed to compute the $E_{2^{-}}$ term but has the following deeper connotation. Let $L_{n}: \mathcal{S}_{(p)} \rightarrow \mathcal{S}_{(p)}$ denote the Bousfield-Ravenel localization functor with respect to $v_{n}^{-1} B P$ (see [11]). It gives rise to the chromatic filtration $\mathcal{S}_{(p)} \rightarrow \cdots \rightarrow L_{n} \mathcal{S}_{(p)} \rightarrow L_{n-1} \mathcal{S}_{(p)} \rightarrow$

[^0]$\cdots \rightarrow L_{0} \mathcal{S}_{(p)}$ of the stable homotopy category of spectra, which is a powerful tool for understanding the category. The chromatic nth layer of the spectrum S can be determined from the homotopy groups of $L_{K(n)} S$, the Bousfield localization of S with respect to the nth Morava K-theory $K(n)$ that has homotopy groups $K(n)_{*}=v_{n}^{-1} \mathbb{Z} / p\left[v_{n}\right]$ for $n>0$ and $K(0)_{*}=\mathbb{Q}$. By the chromatic convergence theorem of Hopkins and Ravenel [12], S is the inverse limit of the $L_{n} S$. Let $E(n)$ be the nth Johnson-Wilson spectrum $E(n)$ with $E(n)_{*}=v_{n}^{-1} \mathbb{Z}_{(p)}\left[v_{1}, \ldots, v_{n}\right]$ for $n>0$, and let $E(0)=K(0)$. It is Bousfield equivalent to $v_{n}^{-1} B P$ and also to $K(0) \vee \cdots \vee K(n)$; that is, $L_{E(n)}=L_{n}=L_{K(0) \vee \cdots \vee K(n)}$. We notice that $E(0)=H \mathbb{Q}$, the rational Eilenberg-MacLane spectrum, and that $E(1)$ is the p-local Adams summand of periodic complex K-theory. Furthermore, $E(2)$ is closely related to elliptic cohomology. So far, we have no geometric interpretation of homology theories $K(n)$ or $E(n)$ when $n>2$.

From now on, we assume that the prime p is odd. We explain the E_{1} term of the chromatic spectral sequence. The Brown-Peterson spectrum $B P$ is a ring spectrum that induces the Hopf algebroid $\left(B P_{*}, B P_{*}(B P)\right)=$ $\left(B P_{*}, B P_{*}\left[t_{1}, t_{2}, \ldots\right]\right)$ in the standard way (see [13]), and we have an induced Hopf algebroid

$$
\left(E(n)_{*}, E(n)_{*}(E(n))\right)=\left(E(n)_{*}, E(n)_{*} \otimes_{B P_{*}} B P_{*}(B P) \otimes_{B P_{*}} E(n)_{*}\right),
$$

where $E(n)_{*}$ is considered to be a $B P_{*}$-module by sending v_{k} to zero for $k>n$. Then, the E_{1}-term is given by

$$
E_{1}^{s, t}(n-s)=\operatorname{Ext}_{E(n)_{*}(E(n))}^{t}\left(E(n)_{*}, M_{n-s}^{s}\right)
$$

Here, M_{n-s}^{s} denotes the $E(n)_{*}(E(n))$-comodule $E(n)_{*} /\left(I_{n-s}+\left(v_{n-s}^{\infty}\right.\right.$, $\left.v_{n-s+1}^{\infty}, \ldots, v_{n-1}^{\infty}\right)$), in which I_{k} denotes the ideal of $E(n)_{*}$ generated by v_{i} for $0 \leq i<k\left(v_{0}=p\right)$, and $M /\left(w^{\infty}\right)$ for $w \in E(n)_{*}$, and an $E(n)_{*}$-module M denotes the cokernel of the localization map $M \rightarrow w^{-1} M$. In order to study the stable homotopy groups $\pi_{*}\left(L_{K(n)} S\right)$, we study here the homotopy groups of the monochromatic component $M_{n} S$ of S (see [11]). Then, the E_{2}-term $E_{2}^{s, t}\left(M_{n} S\right)$ of the Adams-Novikov spectral sequence for computing $\pi_{*}\left(M_{n} S\right)$ is the E_{1}-term $E_{1}^{n, s}(0)$ of the chromatic spectral sequence. In [7], the authors also introduced the v_{n-s}-Bockstein spectral sequence $E_{1}^{s-1, t+1}(n-s+1) \Rightarrow E_{1}^{s, t}(n-s)$ associated to a short exact sequence

$$
0 \rightarrow M_{n-s+1}^{s-1} \xrightarrow{\varphi} M_{n-s}^{s} \xrightarrow{v_{n-s}} M_{n-s}^{s} \rightarrow 0
$$

of $E(n)_{*}(E(n))$-comodules, where $\varphi(x)=x / v_{n-s}$. So far, the E_{1}-term $E_{1}^{s, t}(n-s)$ is determined in the following cases (see [13]):

$$
\begin{aligned}
(s, t, n)= & (0, t, n) \quad \text { for }(\mathrm{a}) n \leq 2,(\mathrm{~b}) n=3, p>3,(\mathrm{c}) t \leq 2 \text { by Ravenel }[10] \\
& (\text { Henn }[2] \text { for } n=2 \text { and } p=3) ; \\
= & (1,0, n) \text { for } n \geq 0 \text { by Miller, Ravenel, and Wilson }[7] ; \\
= & (s, t, n) \text { for } n \leq 2 \text { by Shimomura }([14],[17],[18]) \text { and his } \\
& \text { collaborators Arita [1], Tamura [19], Wang [20], and Yabe }[21] ; \\
= & (1,1,3) \text { by Shimomura [15] and Hirata and Shimomura }[3] ; \\
= & (2,0, n) \text { for } n>3 \text { by Shimomura [16], for } n=3 \text { by } \\
& \text { Nakai }([8],[9]) .
\end{aligned}
$$

In this paper, we determine the structure of $E_{1}^{1,1}(n-1)$ for $n>3$. The case $n=3$, which is special, is treated in [15] and [3]. The result is the first step to understanding $\pi_{*}\left(L_{K(n)} S\right)$ for $n>3$ as explained above. We proceed to state the result.

In this paper, we consider only the cases $s=0$ and $s=1$, and hereafter, we put

$$
v=v_{n} \quad \text { and } \quad u=v_{n-1} .
$$

Furthermore, we put

$$
F=\mathbb{Z} / p
$$

and we consider the coefficient ring $K(n)_{*}=F\left[v_{n}^{ \pm 1}\right]=F\left[v^{ \pm 1}\right]=E(n)_{*} / I_{n}$,

$$
A=E(n)_{*} / I_{n-1} \quad \text { and } \quad B=M_{n-1}^{1}=A /\left(u^{\infty}\right)=\operatorname{Coker}\left(A \rightarrow u^{-1} A\right)
$$

Since the ideal I_{n-1} is invariant, $(A, \Gamma)=\left(A, E(n)_{*}(E(n)) / I_{n-1}\right)$ is a Hopf algebroid, and we use the abbreviation

$$
\operatorname{Ext}^{s} M=\operatorname{Ext}_{\Gamma}^{s}(A, M)
$$

for a Γ-comodule M. Then, the chromatic E_{1}-terms are

$$
E_{1}^{0, t}(n)=\operatorname{Ext}^{t} K(n)_{*} \quad \text { and } \quad E_{1}^{1, t}(n-1)=\operatorname{Ext}^{t} B
$$

We have the u-Bockstein spectral sequence

$$
\begin{equation*}
E_{1}=\operatorname{Ext}^{*} K(n)_{*} \Longrightarrow \operatorname{Ext}^{*} B \tag{1.1}
\end{equation*}
$$

associated to the short exact sequence

$$
\begin{equation*}
0 \rightarrow K(n)_{*} \xrightarrow{\varphi} B \xrightarrow{u} B \rightarrow 0 \tag{1.2}
\end{equation*}
$$

where φ is a homomorphism defined by $\varphi(x)=x / u$.
Let R be a ring, and let $R\langle g\rangle$ denote the R-module generated by g. The E_{1}-term of the u-Bockstein spectral sequence was determined by Ravenel [10] as follows.

Theorem 1.3. We have $\operatorname{Ext}^{0} K(n)_{*}=K(n)_{*}$ and

$$
\begin{aligned}
& \operatorname{Ext}^{1} K(n)_{*}=K(n)_{*}\left\langle h_{i}, \zeta_{n}: 0 \leq i<n\right\rangle \\
& \operatorname{Ext}^{2} K(n)_{*}=K(n)_{*}\left\langle\zeta_{n} h_{i}, b_{i}, g_{i}, k_{i}, h_{j} h_{k}: 0 \leq i<n, 0 \leq j<k-1<n-1\right\rangle
\end{aligned}
$$

In the theorem, the generators h_{i} and b_{i} are represented by $t_{1}^{p^{i}}$ and $\sum_{k=1}^{p-1} \frac{1}{p}\binom{p}{k} t_{1}^{k p^{i}} \otimes t_{1}^{(p-k) p^{i}}$ of the cobar complex $\Omega_{\Gamma}^{*} K(n)_{*}$, respectively, and g_{i} and k_{i} are given by the Massey products

$$
\begin{equation*}
g_{i}=\left\langle h_{i}, h_{i}, h_{i+1}\right\rangle \quad \text { and } \quad k_{i}=\left\langle h_{i}, h_{i+1}, h_{i+1}\right\rangle \tag{1.4}
\end{equation*}
$$

In order to determine the module Ext ${ }^{0} B$, Miller, Ravenel, and Wilson [7] introduced elements x_{i} and integers a_{i} in [7, (5.11), (5.13)], where they denoted them by $x_{n, i}$ and $a_{n, i}$, such that $x_{i} \equiv v^{p^{i}} \bmod I_{n}$ with the action of the connecting homomorphism δ given in [7, (5.18)]:

$$
\begin{align*}
\delta\left(v^{s} / u\right) & =s v^{s-1} h_{n-1} \quad \text { and } \\
\delta\left(x_{i}^{s} / u^{a_{i}}\right) & =s v^{(s p-1) p^{i-1}} h_{[i-1]} \quad \text { for } i \geq 1 \tag{1.5}
\end{align*}
$$

Hereafter, we let

$$
[i] \in\{0,1, \ldots, n-2\}
$$

be the principal representative of the integer i module $n-1$. The elements x_{i} and the integers a_{i} are defined inductively by $x_{0}=v$ and $a_{0}=1$, and for $i>0$,

$$
\begin{align*}
& x_{i}= \begin{cases}x_{i-1}^{p} & \text { for } i=1 \text { or }[i] \neq 1, \\
x_{i-1}^{p}-u^{b_{n, i}} v^{p^{i}-p^{i-1}+1} & \text { for } i>1 \text { and }[i]=1, \text { and }\end{cases} \\
& a_{i}= \begin{cases}p a_{i-1} & \text { for } i=1 \text { or }[i] \neq 1, \\
p a_{i-1}+p-1 & \text { for } i>1 \text { and }[i]=1 .\end{cases} \tag{1.6}
\end{align*}
$$

Here, $b_{n, k(n-1)+1}=\left(p^{n}-1\right)\left(p^{k(n-1)}-1\right) /\left(p^{n-1}-1\right)$. The result (1.5) determines the differentials of the Bockstein spectral sequence, which implies the following.

Theorem 1.7 ([7, Theorem 5.10]). As a k_{*}-module,

$$
\operatorname{Ext}^{0} B=L_{\infty} \oplus \bigoplus_{p \nmid s, i \geq 0} L_{a_{i}}\left\langle x_{i}^{s}\right\rangle
$$

Here, $k_{*}=k(n-1)_{*}=F[u], L_{i}=k_{*} /\left(u^{i}\right)$, and $L_{\infty}=k_{*} /\left(u^{\infty}\right)={\underset{\longrightarrow}{i}}_{i} L_{i}$.
This theorem together with (1.5) implies the following.
Corollary 1.8. The cokernel of $\delta: \operatorname{Ext}^{0} B \rightarrow \operatorname{Ext}^{1} K(n)_{*}$ is the F-module generated by

$$
\begin{array}{ll}
v^{t} \zeta_{n}, & v^{t p-1} h_{n-1}, \quad h_{j} \quad \text { for } 0 \leq j<n-1, \quad \text { and } \\
v^{s p^{k}} h_{j} & \text { for } 0 \leq j<n-1, \text { where }[k] \neq[j], s \not \equiv-1(p) \text {, or } s \equiv-1\left(p^{2}\right),
\end{array}
$$

for integers s and t with $p \nmid s$.
By Theorem 1.3, the module $\operatorname{Ext}^{1} K(n)_{*}$ is the direct sum of $\zeta_{n} \times$ $\operatorname{Ext}^{0} K(n)_{*}=\zeta_{n} K(n)_{*}, F\left\langle h_{j}\right\rangle$ for $j \in \mathbb{Z} /(n-1)$ and the modules

$$
V_{(i, j, s)}=F\left\langle v^{s p^{i}} h_{j}\right\rangle
$$

for $(i, j, s) \in \mathbb{N} \times \mathbb{Z} / n \times \overline{\mathbb{Z}}$. Here, \mathbb{N} denotes the set of nonnegative integers, and $\overline{\mathbb{Z}}=\mathbb{Z} \backslash p \mathbb{Z}$. We partition $\mathbb{N} \times \mathbb{Z} / n$ as follows:

More precisely,

$$
\begin{aligned}
H= & \{(0, j): 1 \leq j<n-2\} \\
& \cup\{(i, j): i>0,[i] \neq n-3, n-2,2+[i] \leq j \leq n-2\} \\
& \cup\{(i, j): i>0,[i] \neq 0,1,0 \leq j \leq[i]-2\}, \\
G B= & \{(i,[i]): i \geq 0\}, \\
K= & \{(i,[i]-1): i>0,[i] \neq 0\}, \quad \text { and } \\
G= & \{(i,[i]-2): i>1,[i] \neq 0,1\} .
\end{aligned}
$$

We introduce notation

$$
\begin{aligned}
V_{(0, n-2)} & =\bigoplus_{s \in \overline{\mathbb{Z}}^{\prime}} V_{(0, n-2, s)}, \\
V_{(0, n-1)}= & \bigoplus_{t \in \mathbb{Z}} V_{(0, n-1, t p-1)}=F\left[v^{ \pm p}\right]\left\langle v^{-1} h_{n-1}\right\rangle, \\
C_{X} & =\bigoplus_{(i, j) \in X, s \in \overline{\mathbb{Z}}} V_{(i, j, s)} \quad \text { for a subset } X \subset \mathbb{N} \times \mathbb{Z} / n, \\
\bar{C}_{G B}= & \bigoplus_{(i, j) \in G B}\left(\left(\bigoplus_{s \in \overline{\mathbb{Z}}} V_{(i, j, s)}\right) \oplus\left(\bigoplus_{t \in \mathbb{Z}} V_{\left(i, j, t p^{2}-1\right)}\right)\right) \\
= & \bigoplus_{(i,[i], s) \in \widetilde{G B}} V_{(i, j, s)} \oplus \bigoplus_{i \geq 0} F\left[v^{ \pm p^{i+2}}\right]\left\langle v^{-p^{i}} h_{[i]}\right\rangle, \quad \text { and } \\
C_{O}= & F\left\langle\theta, h_{j}: j \in \mathbb{Z} /(n-1)\right\rangle .
\end{aligned}
$$

Here, for $e(i)=\left(p^{i}-1\right) /(p-1), \theta=v^{e(n-2)} h_{n-2}$,

$$
\begin{aligned}
\overline{\mathbb{Z}}^{\prime} & =\overline{\mathbb{Z}} \backslash\{e(n-2)\}, \quad \overline{\bar{Z}}=\{n \in \overline{\mathbb{Z}}: p \nmid(s+1)\}, \quad \text { and } \\
\widetilde{G B} & =\{(i,[i], s): s \in \overline{\bar{Z}}\} .
\end{aligned}
$$

We also consider the subset \boldsymbol{T} of $\mathbb{N} \times \mathbb{Z} / n \times \overline{\mathbb{Z}}$ defined by

$$
\begin{aligned}
\boldsymbol{T}= & \left\{(i, j, s) \in \mathbb{N} \times \mathbb{Z} / n \times \overline{\mathbb{Z}}: p \nmid(s+1) \text { or } p^{2} \mid(s+1) \text { if }[i]=j,\right. \\
& p \mid(s+1) \text { if }(i, j)=(0, n-1), \text { and } s \neq e(n-2) \text { if }(i, j)=(0, n-2)\} .
\end{aligned}
$$

In this notation, the cokernel of δ in Corollary 1.8 is given by

$$
\begin{align*}
\operatorname{Coker} \delta & =\zeta_{n} K(n)_{*} \oplus C_{O} \oplus \bigoplus_{(i, j, s) \in \boldsymbol{T}} V_{(i, j, s)} \\
& =\zeta_{n} K(n)_{*} \oplus C_{O} \oplus V_{(0, n-2)} \oplus V_{(0, n-1)} \oplus C_{H} \oplus C_{K} \oplus C_{G} \oplus \bar{C}_{G B} \tag{1.9}
\end{align*}
$$

Finally, we consider the k_{*}-modules:

$$
\begin{aligned}
W_{(i, j, s)} & =L_{a(i, j, s)}\left\langle x_{i}^{s} h_{j}\right\rangle, \\
W_{(0, n-2)} & =\bigoplus_{s \in \overline{\mathbb{Z}}^{\prime}} W_{(0, n-2, s)}, \\
W_{(0, n-1)} & =\bigoplus_{t \in \mathbb{Z}} W_{(0, n-1, t p-1)}, \\
B_{X} & =\bigoplus_{(i, j) \in X, s \in \overline{\mathbb{Z}}} W_{(i, j, s)} \quad \text { for a subset } X \subset \mathbb{N} \times \mathbb{Z} / n, \\
\bar{B}_{G B} & =\bigoplus_{(i, j) \in G B}\left(\left(\bigoplus_{s \in \overline{\mathbb{Z}}} W_{(i, j, s)}\right) \oplus\left(\bigoplus_{t \in \mathbb{Z}} W_{\left(i, j, t p^{2}-1\right)}\right)\right), \quad \text { and } \\
C_{\infty} & =\left(K(n-1)_{*} / k_{*}\right)\left\langle\theta, h_{j}: j \in \mathbb{Z} /(n-1)\right\rangle .
\end{aligned}
$$

Here, $a(i, j, s)$ denotes an integer defined as follows: for $(i, j)=(0, n-2)$, $a(0, n-2, s)=2$ if $p \nmid s(s-1)$, and

$$
a(0, n-2, s)= \begin{cases}a_{l}, & p \nmid t, l>0,[l] \neq 0, n-2, \\ a_{l}+e(n-2)+p^{n-3}, & p \nmid t, l>0,[l]=n-2 \\ a_{l}+1, & p \nmid t, l>0,[l]=0\end{cases}
$$

if $s=t p^{l}+e(n-2)$; for $(i, j) \in\{(0, n-1)\} \cup H \cup K \cup G \cup G B$,

$$
a(i, j, s)= \begin{cases}p-1, & (i, j)=(0, n-1) \\ a_{i}, & (i, j) \in H \\ a_{i}+a_{i-1}, & (i, j) \in K \cup G \\ 2 a_{i}, & (i, j, s) \in \widetilde{G B} \\ (p-1) a_{i+1}, & (i, j) \in G B, p^{2} \mid(s+1)\end{cases}
$$

Theorem 1.10. The chromatic E_{1}-term $\operatorname{Ext}^{1} B=\operatorname{Ext}^{1} M_{n-1}^{1}$ is canonically isomorphic to the k_{*}-module

$$
\zeta_{n} \operatorname{Ext}^{0} B \oplus C_{\infty} \oplus W_{(0, n-2)} \oplus W_{(0, n-1)} \oplus B_{H} \oplus B_{K} \oplus B_{G} \oplus \bar{B}_{G B}
$$

Let $V(n)$ be the nth Smith-Toda spectrum defined by $B P_{*}(V(n))=$ $B P_{*} / I_{n+1}$. As an application of the theorem, we study the action of α_{1} and β_{1} on the elements $u^{t}(t>0)$ in the Adams-Novikov E_{2}-term $E_{2}^{*}(V(n))$ in Section 6. In particular, it leads us a geometric result for $n=4$. Toda [22] constructed the self map γ on $V(2)$ to show the existence of $V(3)$ for the prime $p>5$. We notice that $\gamma^{t} i \in \pi_{*}(V(2))$ for the inclusion $i: S \rightarrow V(2)$ to the bottom cell is detected by $u^{t}=v_{3}^{t} \in B P_{*}(V(2))$ in the Adams-Novikov spectral sequence.

Theorem 1.11. Let $p>5$. Then $\gamma^{t} i \alpha_{1}$ and $\gamma^{t} i \beta_{1}$ are nontrivial in $\pi_{*}(V(2))$ for $t>0$.

§2. Bockstein spectral sequence

We compute the Bockstein spectral sequence by use of the following lemma.

Lemma 2.1. Let $\delta: \operatorname{Ext}^{s} B \rightarrow \operatorname{Ext}^{s+1} K(n)_{*}$ be the connecting homomorphism associated to the short exact sequence (1.2). Suppose that Coker $\delta=$ $\bigoplus_{k} V_{k} \subset \operatorname{Ext}^{1} K(n)_{*}$ and that $\bigoplus_{k} U_{k} \subset \operatorname{Ext}^{2} K(n)_{*}$ for F-modules V_{k} and U_{k}, and suppose that there exist u-torsion k_{*}-modules W_{k} fitting in a commutative diagram

of exact sequences. Then, $\operatorname{Ext}^{1} B=\bigoplus_{k} W_{k}$.
This follows immediately from [7, Remark 3.11].
Let $\widetilde{\theta}$ be an element of Corollary 5.8. Then, $\widetilde{\theta} / u^{k}$ and h_{j} / u^{k} for $j \in \mathbb{Z} /$ $(n-1)$ belong to $\operatorname{Ext}^{1} B$, and we define the map $f: C_{\infty} \rightarrow \operatorname{Ext}^{1} B$ by $f\left(\left(u^{-k}\right) \theta\right)=\widetilde{\theta} / u^{k}$ and $f\left(\left(u^{-k}\right) h_{j}\right)=h_{j} / u^{k}$ for $\left(u^{-k}\right) \in K(n-1)_{*} / k_{*}$, so that the short exact sequence

$$
\begin{equation*}
0 \rightarrow C_{O} \xrightarrow{\frac{1 / u}{}} C_{\infty} \xrightarrow{u} C_{\infty} \rightarrow 0 \tag{2.2}
\end{equation*}
$$

yields a summand of Lemma 2.1.

Note that if a cocycle z represents ζ_{n}, then so does z^{p}. Therefore, we have $\zeta_{n} / u^{j} \in \operatorname{Ext}^{1} B$ represented by $z^{p^{j}} / u^{j}$. The exact sequence (1.2) induces the exact sequence $0 \rightarrow \operatorname{Ext}^{0} K(n)_{*} \xrightarrow{\varphi_{*}} \operatorname{Ext}^{0} B \xrightarrow{u} \operatorname{Ext}^{0} B \xrightarrow{\delta} \operatorname{Ext}^{1} K(n)_{*}$, and we have an exact sequence

$$
\begin{equation*}
0 \rightarrow \zeta_{n} \operatorname{Ext}^{0} K(n)_{*} \xrightarrow{\varphi_{*}} \zeta_{n} \operatorname{Ext}^{0} B \xrightarrow{u} \zeta_{n} \operatorname{Ext}^{0} B \xrightarrow{\delta} \zeta_{n} \operatorname{Ext}^{1} K(n)_{*}, \tag{2.3}
\end{equation*}
$$

which is a summand of Lemma 2.1. Together with (2.2) and (2.3), Theorem 1.10 follows from Lemma 2.1 if the following sequence is exact for each $(i, j, s) \in \boldsymbol{T}$:

$$
\begin{equation*}
0 \rightarrow V_{(i, j, s)} \xrightarrow{\varphi_{*}^{\prime}} W_{(i, j, s)} \xrightarrow{u} W_{(i, j, s)} \xrightarrow{\delta^{\prime}} U_{(i, j, s)}, \tag{2.4}
\end{equation*}
$$

where $U_{(i, j, s)}$ denotes an F-module generated by a single generator as follows: for $(i, j)=(0, n-2), U_{(0, n-2, s)}=F\left\langle v^{s-2} k_{n-2}\right\rangle$ if $p \nmid s(s-1)$,

$$
U_{(0, n-2, s)}= \begin{cases}F\left\langle v^{s-p^{l-1}} h_{[l-1]} h_{n-2}\right\rangle, & p \nmid t, l>0,[l] \neq 0, n-2, \\ F\left\langle v^{s-p^{l-1}} b_{2 n-5}\right\rangle, & p \nmid t, l>0,[l]=n-2, \\ F\left\langle v^{s-p^{l-1}-1} g_{n-2}\right\rangle, & p \nmid t, l>0,[l]=0,\end{cases}
$$

if $s=t p^{l}+e(n-2)$; for $(i, j) \in\{(0, n-1)\} \cup H \cup K \cup G \cup G B$,

$$
U_{(i, j, s)}= \begin{cases}F\left\langle v^{s-p+1} b_{n-1}\right\rangle, & (i, j)=(0, n-1), \\ F\left\langle v^{(s p-1) p^{i-1}} h_{[i-1]} h_{j}\right\rangle, & (i, j) \in H, \\ F\left\langle v^{(s-2) p} k_{n-1}\right\rangle, & (i, j)=(1,0) \in K, \\ F\left\langle v^{\left.\left(s p^{2}-p-1\right) p^{i-2} k_{[i-2]}\right\rangle,}\right. & (i, j) \in K, i>1, \\ F\left\langle v^{\left(s p^{2}-p-1\right) p^{i-2}} g_{[i-2]}\right\rangle, & (i, j) \in G \\ F\left\langle v^{s-p-1} g_{n-1}\right\rangle, & (i, j, s) \in \widetilde{G B}, i=0, \\ F\left\langle v^{(s p-2) p^{i-1}} g_{[i-1]}\right\rangle, & (i, j, s) \in \widetilde{G B}, i>0, \\ F\left\langle v^{(s+1-p) p^{i}} b_{j}\right\rangle, & (i, j) \in G B, p^{2} \mid(s+1)\end{cases}
$$

Since the mapping $\boldsymbol{T} \rightarrow\left\{U_{(i, j, s)}:(i, j, s) \in \boldsymbol{T}\right\}$ assigning (i, j, s) to $U_{(i, j, s)}$ is an injection, we see the following.

Lemma 2.5. The direct sum of $\zeta_{n} \operatorname{Ext}^{1} K(n)_{*}$ and $U_{(i, j, s)}$ for $(i, j, s) \in \boldsymbol{T}$ is a sub-F-module of $\operatorname{Ext}^{2} K(n)_{*}$.

The homomorphism f_{k} in Lemma 2.1 on $W_{(i, j, s)}$ for $(i, j, s) \in \boldsymbol{T}$ is explicitly given by

$$
f_{(i, j, s)}(x)=x / u^{a(i, j, s)}
$$

It follows that the homomorphism δ^{\prime} on it is given by the composite $\delta\left(1 / u^{a(i, j, s)}\right)$. Hereafter we denote it by $\delta_{(i, j, s)}^{\prime}$, that is, $\delta_{(i, j, s)}^{\prime}=\delta\left(1 / u^{a(i, j, s)}\right)$, and consider a condition:

$$
\begin{equation*}
\delta_{(i, j, s)}^{\prime}(x)=y \text { for the generators } x \in W_{(i, j, s)} \text { and } y \in U_{(i, j, s)} . \tag{2.6}
\end{equation*}
$$

Note that $\varphi_{*}^{\prime}(\bar{x})=u^{a(i, j, s)-1} x$ for the generators $\bar{x} \in V_{(i, j, s)}$ and $x \in$ $W_{(i, j, s)}$, since $f_{k} \varphi_{*}^{\prime}(\bar{x})=\varphi_{*}(\bar{x})=x / u$. Then, we have the following.

Lemma 2.7. For each $(i, j, s) \in \boldsymbol{T}$, if the condition (2.6) $)_{(i, j, s)}$ holds, then (2.4) for (i, j, s) is exact and yields a summand of Lemma 2.1.

The relations in (1.5) show the following immediately.
(2.8) The condition (2.6) $)_{(i, j, s)}$ holds for $(i, j) \in H$.

Proof of Theorem 1.10. The theorem follows from Lemmas 2.1, 2.5, and 2.7, together with (2.2), (2.3), (2.8), and Lemmas 3.7, 3.8, 4.1, and 5.9 , which are proved below. Indeed, the direct sum of $\zeta_{n} \operatorname{Ext}^{0} K(n)_{*}, C_{O}$, and $V_{(i, j, s)}$ for $(i, j, s) \in \boldsymbol{T}$ is the cokernel of δ by (1.9).
§3. The summands on $V_{(0, n-1)}$ and $\bar{C}_{G B}$
We begin by stating some formulas on the Hopf algebroid (A, Γ) :

$$
\begin{align*}
0 & =v t_{k}^{p^{n}}+u t_{k+1}^{p^{n-1}}-u^{p^{k+1}} t_{k+1}-t_{k} \eta_{R}\left(v^{p^{k}}\right) \in \Gamma \quad \text { for } k<n, \\
\eta_{R}(u) & =u, \quad \eta_{R}(v)=v+u t_{1}^{p^{n-1}}-u^{p} t_{1} \tag{3.1}\\
\Delta\left(t_{k}\right) & =\sum_{i=0}^{k} t_{i} \otimes t_{k-i}^{p^{i}} \quad \text { for } k<n, \quad \text { and } \\
\Delta\left(t_{n}\right) & =\sum_{i=0}^{n} t_{i} \otimes t_{n-i}^{p^{i}}-u b_{n-2} .
\end{align*}
$$

Then the connecting homomorphism $\delta: \operatorname{Ext}^{1} B \rightarrow \operatorname{Ext}^{2} K(n)_{*}$ is computed by the differential $d: \Omega_{\Gamma}^{1} A \rightarrow \Omega_{\Gamma}^{2} A$ of the cobar complex modulo an ideal, which is defined by

$$
\begin{equation*}
d(x)=1 \otimes x-\Delta(x)+x \otimes 1 \tag{3.2}
\end{equation*}
$$

We also use the differential $d: \Omega_{\Gamma}^{0} A \rightarrow \Omega_{\Gamma}^{1} A$ defined by $d(w)=\eta_{R}(w)-$ $\eta_{L}(w)$. For $w, w^{\prime} \in \Omega_{\Gamma}^{0} A$ and $x \in \Omega_{\Gamma}^{1} A$, these differentials satisfy

$$
\begin{align*}
d\left(w w^{\prime}\right) & =d(w) \eta_{R}\left(w^{\prime}\right)+w d\left(w^{\prime}\right), \\
d(w x) & =d(w) \otimes x+w d(x), \quad \text { and } \tag{3.3}\\
d\left(x \eta_{R}(w)\right) & =d(x) \eta_{R}(w)-x \otimes d(w)
\end{align*}
$$

We also use the Steenrod operations P^{0} and βP^{0} on $\operatorname{Ext}{ }^{*} C(j)$ for $j \geq 1$ and Ext $^{*} B$ (see $\left.[5],[13]\right)$. Here, $C(j)$ denotes the comodule $A /\left(u^{j}\right)$, and we notice that $C(1)=K(n)_{*}$. Let $\widetilde{\Omega}^{s} M=\Omega_{E(n)_{*}(E(n))}^{s} M$ for an $E(n)_{*}(E(n))$ comodule M. Given a cocycle $x(j)$ of $\widetilde{\Omega}^{s} C(j), \widetilde{x}(j)$ denotes a cochain of $\widetilde{\Omega}^{s} E(n)_{*}$ such that $\pi_{j}(\widetilde{x}(j))=x(j)$ for the projection $\pi_{j}: \widetilde{\Omega}^{s} E(n)_{*} \rightarrow$ $\widetilde{\Omega}^{s} C(j)$. Since $x(j)$ is a cocycle, $d\left(\widetilde{x}(j)^{p}\right)=p y_{j}+\sum_{i=1}^{n-2} v_{i}^{p} z_{j, i}+u^{j p} z_{j, n-1}$ for some elements y_{j} and $z_{j, i} \in \widetilde{\Omega}^{s+1} E(n)_{*}$. Under this situation, the Steenrod operations are defined by

$$
\begin{aligned}
P^{0}([x(j)]) & =\left[x(j)^{p}\right] \quad \text { and } \\
\beta P^{0}([x(j)]) & =\left[y_{j}\right] \in \operatorname{Ext}^{*} C(j p), \quad \text { and } \\
P^{0}\left(\left[x(j) / u^{j}\right]\right) & =\left[x(j)^{p} / u^{j p}\right] \quad \text { and } \\
\beta P^{0}\left(\left[x(j) / u^{j}\right]\right) & =\left[y_{j} / u^{j p}\right] \in \operatorname{Ext}^{*} B .
\end{aligned}
$$

Here, $[x]$ denotes the homology class represented by a cocycle x. In particular, the operation acts on our elements as follows:

$$
\begin{align*}
\beta P^{0}\left(x_{i} / u^{a_{i}}\right) & =\left\{\begin{array}{ll}
v^{p-1} h_{n-1} / u^{p-1} & i=0, \\
x_{i-1}^{p^{2}-1} h_{[i-1]} / u^{(p-1) a_{i}} & i>0,
\end{array} \quad \text { in } \operatorname{Ext}^{1} B ;\right. \\
P^{0}\left(x_{i}^{s} h_{k} / u^{j}\right) & =\left\{\begin{array}{ll}
x_{i+1}^{s} h_{k+1} / u^{j p} & k \neq n-2, \\
x_{i+1}^{s} h_{0} / u^{j p-p+1} & k=n-2,
\end{array} \quad \text { in } \operatorname{Ext}^{1} B ;\right. \text { and } \\
\beta P^{0}\left(x_{i}^{s} h_{k}\right) & =x_{i+1}^{s} b_{k} \quad \text { in } \operatorname{Ext}^{2} K(n)_{*} . \tag{3.5}
\end{align*}
$$

The following is a folklore (see [13, Corollary A1.5.5]):

$$
\begin{equation*}
P^{0} \delta=\delta P^{0} \quad \text { and } \quad \beta P^{0} \delta=-\delta \beta P^{0} \quad \text { in Ext } \operatorname{Ex}^{*} K(n)_{*} \tag{3.6}
\end{equation*}
$$

Lemma 3.7. The condition (2.6) $)_{(i, j, s)}$ holds for each $(i, j, s) \in\{(0, n-$ $\left.1, t p-1),\left(i, j, t p^{2}-1\right): t \in \mathbb{Z},(i, j) \in G B\right\}$.

Proof. For $k \geq-1$, consider a generator $x(k, t)=x_{k}^{t p^{2}-1} h_{[k]}$ for $k \geq 0$ and $x(-1)=x_{0}^{t p-1} h_{n-1}$, and $\overline{(k, t)}$ denotes a triple $\left(k,[k], t p^{2}-1\right)$ if $k \geq 0$ and $(0, n-1, t p-1)$ if $k=-1$. Then, $\left(1 / u^{a(k, t)}\right)(x(k, t))=x_{k+2}^{t-1} \beta P^{0}\left(x_{k+1} / u^{a_{k+1}}\right)$ for $k \geq-1$ by (3.4). Now, $\delta_{(k, t)}^{\prime}(x(k, t))$ equals

$$
x_{k+2}^{t-1} \delta\left(\beta P^{0}\left(x_{k+1} / u^{a_{k+1}}\right)\right)=-x_{k+2}^{t-1}\left(\beta P^{0}\left(x_{k}^{p-1} h_{\overline{[k]}}\right)\right)=-x_{k+1}^{\nu(t)} b_{\overline{[k]}}
$$

by (3.6), (1.5), and (3.5). Here, $(\nu(t), \overline{[k]})=(t p-1,[k])$ if $k \geq 0$, and it equals $((t-1) p, n-1)$ if $k=-1$.

LEMMA 3.8. The condition (2.6) $)_{(i,[i], s)}$ holds for $(i,[i], s) \in \widetilde{G B}$.
Proof. We prove this by induction on i. By (3.1) and (3.2), we compute $\bmod \left(u^{3}\right)$

$$
\begin{aligned}
d\left(v^{s+1-p} t_{1}^{p^{n}}\right) \equiv & (s+1) u v^{s-p} t_{1}^{p^{n-1}} \otimes t_{1}^{p^{n}} \\
& +\binom{s+1}{2} u^{2} v^{s-p-1} t_{1}^{2 p^{n-1}} \otimes t_{1}^{p^{n}} \\
d\left((s+1) u v^{s-p} t_{2}^{p^{n-1}}\right) \equiv & s(s+1) u^{2} v^{s-p-1} t_{1}^{p^{n-1}} \otimes t_{2}^{p^{n-1}} \\
& -(s+1) u v^{s-p} t_{1}^{p^{n-1}} \otimes t_{1}^{p^{n}}
\end{aligned}
$$

to obtain $\delta\left(v^{s} h_{0} / u^{2}\right)=s(s+1) v^{s-p-1} g_{n-1}$, and so

$$
\delta_{(0,0, s)}^{\prime}\left(v^{s} h_{0}\right)=s(s+1) v^{s-p-1} g_{n-1}
$$

Apply P^{0} to it, and we obtain

$$
\begin{aligned}
\delta_{(1,1, s)}^{\prime}\left(v^{s p} h_{1}\right) & =\delta\left(P^{0}\left(v^{s} h_{0} / u^{2}\right)\right)=P^{0} \delta\left(v^{s} h_{0} / u^{2}\right)=s(s+1) P^{0}\left(v^{s-p-1} g_{n-1}\right) \\
& =s(s+1) v^{s p-p^{2}-p} g_{n}=s(s+1) v^{s p-2} g_{0}
\end{aligned}
$$

Here, we notice that $g_{n}=v^{p^{2}+p-2} g_{0}$ in $\operatorname{Ext}^{2} K(n)_{*}$ by (3.1). Suppose inductively that $\delta_{(i, 1, s)}^{\prime}\left(x_{i}^{s} h_{1}\right)=s(s+1) v^{(s p-2) p^{i-1}} g_{0}$ for $[i]=1$, which is $(2.6)_{(i, 1, s)}$. Note that $a_{i+j}=p a_{i+j-1}$ if $0<j<n-2$, and we see that $P^{0} \delta_{(i, j, s)}^{\prime}=$ $\delta_{(i+1, j+1, s)}^{\prime} P^{0}$ by (3.6). Therefore, $\left(P^{0}\right)^{j}$ for $j<n-2$ yields the equation for $\delta_{a(i+j, j+1, s)}^{\prime}\left(x_{i+j}^{s} h_{j+1}\right)$. At $i^{\prime}=i+n-2$, for $t=\left(i^{\prime}, 0, s\right), \delta_{t}^{\prime}\left(x_{i^{s}}^{s} h_{0}\right)=$ $\delta P^{0}\left(x_{i^{\prime}-1}^{s} h_{n-2} / u^{a\left(i^{\prime}-1, n-2, s\right)}\right)($ by $(3.5))=s(s+1) v^{(s p-2) p^{i+n-3}} g_{n-2}$ by (3.6) and inductive hypothesis.

Note that $a_{i+n-1}=p^{n-1} a_{i}+p-1$. Consider the connecting homomorphism $\delta_{j}: \operatorname{Ext}^{1} M_{n-1}^{1} \rightarrow \operatorname{Ext}^{2} C(j)$ associated to the short exact sequence $0 \rightarrow C(j) \xrightarrow{1 / u^{j}} M_{n-1}^{1} \xrightarrow{u^{j}} M_{n-1}^{1} \rightarrow 0$. Then, $u^{j-1} \delta=\delta_{j} u^{j-1}$. Besides, $\delta_{j}\left(P^{0}\right)^{k}=\left(P^{0}\right)^{k} \delta$ if $p^{k} \geq j$. Now in $\operatorname{Ext}^{2} C\left(p^{2}+p-1\right), u^{p^{2}+p-2} \times$ $\delta_{(i+n-1,1, s)}^{\prime}\left(x_{i+n-1}^{s} h_{1}\right)$ equals

$$
\begin{aligned}
u^{p^{2}+p-2} \delta\left(x_{i+n-1}^{s} h_{1} / u^{p^{n-1} a+2(p-1)}\right) & =\delta_{p^{2}+p-1}\left(P^{0}\right)^{n-1}\left(x_{i}^{s} h_{1} / u^{a}\right) \\
& =\left(P^{0}\right)^{n-1}\left(s(s+1) v^{(s p-2) p^{i-1}} g_{0}\right) \\
& =s(s+1) v^{(s p-2) p^{i+n-2}} g_{n-1}
\end{aligned}
$$

for $a=a(i,[i], s)$, which equals $s(s+1) u^{p^{2}+p-2} v^{(s p-2) p^{i+n-2}} g_{0}$ by the relation $u^{p+2} g_{n-1}=u^{p^{2}+2 p} g_{0}$. This relation follows from (1.4), and $u h_{n-1}=u^{p} h_{0}$ given by $d(v)$.

$\S 4$. The summands C_{G} and C_{K}

We study the action of the connecting homomorphism δ by use of the Massey product. We notice that this is also shown by use of the P^{0}-operation considered in Section 3, but we use the Massey product for the sake of simplicity.

Lemma 4.1. The condition (2.6) $)_{(i, j, s)}$ holds for $(i, j) \in G \cup K$.
Proof. We consider the element $\left(1 / u^{a(i, j, s)}\right)\left(x_{i}^{s} h_{j}\right)$ the Massey product $\left\langle s x_{i-1}^{s p-1} / u^{a_{i-1}}, h_{[i-1]}, h_{j}\right\rangle$. Then, $\delta_{(i, j, s)}^{\prime}\left(x_{i}^{s} h_{j}\right)=\delta\left\langle s x_{i-1}^{s p-1} / u^{a_{i-1}}, h_{[i-1]}, h_{j}\right\rangle=$ $\left\langle s \delta\left(x_{i-1}^{s p-1} / u^{a_{i-1}}\right), h_{[i-1]}, h_{j}\right\rangle, \quad$ which equals $\quad-\left\langle s v^{s p-2} h_{n-1}, h_{0}, h_{0}\right\rangle=$ $-s v^{(s-2) p} k_{n-1}$ if $i=1$, and

$$
-\left\langle s v^{\left(s p^{2}-p-1\right) p^{i-2}} h_{[i-2]}, h_{[i-1]}, h_{j}\right\rangle= \begin{cases}-s v^{\left(s p^{2}-p-1\right) p^{i-2}} k_{j-1} & j=[i-1] \\ -2 s v^{\left(s p^{2}-p-1\right) p^{i-2}} g_{j} & j=[i-2]\end{cases}
$$

otherwise. Here, we note that $\left\langle h_{i}, h_{i+1}, h_{i}\right\rangle=2 g_{i}$.

§5. The summand $V_{(0, n-2)}$

Consider the elements $c_{i}=u^{p^{i}} h_{n-1+i}$ and $c_{i}^{\prime}=u^{p^{i+1}} h_{i}$ of Ext ${ }^{1} A$. The elements have internal degrees $\left|c_{i}\right|=\left|c_{i}^{\prime}\right|=p^{i} e(n) q$ for $q=2 p-2$, and they satisfy

$$
c_{i}=c_{i}^{\prime}, \quad c_{i} c_{i+1}=0, \quad h_{n+i} c_{i}=0, \quad \text { and } \quad h_{i+1} c_{i}=h_{i+1} c_{i}^{\prime}=0
$$

We consider the cochains $\bar{w}_{k}=u^{e(k-1)} c t_{k}^{p^{n-1}}$ of the cobar complex $\Omega_{\Gamma}^{1} A$. Then,

$$
\begin{equation*}
\bar{w}_{k}=-\bar{w}_{k-1}^{p} \eta_{R}(v)+u^{p e(k-2)} v^{p^{k-1}} c t_{k-1}+u^{p^{k}+p e(k-2)} c t_{k} \tag{5.1}
\end{equation*}
$$

for $k>1$ by (3.1). Let w_{k} be a cochain of the cobar complex $\Omega_{\Gamma}^{1} A$ defined inductively by

$$
\begin{align*}
& w_{1}=t_{1}^{p^{n-1}}-u^{p-1} t_{1}=-\bar{w}_{1}+u^{p-1} c t_{1} \quad \text { and } \\
& w_{k}=w_{k-1}^{p} \eta_{R}(v)+(-1)^{k} u^{p e(k-2)} v^{p^{k-1}} c t_{k-1} \tag{5.2}
\end{align*}
$$

and we put

$$
\begin{align*}
& m_{k}^{\prime}=-\sum_{i=1}^{k-1}(-1)^{i} u^{p^{i-1}} w_{k-i}^{p^{i}} \otimes \bar{w}_{i} \quad \text { and } \tag{5.3}\\
& m_{k}=u^{p^{k-1}} w_{k}+\sum_{i=1}^{k-1}(-1)^{i} u^{p^{i-1}} v^{p^{i} e(k-i)} \bar{w}_{i}
\end{align*}
$$

Lemma 5.4. We have $d\left(v^{e(k)}\right)=m_{k}$. Besides, $d\left(w_{k}\right)=m_{k}^{\prime}$ if $k \leq n$.
Proof. We prove the lemma inductively. Since $d(v)=u w_{1}=m_{1}$, we see the case for $k=1$. Indeed, $m_{1}^{\prime}=0$.

Suppose that the equalities hold for $k-1$. Then, we compute by (3.3), (5.1), and (5.2),

$$
\begin{aligned}
d\left(v^{e(k)}\right)= & d\left(v^{p e(k-1)}\right) \eta_{R}(v)+v^{p e(k-1)} d(v) \\
= & \left(u^{p^{k-1}} w_{k-1}^{p}+\sum_{i=1}^{k-2}(-1)^{i} u^{p^{i}} v^{p^{p^{i+1}} e(k-1-i)} \bar{w}_{i}^{p}\right) \eta_{R}(v) \\
& -u v^{p e(k-1)}\left(\bar{w}_{1}-u^{p-1} c t_{1}\right) \\
= & u^{p^{k-1}}\left(w_{k}-(-1)^{k} u^{p e(k-2)} v^{p^{k-1}} c t_{k-1}\right)-u v^{p e(k-1)}\left(\bar{w}_{1}-u^{p-1} c t_{1}\right) \\
& +\sum_{i=1}^{k-2}(-1)^{i} u^{p^{i}} v^{p^{i+1} e(k-1-i)}\left(-\bar{w}_{i+1}+\left(u^{p e(i-1)} v^{p^{i}} c t_{i}\right.\right. \\
& \left.\left.+u^{p^{i+1}+p e(i-1)} c t_{i+1}\right)\right)
\end{aligned}
$$

which equals m_{k}, and similarly,

$$
\begin{aligned}
d\left(w_{k}\right)= & -\sum_{i=1}^{k-2}(-1)^{i} u^{p^{i}} w_{k-1-i}^{p^{i+1}} \otimes \bar{w}_{i}^{p} \eta_{R}(v)+u w_{k-1}^{p} \otimes\left(\bar{w}_{1}-u^{p-1} c t_{1}\right) \\
& +(-1)^{k} u^{p e(k-2)}\left(u^{p^{k-1}} w_{1}^{p^{k-1}} \otimes c t_{k-1}+v^{p^{k-1}} d\left(c t_{k-1}\right)\right) \\
= & -\sum_{i=1}^{k-2}(-1)^{i} u^{p^{i}} w_{k-1-i}^{p^{p+1}} \otimes\left(-\bar{w}_{i+1}+\underline{u^{p e(i-1)} v^{p^{i}} c t_{i}+u^{p^{i+1}+p e(i-1)} c t_{i+1}}\right) \\
& +u w_{k-1}^{p} \otimes\left(\bar{w}_{1}-\underline{u^{p-1} c t_{1}}\right) \\
& +\underline{(-1)^{k} u^{e(k-2)}\left(u^{p^{k-1}} w_{1}^{p^{k-1}} \otimes c t_{k-1}+v^{p^{k-1}} d\left(c t_{k-1}\right)\right)}=m_{k}^{\prime} .
\end{aligned}
$$

Here, the underlined terms cancel each other if $k \leq n$ by (5.2) and (3.1), with the relation $\Delta(c x)=T(c \otimes c) \Delta(x)$ for the switching map $T: \Gamma \otimes \Gamma \rightarrow$ $\Gamma \otimes \Gamma$.

We also introduce an element

$$
\bar{c}_{k}=h_{n+k-1}-u^{(p-1) p^{k}} h_{k} \in \operatorname{Ext}^{1} A
$$

Corollary 5.5. For each $0<k<n$, the Massey products $\mu_{k}=\left\langle u^{p^{k}}, \bar{c}_{k}\right.$, $\left.c_{k-1}, c_{k-2}, \ldots, c_{1}, c_{0}\right\rangle$ and $\mu_{k}^{\prime}=\left\langle\bar{c}_{k}, c_{k-1}, c_{k-2}, \ldots, c_{1}, c_{0}\right\rangle$ are defined. In fact, the cocycles m_{k+1} and m_{k+1}^{\prime} represent elements of the Massey products μ_{k} and μ_{k}^{\prime}, respectively.

In particular, we have the following.
Corollary 5.6. The Massey product $\left\langle u^{p^{n-3}}, \bar{c}_{n-3}, c_{n-4}, \ldots, c_{0}\right\rangle \subset \operatorname{Ext}^{1} A$ is defined and contains zero.

Lemma 5.7. The Massey product $\left\langle\bar{c}_{n-3}, c_{n-4}, \ldots, c_{0}, h_{n-2}\right\rangle \subset \operatorname{Ext}^{2} A$ contains zero.

Proof. The Massey product $\left\langle\bar{c}_{n-3}, c_{n-4}, \ldots, c_{0}, h_{n-2}\right\rangle$ contains

$$
\left\langle h_{2 n-4}, c_{n-4}, \ldots, c_{0}, h_{n-2}\right\rangle-\left\langle u^{p^{n-2}-p^{n-3}} h_{n-3}, c_{n-4}, \ldots, c_{0}, h_{n-2}\right\rangle
$$

It suffices to show that the second term contains zero. Indeed, the first term does since a defining system cobounds $u^{e(n-3)} c t_{n-1}^{p^{n-2}}$. Since every Massey product $\left\langle h_{j}, h_{j-1}, \ldots, h_{i+1}, h_{i}\right\rangle$ for $j-i \leq n-2$ contains zero, all lower
products contain zero, and we see that $\xi=\left\langle h_{n-3}, c_{n-4}, \ldots, c_{1}, c_{0}, h_{n-2}\right\rangle$ is defined.

The statement of [4, Theorem 10] itself is applied to our case and says that there are elements $x_{k} \in\left\langle c_{k}, c_{k-1}, \ldots, c_{0}, h_{n-2}, h_{n-3}, c_{n-4}, \ldots, c_{k+1}\right\rangle$ for $0 \leq$ $k \leq n-4, x_{n-3} \in\left\langle h_{n-3}, c_{n-4}, \ldots, c_{1}, c_{0}, h_{n-2}\right\rangle$, and $x_{n-2} \in\left\langle h_{n-2}, h_{n-3}, c_{n-4}\right.$, $\left.\ldots, c_{1}, c_{0}\right\rangle$ such that $\sum_{k=0}^{n-2} \pm x_{k}=0$. Its proof tells us that we may take the elements x_{k} arbitrarily, and we take x_{k} so that $x_{k}=0$ for $0 \leq k \leq n-4$ and $x_{n-2}=0$, whose relations follow from $d\left(c t_{n-1}\right)$. Therefore, $x_{n-3}=0$ and the lemma follows.

Corollary 5.8. The Massey product $\mu=\left\langle u^{p^{n-3}}, \bar{c}_{n-3}, c_{n-4}, \ldots, c_{0}, h_{n-2}\right\rangle$ is defined and contains an element whose leading term is $v^{e(n-2)} h_{n-2}$.

Lemma 5.9. The condition (2.6) $)_{(i, j, s)}$ holds for $(i, j)=(0, n-2)$.
Proof. If $p \nmid s(s-1)$, it follows from the computation that

$$
\begin{aligned}
d\left(v^{s} t_{1}^{p^{n-2}}\right) \equiv & s u v^{s-1} t_{1}^{p^{n-1}} \otimes t_{1}^{p^{n-2}}+\binom{s}{2} u^{2} t_{1}^{2 p^{n-1}} \otimes t_{1}^{p^{n-2}} \bmod \left(u^{3}\right), \\
d\left(s u v^{s-1} c t_{2}^{p^{n-2}}\right) \equiv & s(s-1) u^{2} t_{1}^{p^{n-1}} \otimes c t_{2}^{p^{n-2}} \\
& -s u v^{s-1} t_{1}^{p^{n-1}} \otimes t_{1}^{p^{n-2}} \bmod \left(u^{3}\right)
\end{aligned}
$$

Suppose that $s=t p^{l}+e(n-2)$ with $p \nmid t$ and $l>0$. Let $\widetilde{\theta}$ denote an element of Corollary 5.8. We take a generator corresponding to $v^{s} h_{n-2}$ to be $v^{s-e(n-2)} \widetilde{\theta}$. We denote a representative of $\widetilde{\theta}$ by m, which is congruent to $v^{e(n-2)} t_{1}^{p^{n-2}}+u v^{p e(n-3)} c t_{2}^{p^{n-2}}$ modulo $\left(u^{2}\right)$. Then, $d\left(v^{s-e(n-2)} m\right)=$ $t u^{a_{l}} v^{s-e(n-2)-p^{l-1}} t_{1}^{p^{[l-1]}} \otimes m \equiv t u^{a_{l}} v^{s-p^{l-1}} t_{1}^{p^{l-1]}} \otimes t_{1}^{p^{n-2}}$. This shows the case for $[l] \neq 0, n-2$.

For $[l]=0$, a similar computation shows that $d\left(v^{s-e(n-2)} m\right) \equiv t u^{a_{l}} \times$ $v^{s-p^{l-1}}\left(t_{1}^{p^{n-2}} \otimes t_{1}^{p^{n-2}}+u v^{-1} t_{1}^{p^{n-1}+p^{n-2}} \otimes t_{1}^{p^{n-2}}+u v^{-1} t_{1}^{p^{n-2}} \otimes c t_{2}^{p^{n-2}}\right)$, which yields $v^{s-1-p^{l-1}} g_{n-2}$. For $[l]=n-2, \widetilde{\theta} h_{n-3} \in u^{e(n-2)}\left\langle h_{2 n-4}, h_{2 n-5}, \ldots, h_{n-2}\right.$, $\left.h_{n-3}\right\rangle=\left\{u^{e(n-2)+p^{n-3}} b_{2 n-5}\right\}$ in $C\left(p^{n-2}\right)$. Indeed, $u^{e(n-3)} t_{n}^{p^{n-3}}$ yields the equality by (3.1).

\S 6. On the action of α_{1} and β_{1} on Greek letter elements

In this section, let $H^{*} M$ for a $B P_{*}(B P)$-comodule M denote an Ext group $\operatorname{Ext}_{B P_{*}(B P)}^{*}\left(B P_{*}, M\right)$. Consider the comodule $N_{k-1}(j)=B P_{*} /\left(I_{k-1}+\right.$ $\left.\left(v_{k-1}^{j}\right)\right)\left(v_{0}=p\right)$, and the connecting homomorphism $\partial_{k, j}$ associated to the
short exact sequence $0 \rightarrow B P_{*} / I_{k-1} \xrightarrow{v_{k-1}^{j}} B P_{*} / I_{k-1} \rightarrow N_{k-1}(j) \rightarrow 0$. We abbreviate $\partial_{k, 1}$ to ∂_{k}. Here we consider the Greek letter elements of $H^{*} B P_{*} /$ I_{n-1} defined by

$$
\begin{aligned}
\bar{\alpha}_{t}^{(n-1)} & =u^{t} \in H^{0} B P_{*} / I_{n-1} \quad \text { and } \\
\alpha_{(t / j)}^{(n)} & =\partial_{n, j}\left(v^{t}\right) \in H^{1} B P_{*} / I_{n-1} \quad \text { for } v^{t} \in H^{0} N_{n-1}(j)
\end{aligned}
$$

for $t>0$, and

$$
\alpha_{1}=\partial_{1}\left(v_{1}\right)=h_{0} \in H^{1} B P_{*} \quad \text { and } \quad \beta_{1}=\partial_{1} \partial_{2}\left(v_{2}\right)=b_{0} \in H^{2} B P_{*}
$$

Proposition 6.1. The elements α_{1} and β_{1} act on the Greek letter elements as follows:

$$
\alpha_{1} \bar{\alpha}_{t}^{(n-1)} \neq 0 \in H^{1} B P_{*} / I_{n-1}, \quad \beta_{1} \bar{\alpha}_{t}^{(n-1)} \neq 0 \in H^{2} B P_{*} / I_{n-1}
$$

and if the Greek letter elements $\alpha_{\left(s p^{i} / j\right)}^{(n)}$ have an internal degree greater than $2\left(p^{n}-1\right)(e(n-1)-1)$, then
$\alpha_{1} \alpha_{\left(s p^{i} / j\right)}^{(n)} \neq 0 \in H^{2} B P_{*} / I_{n-1} \quad$ if $[i] \neq 0, p \nmid(s+1)$ or $p^{2} \mid(s+1) ; \quad$ and $\beta_{1} \alpha_{\left(s p^{i} / j\right)}^{(n)} \neq 0 \in H^{3} B P_{*} / I_{n-1} \quad$ if $n \neq 5,[i] \neq 1$ or $p \nmid(s+1)$.

In order to prove this, we make a chromatic argument. Let N_{k}^{0} denote the $B P_{*} B P$-comodule $B P_{*} / I_{k}$, and put $M_{k}^{0}=v_{k}^{-1} N_{k}^{0}$. We denote the cokernel of the inclusion $N_{k}^{0} \rightarrow M_{k}^{0}$ by N_{k}^{1}, so that $0 \rightarrow N_{k}^{0} \rightarrow M_{k}^{0} \xrightarrow{\psi} N_{k}^{1} \rightarrow 0$ is an exact sequence. Let $\widetilde{\partial}_{k+1}: H^{s} N_{k}^{1} \rightarrow H^{s+1} N_{k}^{0}$ be the connecting homomorphism associated to the short exact sequence. We notice that $N_{k}^{1}=\operatorname{colim}_{j} N_{k}(j)$ with inclusion $\varphi_{j}: N_{k}(j) \rightarrow N_{k}^{1}$ given by $\varphi_{j}(x)=x / u^{j}$, and that the connecting homomorphism $\partial_{n, j}: H^{s} N_{n-1}(j) \rightarrow H^{s+1} N_{n-1}^{0}$ factorizes to $\widetilde{\partial}_{n} \varphi_{j}$.

Lemma 6.2. For an element $x_{i}^{s} / u^{j} \in H^{0} N_{n-1}^{1}$ for $0<j \leq a_{i}$ ($j \leq p^{i}$ if $s=1), \alpha_{1}$ and β_{1} act on it as follows:

$$
\begin{array}{ll}
x_{i}^{s} \alpha_{1} / u^{j} \neq 0 \in H^{1} N_{n-1}^{1} & \text { if }[i] \neq 0, p \nmid(s+1) \text { or } p^{2} \mid(s+1) ; \\
x_{i}^{s} \beta_{1} / u^{j} \neq 0 \in H^{2} N_{n-1}^{1} & \text { if } n \neq 5,[i] \neq 1 \text { or } p \nmid(s+1) .
\end{array}
$$

Proof. A change of rings theorem of Miller and Ravenel [6] shows that the module $H^{s} M_{n-1}^{1}$ is isomorphic to $\mathrm{Ext}^{s} B$. By (1.5), we see that $x_{i}^{s} h_{0} / u \neq$ $0 \in \operatorname{Ext}^{1} B$ unless $[i]=0, p \mid(s+1)$, and $p^{2} \nmid(s+1)$. This shows the first nontriviality. Similarly, since we have shown that (2.4) is exact, we see that $x_{i}^{s} \beta_{1} / u \neq 0 \in \operatorname{Ext}^{2} B$ unless $n=5,[i]=1$, and $p \mid(s+1)$.

Lemma 6.3. Let ξ_{1} denote α_{1} or β_{1}, let $x \in H^{0} N_{n-1}^{1}$, and suppose that $x \xi_{1}$ has an internal degree greater than $2\left(p^{n-1}-1\right)(e(n-1)-1)$. If $x \xi_{1} \in$ $H^{s} N_{n-1}^{1} \neq 0$, then $\widetilde{\partial}_{n}(x) \xi_{1} \neq 0 \in H^{s+1} N_{n-1}^{0}$.

Proof. It suffices to show that $x \xi_{1}$ is not in the image of $\psi_{*}: H^{s} M_{n-1}^{0} \rightarrow$ $H^{s} N_{n-1}^{1}$. Again, the change of rings theorem shows that the module $H^{s} M_{n-1}^{0}$ is isomorphic to the module of Theorem 1.3 with substituting $n-1$ for n. Note that every generator of it except for ζ_{n-1} belongs to $H^{s} N_{n-1}^{0}$, and also is $u^{e(n-1)} \zeta_{n-1}$ (see [13]). It follows that every element of the image of ψ_{*} has an internal degree no greater than $2(e(n-1)-1)\left(p^{n-1}-1\right)$. Thus, the lemma follows.

Proof of Proposition 6.1. The module $H^{s} M_{n-1}^{0}$ contains a submodule $k_{*}\left\langle h_{0}\right\rangle$ if $s=1$ and $k_{*}\left\langle b_{0}\right\rangle$ if $s=2$. Therefore, the first two relations hold. The other relations follow from Lemmas 6.2 and 6.3.

Proof of Theorem 1.11. Note that $\bar{\alpha}_{t}^{(3)}=\bar{\gamma}_{t}=v_{3}^{t}$, and we obtain the theorem from Proposition 6.1 at $n=4$.

References

[1] Y. Arita and K. Shimomura, The chromatic E_{1}-term $H^{1} M_{1}^{1}$ at the prime 3, Hiroshima Math. J. 26 (1996), 415-431.
[2] H.-W. Henn, Centralizers of elementary abelian p-subgroups and mod-p cohomology of profinite groups, Duke Math. J. 91 (1998), 561-585.
[3] H. Hirata and K. Shimomura, The chromatic E_{1}-term $H^{1} M_{2}^{1}$ for an odd prime, in preparation.
[4] D. Kraines, Massey higher products, Trans. Amer. Math. Soc. 124 (1966), 431-449.
[5] J. P. May, "A general algebraic approach to Steenrod operations" in The Steenrod Algebra and its Applications (Columbus, Ohio, 1970), Lecture Notes in Math. 168, Springer, Berlin, 1970, 153-231.
[6] H. R. Miller and D. C. Ravenel, Morava stabilizer algebras and the localization of Novikov's E_{2}-term, Duke Math. J. 44 (1977), 433-447.
[7] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in AdamsNovikov spectral sequence, Ann. of Math. (2) 106 (1977), 469-516.
[8] H. Nakai, The chromatic E_{1}-term $H^{0} M_{1}^{2}$ for $p>3$, New York J. Math. 6 (2000), 21-54.
[9] , The structure of $\operatorname{Ext}_{\mathrm{BP}_{*} \mathrm{BP}}^{0}\left(\mathrm{BP}_{*}, M_{1}^{2}\right)$ for $p=3$, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 23 (2002), 27-44.
[10] D. C. Ravenel, The cohomology of the Morava stabilizer algebras, Math. Z. 152 (1977), 287-297.
[11] —, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), 351-414.
[12] - Nilpotence and Periodicity in Stable Homotopy Theory, Ann. of Math. Stud. 128, Princeton University Press, Princeton, 1992.
[13] , Complex Cobordism and Stable Homotopy Groups of Spheres, AMS Chelsea Publishing, Providence, 2004.
[14] K. Shimomura, On the Adams-Novikov spectral sequence and products of β-elements, Hiroshima Math. J. 16 (1986), 209-224.
[15] -, The chromatic E_{1}-term $H^{1} M_{2}^{1}$ and its application to the homology of the Toda-Smith spectrum $V(1)$, J. Fac. Educ. Tottori Univ. (Nat. Sci.) 39 (1990), 63-83; Correction, J. Fac. Educ. Tottori Univ. (Nat. Sci.) 41 (1992), 7-11.
[16] -, The chromatic E_{1}-term $H^{0} M_{n}^{2}$ for $n>1$, J. Fac. Educ. Tottori Univ. (Nat. Sci.) 39 (1990), 103-121.
[17] —, The homotopy groups of the L_{2}-localized Toda-Smith spectrum $V(1)$ at the prime 3, Trans. Amer. Math. Soc. 349 (1997), 1821-1850.
[18] -, The homotopy groups of the L_{2}-localized mod 3 Moore spectrum, J. Math. Soc. Japan 52 (2000), 65-90.
[19] K. Shimomura and H. Tamura, Nontriviality of some compositions of β-elements in the stable homotopy of the Moore spaces, Hiroshima Math. J. 16 (1986), 121-133.
[20] K. Shimomura and X. Wang, The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ at the prime 3, Topology 41 (2002), 1183-1198.
[21] K. Shimomura and A. Yabe, The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$, Topology 34 (1995), 261-289.
[22] H. Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology 10 (1971), 53-65.

Ryo Kato
Graduate school of Mathematics
Nagoya University
Aichi, 464-8601
Japan
ryo_kato_1128@yahoo.co.jp
Katsumi Shimomura
Department of Mathematics
Faculty of Science
Kochi University
Kochi, 780-8520
Japan
katsumi@math.kochi-u.ac.jp

[^0]: Received January 18, 2011. Revised November 25, 2011 and December 12, 2011. Accepted December 21, 2011.

 2010 Mathematics Subject Classification. Primary 55Q99; Secondary 55T99, 55Q45.

