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QUANTUM (sln, ∧Vn) LINK INVARIANT AND MATRIX
FACTORIZATIONS

YASUYOSHI YONEZAWA

Abstract. In this paper, we give a generalization of Khovanov-Rozansky
homology. We define a homology associated to the quantum (sln, ∧Vn) link

invariant, where ∧Vn is the set of fundamental representations of Uq(sln). In

the case of an oriented link diagram composed of [k,1]-crossings, we define a

homology and prove that the homology is invariant under Reidemeister II and

III moves. In the case of an oriented link diagram composed of general [i, j]-
crossings, we define a normalized Poincaré polynomial of homology and prove
that the normalized Poincaré polynomial is a link invariant.
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§1. Introduction

In this paper, we study a categorification of the quantum (sln, ∧Vn) link
invariant, associated to Uq(sln) and its fundamental representations ∧Vn =
{Vn, ∧2Vn, ..., ∧n−1Vn}, using matrix factorizations. That is, this work is a
generalization of a categorification of the (sln,Vn) link invariant via matrix
factorizations given by Khovanov and Rozansky [6].

Murakami, Ohtsuki, and Yamada [9] gave the state model of the (sln,
∧Vn) link invariant using a polynomial invariant of MOY diagrams, which
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Figure 1: MOY diagrams Γ[i,j]
L,k and Γ[i,j]

R,k

are composed of trivalent planar diagrams colored from the set {1,2, . . . , n}
corresponding to the fundamental representations {Vn, ∧2Vn, ..., ∧n−1Vn},
under planar isotopy moves and MOY relations. MOY diagrams represent
intertwiners between tensor products of some fundamental representations,
and MOY relations are equivalent to relations between intertwiners. The
state model consists of equations for [i, j]-crossings

〈
i j

〉
n

=
j∑

k=0

(−1)−k+j−iqk+in−i2+(i−j)2+2(i−j)
〈
Γ[i,j]

L,k

〉
n
,(1)

〈
i j

〉
n

=
i∑

k=0

(−1)k+j−iq−k−jn+j2−(j−i)2−2(j−i)
〈
Γ[i,j]

R,k

〉
n

(2)

and MOY relations, where Γ[i,j]
L,k and Γ[i,j]

R,k are MOY diagrams in Figure 1.
Khovanov and Rozansky categorified the (sln,Vn) link invariant via matrix

factorizations. Roughly speaking, they first defined matrix factorizations of
Γ[1,1]

L,0 and Γ[1,1]
L,1 satisfying isomorphisms of matrix factorizations correspond-

ing to MOY relations colored by 1 and 2. Then, they categorified (1) and (2)
for [1,1]-crossings as a complex of matrix factorizations of Γ[1,1]

L,0 and Γ[1,1]
L,1

and proved that if tangle diagrams are related by a Reidemeister I, II, or
III move, then the complexes of matrix factorizations of these diagrams are
isomorphic.

Note that there are some similar approaches to a categorification of the
(sln,Vn) link invariant (see [3], [10]). Sussan [12] and Mazorchuk and Strop-
pel [8] studied the categorification using a Lie theoretic category. Cautis
and Kamnitzer [2] and Webster and Williamson [13] studied the categori-
fication using a geometric approach. Mackaay, Stosic, and Vaz [7] studied
the categorification using bimodules associated to MOY diagrams.
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Our strategy of a categorification of the (sln,∧Vn) link invariant is as
follows.

(S1) We first define matrix factorizations of Γ[i,j]
L,k and Γ[i,j]

R,k satisfying iso-
morphisms between matrix factorizations corresponding to MOY rela-
tions colored from the set {1,2, . . . , n}. (In [14], [16], and [17] Wu and
the author independently categorified polynomials associated to MOY
diagrams using matrix factorizations. These works are a generalization
of [6].)

(S2) We categorify (1) and (2) for [k,1]-crossings, where k is an element of
the set {1, . . . , n − 1}, as a complex of matrix factorizations of Γ[k,1]

L,0

and Γ[k,1]
L,1 (or Γ[k,1]

R,0 and Γ[k,1]
R,1 ). Then we show that if colored tangle

diagrams composed of [k,1]-crossings are related by a Reidemeister
II or III move, then the complexes associated to these diagrams are
isomorphic.

(S3) We introduce an approximate [i, j]-crossing composed of [i,1]-cros-
sings. Therefore, we can define a complex for the approximate [i, j]-
crossing by a tensor product of complexes associated to [i,1]-crossings.
If colored link diagrams are related by a Reidemeister move, then the
complexes of these diagrams are not isomorphic. Thus, we would like to
define a complex for an [i, j]-crossing by normalizing the complex of the
approximate [i, j]-crossing and prove that if colored tangle diagrams
are related by a Reidemeister I, II, or III move, then the complexes of
these diagrams are isomorphic.

Since the structure of morphisms between matrix factorizations of Γ[i,j]
L,k

and Γ[i,j]
L,k−1 (Γ[i,j]

R,k and Γ[i,j]
R,k−1) is intricate, we have two difficulties. One is to

define boundary maps of a complex of the [i, j]-crossing explicitly. Another
is to show that there exists an isomorphism between complexes for the
colored tangle diagrams that are related by a Reidemeister move, after we
have defined the complex for the [i, j]-crossing explicitly. We consider the
above strategy to avoid these difficulties. However, we have not defined a
complex for an [i, j]-crossing by normalizing the complex of the approximate
[i, j]-crossing in this paper. We hope to return to this question in a future
paper.

Instead of defining the complex for the [i, j]-crossing, we consider the
following strategy.
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(S3′) We introduce an approximate [i, j]-crossing composed of [i,1]-cros-
sings and define a complex for the approximate [i, j]-crossing by a
tensor product of complexes associated to [i,1]-crossings. For a given
colored link diagram, we define a normalized Poincaré polynomial of
the homology of the approximate link diagram and prove that the
polynomial is a link invariant.

Using the above strategy, in Section 4 we define matrix factorizations
of MOY diagrams and show isomorphisms between matrix factorizations
corresponding to some MOY relations in the homotopy category of matrix
factorizations. Note that Sussan [12] and Mazorchuk and Stroppel [8] gave
a categorification of MOY diagrams colored from the set {1, . . . , n} via cat-
egory O. In Section 5 we give a complex of the [k,1]-crossing in strategy
(S2). (We remark that the construction is a generalization of a complex for
a [2,1]-crossing given by Rozansky [11].) Theorem 5.3 is one of the main
results.

Theorem A. If colored tangle diagrams composed of [k,1]-crossings are
related by a Reidemeister II or III move, then the complexes of matrix fac-
torizations of these diagrams are isomorphic.

A point of this construction is that the boundary map of the complex of
a [k,1]-crossing is described explicitly. Therefore, we can calculate a (Z ⊕
Z ⊕ Z/2Z)-graded homology Hi,j,k(D) for a given colored link diagram D

composed of [k,1]-crossings.
In Section 6 we introduce the approximate [i, j]-crossing, define a com-

plex of the approximate [i, j]-crossing, and calculate the difference between
complexes of colored link diagrams that are related by a Reidemeister I, II,
or III move in Theorem 6.5.

The information of Theorem 6.5 is enough to give us a new link invariant
for a colored oriented link diagram D. We consider the (Z ⊕ Z ⊕ Z/2Z)-
graded homology H i,j,k(D) through the complex for the approximate
diagram of D. Then, we take the Poincaré polynomial of the homology
H i,j,k(D), which we call P (D):∑

i,j,k

tiqjsk dimQ H i,j,k(D) ∈ Q[t±1, q±1, s]/〈s2 − 1〉.

We obtain a link invariant by normalizing the Poincaré polynomial P (D) as
follows. Let Crk(D) (k = 1, . . . , n − 1) denote the number of [∗, k]-crossings
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of a colored oriented link diagram D. We define a rational function P (D)
by

P (D)
n−1∏
k=1

1
([k]q!)Crk(D)

.

By Theorem 6.5, we have one of the main results (Theorem 6.7) in
Section 6.2.

Theorem B. P (D) is an invariant of colored oriented links.

P (D) is the (sln, ∧Vn) link invariant if t is specialized to −1 and s is
specialized to 1. Therefore, P (D) is a refined link invariant of the (sln, ∧Vn)
link invariant.

Remark 1.1. (1) A power of the parameter s associated to the Z2-
grading is a sum of colorings over each component for a given colored
link diagram.

(2) Wu gave a similar result [15, Lemma 13.4]. He defined a morphism from
the matrix factorization of Γ[i,j]

L,k to the matrix factorization of Γ[i,j]
L,k+1

(k = 0, . . . , j − 1) and defined the complex of matrix factorization of
an [i, j]-crossing whose boundaries’ morphisms are associated to these
morphisms. The author conjectures that the link invariant P (D), for
a colored link diagram D, is equal to the Poincaré polynomial of the
homology associated to Wu’s complex of matrix factorizations CWu(D).
However, he does not have a proof of this claim.

Moreover, we have an interesting question: Is there an isomorphism
between Wu’s complex of [i, j]-crossing CWu(Cr[i,j]) and the complex of
the approximate [i, j]-crossing C(Cr[i,j]) (in Definition 6.4)

C(Cr[i,j]) � CWu(Cr[i,j])⊕[j]q!.

If such an isomorphism exists, then the above conjecture is obviously
true. The complex C(Cr[i,j]) has an acyclic direct summand. That is,
the complex C(Cr[i,j]) is isomorphic to a complex M • ⊕ A•, where M •

is a complex of matrix factorizations that does not have acyclic direct
summands and A• is an acyclic direct summand in C(Cr[i,j]). It is suf-
ficient to show an isomorphism M • � CWu(Cr[i,j])⊕[j]q . However, it is
hard to understand boundary maps in M •.

(3) This article is a short version of the author’s Ph.D. thesis [18]. Therefore,
the author leaves out detailed calculations of proofs. In the author’s
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previous paper [17], propositions in Section 4 are proved in detail. In
the author’s Ph.D. thesis [18], propositions in Sections 5 and 6 are
proved in detail.

§2. Z-graded matrix factorization

In this section, we recall definitions and properties of matrix factorizations
(see [6], [5], [19]).

2.1. Z-graded modules
Let R = Q[x1, . . . , xr] be a polynomial ring such that the degree deg(xi) ∈

Z is an even positive integer given for each i = 1, . . . , r. Then, R has a Z-
grading decomposition ⊕iR

i such that RiRj ⊂ Ri+j and R0 = Q. We denote
the maximal ideal generated by graded homogeneous polynomials of R by m.
We consider a free R-module M with a Z-grading decomposition

⊕
i M

i

such that RjM i ⊂ M i+j for any i ∈ Z.
A Z-grading shift {m} (m ∈ Z) is a functor that shifts the Z-grading by

m on an R-module,
(M {m})i = M i−m.

For a Laurent polynomial f(q) =
∑

aiq
i ∈ N≥0[q, q−1], we define M ⊕f(q) by⊕

i

(M {i})⊕ai .

2.2. Potential and Jacobian algebra
For a homogeneous Z-graded polynomial ω ∈ R, we define a quotient

ring Rω by R/Iω, where Iω is the ideal generated by partial derivatives
∂ω
∂xk

(1 ≤ k ≤ r). The quotient ring Rω is called the Jacobian algebra of ω.
A homogeneous element ω ∈ m is a potential of R if the Jacobian algebra
Rω is a finite-dimensional Q-vector space.

2.3. Z-graded matrix factorizations
Assume that the polynomial ω in R is a potential with of an even homo-

geneous Z-grading. The polynomial ω is allowed to be zero, and R = Q in
such a case. In this setting, we define a Z-graded matrix factorization with
the potential ω as follows.

We suppose that a 4-tuple M = (M0,M1, dM0 , dM1) is a two-periodic chain

M0

dM0

M1

dM1

M0,
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where M0 and M1 are Z-graded free R-modules (permitted to be infinite
rank), and dM0 : M0 → M1 and dM1 : M1 → M0 are Z-graded homogeneous
morphisms (do not assume Z-grade-preserving).

We say that a 4-tuple M is a Z-graded matrix factorization with a poten-
tial ω ∈ m (or simply a factorization) if dM0 and dM1 are morphisms with
Z-grading (1/2)degω satisfying dM1dM0 = ω IdM0 and dM0dM1 = ω IdM1 .

We define a Z-grading shift {m} (m ∈ Z) on M = (M0,M1, dM0 , dM1) by

M {m} = (M0{m},M1{m}, dM0 , dM1).

For a Laurent polynomial f(q) =
∑

aiq
i ∈ N≥0[q, q−1], we define M

⊕f(q) by⊕
i

(M {i})⊕ai .

The translation 〈1〉 changes a factorization M = (M0,M1, dM0 , dM1) into

M 〈1〉 = (M1,M0, −dM1 , −dM0).

The translation 〈2〉(= 〈1〉2) is the identity. 〈1〉k is denoted by 〈k〉.

Definition 2.1. A matrix factorization (M0,M1, d0, d1) is finite if M0

and M1 are free R-modules of finite rank.

2.4. The homotopy category of matrix factorizations HMF
Definition 2.2. We define a homotopy category HMFgr,all

R,ω of Z-graded
matrix factorizations as follows.
• An object in HMFgr,all

R,ω is a factorization M = (M0,M1, dM0 , dM1) with
the potential ω, where M0, M1 are R-modules.

• A morphism in the category HMFgr,all
R,ω from M = (M0,M1, dM0 , dM1) to

N = (N0,N1, dN0 , dN1) is a pair f = (f0, f1) of Z-grade-preserving mor-
phisms of R-modules satisfying the commutative diagram

M0

dM0

f0

M1

dM1

f1

M0

f0

N0

dN0

N1

dN1

N0

up to homotopy.
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• The composition fg of morphisms f = (f0, f1) and g = (g0, g1) is defined
by (f0g0, f1g1).

For any matrix factorizations M and N , let HomHMF(M,N) denote the
set of Z-grade-preserving morphisms from M to N .

Definition 2.3. A matrix factorization is contractible if it is isomorphic
in HMFgr,all

R,ω to the zero factorization (0,0,0,0). A factorization is essential
if it does not include any contractible factorizations.

2.5. Cohomology of matrix factorization
We consider a Z-graded polynomial ring R = Q[x1, . . . , xk] and its maxi-

mal ideal m = 〈x1, . . . , xk 〉. For a factorization M = (M0,M1, d0, d1) ∈
Ob(HMFgr,all

R,ω ), we define a quotient M/mM by a two-periodic complex
of Q-vector spaces

M0/mM0

d0

M1/mM1

d1

M0/mM0.

Let H(M) = H0(M) ⊕ H1(M) denote the cohomology of M/mM , which we
call the cohomology of the matrix factorization. We consider a full sub-
category whose objects are matrix factorizations with finite-dimensional
cohomology of HMFgr,all

R,ω , denoted by HMFgr
R,ω. A matrix factorization M ∈

Ob(HMFgr,all
R,ω ) with finite-dimensional cohomology is a direct sum of an

essential finite factorization and a contractible factorization (see [6, Corol-
lary 4]). Therefore, we find that HMFgr

R,ω and the full subcategory of finite

matrix factorizations in HMFgr,all
R,ω are categorically equivalent.

2.6. Tensor product of matrix factorization
Let X = {x1, . . . , xr } and Y = {y1, . . . , ys} be two sets of variables. Let

W = {w1, . . . ,wt} be the set of common variables in X and Y. We consider
Z-graded rings generated by X = {x1, . . . , xr }, Y = {y1, . . . , ys}, and W =
{w1, . . . ,wt}, which we put R = Q[X], R′ = Q[Y], and S = Q[W]. We always
take a tensor product of R and R′ over the ring S generated by the common
variables of R and R′,

R ⊗
S

R′ = R ⊗
Q
R′/{rs ⊗

Q
r′ − r ⊗

Q
sr′ | r ∈ R,r′ ∈ R′, s ∈ S}.

Even if the common variables of R and R′ are nonempty, we denote a tensor
product R ⊗

S
R′ by R ⊗ R′ without notice. For an R-module M and an R′-

module N , we also take these tensor products over the ring S,

M ⊗ N = M ⊗
Q
N/{ms ⊗

Q
n − m ⊗

Q
sn | m ∈ M,n ∈ N,s ∈ S}.
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For M = (M0,M1, dM0 , dM1) in HMFgr,all
R,ω and N = (N0,N1, dN0 , dN1) in

HMFgr,all
R′,ω′ , we define a tensor product M � N in HMFgr,all

R⊗R′,ω+ω′ by((
M0 ⊗ N0

M1 ⊗ N1

)
,

(
M1 ⊗ N0

M0 ⊗ N1

)
,

(
dM0 −dN1

dN0 dM1

)
,

(
dM1 dN1

−dN0 dM0

))
.

We remark that M � N is contractible if either factorization M or N is
contractible. Moreover, the tensor product preserves the condition of finite-
dimensional cohomology. Therefore, the tensor product is well defined in
HMFgr. As a bifunctor, the tensor product is viewed

� : HMFgr
R,ω × HMFgr

R′,ω′ −→ HMFgr
R⊗R′,ω+ω′ .

Remark 2.4. (1) The tensor product � is commutative, associative, and
compatible with the direct sum. Moreover, there exists a unique unit object
for the tensor product (see [20]).

(2) As from here, M1 � M2 � M3 � . . . � Mk is defined by
(
. . . ((M1 �

M2) � M3) � . . .
)
� Mk:

M1 � M2 � M3 � . . . � Mk =
(
. . . ((M1 � M2) � M3) � . . .

)
� Mk.

We consider a special case of the tensor product of two matrix fac-
torizations. Let ω(x1, . . . , xi), ω′(y1, . . . , yj), and ω′ ′(z1, . . . , zk) be poten-
tials of polynomial rings R = Q[x1, . . . , xi], R′ = Q[y1, . . . , yj ], and R′ ′ =
Q[z1, . . . , zk], respectively. Suppose that we have an object of HMFgr,all

R⊗R′,ω−ω′ ,

denoted by M , and an object of HMFgr,all
R′ ⊗R′′,ω′ −ω′′ , denoted by N . The poten-

tial of their tensor product M � N is ω − ω′ ′. However, ω − ω′ ′ is not a
potential of R ⊗ R′ ⊗ R′ ′ but is a potential of R ⊗ R′ ′. Therefore, we consider
that the matrix factorization M �N is an object of HMFgr,all

R⊗R′′,ω−ω′′ . Then,

we regard the tensor product as a bifunctor to HMFgr,all
R⊗R′′,ω−ω′′ through

HMFgr,all
R⊗R′ ⊗R′′,ω−ω′′ :

� : HMFgr,all
R⊗R′,ω−ω′ × HMFgr,all

R′ ⊗R′′,ω′ −ω′′ → HMFgr,all
R⊗R′′,ω−ω′′ .

We have the following proposition.

Proposition 2.5 ([6, Proposition 13]). If M is a factorization of
HMFgr

R⊗R′,ω−ω′ and N is a factorization of HMFgr
R′ ⊗R′′,ω′ −ω′′ , then the tensor

product M � N is also a factorization with finite-dimensional cohomology.
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Thus, the tensor product is a bifunctor from HMFgr to HMFgr:

� : HMFgr
R⊗R′,ω−ω′ × HMFgr

R′ ⊗R′′,ω′ −ω′′ → HMFgr
R⊗R′′,ω−ω′′ .(13)

2.7. Koszul matrix factorizations
For homogeneous polynomials a, b in a Z-graded polynomial ring R and

an R-module M , we define a matrix factorization K(a; b)M with the poten-
tial ab by

K(a; b)M :=
(
M,M

{1
2
(
deg(b) − deg(a)

)}
, a, b

)
.

For sequences a = (a1, a2, . . . , ak), b = (b1, b2, . . . , bk) of homogeneous
polynomials in R and an R-module M , a matrix factorization K(a;b)M

with the potential
∑k

i=1 aibi is defined by

K(a;b)M =
k
�
i=1

K(ai; bi)R � (M,0,0,0).

This factorization is called a Koszul matrix factorization (see [6]).

Theorem 2.6 ([5, Theorem 2.1]). Let ai, bi, and b′
i (i = 1, . . . ,m) be

homogeneous polynomials in R, and let M be an R-module. If a1, . . . , am

form a regular sequence in R and

m∑
i=1

aibi =
m∑

i=1

aib
′
i,

then there exists an isomorphism

m
�

j=1
K(aj ; bj)M �

m
�

j=1
K(aj ; b′

j)M .

Corollary 2.7. We put R = Q[x1, x2, . . . , xk], Ry = R[y]/I, where I is
an ideal generated by a monic polynomial yl + α1y

l−1 + · · · + αl (αi ∈ R

such that deg(αi) = i deg(y)). Let R̂ be the image of R under the obvious
inclusion map to Ry. Let ai (i = 1, . . . ,m) be a homogeneous polynomial in
Ry, and let bi (i = 2, . . . ,m) be a homogeneous polynomial in R.
(1) Let b1, β be homogeneous polynomials in Ry, such that (y + β)b1 ∈ R̂.
Assume that these polynomials satisfy the following conditions:
(i) (y + β)b1, b2, . . . , bm form a regular sequence in R,
(ii) a1b1(y + β) +

∑m
i=2 aibi(=: ω) is a polynomial in R̂.
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Then, there exist homogeneous polynomials a′
i ∈ R (i = 1, . . . ,m) satisfying

the following isomorphism:

K

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

(y + β)a1

a2
...

am

⎞⎟⎟⎟⎠ ;

⎛⎜⎜⎜⎝
b1

b2
...

bm

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

Ry

� K

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

(y + β)a′
1

a′
2
...

a′
m

⎞⎟⎟⎟⎠ ;

⎛⎜⎜⎜⎝
b1

b2
...

bm

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

Ry

.

(2) Let b1 and β be homogeneous polynomials in R. Assume that these poly-
nomials satisfy the following conditions:

(i) b1, b2, . . . , bm form a regular sequence in R,
(ii) a1b1(y + β) +

∑m
i=2 aibi(=: ω) is a polynomial in R̂.

Then, there exist homogeneous polynomials a′
1 ∈ Ry and a′

i ∈ R (i = 2, . . . ,
m) satisfying a′

1(y + β) ∈ R̂ and the following isomorphism:

K

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

a1

a2
...

am

⎞⎟⎟⎟⎠ ;

⎛⎜⎜⎜⎝
b1(y + β)

b2
...

bm

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

Ry

� K

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

a′
1

a′
2
...

a′
m

⎞⎟⎟⎟⎠ ;

⎛⎜⎜⎜⎝
b1(y + β)

b2
...

bm

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

Ry

.

Proof. This corollary is proved by Theorem 2.6 and the equation yl +
α1y

l−1 + · · · + αl = 0 in the quotient Ry.

Theorem 2.8 ([6, Proposition 10], [5, Theorem 2.2]). Let R = Q[x], where
x = (x1, x2, . . . , xl); let ai and bi (1 ≤ i ≤ k) be homogeneous polynomials
in R[y], where y = (y1, y2, . . . , ym); and let M be an R[y]-module (also an
R-module). If a = t(a1, a2, . . . , ak) and b = t(b1, b2, . . . , bk) satisfy the condi-
tions

(i)
∑k

i=1 aibi (=: ω) ∈ R;
(ii) there exist homogeneous polynomials bj1(x, y), bj2(x, y), . . . , bjr(x, y) ∈

R[y] such that the sequence (bj1(0, y), bj2(0, y), . . . , bjr(0, y)) is regular
in Q[y],

then there exists the following isomorphism in HMFgr,all
R,ω :

K(a;b)M � K
( j1,j2,...,jr

ǎ ;
j1,j2,...,jr

b̌
)
M/〈bj1

,bj2
,...,bjr 〉M .
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2.8. Complex category over additive category
For an additive category A, let Komb(A) denote the (bounded) complex

category over A, let Kb(A) denote the homotopy category of Komb(A), and
let X• denote a complex in the category

( · · ·
dcXi−2

Xi−1
dcXi−1

Xi
dcXi

Xi+1
dcXi+1

· · · ).

A translation functor of a complex category, which we call [k] (k ∈ Z),
changes a complex X• into

(X•[k])i = Xi−k.

Remark 2.9. This definition of the translation functor is different from
the ordinary definition (X•[k])i = Xi+k. This definition matches with the
Poincaré polynomial P (D) of (Z ⊕ Z ⊕ Z/2Z)-graded homology.

We assume that a category A has a tensor product structure. For com-
plexes X• and Y •, we define a tensor product X• ⊗ Y • as follows:

(X• ⊗ Y •)k :=
⊕

i+j=k

Xi ⊗ Y j ,

dc(X• ⊗Y •)k
=

∑
i+j=k

(
dcXi ⊗ IdY j +(−1)i IdXi ⊗dcY j

)
.

2.9. Complex category of Z-graded matrix factorizations
We consider the complex category Komb(HMFgr

R,ω) and the homotopy
category Kb(HMFgr

R,ω). By Proposition 2.5, we have bifunctors

� : Komb(HMFgr
R⊗R′,ω−ω′ ) × Komb(HMFgr

R′ ⊗R′′,ω′ −ω′′ )

→ Komb(HMFgr
R⊗R′′,ω−ω′′ ),

� : Kb(HMFgr
R⊗R′,ω−ω′ ) × Kb(HMFgr

R′ ⊗R′′,ω′ −ω′′ ) → Kb(HMFgr
R⊗R′′,ω−ω′′ ).

Finally, we show a proposition for a complex of Koszul factorizations.

Proposition 2.10. Let ai, a′
i, bi (i = 1, . . . , k), and c be sequences of

homogeneous polynomials in R satisfying that
(C1) ca1b1 +

∑k
i=2 aibi = ca′

1b1 +
∑k

i=2 a′
ibi,

(C2) the sequence (b1, . . . , bk) is regular in R.
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Put S = �k
j=2 K(aj ; bj)R, and put S

′ = �k
j=2 K(a′

j ; bj)R. We have the fol-
lowing isomorphisms by Corollary 2.7:

K(ca1; b1)R � S
ϕ

K(ca′
1; b1)R � S

′
,

K(a1; cb1)R � S
ψ

K(a′
1; cb1)R � S

′
.

(i) We have the following commutative diagram of matrix factorizations:

(1) K(ca1; b1)R � S

ϕ

(c,1)�IdS

K(a1; cb1)R � S{− deg c}

ψ

K(ca′
1; b1)R � S

′
(c,1)�Id

S′

K(a′
1; cb1)R � S

′ {− deg c}.

(ii) We have the following commutative diagram of matrix factorizations:

(2) K(a1; cb1)R � S

ψ

(1,c)�IdS

K(ca1; b1)R � S

ϕ

K(a′
1; cb1)R � S

′
(1,c)�Id

S′

K(ca′
1; b1)R � S

′
.

Proof. It suffices to apply the isomorphisms of Theorem 2.6 to the fol-
lowing complex:

K

((
ca1

a2

)
;
(

cb1

b2

))
R

(c,1)�Id

K

((
a1

a2

)
;
(

cb1

b2

))
R

{− deg c}.

By direct calculation of morphism composition, we find that ϕ · ((c,1)� Id) ·
ψ

−1 is

K

((
ca′

1

a′
2

)
;
(

b1

b2

))
R

(c,1)�Id

K

((
a′

1

a′
2

)
;
(

cb1

b2

))
R

{− deg c}.
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§3. Homogeneous polynomial and its generating function

In this section, we give a few special polynomials that are generalized
elementary symmetric polynomials and their generating functions. Using
these polynomials, we define matrix factorizations for MOY diagrams in
Section 4.

3.1. Homogeneous polynomial
We suppose that variables t1,i, t2,i, . . . , tm,i, where i is a formal index,

have Z-grading 2. Let T(m)
(i) be a sequence of m variables tl,i (1 ≤ l ≤ m):

T(m)
(i) = (t1,i, t2,i, . . . , tm,i).

Let xj,i =
∑

1≤k1<· · ·<kj ≤m tk1,i · · · tkj ,i (1 ≤ j ≤ m) denote the elementary
symmetric polynomials. We find that the Z-grading of xj,i is 2j. In addi-
tion, we put x0,i = 1 for any i. Let X(m)

(i) be a sequence of the elementary
symmetric polynomials xl,i (1 ≤ l ≤ m):

X(m)
(i) = (x1,i, x2,i, . . . , xm,i).

For a sequence of positive integers (m1,m2, . . . ,mk) and a sequence of indices
(i1, i2, . . . , ik), let R

(m1,m2,...,mk)
(i1,i2,...,ik) be a polynomial ring over Q generated by

symmetric polynomials in sequences X(m1)
(i1)

, X(m2)
(i2)

, . . . ,X(mk)
(ik) :

R
(m1,m2,...,mk)
(i1,i2,...,ik) = Q[x1,i1 , x2,i1 , . . . , xm1,i1 , . . . , x1,ik , x2,ik , . . . , xmk,ik ].

Let s(m) be a function that is 1 if m ≥ 0 and −1 if m < 0. For a sequence
of integers (m1,m2, . . . ,mk) and a sequence of indices (i1, i2, . . . , ik), let
X

(m1,m2,...,ml)
(i1,i2,...,il)

be a rational function composed of polynomials of X(mk)
(ik)

(k = 1, . . . , l),
l∏

k=1

(1 + x1,ik + · · · + x|mk |,ik)s(mk),

and let X
(m1,m2,...,ml)
m,(i1,i2,...,il)

be homogeneous terms with Z-grading 2m of the ratio-

nal function X
(m1,m2,...,ml)
(i1,i2,...,il)

. In general, let X(m1,m2,...,ml)
(i1,i2,...,il)

denote a sequence

of X
(m1,m2,...,ml)
m,(i1,i2,...,il)

(m ∈ N≥1):

X(m1,m2,...,ml)
(i1,i2,...,il)

= (X(m1,m2,...,ml)
m,(i1,i2,...,il)

)m∈N≥1
.
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Remark 3.1. Let mj (1 ≤ j ≤ l) be a positive integer.

(1) X
(m1,...,ml)
(i1,...,il)

is a generating function of elementary symmetric polynomi-

als of variables T(m1)
(i1) , . . . ,T(ml)

(il)
.

(2) X
(−m1,...,−ml)
(i1,...,il)

is a generating function of complete symmetric polyno-

mials of variables T(m1)
(i1) , . . . ,T(ml)

(il)
up to ±1.

These polynomials have the following properties.

Proposition 3.2. (1) Let Sk be the symmetric group. For any σ ∈ Sk,

X
(m1,m2,...,mk)
m,(i1,i2,...,ik) = X

(mσ(1),mσ(2),...,mσ(k))

m,(iσ(1),iσ(2),...,iσ(k))
.

(2) For any l ∈ {1,2, . . . , k − 1},

X
(m1,m2,...,mk)
m,(i1,i2,...,ik) =

m∑
j=0

X
(m1,...,ml)
m−j,(i1,...,il)

X
(ml+1,...,mk)
j,(il+1,...,ik) .

(3) For any positive integer m1,

X
(−m1,m2,...,mk)
m,(i1,i2,...,ik) = X

(m2,...,mk)
m,(i2,...,ik) − x1,i1X

(−m1,m2,...,mk)
m−1,(i1,i2,...,ik) − · · ·

− xm1,i1X
(−m1,m2,...,mk)
m−m1,(i1,i2,...,ik).

(4) For any positive integer m,

m∑
l=0

X
(m1,...,mk)
m−l,(i1,...,ik)X

(−m1,...,−mk)
l,(i1,...,ik) = 0.

(5) The ideal in R
(m1,m2,...,mk)
(i1,i2,...,ik) generated by (X(m1,...,mk)

1,(i1,...,ik) , . . . ,X
(m1,...,mk)
m,(i1,...,ik))

equals the ideal generated by (X(m1,...,ml)
1,(i1,...,il)

− X
(−ml+1,...,−mk)
1,(il+1,...,ik) , . . . ,

X
(m1,...,ml)
m,(i1,...,il)

− X
(−ml+1,...,−mk)
m,(il+1,...,ik) ).

We consider the power sum tn+1
1,i + tn+1

2,i + · · · + tn+1
m,i in Q[t1,i, . . . , tm,i]. The

power sum is represented as a polynomial of the subring Q[x1,i, . . . , xm,i] gen-
erated by the elementary symmetric polynomials, which we call Fm(x1,i, x2,i,

. . . , xm,i) or Fm(X(m)
(i) ) for short:

Fm(X(m)
(i) ) = Fm(x1,i, x2,i, . . . , xm,i) = tn+1

1,i + tn+1
2,i + · · · + tn+1

m,i .
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Proposition 3.3. (1) We have

Fm(x1,i, x2,i, . . . , xm,i) =
m∑

k=1

(−1)n+1−kk xk,iX
(−m)
n+1−k,(i).

(2) The sum of Fmk
(X(mk)

(ik) ) (k = 1, . . . , j) equals F∑j
k=1 mk

(X(m1,m2,...,mj)

(i1,i2,...,ij)
):

j∑
k=1

Fmk
(X(mk)

(ik) ) = F∑j
k=1 mk

(X(m1,m2,...,mj)

(i1,i2,...,ij)
).

(3) The polynomial
∑j

k=1 Fmk
(X(mk)

(ik) ) is a potential of R
(m1,m2,...,mj)

(i1,i2,...,ij)
.

§4. MOY diagrams and matrix factorizations

MOY diagrams represent intertwiners between tensor products of some
fundamental representations. The diagrams consist of some elementary pla-
nar diagrams colored from the set {1,2, . . . , n}, which corresponds to the set
of the fundamental representations {Vn, . . . , ∧n−1Vn} and the trivial repre-
sentation ∧nVn.

In this section, we give a definition of matrix factorizations of MOY dia-
grams and show isomorphisms between matrix factorizations corresponding
to some MOY relations.

4.1. Potential of MOY diagram
A potential for a MOY diagram is a power sum determined by color-

ings, orientations of the diagram, and formal indices that we put on ends
of the diagram. For a given MOY diagram, we assign a different index
i to each end of the diagram and then assign a power sum to each end
as follows. When an edge including an i-assigned end has a coloring m

and an orientation from inside the diagram to the outside end, we assign

m

L[m]
(1 ≤ m ≤ n)

m3

m2m1

Λ[m1,m2]

m3

m1 m2

V [m1,m2]
(2 ≤ m3 = m1 + m2 ≤ n)

Figure 2: Elementary MOY diagrams
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�1

�2

�3

�4

�5

m1 m2

m6

m3

m4

m7

m5

X(m1)
(1)

X(m2)
(2)

X(m3)
(3)

X(m4)
(4)

X(m5)
(5)

m1 m2

m6

m3

m4

m7

m5

Figure 3: MOY diagram assigned indices and diagram assigned sequences

the polynomial +Fm(x1,i, x2,i, . . . , xm,i) to the end, and when an edge has
an opposite orientation from outside to inside, we assign the polynomial
−Fm(x1,i, x2,i, . . . , xm,i). The potential of a MOY diagram is defined by the
sum of these assigned polynomials over each end of the diagram.

To each end of the edge with coloring m, we simply assign only a formal
index i or a sequence of variables X(m)

(i) for convenience (see Figure 3). For
instance, the potential of the diagram in Figure 3 is

Fm1(X
(m1)
(1) ) + Fm2(X

(m2)
(2) ) − Fm3(X

(m3)
(3) ) + Fm4(X

(m4)
(4) ) + Fm5(X

(m5)
(5) ).

4.2. Elementary MOY diagrams and matrix factorizations
For elemental pieces of MOY diagrams (see Figure 2), we define matrix

factorizations.
We consider elementary MOY diagram L

[m]
(1;2) in Figure 4.

Definition 4.1. For the diagram L
[m]
(1;2), we define a matrix factorization

L
[m]
(1;2) by

(3)
m
�

j=1
K
(
L

[m]
j,(1;2);X

(m)
j,(1) − X

(m)
j,(2)

)
R

(m,m)
(1,2)

,

m

�1

�2
(1 ≤ m ≤ n)

Figure 4: Elementary MOY diagram L
[m]
(1;2)
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m3

m2m1

�3

�2�1
m3

m1 m2

�3

�1 �2

(2 ≤ m3 = m1 + m2 ≤ n).

Figure 5: MOY diagrams Λ[m1,m2]
(3;1,2) and V

[m1,m2]
(1,2;3)

where L
[m]
j,(1;2) is the polynomial(

Fm(X(m)
1,(2), . . . ,X

(m)
j−1,(2),X

(m)
j,(1), . . . ,X

(m)
m,(1))

− Fm(X(m)
1,(2), . . . ,X

(m)
j,(2),X

(m)
j+1,(1), . . . ,X

(m)
m,(1))

)
/(X(m)

j,(1) − X
(m)
j,(2)).

Remark 4.2. For m ≥ n+1, we can consider a matrix factorization L
[m]
(1;2)

as the above definition. However, we find that such matrix factorizations are
contractible.

We consider MOY diagrams Λ[m1,m2]
(3;1,2) and V

[m1,m2]
(1,2;3) in Figure 5.

Definition 4.3. For the diagram Λ[m1,m2]
(3;1,2) , we define a matrix factoriza-

tion Λ[m1,m2]
(3;1,2) by

(4)
m3

�
j=1

K(Λ[m1,m2]
j,(3;1,2) ;X

(m3)
j,(3) − X

(m1,m2)
j,(1,2) )

R
(m1,m2,m3)

(1,2,3)

,

where Λ[m1,m2]
j,(3;1,2) is the polynomial(

Fm3(. . . ,X
(m1,m2)
j−1,(1,2),X

(m3)
j,(3) ,X

(m3)
j+1,(3), . . .)

− Fm3(. . . ,X
(m1,m2)
j−1,(1,2),X

(m1,m2)
j,(1,2) ,X

(m3)
j+1,(3), . . .)

)
/(X(m3)

j,(3) − X
(m1,m2)
j,(1,2) ).

For the diagram V
[m1,m2]
(1,2;3) , we define a matrix factorization V

[m1,m2]
(1,2;3) by

(5)
m3

�
j=1

K(V [m1,m2]
j,(1,2;3) ;X(m1,m2)

j,(1,2) − X
(m3)
j,(3) )

R
(m1,m2,m3)

(1,2,3)

{−m1m2},
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�1

�ik

�i2
�i1

mm1

mk

···

ΓL

�2

�i′
l

�i′
2

�i′
1

m
m′

1

m′
l

···

ΓR

�1

m ······

�ik

�i2
�i1
m1

mk
�i′
l

�i′
2

�i′
1

m′
1

m′
l

ΓG

Figure 6: Gluing diagrams

where V
[m1,m2]
j,(1,2;3) is the polynomial(

Fm3(. . . ,X
(m3)
j−1,(3),X

(m1,m2)
j,(1,2) ,X

(m1,m2)
j+1,(1,2), . . .)

− Fm3(. . . ,X
(m3)
j−1,(3),X

(m3)
j,(3) ,X

(m1,m2)
j+1,(1,2), . . .)

)
/(X(m1,m2)

j,(1,2) − X
(m3)
j,(3) ).

Remark 4.4. For m3 ≥ n + 1, we can consider matrix factorizations
Λ[m1,m2]

(3;1,2) and V
[m1,m2]
(1,2;3) as the above definition. However, we find that such

factorizations are contractible.

4.3. Glued MOY diagrams and matrix factorizations
For a MOY diagram Γ, we define a matrix factorization by gluing matrix

factorizations L
[m]
(1;2), Λ[m1,m2]

(3;1,2) , and V
[m1,m2]
(1,2;3) . Let C(Γ)n denote a matrix fac-

torization for Γ.

Definition 4.5. For the diagram Γ composed of a disjoint union of two
diagrams Γ1 and Γ2, we define a matrix factorization C(Γ) by the tensor
product of C(Γ1) and C(Γ2):

C(Γ)n := C(Γ1)n � C(Γ2)n.

We consider two MOY diagrams that have a consistently oriented com-
mon m-colored edge (see the left and the middle diagrams in Figure 6).
These diagrams ΓL and ΓR are glued at the markings �1 and �2 , and then
we obtain the diagram ΓG in Figure 6.

Definition 4.6. Let ω + Fm(X(m)
(1) ) be a potential of ΓL, and let ω′ −

Fm(X(m)
(2) ) be a potential of ΓR. We put C(ΓL)n the factorization of ΓL in

Ob(HMFgr

R
(m1,...,mk,m)

(i1,...,ik,1)
,ω+Fm(X(m)

(1)
)
), and we put C(ΓR)n the factorization ΓR
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�1
�2

�ik

�i2
�i1 m

m

m1

mk

···

ΓT

�1

�ik

�i2
�i1 m
m1

mk

···

ΓC

Figure 7: Diagram ΓT and glued diagram ΓC

in Ob(HMFgr

R
(m′

1,...,m′
l
,m)

(i′
1,...,i′

l
,2)

,ω′ −Fm(X(m)
(2)

)
). For the glued diagram ΓG, we define a

matrix factorization C(ΓG) by

C(ΓG)n := C(ΓL)n � C(ΓR)n|
X(m)

(2)
=X(m)

(1)

.

We find that C(ΓG)n has finite-dimensional cohomology by Proposition 2.5.
Therefore, C(ΓG)n is an object of HMFgr

R
(m1,...,mk,m′

1,...,m′
l
)

(i1,...,ik,i′
1,...,i′

l
)

,ω+ω′
.

We consider the MOY diagram ΓT and the diagram ΓC obtained by
joining ends of edges with the same coloring (see Figure 7).

Definition 4.7. In this case let ω + Fm(X(m)
(1) ) − Fm(X(m)

(2) ) be a
potential of the diagram ΓT . For factorization C(ΓT )n in
Ob(HMFgr

R
(m1,...,mk,m,m)

(i1,...,ik,1,2)
,ω+Fm(X(m)

(1)
)−Fm(X(m)

(2)
)
), a matrix factorization of the

diagram ΓC is defined by

C(ΓC)n := C(ΓT )n|
X(m)

(2)
=X(m)

(1)

.

Here, C(ΓC)n has finite-dimensional cohomology. Therefore, C(ΓC)n is an
object of HMFgr

R
(m1,...,mk)

(i1,...,ik)
,ω

.

We find that a glued matrix factorization loses potentials at glued ends.
Therefore, a potential as a matrix factorization associated to a MOY dia-
gram is compatible with the potential of the diagram.

Proposition 4.8. A matrix factorization of a MOY diagram is indepen-
dent of a decomposition of the diagram in HMFgr.

4.4. MOY relations and isomorphisms between factorizations
We show isomorphisms between factorizations corresponding to MOY

relations. For a sequence of integers (m1, . . . ,mk), a sequence of indices
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(i1, . . . , ik), and εj ∈ {1, −1} (j = 1, . . . , k), let ω
(ε1m1,...,εkmk)
(i1,...,ik) denote

(6)
k∑

j=1

εjFmj (X
(mj)

(ij)
).

Proposition 4.9. (1) We have the following isomorphisms in the
homotopy category HMFgr

R
(m1,m2,m3,m4)

(1,2,3,4)
,ω

(−m1,−m2,−m3,m4)

(1,2,3,4)

:

C

⎛⎜⎜⎜⎜⎜⎜⎝
m4

m3m1 m2

X(m4)
(4)

X(m5)
(5)

X(m3)
(3)X(m1)

(1) X(m2)
(2)

⎞⎟⎟⎟⎟⎟⎟⎠
n

� C

⎛⎜⎜⎜⎜⎜⎜⎝
m4

X(m1,m2,m3)
(1,2,3)

X(m4)
(4)

⎞⎟⎟⎟⎟⎟⎟⎠
n

� C

⎛⎜⎜⎜⎜⎜⎜⎝
m4

m3m1 m2

X(m4)
(4)

X(m6)
(6)

X(m3)
(3)X(m1)

(1) X(m2)
(2)

⎞⎟⎟⎟⎟⎟⎟⎠
n

.

(2) Wehave the following isomorphisms inHMFgr

R
(m1,m2,m3,m4)

(1,2,3,4)
,ω

(m1,m2,m3,−m4)

(1,2,3,4)

:

C

⎛⎜⎜⎜⎜⎜⎜⎝ m4

m3m1 m2

X(m4)
(4)

X(m5)
(5)

X(m3)
(3)X(m1)

(1) X(m2)
(2)

⎞⎟⎟⎟⎟⎟⎟⎠
n

� C

⎛⎜⎜⎜⎜⎜⎜⎝
m4

X(m4)
(4)

X(m1,m2,m3)
(1,2,3)

⎞⎟⎟⎟⎟⎟⎟⎠
n

� C

⎛⎜⎜⎜⎜⎜⎜⎝ m4

m3m1 m2

X(m4)
(4)

X(m6)
(6)

X(m3)
(3)X(m1)

(1) X(m2)
(2)

⎞⎟⎟⎟⎟⎟⎟⎠
n

,

where 1 ≤ m1,m2,m3 ≤ n − 2; m5 = m1+m2 ≤ n − 1; m6 = m2+m3 ≤ n − 1;
and m4 = m1 + m2 + m3 ≤ n.

Proposition 4.10. (1) There exists an isomorphism in HMFgr
Q,0

C
(

�1m

)
n

� (J
Fm(X(m)

(1)
)
,0,0,0){−mn + m2}〈m〉,

where J
Fm(X(m)

(1)
)

is the Jacobian algebra for the polynomial Fm(X(m)
(1) ):

J
Fm(X(m)

(1)
)
= R

(m)
(1) /

〈 ∂Fm

∂x1,1
, . . . ,

∂Fm

∂xm,1

〉
.



90 Y. YONEZAWA

(2)There exists an isomorphism in HMFgr

R
(m3,m3)

(1,2)
,ω

(m3,−m3)

(1,2)

C

⎛⎜⎜⎜⎜⎝
m3

m3

�1

�2

m1 m2

⎞⎟⎟⎟⎟⎠
n

� C

⎛⎜⎜⎜⎜⎝ m3

�2

�1
⎞⎟⎟⎟⎟⎠

⊕
[

m3
m1

]
q

n

.

(3)There exists an isomorphism in HMFgr

R
(m1,m1)

(1,2)
,ω

(m1,−m1)

(1,2)

C

⎛⎜⎜⎜⎜⎝
m1

m1

�1

�2

m3 m2

⎞⎟⎟⎟⎟⎠
n

� C

⎛⎜⎜⎜⎜⎝ m1

�2

�1
⎞⎟⎟⎟⎟⎠

⊕
[

n−m1
m2

]
q

n

〈m2〉,

where 1 ≤ m1,m2 ≤ n − 1, and m3 = m1 + m2 ≤ n.

Remark 4.11. The Jacobian algebra J
Fm(X(m)

(1)
)
is isomorphic to the coho-

mology ring of the complex Grassmannian Gr(m,n) as a graded algebra [4].
The cohomology ring of Gr(m,n) is isomorphic to

H
(
Gr(m,n)

)
= Q[e1, . . . , em]/〈hn+1−m, . . . , hn〉,

where hi is the Jacobi-Trudi determinant∣∣∣∣∣∣∣∣∣∣∣

e1 e2 . . .

1 e1

0 1
...

. . .
0 . . . 0 1 e1

∣∣∣∣∣∣∣∣∣∣∣
.

On the other hand, we find that
∂Fm(X(m)

(1)
)

∂xi,1
is the (n + 1 − i)th com-

plete symmetric function of T(m)
(1) up to (−1)n. Since x1,1, . . . , xm,1 are the

elementary symmetric functions of T(m)
(1) , the polynomial

∂Fm(X(m)
(1)

)

∂xi,1
is rep-

resented as the Jacobi-Trudi determinant of x1,1, . . . , xm,1. Therefore, the
Jacobian algebra J

Fm(X(m)
(1)

)
is naturally isomorphic to the cohomology ring

H(Gr(m,n)).
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Proof of Proposition 4.9. (1) By Theorem 2.8, the left-hand factorization
is isomorphic to

(7)
m4

�
j=1

K(Λ[m5,m3]
j,(4;5,3) ;xj,4 − X

(m5,m3)
j,(5,3) )Q,

where Q = R
(m1,m2,m3,m4,m5)
(1,2,3,4,5) /〈x1,5 − X

(m1,m2)
1,(1,2) , . . . , xm5,5 − X

(m1,m2)
m5,(1,2) 〉. In the

quotient Q, the polynomial Λ[m5,m3]
j,(4;5,3) equals

(
Fm4(. . . ,X

(m1,m2,m3)
j−1,(1,2,3) , xj,4, xj+1,4, . . .)

− Fm4(. . . ,X
(m1,m2,m3)
j−1,(1,2,3) ,X

(m1,m2,m3)
j,(1,2,3) , xj+1,4, . . .)

)
/(xj,4 − X

(m1,m2,m3)
j,(1,2,3) ).

We denote this polynomial by Λ[m1,m2,m3]
j,(4;1,2,3) . Since the quotient Q is iso-

morphic to R
(m1,m2,m3,m4)
(1,2,3,4) , (7) is isomorphic to the middle factorization

of Proposition 4.9(1):

(8)
m4

�
j=1

K(Λ[m1,m2,m3]
j,(4;1,2,3) ;xj,4 − X

(m1,m2,m3)
j,(1,2,3) )

R
(m1,m2,m3,m4)

(1,2,3,4)

.

In a similar way, we find that the right-hand factorization of Proposi-
tion 4.9(1) is isomorphic to (8).

We can prove Proposition 4.9(2) in a similar way.

Proof of Proposition 4.10. (1) A matrix factorization of an i-colored loop
is

m
�

j=1

(
R

(m)
(1) ,R

(m)
(1) {2j − 1 − n},

∂Fm(Xm,1)
∂xj,1

,0
)
.(9)

By Theorem 2.8, (9) is isomorphic to

(JFm(Xm,1),0,0,0){−mn + m2}〈m〉.

(2) By Theorem 2.8, the left-hand factorization is isomorphic to

m3

�
j=1

K(Λ[m1,m2]
j,(1;3,4) ;xj,1 − xj,2)Q′ {−m1m2},
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where Q′ = R
(m3,m3,m1,m2)
(1,2,3,4) /〈X(m1,m2)

1,(3,4) − x1,2, . . . ,X
(m1,m2)
m3,(3,4) − xm3,2〉. In the

quotient Q′, the polynomial Λ[m1,m2]
j,(1;3,4) is equal to L

[m3]
j,(1;2). We have an isomor-

phism of R
(m3,m3)
(1,2) -modules

Q′ {−m1m2} � (R(m3,m3)
(1,2) )

⊕
[

m3
m1

]
q .

Thus, we obtain the isomorphism of Proposition 4.10(2).
(3) By Theorem 2.8, the left-hand factorization is isomorphic to

m3

�
j=1

K(
˜

Λ[m1,m2]
j,(3;2,4) ;X

(m1,m2)
j,(1,4) − X

(m1,m2)
j,(2,4) )

R
(m1,m1,m2)

(1,2,4)

{−m1m2},(10)

where

˜
Λ[m1,m2]

j,(3;2,4)

=
Fm3(. . . ,X

(m1,m2)
j−1,(2,4),X

(m1,m2)
j,(1,4) , . . .) − Fm3(. . . ,X

(m1,m2)
j,(2,4) ,X

(m1,m2)
j+1,(1,4), . . .)

X
(m1,m2)
j,(1,4) − X

(m1,m2)
j,(2,4)

.

The polynomials (X(m1,m2)
m1+1,(1,4) − X

(m1,m2)
m1+1,(2,4), . . . ,X

(m1,m2)
m3,(1,4) − X

(m1,m2)
m3,(2,4) ) are

described as a linear sum of the polynomials (X(m1,m2)
1,(1,4) − X

(m1,m2)
1,(2,4) , . . . ,

X
(m1,m2)
m1,(1,4) − X

(m1,m2)
m1,(2,4) ). Then, by Theorems 2.6 and 2.8, (10) is isomorphic

to
m1

�
j=1

K(L[m1]
j,(1;2);xj,1 − xj,2)R

(m1,m1)

(1,2)

� (Q′ ′,0,0,0)〈m2〉,

where Q′ ′ is the R
(m1,m1)
(1,2) -module R

(m1,m1,m2)
(1,2,4) /〈 ˜

Λ[m1,m2]
m1+1,(3;2,4), . . . ,

˜
Λ[m1,m2]

m3,(3;2,4)〉.

Since Q′ ′ is isomorphic to (R(m1,m1)
(1,2) )

⊕
[

n−m1
m2

]
q as an R

(m1,m1)
(1,2) -module, we

obtain the isomorphism of Proposition 4.10(3).

Proposition 4.12. (1) We have that there exist isomorphisms in
HMFgr

R
(1,m,1,m)
(1,2,3,4)

,ω
(1,m,−1,−m)
(1,2,3,4)

C

⎛⎜⎜⎜⎜⎝
�2�1

�4�3
m1

m1

1

1

m−12

⎞⎟⎟⎟⎟⎠
n

� C

⎛⎜⎜⎜⎜⎝
�2�1

�4�3

m1

m1

m+1

⎞⎟⎟⎟⎟⎠
n

⊕ C

⎛⎜⎜⎜⎜⎝
�2�1

�4�3

m1

⎞⎟⎟⎟⎟⎠
⊕[m−1]q

n

.
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1 k 1 k k 1 k 1

Figure 8: [1, k]-crossings and [k,1]-crossings

(2) There exist isomorphisms in HMFgr

R
(1,m,1,m)
(1,2,3,4)

,ω
(−1,m,1,−m)
(1,2,3,4)

C

⎛⎜⎜⎜⎜⎝
�2�1

�4�3
m1

m1

m+1

m+1

1m

⎞⎟⎟⎟⎟⎠
n

� C

⎛⎜⎜⎜⎜⎝
�2�1

�4�3

m1

⎞⎟⎟⎟⎟⎠
n

⊕ C

⎛⎜⎜⎜⎜⎝
�2�1

�4�3

m1

m1

m−1

⎞⎟⎟⎟⎟⎠
⊕[n−m−1]q

n

〈1〉.

Proof. We will show the isomorphisms in the proof of Theorem 5.3 (see
Remarks 5.5 and 7.1).

§5. Complexes of matrix factorizations for [1, k]-crossing

In this section, we define complexes of matrix factorizations for a [1, k]-
crossing and a [k,1]-crossing (k = 1, . . . , n − 1), and we show that there exist
isomorphisms corresponding to Reidemeister II and III moves composed of
[1, k]-crossings and [k,1]-crossings. Note that the definition of complexes of
matrix factorizations for a [1, k]-crossing and a [k,1]-crossing is a general-
ization of a complex of matrix factorizations for a [1,2]-crossing given by
Rozansky [11].

In the state model of the (sln, ∧Vn) link invariant, (see [9]), the [1, k]-
crossings and [k,1]-crossings (see Figure 8) are expanded into a linear sum
as follows:〈

1 k
〉

n
= (−1)1−kqkn−1

〈
1k

k1 k−1
〉

n
+ (−1)−kqkn

〈
k1

1k
k+1

〉
n
,〈

1 k
〉

n
= (−1)k−1q−kn+1

〈
1k

k1 k−1
〉

n
+ (−1)kq−kn

〈
k1

1k
k+1

〉
n
,〈

k 1
〉

n
= (−1)1−kqkn−1

〈
k1

1k k−1
〉

n
+ (−1)−kqkn

〈
1k

k1
k+1

〉
n
,〈

k 1
〉

n
= (−1)k−1q−kn+1

〈
k1

1k k−1
〉

n
+ (−1)kq−kn

〈
1k

k1
k+1

〉
n
.
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5.1. Complex for colored tangle diagram with [1, k]-crossings
First, we consider diagrams Γ[1,k]

L,0 and Γ[1,k]
L,1 appearing in the state model

for [1, k]-crossings (see Figure 9).
By Theorem 2.6, the factorization of Γ[1,k]

L,0 (1 ≤ k ≤ n − 1) is isomorphic
to

N
[1,k]
(1,2,3,4) := S

[1,k]
(1,2,3,4) �K

(
u

[1,k]
k+1,(1,2,3,4)(x1,1 − x1,4);X

(k,−1)
k,(2,4)

)
R

(1,k,k,1)
(1,2,3,4)

{−k+1},

and the factorization of Γ[1,k]
L,1 (1 ≤ k ≤ n − 1) is isomorphic to

M
[1,k]
(1,2,3,4) := S

[1,k]
(1,2,3,4) � K

(
u

[1,k]
k+1,(1,2,3,4); (x1,1 − x1,4)X

(k,−1)
k,(2,4)

)
R

(1,k,k,1)
(1,2,3,4)

{−k},

where

S
[1,k]
(1,2,3,4) =

k
�

j=1
K(A[1,k]

j,(1,2,3,4);X
(1,k)
j,(1,2) − X

(k,1)
j,(3,4))R

(1,k,k,1)
(1,2,3,4)

,

A
[1,k]
j,(1,2,3,4) = u

[1,k]
j,(1,2,3,4) − (−x1,4)k+1−ju

[1,k]
k+1,(1,2,3,4) (1 ≤ j ≤ k),

u
[1,k]
j,(1,2,3,4)

=
Fk+1(. . . ,X

(k,1)
j−1,(3,4),X

(1,k)
j,(1,2), . . .) − Fk+1(. . . ,X

(k,1)
j,(3,4),X

(1,k)
j+1,(1,2), . . .)

X
(1,k)
j,(1,2) − X

(k,1)
j,(3,4)

.

We have two Z-grade-preserving morphisms between these matrix factor-
izations M

[1,k]
(1,2,3,4) and N

[1,k]
(1,2,3,4),

Id
S

[1,k]
(1,2,3,4)

� (1, x1,1 − x1,4) : M [1,k]
(1,2,3,4) −→ N

[1,k]
(1,2,3,4){−1},(11)

�2�1

�4�3
1k

k1 k−1

�2�1

�4�3

k1

1k
k+1

Γ[1,k]
L,0 Γ[1,k]

L,1

Figure 9: Diagrams Γ[1,k]
L,0 and Γ[1,k]

L,1 assigned indices



(sln, ∧Vn) LINK INVARIANT AND MATRIX FACTORIZATIONS 95

Id
S

[1,k]
(1,2,3,4)

� (x1,1 − x1,4,1) : N [1,k]
(1,2,3,4) −→ M

[1,k]
(1,2,3,4){−1}.(12)

Remark 5.1. We have

dimQ HomHMF(M [1,k]
(1,2,3,4),N

[1,k]
(1,2,3,4){−1}) = 1,

dimQ HomHMF(N [1,k]
(1,2,3,4),M

[1,k]
(1,2,3,4){−1}) = 1.

Definition 5.2. We define complexes of matrix factorizations for [k,1]-
crossings and [1, k]-crossings as follows:

−k 1 − k

C

⎛⎜⎝ 1 k

�2�1

�4�3

⎞⎟⎠
n

:= 0 → M
[1,k]
(1,2,3,4){kn} 〈k〉

χ
[1,k]
+,(1,2,3,4)

N
[1,k]
(1,2,3,4){kn − 1} 〈k〉→ 0,

k − 1 k

C

⎛⎜⎝ 1 k

�2�1

�4�3

⎞⎟⎠
n

:= 0 → N
[1,k]
(1,2,3,4){1 − kn} 〈k〉

χ
[1,k]
−,(1,2,3,4)

M
[1,k]
(1,2,3,4){ −kn} 〈k〉→ 0,

−k 1 − k

C

⎛⎜⎝ k 1

�2�1

�4�3

⎞⎟⎠
n

:= 0 → M
[1,k]
(2,1,4,3){kn} 〈k〉

χ
[1,k]
+,(2,1,4,3)

N
[1,k]
(2,1,4,3){kn − 1} 〈k〉→ 0,

k − 1 k

C

⎛⎜⎝ k 1

�2�1

�4�3

⎞⎟⎠
n

:= 0 → N
[1,k]
(2,1,4,3){1 − kn} 〈k〉

χ
[1,k]
−,(2,1,4,3)

M
[1,k]
(2,1,4,3){ −kn} 〈k〉→ 0,

where

χ
[1,k]
+,(1,2,3,4) := Id

S
[1,k]
(1,2,3,4)

�(1, x1,1 − x1,4),

χ
[1,k]
−,(1,2,3,4) := Id

S
[1,k]
(1,2,3,4)

�(x1,1 − x1,4,1).
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For a given tangle diagram composed of [k,1]-crossings and [1, k]-cros-
sings, we decompose the tangle diagram into [k,1]-crossings, [1, k]-crossings,
and colored lines using markings and then assign different indices to the
markings and ends of the diagram. Then, we define a complex of matrix
factorizations for the tangle diagram by a tensor product of complexes for
[k,1]-crossings, [1, k]-crossings, and colored lines in the decomposition.

5.2. Invariance under Reidemeister moves
In the following section, we show one of the main results, which is a

generalization of Khovanov and Rozansky [6, Theorem 2].

Theorem 5.3. If tangle diagrams composed of [k,1]-crossings and [1, k]-
crossings are related by a Reidemeister II or III move, then the complexes
associated to the diagrams are isomorphic in Kb(HMFgr). That is, we have
the following isomorphisms:

(IIa1k) C

⎛⎝1 k

⎞⎠
n

� C

⎛⎝1 k

⎞⎠
n

� C

⎛⎝1 k

⎞⎠
n

,

C

⎛⎝k 1

⎞⎠
n

� C

⎛⎝k 1

⎞⎠
n

� C

⎛⎝k 1

⎞⎠
n

,

(II b1k) C

⎛⎝1 k

⎞⎠
n

� C

⎛⎝1 k

⎞⎠
n

� C

⎛⎝1 k

⎞⎠
n

,

C

⎛⎝1 k

⎞⎠
n

� C

⎛⎝1 k

⎞⎠
n

� C

⎛⎝1 k

⎞⎠
n

,

(III 11k) C

⎛⎜⎜⎝k 1 1

⎞⎟⎟⎠
n

� C

⎛⎜⎜⎝k 1 1

⎞⎟⎟⎠
n

, C

⎛⎜⎜⎝1 k 1

⎞⎟⎟⎠
n

� C

⎛⎜⎜⎝1 k 1

⎞⎟⎟⎠
n

,

C

⎛⎜⎜⎝1 1 k

⎞⎟⎟⎠
n

� C

⎛⎜⎜⎝1 1 k

⎞⎟⎟⎠
n

.
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5.3. Proof of invariance under Reidemeister IIa and IIb moves

We have
(13)

−1 0 1

C

⎛⎜⎜⎜⎜⎜⎝
1 k

�1 �2

�5 �6

�3 �4

⎞⎟⎟⎟⎟⎟⎠
n

= M00{1}

⎛⎝φ1

φ2

⎞⎠
M10

⊕
M01

(φ3, φ4)
M11{ −1},

where

M00 = N
[1,k]
(1,2,5,6) � M

[1,k]
(6,5,4,3), M10 = M

[1,k]
(1,2,5,6) � M

[1,k]
(6,5,4,3),

M01 = N
[1,k]
(1,2,5,6) � N

[1,k]
(6,5,4,3), M11 = M

[1,k]
(1,2,5,6) � N

[1,k]
(6,5,4,3),

φ1 =
(
Id

S
[1,k]
(1,2,5,6)

�(x1,1 − x1,6,1)
)
� Id

M
[1,k]
(6,5,4,3)

,

φ2 = Id
N

[1,k]
(1,2,5,6)

�
(
Id

S
[1,k]
(6,5,4,3)

�(1, x1,6 − x1,3)
)
,

φ3 = Id
M

[1,k]
(1,2,5,6)

�
(
Id

S
[1,k]
(6,5,4,3)

�(1, x1,6 − x1,3)
)
,

φ4 = −
(
Id

S
[1,k]
(1,2,5,6)

�(x1,1 − x1,6,1)
)
� Id

N
[1,k]
(6,5,4,3)

.

We show that this complex is isomorphic to

L
[1,k]
(1,2,4,3) = S

[1,k]
(1,2,4,3) � K(u[1,k]

k+1,(1,2,4,3)X
(k,−1)
k,(2,3) ;x1,1 − x1,3)R

(1,k,1,k)
(1,2,3,4)

.

Note that the above factorization is isomorphic to the middle factorization
of (II a1k

) L
[1]
(1;3) � L

[k]
(2;4) by Theorem 2.6.

To prove the isomorphism, we show the following lemma. If the lemma
can be proved, we obtain the isomorphism by a chain homotopy equivalence.

Lemma 5.4. We have isomorphisms in HMFgr

R
(1,k,1,k)
(1,2,3,4)

,ω
(1,k,−1,−k)
(1,2,3,4)

M00{1} � (M [1,k]
(1,2,4,3))

⊕[k]q {1},(14)

M10 � (M [1,k]
(1,2,4,3))

⊕[k+1]q ,(15)

M01 � (M [1,k]
(1,2,4,3))

⊕[k−1]q ⊕ L
[1,k]
(1,2,4,3),(16)
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M11{−1} � (M [1,k]
(1,2,4,3))

⊕[k]q {−1},(17)

such that, with respect to the above isomorphisms, φi (i = 1,2,3,4) induces
the following matrices Φi:

Φ1 =

⎛⎜⎜⎜⎝
0k−1 −X

(k,−1)
k,(2,3) Id

M
[1,k]
(1,2,4,3)

Ek−1(IdM
[1,k]
(1,2,4,3)

) t0k−1

0k−1 Id
M

[1,k]
(1,2,4,3)

⎞⎟⎟⎟⎠ ,

Φ2 =

⎛⎝Ek−1(IdM
[1,k]
(1,2,4,3)

) t0k−1

0k−1 Id
S

[1,k]
(1,2,4,3)

�(1,X(k,−1)
k,(2,3) )

⎞⎠ ,

Φ3 =
(
Ek(IdM

[1,k]
(1,2,4,3)

) t0k

)
,

Φ4 = −

⎛⎝ 0k−1 Id
S

[1,k]
(1,2,4,3)

�(−X
(k,−1)
k,(2,3) , −1)

Ek−1(IdM
[1,k]
(1,2,4,3)

) t0k−1

⎞⎠ ,

where Em(f) is the diagonal matrix of polynomial f with order m and 0m

is the zero low vector with length m.

Proof of Lemma 5.4. (I) We show the isomorphism (14).
The matrix factorization M00{1} is isomorphic to

S
[1,k]
(1,2,4,3) � K

(
u

[1,k]
k+1,(6,5,4,3); (x1,6 − x1,3)X

(k,−1)
k,(5,3)

)
Q1

{−2k + 2},(18)

where

Q1 = R
(1,k,1,k,k,1)
(1,2,3,4,5,6) /〈X(1,k)

1,(1,2) − X
(k,1)
1,(5,6), . . . ,X

(1,k)
k,(1,2) − X

(k,1)
k,(5,6),X

(k,−1)
k,(2,6) 〉.

The set
B1 = {1, x1,6, . . . , x

k−2
1,6 ,X

(k,−1,−1)
k−1,(2,3,6)}

is a basis of Q1 as an R
(1,k,1,k)
(1,2,3,4) -module. By this basis, the matrix factoriza-

tion K(u[1,k]
k+1,(1,2,4,3); (x1,1 − x1,3)X

(k,−1)
k,(2,3) )Q1 {−2k + 2} is isomorphic to

(19)
(
R1{−2k + 2},R1{3 − n},Ek(u

[1,k]
k+1,(1,2,4,3)),Ek((x1,1 − x1,3)X

(k,−1)
k,(2,3) )

)
,
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where R1 is the R
(1,k,1,k)
(1,2,3,4) -module spanned by B1. Thus, the matrix factor-

ization (18) is isomorphic to

(M [1,k]
(1,2,4,3))

⊕[k]q {1}.

(II) We show the isomorphism (15).
The matrix factorization M10 is isomorphic to

S
[1,k]
(1,2,4,3) � K

(
u

[1,k]
k+1,(6,5,4,3); (x1,6 − x1,3)X

(k,−1)
k,(5,3)

)
Q2

{−2k},(20)

where

Q2 = R
(1,k,1,k,k,1)
(1,2,3,4,5,6)

/〈X(1,k)
1,(1,2) − X

(k,1)
1,(5,6), . . . ,X

(1,k)
k,(1,2) − X

(k,1)
k,(5,6), (x1,1 − x1,6)X

(k,−1)
k,(2,6) 〉.

The set
B2 =

{
1, x1,1 − x1,6, . . . , x

k−2
1,6 (x1,1 − x1,6),X

(−1,k)
k,(3,5)

}
is a basis of Q2 as an R

(1,k,1,k)
(1,2,3,4) -module. By this basis, the matrix factoriza-

tion K(u[1,k]
k+1,(1,2,4,3); (x1,1 − x1,3)X

(k,−1)
k,(2,3) )Q2 {−2k} is isomorphic to

(
R2{−2k},R2{1 − n},Ek+1(u

[1,k]
k+1,(1,2,4,3)),

(21)
Ek+1((x1,1 − x1,3)X

(k,−1)
k,(2,3) )

)
,

where R2 is the R
(1,k,1,k)
(1,2,3,4) -module spanned by B2. Thus, the matrix factor-

ization (20) is isomorphic to

(M [1,k]
(1,2,4,3))

⊕[k+1]q .

(III) We show the isomorphism (16).
The matrix factorization M01 is isomorphic to

S
[1,k]
(1,2,4,3) � K

(
u

[1,k]
k+1,(6,5,4,3)(x1,6 − x1,3);X

(k,−1)
k,(5,3)

)
Q00

{−2k + 2}.(22)

The set B3 = {1, x1,6 − x1,3, . . . , x
k−2
1,6 (x1,6 − x1,3)} is a basis of Q1 as an

R
(1,k,1,k)
(1,2,3,4) -module. K(u[1,k]

k+1,(1,2,4,3)(x1,6 − x1,3); (x1,1 − x1,3)X
(k,−1,−1)
k−1,(2,3,6))Q1 ×



100 Y. YONEZAWA

{−2k + 2} is isomorphic to (R1{−2k + 2},R3{1 − n}, F1, F
′
1), where R3 is

the R
(1,k,1,k)
(1,2,3,4) -module spanned by B3 and

F1 =

(
0k−1 Xk,−1

k,(2,3)u
[1,k]
k+1,(1,2,4,3)

Ek−1(u
[1,k]
k+1,(1,2,4,3))

t0k−1

)
,

F ′
1 =

(
t0k−1 Ek−1((x1,1 − x1,3)X

(k,−1)
k,(2,3) )

x1,1 − x1,3 0k−1

)
.

Thus, the matrix factorization (22) is isomorphic to

(M [1,k]
(1,2,4,3))

⊕[k−1]q ⊕ L
[1,k]
(1,2,4,3).

(IV) We show the isomorphism (17).
The matrix factorization M01{−1} is isomorphic to

S
[1,k]
(1,2,4,3) � K

(
u

[1,k]
k+1,(6,5,4,3)(x1,6 − x1,3);X

(k,−1)
k,(5,3)

)
Q1

{−2k}.(23)

The set

B4 =
{
1, x1,6 − x1,3, (x1,1 − x1,6)(x1,6 − x1,3), . . . ,

xk−2
1,6 (x1,1 − x1,6)(x1,6 − x1,3)

}
is a basis of Q1 as an R

(1,k,1,k)
(1,2,3,4) -module. K(u[1,k]

k+1,(1,2,4,3)(x1,6 − x1,3);

X
(k,−1)
k,(5,3) )Q1 {−2k} is isomorphic to (R2{−2k},R4{1 − n},G1,G

′
1), where R4

is the R
(1,k,1,k)
(1,2,3,4) -module spanned by B4 and

G1 =

(
0k−1 Xk,−1

k,(2,3)u
[1,k]
k+1,(1,2,4,3)(x1,1 − x1,3)

Ek−1(u
[1,k]
k+1,(1,2,4,3))

t0k−1

)
,

G′
1 =

(
t0k−1 Ek−1((x1,1 − x1,3)X

(k,−1)
k,(2,3) )

1 0k−1

)
.

Thus, the matrix factorization (23) is isomorphic to

(M [1,k]
(1,2,4,3))

⊕[k]q .

(V) We show that the morphisms φi (i = 1,2,3,4) induce Φi with respect
to the above isomorphisms.
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By the isomorphisms of (14) and (15), we find that the morphism φ1 :
M00 −→ M10 induces the morphism Id

S
[1,k]
(1,2,4,3)

�(x1,1 − x1,6, x1,1 − x1,6) from

the matrix factorization (18)–(20). With respect to the R
(1,k,1,k)
(1,2,3,4) -module

basis B1 of Q1, a matrix form of the grade-preserving R
(1,k,1,k)
(1,2,3,4) -module

morphism x1,1 − x1,6;Q1{2} → Q2 is⎛⎜⎝ 0k−1 −X
(k,−1)
k,(2,3)

Ek−1(1) t0k−1

0k−1 1

⎞⎟⎠ .

Thus, Id
S

[1,k]
(1,2,4,3)

� (x1,1 − x1,6, x1,1 − x1,6) induces the morphism Φ1 from

the factorization (19) to the factorization (21).
In a similar way, we find that φ2 induces Id

S
[1,k]
(1,2,4,3)

� (1, x1,6 − x1,3) from

the factorization (18) to the factorization (22), φ3 induces Id
S

[1,k]
(1,2,4,3)

� (1,

x1,6 − x1,3) from the factorization (20) to the factorization (23), and φ4

induces Id
S

[1,k]
(1,2,4,3)

� (x1,1 − x1,6, x1,1 − x1,6) from the factorization (22) to the

factorization (23), and then these morphisms are deformed into morphisms
Φ2, Φ3, and Φ4, respectively.

Remark 5.5. We showed the above isomorphism (16). This is the claim
of Proposition 4.12(1).

We can prove the other isomorphisms of (II a1k
) and (II b1k

) in a similar
way. The isomorphisms of (II b1k

) are shown in Section 7.1.

5.4. Proof of invariance under Reidemeister III move
We prepare the following isomorphisms for proof of invariance under Rei-

demeister III move. Mackaay, Stosic, and Vaz [7, Conjecture 2] conjectured
that there exist isomorphisms between complexes of bimodules that are
associated to the following diagrams.

Proposition 5.6. We have the following isomorphisms in Kb(HMFgr
R,ω):

C

⎛⎜⎜⎝
1k+1

1k

⎞⎟⎟⎠
n

� C

⎛⎜⎜⎝
1k+1

1k

⎞⎟⎟⎠
n

, C

⎛⎜⎜⎝
1k+1

1k

⎞⎟⎟⎠
n

� C

⎛⎜⎜⎝
1k+1

1k

⎞⎟⎟⎠
n

,
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C

⎛⎜⎜⎝
k1

k+11

⎞⎟⎟⎠
n

� C

⎛⎜⎜⎝ k1

k+11

⎞⎟⎟⎠
n

, C

⎛⎜⎜⎝
k1

k+11

⎞⎟⎟⎠
n

� C

⎛⎜⎜⎝ k1

k+11

⎞⎟⎟⎠
n

.

Proof. Removing acyclic complex in the left-hand complex, we have the
right-hand complex, respectively. We prove this proposition in Section 7.2.

Corollary 5.7. We have the following isomorphisms in Kb(HMFgr
R,ω):

C

⎛⎜⎜⎜⎝
k1

1k+1

1k

⎞⎟⎟⎟⎠
n

� C

⎛⎜⎜⎜⎝
1k

k1

k+11

⎞⎟⎟⎟⎠
n

, C

⎛⎜⎜⎜⎝
1k

1k+1

k1

⎞⎟⎟⎟⎠
n

� C

⎛⎜⎜⎜⎝
k1

1k

k+11

⎞⎟⎟⎟⎠
n

,

C

⎛⎜⎜⎜⎝
k1

1k−1

1k

⎞⎟⎟⎟⎠
n

� C

⎛⎜⎜⎜⎝
1k

k1

k−1
1

⎞⎟⎟⎟⎠
n

, C

⎛⎜⎜⎜⎝
1k

1k−1

k1

⎞⎟⎟⎟⎠
n

� C

⎛⎜⎜⎜⎝
k1

1k

k−1
1

⎞⎟⎟⎟⎠
n

.

Proof of invariance underReidemeister III 11k move (Theorem5.3(III 11k)).
We have
(24)

C

⎛⎜⎜⎝k 1 1

⎞⎟⎟⎠= C −k

⎛⎜⎜⎝
1k

1k+1

k1

⎞⎟⎟⎠
n

χ
[k,1]
+ � Id

C1−k

⎛⎜⎜⎝
1k

1
k−1

k1

⎞⎟⎟⎠
n

.

By Proposition 5.6, the above complex is isomorphic in Kb(HMFgr) to

C −k

⎛⎜⎜⎝
k1

1k

k+11

⎞⎟⎟⎠
n

˜
χ

[k,1]
+ � Id

C1−k

⎛⎜⎜⎝
k1

1k

k−11

⎞⎟⎟⎠
n

.(25)
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We show that
˜

χ
[k,1]
+ � Id = χ

[k,1]
+ � Id up to chain homotopy equivalence.

Put

C

⎛⎜⎜⎜⎜⎜⎝
k 1 1

�1 �2 �3

�4

�7 �8

�9

⎞⎟⎟⎟⎟⎟⎠
n

= C−k−1 ⎛⎜⎝ IdM �χ
[1,1]
+,(2,3,9,8)

χ
[1,k]
+,(9,1,7,4) � IdM

⎞⎟⎠

C−k
1

⊕
C−k

2

(26)

(χ
[1,k]
+,(9,1,7,4)

� IdN , − IdN �χ
[1,1]
+,(2,3,9,8)

)

C−k+1,

where

C−k−1 = M
[1,k]
(9,1,7,4) � M

[1,1]
(2,3,9,8)

{
(k + 1)(n − 1)

}
〈k + 1〉,

C−k
1 = M

[1,k]
(9,1,7,4) � N

[1,1]
(2,3,9,8)

{
(k + 1)(n − 1)

}
〈k + 1〉,

C−k
2 = N

[1,k]
(9,1,7,4) � M

[1,1]
(2,3,9,8)

{
(k + 1)(n − 1)

}
〈k + 1〉,

C−k+1 = N
[1,k]
(9,1,7,4) � N

[1,1]
(2,3,9,8)

{
(k + 1)(n − 1)

}
〈k + 1〉.

The morphism
˜

χ
[k,1]
+ � Id is composed of a tensor product of a morphism

from C
(

1k

k1
k+1

)
n

to C
(

k1

1k k−1
)

n

{−1} and an endomorphism Φ of the com-

plex (26). The endomorphism Φ consists of morphisms f , g, and h in the
commutative diagram

Φ:

0 C−k−1

f

C−k
1

⊕
C−k

2

g:=

⎛⎝g00 g01

g10 g11

⎞⎠
C−k+1

h

0

0 C−k−1

C−k
1

⊕
C−k

2

C−k+1 0.
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Since Φ is derived from χ
[k,1]
+ � Id, we find that f �= 0, g00 �= 0, g11 �= 0, h �= 0.

Moreover, we have

dimQ HomHMF(C−k−1,C−k−1) = dimQ HomHMF(C−k
1 ,C−k

1 ) = 1,

dimQ HomHMF(C−k
2 ,C−k

2 ) = dimQ HomHMF(C−k+1,C−k+1) = 1,

dimQ HomHMF(C−k
1 ,C−k

2 ) = dimQ HomHMF(C−k
2 ,C−k

1 ) = 0.

Therefore, Φ induces the morphism(
. . . ,0, IdC−k−1 ,

(
IdC−k

1
0

0 IdC−k
2

)
, IdC−k+1 ,0, . . .

)
up to chain homotopy equivalence. Thus, we obtain the first isomorphism of
Theorem 5.3(III 11k). We can prove the other isomorphisms of
Theorem 5.3(III 11k) in a similar way.

We prepare isomorphisms in Kb(HMFgr
R,ω) for Section 6.

Proposition 5.8. We have the following isomorphisms in Kb(HMFgr
R,ω):

(1) C

⎛⎝ k+1

k1

⎞⎠
n

� C

⎛⎝ k+1

k1

⎞⎠
n

{kn + k}〈k〉[−k],

(2) C

⎛⎝ k+1

k1

⎞⎠
n

� C

⎛⎝ k+1

k1

⎞⎠
n

{−kn − k}〈k〉[k],

(3) C

⎛⎝
k+1

k1

⎞⎠
n

� C

⎛⎝
k+1

k1

⎞⎠
n

{kn + k}〈k〉[−k],

(4) C

⎛⎝
k+1

k1

⎞⎠
n

� C

⎛⎝
k+1

k1

⎞⎠
n

{−kn − k}〈k〉[k].

Proof. We show the isomorphism (1). The left-hand complex is
(27)

−k −k + 1

Λ
[k,1]
(1;4,5) � M

[1,k]
(5,4,3,2){kn} 〈k〉

Id
Λ[k,1]
(1;4,5)

�χ
[1,k]
+,(5,4,3,2)

Λ
[k,1]
(1;4,5) � N

[1,k]
(5,4,3,2){kn − 1} 〈k〉.



(sln, ∧Vn) LINK INVARIANT AND MATRIX FACTORIZATIONS 105

We have

Λ[k,1]
(1;4,5) � M

[1,k]
(5,4,3,2) � Λ[1,k]

(1;2,3) ⊗
R

(k+1,1,k)
(1,2,3)

(R(k+1,1,k,1)
(1,2,3,5) /〈X(1,k,−1)

k+1,(2,3,5)〉){−k},

Λ[k,1]
(1;4,5) � N

[1,k]
(5,4,3,2) � Λ[1,k]

(1;2,3) ⊗
R

(k+1,1,k)
(1,2,3)

(R(k+1,1,k,1)
(1,2,3,5) /〈X(k,−1)

k,(3,5) 〉){−k + 1}.

The boundary map of complex (27) Id
Λ

[k,1]
(1;4,5)

�χ
[1,k]
+,(5,4,3,2) induces Id

Λ
[1,k]
(1;2,3)

⊗1

with respect to the above isomorphisms. By a chain homotopy equivalence,
the complex (27) is isomorphic to

Λ[1,k]
(1;2,3){kn + k}〈k〉[−k].

The other isomorphisms (2), (3), and (4) can be proved in a similar
way.

5.5. Example of homology of Hopf link with [1, k]-coloring
We show the Poincaré polynomial of the link homology of a [1, k]-colored

Hopf link:

P

⎛⎜⎜⎜⎜⎜⎜⎝
1 k

⎞⎟⎟⎟⎟⎟⎟⎠
n

= t−2ksk+1q2kn+k

[
n

k

]
q

[n − k]q

+ t−2k+2sk+1q2kn−n+k−2

[
n

k

]
q

[k]q

= t−2ksk+1

[
n

k

]
q

q2kn([k]qq−n+k−2t2 + [n − k]qqk),

P

⎛⎜⎜⎜⎜⎜⎜⎝
1 k

⎞⎟⎟⎟⎟⎟⎟⎠
n

= t2k−2sk+1q−2kn+n−k+2

[
n

k

]
q

[k]q
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+ t2ksk+1q−2kn−k

[
n

k

]
q

[n − k]q

= t2ksk+1

[
n

k

]
q

q−2kn([k]qqn−k+2t−2 + [n − k]qq−k).

Awata and Kanno [1] calculated a homological Hopf link invariant by refined
topological vertex. The evaluation for a [1, k]-colored Hopf link is
(28)

P (k,1)(q
′, t′) = q′ −2n+k2−k(−t′)k

[
n

k

]
q′

([k]q′ q′n+k−2t′ −2 + [n − k]q′ q′2n+k).

Therefore, we find the following relation between these evaluations:

P

⎛⎜⎜⎜⎜⎜⎜⎝
1 k

⎞⎟⎟⎟⎟⎟⎟⎠
n

= P (k,1)(q
−1, −t)sk+1tkq−2kn+k2−k,(29)

P

⎛⎜⎜⎜⎜⎜⎜⎝
1 k

⎞⎟⎟⎟⎟⎟⎟⎠
n

= P (k,1)(q, −t−1)sk+1t−kq2kn−k2+k.(30)

§6. Complexes of matrix factorizations for [i, j]-crossing

6.1. Wide edge and propositions
We introduce a wide edge to define a complex of matrix factorizations for

an [i, j]-crossing. The wide edge represents a bunch of 1-colored lines with
the same orientation. We represent a k-colored edge branching into a bunch
of k 1-colored lines as a diagram of a wide edge (see Figure 10).
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k

←→

1111 1

k

k

←→

1111 1

k

Figure 10: Wide edge and a bunch of k 1-colored lines

We naturally consider a crossing of a wide edge and colored edge and a
crossing of wide edges. For example,

k

k

l
←→

111 1

k

1111

k

l ←→
11 1

111

1

111

1

11 1

111

1

.

Proposition 6.1. There exist isomorphisms in Kb(HMFgr
R,ω)

C

⎛⎜⎜⎝
k

1

⎞⎟⎟⎠
n

� C

⎛⎜⎜⎝
k

1

⎞⎟⎟⎠
n

,

C

⎛⎜⎜⎝
k

1

⎞⎟⎟⎠
n

� C

⎛⎜⎜⎝
k

1

⎞⎟⎟⎠
n

.

For diagrams with the other crossing, their complexes are isomorphic in
Kb(HMFgr

R,ω).

Proof. We prove this proposition using Proposition 5.6.
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We find the following corollary of this proposition.

Corollary 6.2. There exist isomorphisms in Kb(HMFgr
R,ω)

C

⎛⎜⎜⎝
k ⎞⎟⎟⎠

n

� C

⎛⎜⎜⎝
k ⎞⎟⎟⎠

n

,

C

⎛⎜⎜⎝
k

⎞⎟⎟⎠
n

� C

⎛⎜⎜⎝
k

⎞⎟⎟⎠
n

.

For diagrams with the other crossing, their complexes are isomorphic in
Kb(HMFgr

R,ω).

By Propositions 5.6 and 5.8, we find the following corollary.

Corollary 6.3. There exist the following isomorphisms in Kb(HMFgr
R,ω):

(1) C

⎛⎝ k+1
k

1

⎞⎠
n

� C

⎛⎝ k+1
k

1

⎞⎠
n

{kn + k}〈k〉[−k],

(2) C

⎛⎝ k+1
k

1

⎞⎠
n

� C

⎛⎝ k+1
k

1

⎞⎠
n

{−kn − k}〈k〉[k],

(3) C

⎛⎝
k+1

k

1

⎞⎠
n

� C

⎛⎝
k+1

k1

⎞⎠
n

{kn + k}〈k〉[−k],

(4) C

⎛⎝
k+1

k

1

⎞⎠
n

� C

⎛⎝
k+1

k1

⎞⎠
n

{−kn − k}〈k〉[k].

6.2. Approximate complex for [i, j]-crossing
We consider an approximate crossing of an [i, j]-crossing in Figure 11.
This approximate crossing has only [i,1]-crossings. Thus, we define a

complex of matrix factorizations for the approximate crossing using the
complex of an [i,1]-crossing in Section 5.1.
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i j i j i j i j

Figure 11: Approximate diagram of [i, j]-crossing

Definition 6.4. We define a complex of matrix factorizations for an
[i, j]-crossing as an object of Kb(HMFgr

R,ω):

C

⎛⎜⎜⎝i j

⎞⎟⎟⎠
n

:= C

⎛⎜⎜⎝i j

⎞⎟⎟⎠
n

{
−i(i − 1)(n + 1)

}
[i(i − 1)] (i ≥ j),

C

⎛⎜⎜⎝i j

⎞⎟⎟⎠
n

:= C

⎛⎜⎜⎝i j

⎞⎟⎟⎠
n

{
−j(j − 1)(n + 1)

}
[j(j − 1)] (i < j),

C

⎛⎜⎜⎝i j

⎞⎟⎟⎠
n

:= C

⎛⎜⎜⎝i j

⎞⎟⎟⎠
n

{
j(j − 1)(n + 1)

}
[−j(j − 1)] (i ≤ j),

C

⎛⎜⎜⎝i j

⎞⎟⎟⎠
n

:= C

⎛⎜⎜⎝i j

⎞⎟⎟⎠
n

{
i(i − 1)(n + 1)

}
[−i(i − 1)] (i > j).

Theorem 6.5. We have the following isomorphisms in Kb(HMFgr
R,ω):

(I) C

⎛⎝ i

⎞⎠
n

� C

⎛⎝ i

⎞⎠⊕[i]q !

n

� C

⎛⎝ i

⎞⎠
n

,

(IIa) C

⎛⎝i j

⎞⎠
n

� C

⎛⎝i j

⎞⎠⊕[i]q ![j]q!

n

� C

⎛⎝i j

⎞⎠
n

,

(II b) C

⎛⎝i j

⎞⎠
n

� C

⎛⎝i j

⎞⎠⊕[i]q ![j]q!

n

,
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C

⎛⎝i j

⎞⎠
n

� C

⎛⎝i j

⎞⎠⊕[i]q ![j]q!

n

,

(III ) C

⎛⎜⎜⎝i j k

⎞⎟⎟⎠
n

� C

⎛⎜⎜⎝i j k

⎞⎟⎟⎠
n

.

Proof. We show the proof of this theorem in Section 6.4.

For a colored oriented link diagram D, we obtain the homology of C(D).
We consider the Poincaré polynomial P (D) in Q[t±1, q±1, s]/〈s2 − 1〉 of the
homology of C(D). We obtain the following corollary of Theorem 6.5.

Corollary 6.6. If colored oriented link diagrams are related by a Rei-
demeister move, we have the following equations of P :

(I) P

⎛⎝ i

⎞⎠
n

= P

⎛⎝ i

⎞⎠
n

[i]q! = P

⎛⎝ i

⎞⎠
n

,

(IIa) P

⎛⎝i j

⎞⎠
n

= P

⎛⎝i j

⎞⎠
n

[i]q![j]q! = P

⎛⎝i j

⎞⎠
n

,

(II b) P

⎛⎝i j

⎞⎠
n

= P

⎛⎝i j

⎞⎠
n

[i]q![j]q!,

P

⎛⎝i j

⎞⎠
n

= P

⎛⎝i j

⎞⎠
n

[i]q![j]q!,

(III ) P

⎛⎜⎜⎝i j k

⎞⎟⎟⎠
n

= P

⎛⎜⎜⎝i j k

⎞⎟⎟⎠
n

,

where outsides of colored tangle diagrams in each equation are identical.

6.3. Polynomial link invariant P

We define a new link invariant P by normalizing the Poincaré polynomial
P . For a colored oriented link diagram D, let Crk(D) (k = 1, . . . , n − 1)
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denote the number of [∗, k]-crossings in D. We define a polynomial P (D)
by

P (D)
n−1∏
k=1

1
([k]q!)Crk(D)

.

By Corollary 6.6, we have the main theorem of this paper.

Theorem 6.7. The polynomial P is an invariant of oriented colored links.

P (D) is the (sln, ∧Vn) link invariant if t is specialized to −1 and s is
specialized to 1. Therefore, the polynomial P (D) is a refined link invariant
of the (sln, ∧Vn) link invariant.

6.4. Proof of Theorem 6.5
Proof of Theorem 6.5(I). By Corollary 6.2, We have

C

⎛⎝ i

⎞⎠
n

= C

⎛⎝ i

⎞⎠
n

{
−i(i − 1)(n + 1)

}
[i(i − 1)]

� C

⎛⎝ i
⎞⎠

n

{
−i(i − 1)(n + 1)

}
[i(i − 1)].

We show the following lemma.

Lemma 6.8. We have the following isomorphism in Kb(HMFgr):

(31) C

⎛⎝ i
⎞⎠

n

{
−i(i − 1)(n + 1)

}
[i(i − 1)] � C

⎛⎝ i
⎞⎠⊕[i]q!

n

.

Proof. We prove the lemma by induction on i. In the case that i = 2, by
Theorem 5.3 and Proposition 5.8 we have an isomorphism

C

⎛⎝ 2
⎞⎠

n

{
−2(n + 1)

}
[2] � C

⎛⎜⎜⎜⎜⎝
1 1

2
⎞⎟⎟⎟⎟⎠

n

{
−2(n + 1)

}
[2]

� C

⎛⎝1 1
2

⎞⎠
n

= C

⎛⎝ 2
⎞⎠⊕[2]q

n

.
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Also by Theorem 5.3 and Proposition 5.8, we have an isomorphism

C

⎛⎝ k
⎞⎠

n

{
−k(k − 1)(n + 1)

}
[k(k − 1)]

� C

⎛⎜⎜⎜⎜⎜⎜⎝
1 k−1

k ⎞⎟⎟⎟⎟⎟⎟⎠
n

{
−k(k − 1)(n + 1)

}
[k(k − 1)](32)

� C

⎛⎜⎜⎝1 k−1

k
⎞⎟⎟⎠

n

{
−(k − 1)(k − 2)(n + 1)

}
[(k − 1)(k − 2)].

By induction, the complex (33) is isomorphic to

C

⎛⎝1 k−1k
⎞⎠

n

� C

⎛⎝ k
⎞⎠⊕[k]q!

n

.

By this lemma, we find the first isomorphism of Theorem 6.5(I). We
prove the isomorphism for a minus i-curl in a similar way.

Proof of Theorem 6.5(II ).

C

⎛⎝i j

⎞⎠
n

= C

⎛⎝i j

⎞⎠
n

� C

⎛⎝i j

⎞⎠
n

� C

⎛⎝i j

⎞⎠
n

� C

⎛⎝i j

⎞⎠⊕[i]q !

n

� C

⎛⎝i j

⎞⎠⊕[i]q !

n

� C

⎛⎝i j

⎞⎠⊕[i]q ![j]q!

n

.

We prove the other isomorphism of (IIa) and isomorphisms of (II b) in a
similar way.
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Proof of Theorem 6.5(III ). It is sufficient to consider the case i < j < k.
We similarly prove invariance of the Reidemeister (III ) move for the other
coloring case.

C

⎛⎜⎜⎝i j k

⎞⎟⎟⎠
n

= C

⎛⎜⎜⎝i j k

⎞⎟⎟⎠
n

{α}[β] � C

⎛⎜⎜⎝i j k

⎞⎟⎟⎠
n

{α}[β]

(
α = (−2k(k − 1) − j(j − 1))(n + 1),

β = 2k(k − 1) + j(j − 1)
)

� C

⎛⎜⎜⎝i j k

⎞⎟⎟⎠
n

{α}[β] � C

⎛⎜⎜⎝i j k

⎞⎟⎟⎠
⊕[k]q !

n

{α}[β]

� C

⎛⎜⎜⎝i j k

⎞⎟⎟⎠
⊕[k]q!

n

{α}[β] � C

⎛⎜⎜⎝i j k

⎞⎟⎟⎠
⊕[k]q!

n

{α}[β].

On the other side, we have

C

⎛⎜⎜⎝i j k

⎞⎟⎟⎠
n

= C

⎛⎜⎜⎝i j k

⎞⎟⎟⎠
n

{α}[β] � C

⎛⎜⎜⎝i j k

⎞⎟⎟⎠
⊕[k]q!

n

{α}[β].

Thus, we have

C

⎛⎜⎜⎝i j k

⎞⎟⎟⎠
n

� C

⎛⎜⎜⎝i j k

⎞⎟⎟⎠
n

.

§7. Proof of Theorem 5.3(IIb) and Proposition 5.6

7.1. Invariance under Reidemeister IIb move
We show the isomorphism

(33) C

⎛⎜⎜⎜⎝ 1 k

�1 �2

�5 �6

�3 �4

⎞⎟⎟⎟⎠
n

� C

⎛⎜⎜⎜⎝ 1 k

�1 �2

�3 �4

⎞⎟⎟⎟⎠
n

.
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By Definition 5.2, we have
(34)

−1 0 1

C

⎛⎜⎜⎜⎜⎜⎝
1 k

�1 �2

�5 �6

�3 �4

⎞⎟⎟⎟⎟⎟⎠
n

= N00{1}

(
ν1
ν2

)
N10

⊕
N01

(ν3, ν4)
N11{ −1},

where

N00 = M
[1,k]
(1,5,2,6) � N

[1,k]
(6,4,5,3), N10 = M

[1,k]
(1,5,2,6) � M

[1,k]
(6,4,5,3),

N01 = N
[1,k]
(1,5,2,6) � N

[1,k]
(6,4,5,3), N11 = N

[1,k]
(1,5,2,6) � M

[1,k]
(6,4,5,3),

ν1 = Id
M

[1,k]
(1,5,2,6)

�
(
Id

S
[1,k]
(6,4,5,3)

� (x1,6 − x1,3,1)
)
,

ν2 =
(
Id

S
[1,k]
(1,5,2,6)

� (1, x1,1 − x1,6)
)
� Id

N
[1,k]
(6,4,5,3)

,

ν3 =
(
Id

S
[1,k]
(1,5,2,6)

� (1, x1,1 − x1,6)
)
� Id

M
[1,k]
(6,4,5,3)

,

ν4 = − Id
N

[1,k]
(1,5,2,6)

�
(
Id

S
[1,k]
(6,4,5,3)

� (x1,6 − x1,3,1)
)
.

By Theorem 2.8, N00{1} is isomorphic to

k
�
i=1

K(A[1,k]
i,(6,4,5,3);X

(1,k)
i,(6,4) − X

(−1,k,1,1)
i,(1,2,3,6) )Q1

� K
(
u

[1,k]
k+1,(6,4,5,3)(x1,6 − x1,3);X

(−1,k)
k,(3,4)

)
Q1

{3 − n}〈1〉,

where

Q1 = R
(1,k,1,k,k,1)
(1,2,3,4,5,6) /〈X(1,k)

1,(1,5) − X
(k,1)
1,(2,6), . . . ,X

(1,k)
k,(1,5) − X

(k,1)
k,(2,6), u

[1,k]
k+1,(1,5,2,6)〉.

By Corollary 2.7, this matrix factorization is isomorphic to

S
[1,k]
(1,4,2,3) � K

(
u

[1,k]
k+1,(1,4,2,3)(x1,1 − x1,3);X

(−1,k)
k,(3,4)

)
Q1

{3 − n}〈1〉,

where S
[1,k]
(1,4,2,3) is a matrix factorization defined in Section 5.1. We also find

that N10 is isomorphic to

S
[1,k]
(1,4,2,3) � K

(
u

[1,k]
k+1,(6,4,5,3) + α; (x1,6 − x1,3)X

(−1,k)
k,(3,4)

)
Q1

{1 − n}〈1〉,
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where α is a polynomial with Z-grading 2n − 2k satisfying

(35) (u[1,k]
k+1,(6,4,5,3) + α)(x1,6 − x1,3) = u

[1,k]
k+1,(1,4,2,3)(x1,1 − x1,3)

in the quotient Q1, and that N01 and N11{−1} are isomorphic to

S
[1,k]
(1,4,2,3) � K

(
u

[1,k]
k+1,(1,4,2,3)(x1,1 − x1,3);X

(−1,k)
k,(3,4)

)
Q2

{1 − n}〈1〉,

S
[1,k]
(1,4,2,3) � K

(
u

[1,k]
k+1,(6,4,5,3) + α; (x1,6 − x1,3)X

(−1,k)
k,(3,4)

)
Q2

{−1 − n}〈1〉,

where

Q2 = R
(1,k,1,k,k,1)
(1,2,3,4,5,6)

/〈X(1,k)
1,(1,5) − X

(k,1)
1,(2,6), . . . ,X

(1,k)
k,(1,5) − X

(k,1)
k,(2,6), u

[1,k]
k+1,(1,5,2,6)(x1,1 − x1,6)〉.

Note that the polynomial α also satisfies (35) in the quotient Q2. We calcu-
late the polynomials u

[1,k]
k+1,(1,5,2,6) and u

[1,k]
k+1,(6,4,5,3) to decompose N00, N10,

N01, and N11 into direct summands of indecomposable matrix factoriza-
tions.

Since we have equations in Q1 and Q2

X
(k)
i,(5) = X

(−1,k,1)
i(1,2,6) (1 ≤ i ≤ k),

the polynomial u
[1,k]
k+1,(1,5,2,6) is equal to

Fk+1(X
(k,1)
1,(2,6), . . . ,X

(k,1)
k,(2,6),X

(1,k)
k+1,(1,5)) − Fk+1(X

(k,1)
1,(2,6), . . . ,X

(k,1)
k,(2,6),X

(k,1)
k+1,(2,6))

X
(1,k)
k+1,(1,5) − X

(k,1)
k+1,(2,6)

= c1(X
(k,1)
1,(2,6))

n−k + c2(X
(k,1)
1,(2,6))

n−k−2X
(k,1)
2,(2,6) + · · ·

= c1x
n−k
1,6 + c3x1,2x

n−k−1
1,6 + · · · ,

where c1 and c2 are the coefficients of monomials xn−k
1 and xn−k

1 in Fk+1(x1,

x2, . . . , xk+1) = c1x
n−k
1 xk+1 + c2x

m−k−2
1 e2xk+1 + · · · and c3 = c1(n − k)+ c2.

Then, the polynomial u
[1,k]
k+1,(6,4,5,3) is equal in Q1 to

Fk+1(. . . ,X
(−1,k,1,1)
k,(1,2,3,6) ,X

(k,1)
k+1,(4,6)) − Fk+1(. . . ,X

(−1,k,1,1)
k,(1,2,3,6) ,X

(−1,k,1,1)
k+1,(1,2,3,6))

X
(k,1)
k+1,(4,6) − X

(−1,k,1,1)
k+1,(1,2,3,6)
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= c1(X
(−1,k,1,1)
1,(1,2,3,6) )

n−k + c2(X
(−1,k,1,1)
1,(1,2,3,6) )

n−k−2X
(−1,k,1,1)
2,(1,2,3,6) + · · ·

= c1x
n−k
1,6 + c3(−x1,1 + x1,2 + x1,3)xn−k−1

1,6 + · · ·

= −c3(x1,1 − x1,3)xn−k−1
1,6 + · · · .

By the condition (35), we have the equation in Q1

(36) u
[1,k]
k+1,(6,4,5,3) + α = −c3(x1,1 − x1,3)(xn−k−1

1,6 + β),

where β is a polynomial satisfying −(x1,6 − x1,3)c3(xn−k−1
1,6 + β) =

u
[1,k]
k+1,(1,4,2,3) in Q1. Thus, N10 is isomorphic to

S
[1,k]
(1,4,2,3) � K0

(
−c3(x1,1 − x1,3)(xn−k−1

1,6 + β); (x1,6 − x1,3)X
(−1,k)
k,(3,4)

)
Q1

× {1 − n}〈1〉.

The sets

B1 :=
{
1, x1,6, . . . , x

n−k−2
1,6 , −c3(xn−k−1

1,6 + β)
}
,

B′
1 :=

{
1, (x1,6 − x1,3), x1,6(x1,6 − x1,3), . . . , xn−k−2

1,6 (x1,6 − x1,3)
}

are bases of Q1 as an R
(1,k,1,k)
(1,2,3,4) -module. Let R1 and R′

1 denote the R
(1,k,1,k)
(1,2,3,4) -

modules spanned by B1 and B′
1, respectively. The sets

B2 :=
{
1, (x1,1 − x1,6), . . . , xn−k−2

1,6 (x1,1 − x1,6), (u
[1,k]
k+1,(1,4,2,3) + α)

}
,

B′
2 :=

{
1, (x1,6 − x1,3), (x1,1 − x1,6)(x1,6 − x1,3), . . . ,

xn−k−2
1,6 (x1,1 − x1,6)(x1,6 − x1,3)

}
are bases of Q2 as an R

(1,k,1,k)
(1,2,3,4) -module. Let R2 and R′

2 denote the R
(1,k,1,k)
(1,2,3,4) -

modules spanned by B2 and B′
2, respectively.

Using these bases, we find that K(u[1,k]
k+1,(1,4,2,3)(x1,1 − x1,3);X

(−1,k)
k,(3,4) )Q1 {3 −

n}〈1〉 is isomorphic to(
R1,R1{2k − n − 1},En−k(u

[1,k]
k+1,(1,4,2,3)(x1,1 − x1,3)),

En−k(X
(−1,k)
k,(3,4) )

)
{3 − n}〈1〉.
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K(−c3(x1,1 − x1,3)(xn−k−1
1,6 +β); (x1,6 − x1,3)X

(−1,k)
k,(3,4) )Q1 {1 − n}〈1〉 is isomor-

phic to

(R′
1,R1{2k − n + 1}, g1, g2){1 − n}〈1〉,

g1 =

(
t0n−k−2 En−k−2(u

[1,k]
k+1,(1,4,2,3)(x1,1 − x1,3))

x1,1 − x1,3 0n−k−2

)
,

g2 =

(
0n−k−2 X

(−1,k)
k,(3,4)u

[1,k]
k+1,(1,4,2,3)

En−k−2(X
(−1,k)
k,(3,4) )

t0n−k−2

)
.

K(u[1,k]
k+1,(1,4,2,3)(x1,1 − x1,3);X

(−1,k)
k,(3,4) )Q2 {1 − n}〈1〉 is isomorphic to(

R2,R2{2k − n − 1},En−k+1(u
[1,k]
k+1,(1,4,2,3)(x1,1 − x1,3)),

En−k+1(X
(−1,k)
k,(3,4) )

)
{1 − n}〈1〉.

K(u[1,k]
k+1,(6,4,5,3); (x1,6 − x1,3)X

(−1,k)
k,(3,4) )Q2 {3 − n}〈1〉 is isomorphic to

(R′
2,R2{2k − n + 1}, g3, g4){−1 − n}〈1〉,

g3 =

(
t0n−k En−k(u

[1,k]
k+1,(1,4,2,3)(x1,1 − x1,3))

1 0n−k

)
,

g4 =

(
0n−k X

(−1,k)
k,(3,4)u

[1,k]
k+1,(1,4,2,3)(x1,1 − x1,3)

En−k(X
(−1,k)
k,(3,4) )

t0n−k

)
.

With respect to the above isomorphisms, ν1, ν2, ν3, and ν4 induce⎛⎝En−k−1(IdN
[1,k]
(1,4,2,3)

) t0n−k−1

0n−k−1 (1, u[1,k]
k+1,(1,4,2,3))

⎞⎠ ,

⎛⎜⎜⎜⎝
0n−k−1 −u

[1,k]
k+1,(1,4,2,3) Id

N
[1,k]
(1,4,2,3)

En−k−1(IdN
[1,k]
(1,4,2,3)

) t0n−k−1

0n−k−1 Id
N

[1,k]
(1,4,2,3)

⎞⎟⎟⎟⎠ ,

−

⎛⎝ 0n−k−1 (−u
[1,k]
k+1,(1,4,2,3), −1)

En−k−1(IdN
[1,k]
(1,4,2,3)

) t0n−k−1

⎞⎠ ,



118 Y. YONEZAWA(
En−k−1(IdN

[1,k]
(1,4,2,3)

) t0n−k−1

)
.

By a chain homotopy equivalence, we obtain the isomorphism (33). We
can prove the other isomorphisms of Theorem 5.3(IIb) in a similar way.

Remark 7.1. We showed above how to decompose N10 into a direct
sum of indecomposable matrix factorizations. This corresponds to the MOY
relation

〈 k+1

k+1

k

1

k

1

k

1

〉
n

=

〈
k1

〉
n

+ [n − k − 1]q

〈
k−1

k

k

1

1

〉
n

.

7.2. Proof of Proposition 5.6
We show the isomorphism

(37) C

⎛⎜⎜⎜⎜⎜⎝
1k+1

k
1

�1 �2

�3 �4 �5

�6
�7

�8

⎞⎟⎟⎟⎟⎟⎠
n

� C

⎛⎜⎜⎜⎜⎝
1k+1

k1

�1 �2

�3 �4 �5

�6

⎞⎟⎟⎟⎟⎠
n

.

The left-hand side is

−k − 1 −k −k + 1

L00
{(k + 1)n}

〈k + 1〉

⎛⎝ζ1

ζ2

⎞⎠
L10

{(k + 1)n − 1}
〈k + 1〉⊕

L01
{(k + 1)n − 1}

〈k + 1〉

(ζ3, ζ4)
L11

{(k + 1)n − 2}
〈k + 1〉 ,

where

L00 = Λ[1,k]
(1;6,7) � M

[1,1]
(8,6,4,3) � M

[1,k]
(2,7,5,8), L10 = Λ[1,k]

(1;6,7) � N
[1,1]
(8,6,4,3) � M

[1,k]
(2,7,5,8),
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L01 = Λ[1,k]
(1;6,7) � M

[1,1]
(8,6,4,3) � N

[1,k]
(2,7,5,8), L11 = Λ[1,k]

(1;6,7) � N
[1,1]
(8,6,4,3) � N

[1,k]
(2,7,5,8),

ζ1 = Id
Λ

[1,k]
(1;6,7)

�
(
Id

S
[1,1]
(8,6,4,3)

� (1, x1,8 − x1,3)
)
� Id

M
[1,k]
(2,7,5,8)

,

ζ2 = Id
Λ

[1,k]
(1;6,7)

� Id
M

[1,1]
(8,6,4,3)

�
(
Id

S
[1,k]
(2,7,5,8)

� (1, x1,2 − x1,8)
)
,

ζ3 = Id
Λ

[1,k]
(1;6,7)

� Id
N

[1,1]
(8,6,4,3)

�
(
Id

S
[1,k]
(2,7,5,8)

� (1, x1,2 − x1,8)
)
,

ζ4 = − Id
Λ

[1,k]
(1;6,7)

�
(
Id

S
[1,1]
(8,6,4,3)

� (1, x1,8 − x1,3)
)
� Id

N
[1,k]
(2,7,5,8)

.

L00 is isomorphic to

k+1
�
i=1

K(Λ[1,k]
i,(1;6,7);xi,1 − X

(1,k)
i,(6,7))Q1 ,

�K
(
u

[1,k]
k+1,(2,7,5,8); (x1,2 − x1,8)X

(k,−1)
k,(7,8)

)
Q1

{−k − 1},

where Q1 is the R
(k+1,1,1,1,k)
(1,2,3,4,5) -module

R
(k+1,1,1,1,k,1,k,1)
(1,2,3,4,5,6,7,8)

/〈X(1,1)
1,(8,6) − X

(1,1)
1,(4,3),X

(−1,1,1)
2,(3,6,8) ,X

(1,k)
1,(2,7) − X

(k,1)
1,(5,8), . . . ,X

(1,k)
k,(2,7) − X

(k,1)
k,(5,8)〉.

By Theorem 2.6, this matrix factorization is isomorphic to

k+1
�
i=1

K(Λ[1,k]
i,(1;6,7);xi,1 − X

(−1,1,1,k)
i,(2,3,4,5) )

R
(k+1,1,1,1,k)
(1,2,3,4,5)

,

� K
(
u

[1,k]
k+1,(2,7,5,8) − Λ[1,k]

k+1,(1;6,7); (x1,2 − x1,8)X
(−1,k)
k,(2,5)

)
Q1

{−k − 1}.

Moreover, by Corollary 2.7, this matrix factorization is isomorphic to

S
[k+1,1;1,1,k]
(1,2;3,4,5) � K

(
B0; (x1,2 − x1,8)X

(−1,k)
k,(2,5)

)
Q1

{−k − 1},(38)

where B0 is a polynomial with degree 2n− 2k in Q1 satisfying (x1,2 − x1,8)B0,
denoted by B, in the image of R

(k+1,1,1,1,k)
(1,2,3,4,5) under the inclusion map to Q1,

and S
[k+1,1;1,1,k]
(1,2;3,4,5) is the matrix factorization

k+1
�
i=1

K(Bi;xi,1 − X
(−1,1,1,k)
i,(2,3,4,5) )

R
(k+1,1,1,1,k)
(1,2,3,4,5)

(Bi ∈ R
(k+1,1,1,1,k)
(1,2,3,4,5) ).
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The sets B1 := {1, (x1,2 − x1,8)} and B′
1 := {1, (x1,8 +x1,2 − x1,3 − x1,4)} are

bases of the R
(k+1,1,1,1,k)
(1,2,3,4,5) -module Q1. Let R1 and R′

1 denote the R
(k+1,1,1,1,k)
(1,2,3,4,5) -

module spanned by B1 and B′
1, respectively. Using the bases, the matrix

factorization K(B0; (x1,2 − x1,8)X
(−1,k)
k,(2,5) )Q1 is isomorphic to(

R1,R
′
1{2k − n + 1},

(
0 B

A 0

)
,

(
0 X

(−1,1,1)
2,(2,3,4)X

(−1,k)
k,(2,5)

X
(−1,k)
k,(2,5) 0

))
.

We find that (x1,2 − x1,8)X
(−1,k)
k,(2,5) : R′

1 → R1 is an antidiagonal matrix. Since

(x1,2 − x1,8)X
(−1,k)
k,(2,5)B0 : R1 → R1 is a diagonal matrix, B0 : R1 → R′

1 is also

an antidiagonal matrix. Therefore, the polynomial A is equal to B/X
(−1,1,1)
2,(2,3,4) .

Thus, the matrix factorization (38) is isomorphic to

S
[k+1,1;1,1,k]
(1,2;3,4,5) � K

( B

X
(−1,1,1)
2,(2,3,4)

;X(−1,1,1)
2,(2,3,4)X

(−1,k)
k,(2,5)

)
R

(k+1,1,1,1,k)
(1,2,3,4,5)

{−k − 1}

⊕ S
[k+1,1;1,1,k]
(1,2;3,4,5) � K(B;X(−1,k)

k,(2,5) )R
(k+1,1,1,1,k)
(1,2,3,4,5)

{−k + 1}.

L10 is isomorphic to

k+1
�
i=1

K(Λ[1,k]
i,(1;6,7) : xi,1 − X

(−1,1,1,k)
i,(2,3,4,5) )Q2 ,

�K
(
u

[1,k]
k+1,(2,7,5,8) − Λ[1,k]

k+1,(1;6,7); (x1,2 − x1,4)X
(−1,k)
k,(2,5)

)
Q2

{−k},

where Q2 is the R
(k+1,1,1,1,k)
(1,2,3,4,5) -module

R
(k+1,1,1,1,k,1,k,1)
(1,2,3,4,5,6,7,8)

/〈X(1,1)
1,(8,6) − X

(1,1)
1,(4,3),X

(1,−1)
1,(6,3) ,X

(1,k)
1,(2,7) − X

(k,1)
1,(5,8), . . . ,X

(1,k)
k,(2,7) − X

(k,1)
k,(5,8)〉.

By the isomorphism Q2 � R
(k+1,1,1,1,k)
(1,2,3,4,5) and Theorem 2.6, this matrix fac-

torization is isomorphic to

S
[k+1,1;1,1,k]
(1,2;3,4,5) � K

( B

(x1,2 − x1,4)
; (x1,2 − x1,4)X

(−1,k)
k,(2,5)

)
R

(k+1,1,1,1,k)
(1,2,3,4,5)

{−k}.

By Theorem 2.8, we find that L01 is isomorphic to

S
[k+1,1;1,1,k]
(1,2;3,4,5) � K(B;X(−1,k)

k,(2,5) )Q1 {−k}.(39)
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Since the matrix factorization K(B;X(−1,k)
k,(2,5) )Q1 is isomorphic to(

R1,R1{2k − n − 1},

(
B 0
0 B

)
,

(
X

(−1,k)
k,(2,5) 0

0 X
(−1,k)
k,(2,5)

))
,

then the matrix factorization (39) is isomorphic to

S
[k+1,1;1,1,k]
(1,2;3,4,5) � K(B;X(−1,k)

k,(2,5) )R
(k+1,1,1,1,k)
(1,2,3,4,5)

{−k}

⊕ S
[k+1,1;1,1,k]
(1,2;3,4,5) � K(B;X(−1,k)

k,(2,5) )R
(k+1,1,1,1,k)
(1,2,3,4,5)

{−k + 2}.

By Theorem 2.8, L11 is isomorphic to

S
[k+1,1;1,1,k]
(1,2;3,4,5) � K(B;X(−1,k)

k,(2,5) )R
(k+1,1,1,1,k)
(1,2,3,4,5)

{−k + 1}.

With respect to the above isomorphisms, the morphisms ζ1, ζ2, ζ3, and ζ4

induce(
Id

S
[k+1,1;1,1,k]
(1,2;3,4,5)

� (1, x1,2 − x1,3), IdS
[k+1,1;1,1,k]
(1,2;3,4,5)

� (x1,2 − x1,4,1)
)
,⎛⎝Id

S
[k+1,1;1,1,k]
(1,2;3,4,5)

� (1, (x1,2 − x1,3)(x1,2 − x1,4)) 0

0 Id
S

[k+1,1;1,1,k]
(1,2;3,4,5)

� (1,1)

⎞⎠ ,

Id
S

[k+1,1;1,1,k]
(1,2;3,4,5)

� (1, x1,2 − x1,4),

−
(
Id

S
[k+1,1;1,1,k]
(1,2;3,4,5)

� (1,1), Id
S

[k+1,1;1,1,k]
(1,2;3,4,5)

� (x1,2 − x1,4, x1,2 − x1,4)
)
.

By a chain homotopy equivalence, the left-hand side of (37) is isomorphic
to

−k − 1 −k

L1

{
(k + 1)n

}
〈k + 1〉

IdS � (1,x1,2−x1,3)

L2

{
(k + 1)n − 1

}
〈k + 1〉,

where

L1 = S
[k+1,1;1,1,k]
(1,2;3,4,5) � K

( B

X
(−1,1,1)
2,(2,3,4)

;X(−1,1,1)
2,(2,3,4)X

(−1,k)
k,(2,5)

)
R

(k+1,1,1,1,k)
(1,2,3,4,5)

{−k − 1},
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L2 = S
[k+1,1;1,1,k]
(1,2;3,4,5) � K

( B

(x1,2 − x1,4)
; (x1,2 − x1,4)X

(−1,k)
k,(2,5)

)
R

(k+1,1,1,1,k)
(1,2,3,4,5)

{−k}.

The right-hand side of (37) is

−k − 1 −k

M
[1,k+1]
(2,1,6,3) � Λ[1,k]

(6;4,5)

{(k + 1)n}
〈k + 1〉

ξ

N
[1,k+1]
(2,1,6,3) � Λ[1,k]

(6;4,5)

{(k + 1)n − 1}
〈k + 1〉 ,

where ξ = χ
[1,k+1]
+,(2,1,6,3) � Id

Λ
[1,k]
(6;4,5)

. By Theorem 2.8, M
[1,k+1]
(2,1,6,3) � Λ[1,k]

(6;4,5) is iso-

morphic to

k+1
�
i=1

K(A[1,k+1]
i,(2,1,6,3);X

(k+1,1)
i,(1,2) − X

(1,1,k)
i,(3,4,5))Q3 ,

� K
(
u

[1,k+1]
k+2,(2,1,6,3); (x1,2 − x1,3)X

(k+1,−1)
k+1,(1,3)

)
Q3

{−k − 1},

where Q3 is the R
(k+1,1,1,1,k)
(1,2,3,4,5) -module

R
(k+1,1,1,1,k,k+1)
(1,2,3,4,5,6) /〈x1,6 − X

(1,k)
1,(4,5), . . . , xk+1,6 − X

(1,k)
k+1,(4,5)〉.

Moreover, Q3 � R
(k+1,1,1,1,k)
(1,2,3,4,5) . This fact and Theorem 2.6 imply that this

matrix factorization is isomorphic to L1. In a similar way, we find that
M

[1,k+1]
(2,1,6,3) � Λ[1,k]

(6;4,5) is isomorphic to L1. With respect to the above isomor-
phisms, ξ induces IdS � (1, x1,2 − x1,3). Thus, we have the isomorphism (37).
In a similar way, we can prove the other isomorphisms of Proposition 5.6.
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