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NORMALITY OF ORBIT CLOSURES IN THE
ENHANCED NILPOTENT CONE

PRAMOD N. ACHAR, ANTHONY

HENDERSON, and BENJAMIN F. JONES

Abstract. We continue the study of the closures of GL(V )-orbits in the
enhanced nilpotent cone V × N begun by the first two authors. We prove that

each closure is an invariant-theoretic quotient of a suitably defined enhanced

quiver variety. We conjecture, and prove in special cases, that these enhanced

quiver varieties are normal complete intersections, implying that the enhanced
nilpotent orbit closures are also normal.

§1. Introduction

The geometry of nilpotent orbits in complex semisimple Lie algebras is a
topic of central importance in numerous branches of representation theory.
A fundamental question on this topic is whether the closures of nilpotent
orbits are normal varieties. This question was answered in the affirmative
for nilpotent orbits in type A by Kraft and Procesi [KP1] in 1979. In other
types, the answer turns out to be “not always”: an explicit determination of
the nilpotent orbits with normal closures was carried out in types B and C

by Kraft and Procesi [KP2] and in types G2, F4, and E6 by Kraft [Kr],
Broer [B], and Sommers [S1], respectively. The case of type D was par-
tially resolved by Kraft and Procesi [KP2] and completed by Sommers [S2].
A complete answer is not yet known in types E7 and E8.

This paper is concerned with the variety V × N , where V is a finite-
dimensional complex vector space and N is the variety of nilpotent elements
in End(V ). This variety, known as the enhanced nilpotent cone, was studied
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by the first two authors in [AH]. It is closely related to Kato’s exotic nilpo-
tent cone (see [Ka1], [Ka2]) and to the work of Travkin [T] together with
Finkelberg and Ginzburg [FGT] on mirabolic character sheaves. The geom-
etry of GL(V )-orbits on V × N resembles that of ordinary type-A nilpotent
orbits in some ways (e.g., the only equivariant local systems are trivial) but
is reminiscent of types B and C in others (e.g., the orbits are parameter-
ized by bipartitions, and the local intersection cohomology of orbit closures
is described by type-B/C combinatorics (see [AH])). The upshot of this
paper is that, regarding the normality of orbit closures, the enhanced nilpo-
tent cone is analogous to the type-A nilpotent cone. That is, our results
contribute to proving the following generalization of [KP1, Theorem 0.1].

Conjecture 1.1. The closure of each GL(V )-orbit in V × N is normal.

In this paper, we prove a series of implications, summarized in Figure 1,
that reduces Conjecture 1.1 to a combinatorial statement, Conjecture 6.5.
The combinatorics is more complicated than in the unenhanced case studied
in [KP1], and at present we can prove Conjecture 6.5 only for a restricted
class of enhanced nilpotent orbits, namely, those satisfying the conditions
of Proposition 4.10 and those satisfying the conditions of Theorem 6.9. We
have also verified it by computer for orbits in low dimensions. The following
cases of Conjecture 1.1 are thereby proved. (The notation will be explained
in Section 2.)

Theorem 1.2. The enhanced nilpotent orbit closure Oμ;ν is normal in
the following cases:

(1) |μ + ν| ≤ 6;
(2) μt

1 ≤ νt
ν1

(i.e., every column of the diagram of ν is at least as long as
every column of μ);

(3) μt
μ1

> νt
1 (i.e., every column of μ is longer than every column of ν).

The main tool in our argument is a new class of spaces called enhanced
quiver varieties. These varieties, whose definition (see Section 4) is inspired
by the methods of Kraft and Procesi [KP1], seem to be interesting in their
own right. In Proposition 4.12, we exhibit the closure of a GL(V )-orbit in
V × N as an invariant-theoretic quotient of an enhanced quiver variety. So,
as in [KP1], proving the normality of the enhanced quiver varieties would
suffice to prove Conjecture 1.1.
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Conjecture 6.5 dimension estimate for strata of Λ

Conjecture 5.2

Theorem 5.3

dimension estimate for singular locus of Λ

Conjecture 4.8

Theorem 4.11

normality of Λ

Conjecture 1.1 normality of enhanced nilpotent orbits

Theorem 7.3 regularity in codimension 1 for enhanced nilpotent orbits

Figure 1

Example 1.3. Here is one example to give the flavor of the general def-
inition. Suppose that dimV = 4. The closure of the subregular orbit in N
is

{x ∈ N | x3 = 0},

which in [KP1] is described as an invariant-theoretic quotient of the fol-
lowing quiver variety: the variety of quadruples (A1,B1,A2,B2) of linear
maps

C
1

A1

C
2

B1

A2

V
B2

satisfying the equations B1A1 = 0 and B2A2 = A1B1. In the enhanced set-
ting, one of the orbit closures in V × N is{

(v,x) ∈ V × N
∣∣ x3 = 0, x2v = 0

}
.

We will describe this as an invariant-theoretic quotient of the following
enhanced quiver variety: the variety of sextuples (u, v,A1,B1,A2,B2) where
(A1,B1,A2,B2) is as above, u ∈ C1, v ∈ V , and A1u = B2v.
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We begin in Section 2 by fixing notation and conventions for partitions
and related combinatorial objects and by recalling relevant facts about
enhanced nilpotent orbits and related varieties. Section 3 is devoted to the
proof of a preparatory result on quotients of the space of enhanced nilpo-
tent pairs. Enhanced quiver varieties are introduced in Section 4, which
also contains the proof that their quotients are isomorphic to the enhanced
nilpotent orbit closures. The next two sections carry out further study of
the geometry of enhanced quiver varieties and conclude with a proof of their
normality in certain cases: the aforementioned combinatorial conjecture is
stated and discussed in Section 6. Finally, in Section 7, which is somewhat
independent of the rest of the paper, we prove that all enhanced nilpotent
orbit closures are regular in codimension 1. This is, of course, a necessary
condition for Conjecture 1.1 to hold, and it is not immediately obvious,
because enhanced nilpotent orbits can have orbits of codimension 1 in their
boundary.

The results of Section 7 hold over an arbitrary algebraically closed field,
which raises the possibility that Conjecture 1.1 may also be true in positive
characteristic. The method of proof suggested in this paper follows [KP1] in
assuming that the characteristic is zero, but it is possible that it could be
adapted to positive characteristic with the techniques used by Donkin [D]
in the unenhanced case.

§2. Partitions and nilpotent matrices

In this section, we fix notation related to the combinatorics of partitions
and bipartitions, and we review relevant results on nilpotent orbits, nilpo-
tent pairs, and enhanced versions thereof. These results hold over any field,
but we use C for the sake of subsequent sections.

2.1. Compositions, partitions, bipartitions
A composition is a sequence λ = (λ1, λ2, . . .) of nonnegative integers with

finitely many nonzero terms. The size of a composition, denoted |λ|, is the
sum of its terms. The infinite tail of zeros will typically be omitted when
writing a composition.

A partition is a composition (λ1, λ2, . . .) with λ1 ≥ λ2 ≥ · · · . The length
�(λ) of a partition λ is the number of nonzero terms. Partitions are often
written with exponents indicating multiplicities; for instance, we may write
3213 rather than (3,3,1,1,1). Let

Pn = {partitions of size n}.



NORMALITY OF ORBIT CLOSURES 5

A bipartition of size n is simply an ordered pair (μ;ν) of partitions with
|μ| + |ν| = n. We put

Qn = {bipartitions of size n}.

Given a bipartition (μ;ν), we can form a partition in two ways: the sum
μ + ν (obtained by termwise addition of sequences) and the union μ ∪ ν

(obtained by arranging the nonzero terms of μ and ν in decreasing order).
The transpose λt of a partition λ is given by (λt)i = #{j | λj ≥ i}. Note
that (μ + ν)t = μt ∪ νt.

A convenient way to visualize partitions and bipartitions is via diagrams
of boxes. For a partition λ we use the usual left-justified Young diagram
where the parts of λ give the number of boxes in each row and where the
parts of λt give the number of boxes in each column. For a bipartition
(μ;ν), following [AH], we put the Young diagrams of μ and ν “back to
back,” separated by a vertical “wall”; thus, the diagram of μ+ν is obtained
by forgetting the wall and left-justifying the boxes. For example,

(3,2,1,1) = and
(
(2,1); (3,2,1,1)

)
=

Finally, to any partition λ ∈ Pn, we associate the quantity

n(λ) =
∞∑
i=1

(i − 1)λi =
∞∑
i=1

(
(λt)i

2

)
.

2.2. Signed partitions
A signed partition is a pair (λ, ε), where λ is a partition and ε : {1, . . . ,

�(λ)} → {+, −} is a function such that if λi = λj , ε(i) = +, and ε(j) = −
hold, then i < j. A signed partition determines two subordinate partitions
λ(+) and λ(−) as follows. Define compositions λ(+) and λ̃(−) by

λ
(+)
i =

{
�λi/2� if ε(i) = +,

	λi/2
 if ε(i) = −,
λ̃

(−)
i = λi − λ

(+)
i .

Then λ(+) is a partition, and λ̃(−) fails to be a partition exactly when
there exist some i < j such that λi = λj is odd, ε(i) = +, and ε(j) = −. We
define λ(−) to be the partition obtained by rearranging the parts of λ̃(−)

in decreasing order. The signature of a signed partition (λ, ε) is the pair of
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integers (|λ(+)|, |λ(−)|). The set of all signed partitions of signature (d, d′) is
denoted S P d,d′ .

The visual interpretation is as follows. The signed partition (λ, ε) may be
drawn as the Young diagram of λ with the values of ε filled in along the first
column and then signs inserted in the rest of the diagram so that + and −
alternate across rows. The condition on ε stipulates that among the rows
of a certain length, those beginning with + come above those beginning
with −. For instance, ((6,3,3,3,2,1), (−,+, −, −, −,+)) would be drawn as

− + − + − +
+ − +

− + −
− + −
− +
+

Then, λ(+) is obtained by erasing all − boxes and left-justifying the remain-
ing boxes, and λ(−) is defined analogously but possibly with the additional
step of reordering the rows. In our example, we have

λ(+) = and λ(−) =

The signature of (λ, ε) simply counts the + boxes and the − boxes.

2.3. Signed quasi-bipartitions
A quasi-partition is a composition λ = (λ1, λ2, . . .) satisfying λi ≥ λj − 1

whenever i ≤ j.
A signed quasi-bipartition is a triple (μ;ν, ε) where μ and ν are quasi-

partitions such that μ + ν is a partition, and (μ + ν, ε) is a signed partition
such that

ε(i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
+ if μi ≥ 1 is odd,

− if μi ≥ 2 is even,

− if μi = 0 and there is some j < i such that νj = νi − 1

or μi = 0 and there is some j > i such that μj = 1.

Note that we do not specify ε(i) if μi = 0, and there is no j as above.
The signature of (μ;ν, ε) is the signature of (μ + ν, ε). The set of all signed
quasi-bipartitions of signature (d, d′) is denoted S Qd,d′ .
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Remark 2.1. The definition of signed quasi-bipartition given here is
equivalent to that of “striped 2-bipartition” given by Johnson [J, Defini-
tion 4.1]. The main difference is that where we would have μi = 0, νi =
s ≥ 1, and ε(i) = +, Johnson would have μi = −1, νi = s + 1, and ε(i) = +.
The restrictions we imposed on this case are equivalent to saying that the
quasi-partition inequalities continue to hold if one applies this shift. John-
son’s convention achieves a uniform rule that ε(i) = + if and only if μi is
odd, but at the cost of allowing μ to have negative parts.

As above, we can draw a signed quasi-bipartition (μ;ν, ε) as a pair of back-
to-back diagrams of boxes with the values of ε entered in the leftmost box
of each row and with + and − alternating across rows. The condition on ε

implies that every box immediately to the left of the wall contains a +. For
instance, the signed quasi-bipartition ((2,3,2,1,2,0,1); (4,2,3,3,1,2), (−,+,

−,+, −, −,+)) would be
− + − + − +

+ − + − +
− + − + −

+ − + −
− + −

− +
+

Given a signed quasi-bipartition (μ;ν, ε) with μ + ν = λ, we will define
subordinate bipartitions (μ(+);ν(+)) and (μ(−);ν(−)) such that

(2.1) μ(+) + ν(+) = λ(+) and μ(−) + ν(−) = λ(−).

We first define quasi-partitions μ̃(+), ν̃(+), μ̃(−), ν̃(−) which count the number
of boxes of a given sign on a given side of the wall and in a given row:

μ̃
(+)
i = �μi/2�; μ̃

(−)
i = μi − μ̃

(+)
i ;

ν̃
(+)
i =

{
�νi/2� if μi = 0 and ε(i) = +,

	νi/2
 otherwise;
ν̃

(−)
i = νi − ν̃

(+)
i .

Let λ be the partition μ + ν. Then μ̃(+) + ν̃(+) = λ(+) is a partition, but
μ̃(−) + ν̃(−) = λ̃(−) may not be, as seen above. If necessary, apply some
permutation simultaneously to the parts of μ̃(−) and to the parts of ν̃(−)

so that μ̃(−) + ν̃(−) becomes the partition λ(−); it is easy to see that μ̃(−)

and ν̃(−) will still be quasi-partitions after this permutation. For example,



8 P. N. ACHAR, A. HENDERSON, AND B. F. JONES

starting from the above signed quasi-bipartition, we obtain

(μ̃(+); ν̃(+)) = and (μ̃(−); ν̃(−)) =

by deleting all − boxes and all + boxes, respectively. To produce a bipar-
tition (μ(+);ν(+)) from (μ̃(+); ν̃(+)), we apply the rectification procedure of
[AH, Lemma 2.4], which in the context of quasi-partitions means that

μ
(+)
i =

⎧⎪⎨⎪⎩
μ̃

(+)
i + 1 if μ̃

(+)
j = μ̃

(+)
i + 1 for some j > i

or ν̃
(+)
j = ν̃

(+)
i − 1 for some j < i,

μ̃
(+)
i otherwise,

and ν
(+)
i = λ

(+)
i − μ

(+)
i . We obtain (μ(−);ν(−)) from (μ̃(−); ν̃(−)) by the same

rule. In our example, we have

(μ(+);ν(+)) = and (μ(−);ν(−)) =

2.4. Nilpotent orbits and enhanced nilpotent orbits
Let V be a complex vector space of dimension d, and let

NV =
{
x ∈ End(V )

∣∣ x is nilpotent
}
.

(As in the introduction, we may omit the subscript from NV if only one
vector space is involved.) Here GL(V ) acts on NV by conjugation. The
Jordan form theorem gives us the following well-known parameterization of
orbits by partitions. For x ∈ NV and λ ∈ Pd, a basis of V is said to be a
Jordan basis for x of type λ if the elements of the basis can be identified
with the boxes in the diagram of λ, in such a way that x sends a given box
to the box on its left, or to zero if there is no box on its left.

Lemma 2.2. The GL(V )-orbits on NV are in bijection with Pd. For λ ∈
Pd, the corresponding orbit Oλ consists of all x for which there is a Jordan
basis of type λ.

If x ∈ Oλ, we refer to λ as the Jordan type of x.



NORMALITY OF ORBIT CLOSURES 9

The following characterization of the closures of these orbits is also well
known. Recall the dominance partial order on partitions: if ρ,λ ∈ Pd, then
ρ ≤ λ if and only if for all k,

k∑
i=1

ρi ≤
k∑

i=1

λi.

Lemma 2.3. For a nilpotent endomorphism x ∈ NV , the following condi-
tions are equivalent:

(1) x ∈ Oλ;
(2) the Jordan type ρ of x satisfies ρ ≤ λ;
(3) V admits a filtration 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vλ1 = V such that x(Vi) ⊂ Vi−1

and dimVi/Vi−1 = λt
λ1+1−i;

(4) V admits a filtration 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vλ1 = V such that x(Vi) ⊂ Vi−1

and dimVi/Vi−1 = λt
i .

Next, the enhanced nilpotent cone associated to V is the variety V × NV .
The group GL(V ) acts on this cone with finitely many orbits as well. For
(v,x) ∈ V × NV and (μ;ν) ∈ Qd, a basis of V is said to be a normal basis
for (v,x) of type (μ;ν) if the elements of the basis can be identified with
the boxes in the diagram of (μ;ν), in such a way that x sends a given box
to the box on its left, or to zero if there is no box on its left; and v is the
sum of the boxes immediately left of the wall.

Lemma 2.4 ([AH, Proposition 2.3], [T, Theorem 1]). The GL(V )-orbits
on V × NV are in bijection with Qd. For (μ;ν) ∈ Qd, the corresponding orbit
Oμ;ν consists of those (v,x) for which there is a normal basis of type (μ;ν).

If (v,x) ∈ Oμ;ν , we will refer to (μ;ν) as the type of (v,x).
From this description, it is clear that the projection map π̄V : V × NV →

NV satisfies

(2.2) π̄V (Oμ;ν) = Oμ+ν .

Note that we can identify the ordinary nilpotent cone NV with the closed
subvariety {0} × NV of the enhanced nilpotent cone V × NV . Under this
identification, the orbit Oλ ⊂ NV corresponds to the orbit O∅;λ ⊂ V × NV .
Thus, all our statements about enhanced nilpotent orbits and their closures
will include a (usually well-known) statement about the unenhanced case.
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To state the analogue of Lemma 2.3, we need the partial order on Qd

defined as follows: (ρ;σ) ≤ (μ;ν) if and only if for all k ≥ 0,

k∑
i=1

(ρi + σi) ≤
k∑

i=1

(μi + νi)

and
k∑

i=1

(ρi + σi) + ρk+1 ≤
k∑

i=1

(μi + νi) + μk+1.

Lemma 2.5 ([AH, Theorem 3.9, Corollary 3.4]). For (v,x) ∈ V × NV , the
following conditions are equivalent:

(1) (v,x) ∈ Oμ;ν ;
(2) the type (ρ;σ) of (v,x) satisfies (ρ;σ) ≤ (μ;ν);
(3) there is an x-stable |μ|-dimensional subspace W ⊂ V containing v such

that
(a) the Jordan type μ̄ of x|W satisfies μ̄ ≤ μ, and
(b) the Jordan type ν̄ of x|V/W satisfies ν̄ ≤ ν.

Here, and subsequently, when x is a nilpotent endomorphism of V and W

is an x-stable subspace, x|W and x|V/W denote the induced nilpotent endo-
morphisms of W and of V/W .

2.5. Covering relations
We have seen in Lemmas 2.3 and 2.5 that the inclusion relations among

ordinary (resp., enhanced) nilpotent orbit closures correspond to a combi-
natorial partial order on the set of partitions (resp., bipartitions). For later
use, we recall the covering relations which generate these partial orders. Geo-
metrically, these covering relations correspond to minimal degenerations of
orbits.

It is well known that the covering relations λ′ < λ in the dominance partial
order on Pd are those in which a single box in the diagram for λ moves down
from an outside corner to the first available inside corner, resulting in the
diagram of λ′:

λ

• �
λ′

•

It is proved in [AH, Lemma 3.7] that there are four types of covering
relations which generate the partial order on Qd. We recall the pictorial
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description of these covering relations, putting the diagram of a bipartition
(μ;ν) on the left and the diagram of (μ′;ν ′) < (μ;ν) on the right. In type (1),
a single box moves down on the μ side of the dividing line, from an outside
corner to the first available inside corner, there being no inside or outside
corners on the ν side between these two positions:

•
� •

Type (2) is analogous but with the box moving on the ν side of the dividing
line:

• �
•

In type (3), a column of boxes (possibly a single box) moves directly to the
right, from an outside corner on the μ side to an inside corner on the ν side:

•
•

�
•
•

In type (4), a column of boxes (possibly a single box) moves to the left and
down one row, from an outside corner on the ν side to an inside corner on
the μ side:

•
• � •

•

2.6. Nilpotent pairs and enhanced nilpotent pairs
Now, let V and V ′ be complex vector spaces, say, of dimensions d, d′, and

let

NV,V ′ =
{
(x, y) ∈ Hom(V,V ′) × Hom(V ′, V ) | xy is nilpotent

}
.

Note that xy is nilpotent if and only if yx is nilpotent, so we will make no
distinction between NV,V ′ and NV ′,V . Elements (x, y) ∈ NV,V ′ are known as
nilpotent pairs.

The group GL(V ) × GL(V ′) acts on NV,V ′ with finitely many orbits,
described as follows. For (x, y) ∈ NV,V ′ and (λ, ε) ∈ S P d,d′ , a basis of V ⊕ V ′

is said to be a Jordan basis for (x, y) of type (λ, ε) if the elements of the
basis can be identified with the boxes in the diagram of (λ, ε), with the +
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boxes forming a basis of V and the − boxes forming a basis of V ′, in such a
way that x sends a given + box to the − box on its left, or to zero if there
is no box on its left, and y sends a given − box to the + box on its left, or
to zero if there is no box on its left.

Lemma 2.6 ([KP1, Section 4]). The (GL(V ) × GL(V ′))-orbits in NV,V ′

are in bijection with S P d,d′ . For (λ, ε) ∈ S P d,d′ , the corresponding orbit Cλ,ε

consists of those (x, y) for which there is a Jordan basis of type (λ, ε).

Consider the maps p̄V,V ′

V : NV,V ′ → NV and p̄V,V ′

V ′ : NV,V ′ → NV ′ given by

p̄V,V ′

V (x, y) = yx and p̄V,V ′

V ′ (x, y) = xy.

Recall that the signed partition (λ, ε) determines subordinate partitions λ(+)

and λ(−). Using the Jordan basis from Lemma 2.6, it is easy to see that

(2.3) p̄V,V ′

V (Cλ,ε) = Oλ(+) and p̄V,V ′

V ′ (Cλ,ε) = Oλ(−) .

Next, we consider the variety V × NV,V ′ , known as the variety of enhanced
nilpotent pairs. (Note that this definition is asymmetric in V and V ′.) The
group GL(V ) × GL(V ′) acts on this variety with finitely many orbits. These
have the following parameterization due to Johnson (recall Remark 2.1),
combining aspects of Lemmas 2.4 and 2.6. For (v,x, y) ∈ V × NV,V ′ and
(μ;ν, ε) ∈ S Qd,d′ , a basis of V ⊕ V ′ is said to be a normal basis for (v,x, y)
of type (μ;ν, ε) if the elements of the basis can be identified with the boxes
in the diagram of (μ;ν, ε), with the + boxes forming a basis of V and the −
boxes forming a basis of V ′, in such a way that x and y move boxes to
the left as in the definition of a Jordan basis, and v is the sum of the
boxes immediately left of the wall. (Recall that by definition every box
immediately left of the wall contains a +.)

Lemma 2.7 ([J, Corollary 4.13]). The (GL(V ) × GL(V ′))-orbits in V ×
NV,V ′ are in bijection with S Qd,d′ . For (μ;ν, ε) ∈ S Qd,d′ , the corresponding
orbit Cμ;ν,ε consists of those (v,x, y) for which there is a normal basis of
type (μ;ν, ε).

We have maps pV,V ′

V : V × NV,V ′ → V × NV and pV,V ′

V ′ : V × NV,V ′ → V ′ ×
NV ′ given by

pV,V ′

V (v,x, y) = (v, yx) and pV,V ′

V ′ (v,x, y) = (xv,xy).
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We also have the map πV,V ′
: V × NV,V ′ → NV,V ′ given by projection onto

the second factor. These maps have the expected compatibilities:

pV,V ′

V (Cμ;ν,ε) = Oμ(+);ν(+) ,

pV,V ′

V ′ (Cμ;ν,ε) = Oμ(−);ν(−) ,(2.4)

πV,V ′
(Cμ;ν,ε) = Cμ+ν;ε.

Of course, one could consider enhanced nilpotent pair orbits in V ′ × NV,V ′

instead and thus define maps pV ′,V
V ′ , pV ′,V

V , and πV ′,V . In this case, one
must remember to reverse the meaning of the signs, so that the + label is
associated with V ′ and the − label with V .

2.7. Orbit dimensions
Let λ ∈ Pd. The dimension of the GL(V )-orbit Oλ ⊂ NV is given by the

following well-known formula:

(2.5) dim Oλ = d2 − d − 2n(λ).

Next, let (μ;ν) ∈ Qd. From [AH, Proposition 2.8], we have

(2.6) dim Oμ;ν = d2 − d − 2n(μ + ν) + |μ| = dim π̄V (Oμ;ν) + |μ|.

Moreover, the “extra” term |μ| has the following interpretation: for a point
(v,x) ∈ Oμ;ν , let

(2.7) Ex =
{
a ∈ End(V )

∣∣ ax = xa
}
.

Then the subspace Exv ⊂ V has dimension |μ|.

Lemma 2.8. If Oρ;σ ⊂ Oμ;ν , then we have

dim Oρ;σ + |ρ| ≤ dim Oμ;ν + |μ|,

|ρ| − n(ρ + σ) ≤ |μ| − n(μ + ν).

Proof. The two inequalities are equivalent to one another by (2.6). (The
difference between the left- and right-hand sides in the first statement is
double that in the second statement.) It suffices to prove this in the case
where Oρ;σ is a minimal degeneration of Oμ;ν . Recall that the minimal
degenerations of enhanced nilpotent orbits were given in Section 2.5 in terms
of four kinds of “moves” applied to the bipartition (μ;ν). Assume that (ρ;σ)
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is obtained from (μ;ν) by such a move. If the move is of type (1) or (2), we
have |ρ| = |μ|, so the first inequality holds trivially. In a move of type (3),
we have ρ + σ = μ + ν and |ρ| < |μ|, so the second inequality holds. In a
move of type (4), we have ρi +σi−1 = μi + νi−1 for all i (interpreting σ0 and
ν0 as zero). Since

|ρ| − n(ρ + σ) =
∞∑
i=1

(2 − i)(ρi + σi−1)

and likewise for (μ;ν), both inequalities hold with equality in this case.

Remark 2.9. In Section 6, we will use the second inequality of
Lemma 2.8 in a crucial way. To that end, we remark here that in moves
of type (1) and (2), the difference between left- and right-hand sides in the
second inequality is at least 1. It is exactly 1 when a single box moves down
to the row directly below. In moves of type (3), the difference is the number
of boxes which move to the right. In moves of type (4), the difference is
zero.

Next, for a signed partition (λ, ε), a formula for dim Cλ,ε is given in [KP1,
Proposition 5.3]. We will not use that formula itself, but only the upper
bound

(2.8) dim Cλ,ε ≤ 1
2
(dim Oλ(+) + dim Oλ(−)) + dd′,

obtained by omitting a term that always takes nonpositive values. At one
point, we will need the further fact that equality holds in (2.8) if and only if
no rearrangement of parts is necessary in forming the subordinate partition
λ(−) from (λ, ε).

Lastly, consider an orbit Cμ;ν,ε ⊂ V × NV,V ′ , and choose a point (v,x, y) ∈
Cμ;ν,ε. Define the set E(x,y) ⊂ End(V ) ⊕ End(V ′) by

E(x,y) =
{
(a, b) ∈ End(V ) ⊕ End(V ′)

∣∣ xa = bx and ay = yb
}
.

Let E
(x,y)
V and E

(x,y)
V ′ denote the projections of E(x,y) to End(V ) and to

End(V ′), respectively. As noted in [J, Proposition 5.2], we have an analogue
of (2.6):

(2.9) dim Cμ;ν,ε = dimπV,V ′
(Cμ;ν,ε) + dimE

(x,y)
V v.

A combinatorial formula for dim Cμ;ν,ε is given in [J, Corollary 5.9]. We will
not use that formula itself, but only the upper bounds in the following result.
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Lemma 2.10. Consider an enhanced nilpotent pair orbit C = Cμ;ν,ε ⊂ V ×
NV,V ′ . For brevity, let (ρ;σ) = (μ(+);ν(+)), and let (ρ′;σ′) = (μ(−);ν(−)), so
that

Oρ;σ = pV,V ′

V (C) ⊂ V × NV and Oρ′;σ′ = pV,V ′

V ′ (C) ⊂ V ′ × NV ′ .

Next, let
P = Oρ+σ = π̄V (Oρ;σ) ⊂ NV ,

and let
P ′ = Oρ′+σ′ = π̄V ′

(Oρ′;σ′ ) ⊂ NV ′ .

The dimension of C satisfies the following two inequalities:

dim C ≤ dim Oρ;σ +
1
2
(dim P ′ − dim P ) + dd′,

dim C ≤ dim Oρ′;σ′ +
1
2
(dim P − dim P ′) + |ρ| − |ρ′ | + dd′.

Proof. Let (v,x, y) ∈ C. It is easy to see that E
(x,y)
V ⊂ Eyx, where the

latter is defined as in (2.7), so that

(2.10) dimE
(x,y)
V v ≤ dimEyxv.

By the remarks following (2.6), we have dimEyxv = |ρ|. Next, (2.8) says that
dimπV,V ′

(C) ≤ (1/2)(dim P + dim P ′) + dd′. Combining these observations
with (2.9), we obtain

dim C ≤ 1
2
(dim P + dim P ′) + dd′ + |ρ|.

Recall from (2.6) that dim Oρ;σ = dim P + |ρ| and that dim Oρ′;σ′ = dim P ′ +
|ρ′ |. Both inequalities in the lemma follow.

§3. Invariant theory for enhanced nilpotent orbits and pairs

In this section, we fix two vector spaces V and V ′ such that dimV ′ >

dimV . Let r = dimV ′ − dimV . Given an enhanced nilpotent orbit closure
Oμ;ν ⊂ V × NV , there are two natural ways to construct from it a subva-
riety of the enhanced nilpotent cone V ′ × NV ′ ; namely, we can form either
pV,V ′

V ′ ((pV,V ′

V )−1(Oμ;ν)) or pV ′,V
V ′ ((pV ′,V

V )−1(Oμ;ν)), using the appropriate one
of the following diagrams:

(3.1I) V × NV V × NV,V ′
pV,V ′

V
pV,V ′

V ′
V ′ × NV ′ ,
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(3.1I) V × NV V ′ × NV,V ′
pV ′ ,V

V
pV ′ ,V

V ′

V ′ × NV ′ .

(This use of “I” and “I” in the labels will be compatible with notation to
be introduced in Section 4.) The goal of this section (see Proposition 3.4)
is to identify these subvarieties of V ′ × NV ′ . We begin with the following
result, an enhanced analogue of [KP1, Theorem 2.2].

Here, and throughout the paper, we write H \\X for SpecC[X]H , where X

is an affine variety acted on by a reductive group H . Since we are work-
ing over C, an H-equivariant closed embedding X ↪→ Y induces a closed
embedding H \\X ↪→ H \\Y .

Lemma 3.1. In both (3.1I) and (3.1I), the right-hand map is an invariant-
theoretic GL(V )-quotient map onto its image. That is, pV,V ′

V ′ induces an
isomorphism

(3.2) GL(V ) \\(V × NV,V ′ ) ∼→ pV,V ′

V ′ (V × NV,V ′ ),

and pV ′,V
V ′ induces an isomorphism

(3.3) GL(V ) \\(V ′ × NV,V ′ ) ∼→ pV ′,V
V ′ (V ′ × NV,V ′ ).

Proof. A fundamental result of invariant theory states that for three vec-
tor spaces U , U ′, U ′ ′, the composition map m : Hom(U,U ′) × Hom(U ′,U ′ ′) →
Hom(U,U ′ ′) induces a closed embedding

GL(U ′) \\
(
Hom(U,U ′) × Hom(U ′,U ′ ′)

)
↪→ Hom(U,U ′ ′).

See, for instance, [D, Proposition 1.4c], which also shows that the image of
this embedding consists of those linear maps in Hom(U,U ′ ′) whose rank is at
most dimU ′. Hence, for any (reduced) GL(U ′)-stable closed subvariety Y ⊂
Hom(U,U ′) × Hom(U ′,U ′ ′), we get an isomorphism GL(U ′) \\Y

∼→ m(Y ).
From this, (3.3) follows by taking U = U ′ ′ = V ′, U ′ = V , and Y = NV,V ′ ,

since GL(V ) acts trivially on V ′. We also get a description of the image:

(3.4) pV ′,V
V ′ (V ′ × NV,V ′ ) = V ′ ×

{
z ∈ NV ′

∣∣ dim
(
im(z)

)
≤ dimV

}
.

For (3.2), let U = C × V ′, let U ′ = V , and let U ′ ′ = V ′. Then the result
follows using the identifications

Hom(U,U ′) ∼= V × Hom(V ′, V ) and Hom(U,U ′ ′) ∼= V ′ × End(V ′).
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We also get a description of the image:

(3.5) pV,V ′

V ′ (V × NV,V ′ ) =
{
(w,z) ∈ V ′ × NV ′

∣∣ dim
(
Cw + im(z)

)
≤ dimV

}
.

These formulas for the images of pV ′,V
V ′ and pV,V ′

V ′ are the (μ;ν) = (dimV ;∅)
special cases of Proposition 3.4 below.

Lemma 3.2. Let x : V → V ′, and let y : V ′ → V . Let α = (a1, a2, . . . , ak)
be a composition of dimV , and suppose that we have a filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V

such that dimVi = a1 + a2 + · · · + ai, and such that yx(Vi) ⊂ Vi−1. Assume
that r ≥ ai for all i. Fix m ∈ {1, . . . , k + 1}; if m ≤ k, assume that am ≥
am+1 ≥ · · · ≥ ak. Then V ′ admits a filtration

0 = V ′
0 ⊂ V ′

1 ⊂ · · · ⊂ V ′
k+1 = V

such that x(Vi) ⊂ V ′
i and y(V ′

i ) ⊂ Vi−1, and such that

dimV ′
i =

{
a1 + · · · + ai if i < m,

a1 + · · · + ai−1 + r if i ≥ m.

If, in addition, r > am, then for any vector u′ ∈ y−1(Vm−1), the filtration
above may be chosen so that u′ ∈ V ′

m.

Proof. Since yx(Vi) ⊂ Vi−1, we have x(Vi) ⊂ y−1(Vi−1) ⊂ y−1(Vi). More-
over,

dimx(Vi) ≤ a1 + · · · + ai,

dimy−1(Vi−1) ≥ a1 + · · · + ai−1 + r.

We will construct the spaces V ′
i by induction on i. Assume that we have

already constructed subspaces V ′
0 ⊂ V ′

1 ⊂ · · · ⊂ V ′
i−1 with the desired prop-

erties. Suppose first that i < m. Since x(Vi−1) ⊂ V ′
i−1, we see that

dimx(Vi)/
(
x(Vi) ∩ V ′

i−1

)
≤ dimVi/Vi−1 = ai,

and therefore that

dim
(
V ′

i−1 + x(Vi)
)

≤ a1 + · · · + ai−1 + ai.
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Since a1 + · · · +ai−1 +ai ≤ a1 + · · · +ai−1 +r, there exists a subspace V ′
i ⊂ V ′

such that

V ′
i−1 + x(Vi) ⊂ V ′

i ⊂ y−1(Vi−1) and dimV ′
i = a1 + · · · + ai.

In the case i = m, we proceed as above, except that we choose V ′
m to have

dimension a1 + · · · +am−1 +r. For the last assertion of the lemma, note that

dim
(
V ′

m−1 + x(Vm) + Cu′) ≤ a1 + · · · + am + 1.

Provided that r > am, we can choose V ′
m to satisfy the stronger condition

that

V ′
m−1 + x(Vm) + Cu′ ⊂ V ′

m ⊂ y−1(Vm−1)

and

dimV ′
m = a1 + · · · + am−1 + r.

Finally, for the case i > m, we now have dimV ′
i−1 = a1 + · · · +ai−2 + r, so

dim
(
V ′

i−1 + x(Vi)
)

≤ a1 + · · · + ai−2 + r + ai.

Since ai−1 ≥ ai, we may choose a subspace V ′
i ⊂ V such that

V ′
i−1 + x(Vi) ⊂ V ′

i ⊂ y−1(Vi−1) and dimV ′
i = a1 + · · · + ai−1 + r,

as desired.

Lemma 3.3. Let x : V → V ′ and y : V ′ → V be linear maps such that
yx ∈ End(V ) is nilpotent. Let W ⊂ V be a subspace stable under yx. Let
μ ∈ PdimW , let ν ∈ PdimV/W , and assume that

(1) the Jordan type μ̄ of yx|W satisfies μ̄ ≤ μ, and
(2) the Jordan type ν̄ of yx|V/W satisfies ν̄ ≤ ν.

If r ≥ �(μ + ν), then there exist xy-stable subspaces W ′ and W̃ ′ of V ′ such
that

(1) we have x(W ) ⊂ W ′ ⊂ W̃ ′ ⊂ y−1(W );
(2) dimW ′ = dimW , and dimW̃ ′ = dimW + r;
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(3) the Jordan types of the maps induced by xy on various subquotients of
V ′ satisfy the following inequalities:

xy|W ′ : ≤ μ, xy|V/W ′ : ≤ ν + 1r,

xy|
W̃ ′ : ≤ μ + 1r, xy|

V/W̃ ′ : ≤ ν.

If, in addition, r > �(ν), then for any vector u′ ∈ y−1(W ), the space W̃ ′ may
be chosen so that u′ ∈ W̃ ′.

Proof. By Lemma 2.3, we can endow W with a filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vμ1 = W,

where
dimVi/Vi−1 = μt

μ1+1−i and yx(Vi) ⊂ Vi−1.

We can likewise endow V/W with a filtration with ν1 terms. Let us lift this
filtration to V and denote its terms as follows:

W = Vμ1 ⊂ Vμ1+1 ⊂ · · · ⊂ Vμ1+ν1 ,

where
dimVi/Vi−1 = νt

i−μ1
and yx(Vi) ⊂ Vi−1.

Since νt
1 ≥ · · · ≥ νt

ν1
, r ≥ μt

i for all i, and r ≥ νt
i for all i, we can apply

Lemma 3.2 with m = μi + 1 to obtain a filtration

0 = V ′
0 ⊂ V ′

1 ⊂ · · · ⊂ V ′
μ1+ν1+1 = V ′

such that x(Vi) ⊂ V ′
i−1, y(V ′

i ) ⊂ Vi−1, and

dimV ′
i /V ′

i−1 =

⎧⎪⎨⎪⎩
μt

μ1+1−i if i ≤ μ1,

r if i = μ1 + 1,

νt
i−μ1−1 if i > μ1 + 1.

Let W ′ = V ′
μ1

, and let W̃ ′ = V ′
μ1+1. The Jordan-type assertions follow from

Lemma 2.3, and the last statement regarding a vector u′ ∈ y−1(W ) follows
from the last statement of Lemma 3.2.

We deduce the following enhanced analogue of [KP1, Lemma 2.3].
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Proposition 3.4. Consider a GL(V )-orbit Oμ;ν ⊂ V × NV . Assume that
r ≥ �(μ + ν).

(1) In the setting of (3.1I), we have pV,V ′

V ′ ((pV,V ′

V )−1(Oμ;ν)) = Oμ;ν+1r .
Indeed, pV,V ′

V ′ induces an isomorphism

GL(V ) \\(pV,V ′

V )−1(Oμ;ν)
∼→ Oμ;ν+1r .

(2) Assume furthermore that r > �(ν). In the setting of (3.1I), we have
pV ′,V

V ′ ((pV ′,V
V )−1(Oμ;ν)) = Oμ+1r;ν . Indeed, pV ′,V

V ′ induces an isomor-
phism

GL(V ) \\(pV ′,V
V )−1(Oμ;ν)

∼→ Oμ+1r;ν .

Proof. For both parts of the proposition, the quotient statement follows
from the determination of the image, by Lemma 3.1. Moreover, that lemma
implies that pV,V ′

V ′ ((pV,V ′

V )−1(Oμ;ν)) and pV ′,V
V ′ ((pV ′,V

V )−1(Oμ;ν)) are closed in
V ′ × NV ′ .

For part (1), let (v,x, y) ∈ (pV,V ′

V )−1(Oμ;ν). Let W ⊂ V be the subspace
obtained by invoking Lemma 2.5 for the pair (v, yx). In particular, v ∈ W .
Using Lemma 3.3, we find a subspace W ′ ⊂ V ′ containing x(W ) and, in
particular, the vector xv. The statements about Jordan type of xy|W ′ and
xy|V/W ′ from that lemma, together with Lemma 2.5, show that (xv,xy) ∈
Oμ;ν+1r . Hence, pV,V ′

V ′ ((pV,V ′

V )−1(Oμ;ν)) ⊂ Oμ;ν+1r . To prove the reverse
inclusion, it suffices to show that for any (v′, z) ∈ Oμ;ν+1r ⊂ V ′ × NV ′ , there
exists some (v,x, y) ∈ (pV,V ′

V )−1(Oμ;ν) such that xv = v′ and xy = z. Since
�(ν + 1r) = r ≥ �(μ), im(z) has dimension dim(V ′) − r = dimV and con-
tains v′. Fixing any vector space isomorphism x : V ∼→ im(z), we can define v

and y uniquely by the equations xv = v′ and xy = z, and it is easy to see
that (v, yx) ∈ Oμ;ν , as desired.

For part (2), let (v′, x, y) ∈ (pV ′,V
V )−1(Oμ;ν). Let W ⊂ V be the subspace

obtained by invoking Lemma 2.5 for the pair (yv′, yx), so that yv′ ∈ W .
Using the fact that r > �(ν), we may invoke Lemma 3.3 to find a subspace
W̃ ′ ⊂ V ′ containing v′. The statements about Jordan type of xy|

W̃ ′ and
xy|

V/W̃ ′ from that lemma, together with Lemma 2.5, show that (v′, xy) ∈
Oμ+1r ;ν . Hence, pV ′,V

V ′ ((pV ′,V
V )−1(Oμ;ν)) ⊂ Oμ+1r;ν . To prove the reverse

inclusion, it suffices to show that for any (v′, z) ∈ Oμ+1r ;ν ⊂ V ′ × NV ′ , there
exists some (v′, x, y) ∈ (pV ′,V

V )−1(Oμ;ν) such that xy = z. Since �(μ + 1r) =
r > �(ν), im(z) has dimension dim(V ′) − r = dimV . Fixing any vector space
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isomorphism x : V ∼→ im(z), we can define y uniquely by the equation xy = z,
and it is easy to see that (yv, yx) ∈ Oμ;ν , as desired.

§4. Enhanced quiver varieties of type A

Fix a positive integer n and a bipartition (μ;ν) ∈ Qn. Form the partition
λ = μ + ν, and let t = λ1 = �(λt). That is, t is the largest part of λ, and it
is the number of columns in the diagram of λ. It will be convenient to refer
to the lengths of these columns in increasing order, so we define

0 < r0 ≤ r1 ≤ · · · ≤ rt−1 by ri = λt
t−i.

Now the set of columns of λ can be viewed as the disjoint union of the
set of columns of μ and the set of columns of ν. We adopt the convention
that among columns of the same length, those coming from μ are labeled
before those coming from ν. More formally, we let I ⊂ {0, . . . , t − 1} be the
unique subset such that the ri for i ∈ I are the column lengths of μ in
nondecreasing order, and ri = ri+1 and i + 1 ∈ I together imply that i ∈ I .
We define I = {0, . . . , t − 1} \ I , so that the ri for i ∈ I are the column lengths
of ν in nondecreasing order. Thus, the sequence (ri) and the set I together
determine the bipartition (μ;ν).

Let Ui = C
r0+· · ·+ri−1 for 0 ≤ i ≤ t. Note that U0 = 0, Ut = C

n. It is primar-
ily Ut which we think of as the vector space V in the definition of enhanced
nilpotent orbits.

The notation and conventions of the preceding paragraph will remain
in effect for the next three sections. The aim of this section is to define
the enhanced quiver variety associated to these data and to prove that the
normality of that variety implies the normality of Oμ;ν . In the subsequent
two sections, we will make progress on studying the normality of enhanced
quiver varieties. Throughout, we are guided by the results of Kraft and
Procesi [KP1] in the unenhanced case, which in our framework is the special
case where I = ∅ (i.e., μ = ∅).

4.1. Review of results of Kraft-Procesi
We first recall the “classical” version of our variety, denoted Z in [KP1].
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Definition 4.1. Let Λλ = Λ(ri) be the affine variety consisting of tuples
(Ai,Bi) of linear maps arranged as follows:

U0

A0

U1

B0

A1

U2

B1

A2

· · ·
B2

At−2

Ut−1

Bt−2

At−1

Ut,

Bt−1

which satisfy the equations

BiAi = Ai−1Bi−1 (equation in End(Ui)) for all 1 ≤ i ≤ t − 1.

Since A0 and B0 are zero maps, the first equation says that B1A1 = 0; it
follows that (Ai−1,Bi−1) is a nilpotent pair for all 1 ≤ i ≤ t.

Note that the group
∏t

i=0 GL(Ui) acts on Λ(ri) via

(gi) · (Ai,Bi) = (gi+1Aig
−1
i , giBig

−1
i+1).

Later we will be taking a quotient by the action of H =
∏t−1

i=0 GL(Ui) but
retaining the action of GL(Ut) = GLn(C); the vector space Ut is in that
sense on a different footing from the other Ui.

Remark 4.2. In the context of quiver varieties, Λ(ri) is a special case
of Nakajima’s variety of quadruples satisfying the Atiyah-Drinfeld-Hitchin-
Manin (ADHM) equation, where the Dynkin diagram is that of type At−1. In
the notation of [M], Λ(ri) = Λ(d, v), where d = (0, . . . ,0, n) and v = (r0, r0 +
r1, . . . , r0 + · · · + rt−2).

We also introduce notation for the naively expected dimension of Λ(ri),
that is, the number of coordinates of the variables Ai,Bi minus the number
of equations in those coordinates in the definition of the variety

d(ri) = 2
t−1∑
i=0

(dimUi)(dimUi+1) −
t−1∑
i=1

(dimUi)2

=
t−1∑
i=1

(r0 + · · · + ri−1)2 + 2
∑

0≤i<j≤t−1

rirj .

Example 4.3. When t = 2 (and ignoring the zero maps), the variety
Λ(r0,r1) consists of pairs of maps

U1

A1

U2

B1

such that B1A1 = 0.
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Note that the kernel of any B1 : U2 → U1 has dimension at least dimU2 −
dimU1 = r1, and by assumption, r1 ≥ r0 = dimU1. It follows that the pairs
(A1,B1) where A1 is injective form a dense open subvariety of Λ(r0,r1). This
open subvariety is a fiber bundle over the Grassmannian Grr0(U2), with
fibers isomorphic to GLr0(C) × Hom(Cr1 ,Cr0). So Λ(r0,r1) is irreducible of
dimension r2

0 + 2r0r1 = d(r0,r1).

Kraft and Procesi proved in general that Λ(ri) = Λλ is not just irreducible.

Theorem 4.4 ([KP1, Theorem 3.3]). Λ(ri) is a normal complete inter-
section of dimension d(ri).

Remark 4.5. The conventions imposed at the beginning of the section
imply that r0 ≤ r1 ≤ · · · ≤ rt−1, and the theorem depends on this assump-
tion. If the ri are not weakly increasing, Λ(ri) may still be defined as above,
but it may not even be irreducible, let alone normal.

4.2. Enhanced quiver varieties
Now we “enhance” Λ(ri) by incorporating vectors which are related by the

linear maps, in a way determined by the subset I ⊂ {0, . . . , t − 1}. Roughly,
the idea is that each nilpotent pair (Ai,Bi) in the definition of Λ(ri) should
be replaced by an enhanced nilpotent pair; the question is which of the
vector spaces Ui and Ui+1 should be distinguished as the one containing the
vector. Proposition 3.4 tells us that if i ∈ I , meaning that the corresponding
column belongs to the ν side of the bipartition, then the vector should
belong to Ui; and if i ∈ I , meaning that the corresponding column belongs
to the μ side of the bipartition, then the vector should belong to Ui+1.
In each case we obtain a vector in the other vector space by applying the
appropriate map. There is then a natural consistency condition when the
enhanced nilpotent pairs are assembled together, resulting in the following
definition.

Definition 4.6. Let Λμ;ν = Λ(ri),I be the closed subvariety of (
∏t

i=0 Ui) ×
Λ(ri) consisting of those (ui,Ai,Bi) which satisfy the equations

Biui+1 = ui (equation in Ui), for all i ∈ I, and

Aiui = ui+1 (equation in Ui+1), for all i ∈ I.

Since u0 = 0, the second equation implies that u1 = · · · = uk = 0, where k

is the minimal element of I ; or that u1 = · · · = ut = 0, in the case that I = ∅.
More generally, the two equations imply that all ui can be determined from
those indexed by i ∈ (I + 1) \ I .
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Example 4.7. In the variety Λ(1,1,2),{0,2} attached to the bipartition
((2,1); (1)), the equations satisfied by u0, u1, u2, and u3 are B0u1 = u0,
A1u1 = u2, and B2u3 = u2. The first of these equations is automatic because
U0 = 0. Setting u = u1 and v = u3, we eliminate u2 and get the single equa-
tion A1u = B2v, recovering Example 1.3.

The action of
∏t

i=0 GL(Ui) on Λ(ri) extends to Λ(ri),I in the obvious way:

(gi) · (ui,Ai,Bi) = (giui, gi+1Aig
−1
i , giBig

−1
i+1).

The naively expected dimension of Λ(ri),I is given by

d(ri),I = d(ri) +
t∑

i=0

dimUi −
∑
i∈I

dimUi −
∑
i∈I

dimUi+1

= d(ri) +
t∑

i=0

(r0 + · · · + ri−1) −
∑
i∈I

(r0 + · · · + ri−1) −
∑
i∈I

(r0 + · · · + ri)

= d(ri) +
∑
i∈I

ri = d(ri) + |μ|.

Recall that the conventions in force imply that r0 ≤ r1 ≤ · · · ≤ rt−1, and
also that whenever ri = ri+1 and i+1 ∈ I , we have i ∈ I as well. Theorem 4.4
is a special case (where I = ∅) of the following conjecture.

Conjecture 4.8. The variety Λ(ri),I is a normal complete intersection
of dimension d(ri),I .

Example 4.9. Suppose that t = 2 as in Example 4.3. For the four different
possible I , the equations required of u1 ∈ U1 and u2 ∈ U2 are as follows:

I = ∅ : u1 = u2 = 0, I = {0} : A1u1 = u2,

I = {1} : u1 = 0,B1u2 = 0, I = {0,1} : B1u2 = u1.

So Λ(r0,r1),∅ ∼= Λ(r0,r1), Λ(r0,r1),{0} ∼= U1 × Λ(r0,r1), and Λ(r0,r1),{0,1} ∼= U2 ×
Λ(r0,r1); in all these cases Conjecture 4.8 is an immediate consequence of
Theorem 4.4. If I = {1}, then by assumption we have r0 < r1, and Λ(r0,r1),{1}
may be proved to be irreducible of dimension d(r0,r1),{1} by an argument
similar to that in Example 4.3, using the dense open subvariety consisting
of triples (u2,A1,B1), where dim(im(A1) + Cu2) = r0 + 1. The normality
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of Λ(r0,r1),{1} will be proved later, as a special case of Theorem 6.9. (If we
allowed r0 to equal r1, we would find that Λ(r0,r1),{1} had two irreducible
components.)

The following special case of Conjecture 4.8 is immediate from Kraft and
Procesi’s result.

Proposition 4.10. If I = {0,1, . . . , s − 1} for some 0 ≤ s ≤ t, then Λ(ri),I

is a normal complete intersection of dimension d(ri),I .

Proof. When I has this special form, the conditions on the ui for (ui,Ai,

Bi) ∈ Λ(ri),I are equivalent to

ui =

{
Bi+1Bi+2 · · · Bs−1us if i < s,

Ai−1Ai−2 · · · Asus if i > s.

Hence, Λ(ri),I
∼= Us × Λ(ri). Moreover,

d(ri),I = d(ri) +
s−1∑
i=0

ri = d(ri) + dimUs.

So the result follows from Theorem 4.4.

In the next two sections we will make further progress on Conjecture 4.8,
culminating in the proof of a different special case in Theorem 6.9.

4.3. Normality for enhanced nilpotent orbits
As mentioned in the introduction, Conjecture 4.8 implies Conjecture 1.1

by virtue of the following result.

Theorem 4.11. If Λμ;ν = Λ(ri),I is a normal variety, then Oμ;ν is normal.

To prove Theorem 4.11, it suffices to exhibit Oμ;ν as an invariant-theoretic
quotient of Λ(ri);I by a reductive group, since passage to such a quotient pre-
serves normality. The precise statement, generalizing the I = ∅ case proved
by Kraft and Procesi [KP1, Theorem 3.3], is as follows.

Proposition 4.12. Let H = GL(U0) × · · · × GL(Ut−1). Then the map

Φ : Λ(ri),I → Ut × NUt : (ui,Ai,Bi) �→ (ut,At−1Bt−1)

has image Oμ;ν and induces an isomorphism

H \\Λ(ri),I
∼→ Oμ;ν .



26 P. N. ACHAR, A. HENDERSON, AND B. F. JONES

Proof. We proceed by induction on t. If t = 1, then H is the trivial group.
If I = ∅, then Λ(ri),I consists of the single point where u0 = u1 = 0 and
A0 = B0 = 0, and Oμ;ν = O∅;1r0 = {(0,0)}, so the result holds. On the other
hand, if I = {0}, then Λ(ri),I consists of the tuples (u0, u1,A0,B0) where
u0 = 0, A0 = B0 = 0, and u1 is arbitrary, and Oμ;ν = O1r0 ;∅ = U1 × {0}, so
the result holds in this case as well.

Now, suppose t > 1, and let us put

Λ′ = Λ(r0,r1,...,rt−2),I∩ {0,...,t−2}.

This is an enhanced quiver variety associated to a bipartition (μ′;ν ′) of total
size r0 + · · · +rt−2. Let H ′ = GL(U0) × · · · × GL(Ut−2). Then, by assumption,
the map

Φ′ : Λ′ → Ut−1 × NUt−1 : (ui,Ai,Bi) �→ (ut−1,At−2Bt−2)

has image Oμ′;ν′ and induces an isomorphism

H ′ \\Λ′ ∼→ Oμ′;ν′ .

Consider the variety

Y =

{
(pUt−1,Ut

Ut−1
)−1(Oμ′;ν′ ) ⊂ Ut−1 × NUt−1,Ut if t − 1 ∈ I,

(pUt,Ut−1

Ut−1
)−1(Oμ′;ν′ ) ⊂ Ut × NUt−1,Ut if t − 1 ∈ I.

For simplicity, we omit the superscripts on the maps pUt−1 and pUt which
distinguish between the two cases. By Proposition 3.4, we know in both
cases that pUt induces an isomorphism

GL(Ut−1) \\Y
∼→ Oμ;ν .

Let us recall how to describe a point of Λ(ri),I . If t − 1 ∈ I , then by definition,
a point x of Λ(ri),I consists of a point p(x) = (ui,Ai,Bi) of Λ′ together with
the additional choice of (ut,At−1,Bt−1) ∈ Ut × NUt−1,Ut subject to the con-
straints that Bt−1At−1 = At−2Bt−2 and Bt−1ut = ut−1. These constraints
say exactly that Φ′(p(x)) = pUt−1(ut,At−1,Bt−1), so we have a canonical
identification

(4.1) Λ(ri),I
∼= Λ′ ×Ut−1× NUt−1

(Ut × NUt−1,Ut),

where the fiber product is taken with respect to Φ′ and pUt−1 .
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We now turn to the case where t − 1 ∈ I . In this case, a point x of Λ(ri),I

consists of p(x) ∈ Λ′ together with (ut,At−1,Bt−1) ∈ Ut × NUt−1,Ut , subject
to the constraints that Bt−1At−1 = At−2Bt−2 and ut = At−1ut−1. To relate
this variety to Y , we must modify this description slightly. Clearly, Λ(ri),I is
isomorphic to the subvariety Λ̂ ⊂ Λ(ri),I × Ut−1 consisting of pairs (x, vt−1)
in which the extra vector vt−1 equals the vector ut−1 that already occurs as
a component of x. To rephrase, a point x̂ ∈ Λ̂ consists of a point p̂(x̂) ∈ Λ′

together with a triple (vt−1,At−1,Bt−1) ∈ Ut−1 × NUt−1,Ut and a vector ut ∈
Ut, subject to the constraints that Bt−1At−1 = At−2Bt−2, vt−1 = ut−1, and
ut = At−1vt−1. Thus, Λ̂ can be identified with a twofold fiber product

Λ′ ×Ut−1× NUt−1
(Ut−1 × NUt−1,Ut) ×Ut Ut,

with respect to the maps Φ′, pUt−1 , pUt , and idUt . But now we can clearly
drop the last factor in the fiber product: we have

(4.2) Λ(ri),I
∼= Λ̂ ∼= Λ′ ×Ut−1× NUt−1

(Ut−1 × NUt−1,Ut).

We now observe that in both (4.1) and (4.2), the map Φ′ factors through
Oμ′;ν′ . Thus, in both cases, we actually have a diagram as follows, in which
both squares are Cartesian:

(4.3)

Λ(ri),I

ϕ

p

Y

pUt−1

Ut−1 × NUt−1,Ut

pUt−1

Λ′
Φ′

Oμ′;ν′ Ut−1 × NUt−1

Here, ϕ : Λ(ri),I → Y is the map defined by

ϕ(x) =

{
(ut−1,At−1,Bt−1) if t − 1 ∈ I,

(ut,At−1,Bt−1) if t − 1 ∈ I.

From the left-hand square in (4.3), we deduce that ϕ induces an isomorphism
H ′ \\Λ(ri),I

∼→ Y . Since Φ = pUt ◦ ϕ, the result follows.

By Proposition 4.10, we know that Λ(ri),I is normal when I = {0,1, . . . , s −
1} for some s. This condition is equivalent to requiring that every column
of ν is at least as long as every column of μ. So Theorem 4.11 completes
the proof of Theorem 1.2(2).
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§5. The singular locus of Λ(ri),I

We retain all the notation introduced in Section 4. Let Λ◦ ⊂ Λ(ri),I be the
open subset consisting of points (ui,Ai,Bi) such that

(5.1)

⎧⎪⎨⎪⎩
either Aj is injective and uj+1 /∈ im(Aj)

or Bj is surjective for all j ∈ I,

either Aj is injective or Bj is surjective for all j ∈ I.

It is easy to see that Λ◦ is nonempty.
In this section, we prove that Λ◦ is nonsingular, and we use this to reframe

Conjecture 4.8 as a dimension calculation.
Define a morphism of affine varieties

Ψ :
t∏

i=0

Ui ×
t−1∏
i=0

(
Hom(Ui,Ui+1) × Hom(Ui+1,Ui)

)
→

∏
i∈I

Ui ×
∏
i∈I

Ui+1 ×
t−1∏
i=1

End(Ui)

by the rule

Ψ(ui,Ai,Bi) = (Biui+1 − ui,Aiui − ui+1,BiAi − Ai−1Bi−1).

Then Λ(ri),I is the variety-theoretic zero fiber of Ψ. Let Ψ−1(0) denote the
scheme-theoretic zero fiber, in other words, the spectrum of the quotient of
the free polynomial ring in indeterminates identified with the coordinates
of the ui, Ai, and Bi by the ideal generated by the coordinates of the
appropriate vectors Biui+1 − ui and Aiui − ui+1 and the matrices BiAi −
Ai−1Bi−1. A priori, Ψ−1(0) is a possibly nonreduced scheme, whose reduced
subscheme is the variety Λ(ri),I .

Proposition 5.1. The variety Λ◦ is nonsingular of dimension d(ri),I .

Proof. To prove the proposition, it suffices to show that for fixed (ui,Ai,

Bi) ∈ Λ◦, the differential

dΨ(ui,Ai,Bi) :
t⊕

i=0

Ui ⊕
t−1⊕
i=0

(
Hom(Ui,Ui+1) ⊕ Hom(Ui+1,Ui)

)
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→
⊕
i∈I

Ui ⊕
⊕
i∈I

Ui+1 ⊕
t−1⊕
i=1

End(Ui)

is surjective. This differential maps (u′
i,A

′
i,B

′
i) to

(B′
iui+1 + Biu

′
i+1 − u′

i,A
′
iui + Aiu

′
i − u′

i+1,

B′
iAi + BiA

′
i − A′

i−1Bi−1 − Ai−1B
′
i−1).

The proof of surjectivity is a slight elaboration of the proof of [KP1, Propo-
sition 3.5]. We introduce filtrations of the domain and codomain:

0 = Xt ⊂ Xt−1 ⊂ · · · ⊂ X0 =
t⊕

i=0

Ui ⊕
t−1⊕
i=0

(
Hom(Ui,Ui+1) ⊕ Hom(Ui+1,Ui)

)
,

where Xj =
t⊕

i=j+1

Ui ⊕
t−1⊕
i=j

(
Hom(Ui,Ui+1) ⊕ Hom(Ui+1,Ui)

)
,

and 0 = Yt ⊂ Yt−1 ⊂ · · · ⊂ Y0 =
⊕
i∈I

Ui ⊕
⊕
i∈I

Ui+1 ⊕
t−1⊕
i=1

End(Ui),

where Yj =
⊕
i∈I
i≥j

Ui ⊕
⊕
i∈I
i≥j

Ui+1 ⊕
t−1⊕
i=j

End(Ui).

It is immediate from the above formula that dΨ(ui,Ai,Bi)(Xj) ⊂ Yj for all j,
so it suffices to show that the induced map ψj : Xj/Xj+1 → Yj/Yj+1 is
surjective for all 0 ≤ j ≤ t − 1.

If j ∈ I , then ψj can be identified with the map

Uj+1 ⊕ Hom(Uj ,Uj+1) ⊕ Hom(Uj+1,Uj) → Uj ⊕ End(Uj)

(u′
j+1,A

′
j ,B

′
j) �→ (B′

juj+1 + Bju
′
j+1,B

′
jAj + BjA

′
j).

This is surjective because, by the assumption that (ui,Ai,Bi) ∈ Λ◦, either Bj

is surjective (allowing any image to be obtained by varying u′
j+1 and A′

j ,
with B′

j set to zero) or the matrix formed by adding uj+1 as an extra column
to Aj has full rank (allowing any image to be obtained by varying B′

j , with
u′

j+1 and A′
j set to zero).
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If j ∈ I , then ψj can be identified with the map

Uj+1 ⊕ Hom(Uj ,Uj+1) ⊕ Hom(Uj+1,Uj) → Uj+1 ⊕ End(Uj)

(u′
j+1,A

′
j ,B

′
j) �→ (A′

juj − u′
j+1,B

′
jAj + BjA

′
j).

This is surjective because either Bj is surjective (allowing any image to be
obtained by varying u′

j+1 and A′
j , with B′

j set to zero) or Aj is injective
(allowing any image to be obtained by varying u′

j+1 and B′
j , with A′

j set to
zero).

We end this section by showing how to reduce Conjecture 4.8 to the
following dimension bound.

Conjecture 5.2. We have dim(Λ(ri),I � Λ◦) ≤ d(ri),I − 2.

Theorem 5.3. If dim(Λ(ri),I � Λ◦) ≤ d(ri),I − 2, then Ψ−1(0) ∼= Λ(ri),I ,
and this variety is a normal complete intersection of dimension d(ri),I .

Proof. If we let f(i) be the positive integer t + 1 + i − 2|I ∩ {0, . . . , i − 1}|
for 0 ≤ i ≤ t, then for all α ∈ C

×,

Ψ(αf(i)ui, αAi, αBi)

=
(
αf(i)(Biui+1 − ui), αf(i+1)(Aiui − ui+1), α2(BiAi − Ai−1Bi−1)

)
.

Hence, Ψ−1(0) is connected, because it is a cone over a subscheme of weighted
projective space (with all weights positive).

From Proposition 5.1 and the assumption on dim(Λ(ri),I � Λ◦), we see
that the scheme Ψ−1(0) is a connected complete intersection which is regular
in codimension 1. By Serre’s criterion, Ψ−1(0) is reduced, irreducible, and
normal; it therefore coincides with the variety Λ(ri),I , as desired.

§6. Stratifications and dimension estimates

In this section, we endow Λ(ri),I with a stratification, and we estimate the
dimension of each stratum. This dimension estimate enables us to reduce
Conjecture 5.2 to a purely combinatorial statement about sequences of
signed quasi-bipartitions.

For 0 ≤ j ≤ t − 1, let us define

N̂j =

{
Uj × NUj ,Uj+1 if j ∈ I,

Uj+1 × NUj ,Uj+1 if j ∈ I;
and
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Q̂j =

{
S QdimUj ,dimUj+1

if j ∈ I,

S QdimUj+1,dimUj
if j ∈ I.

Recall from Lemma 2.7 that the (GL(Uj) × GL(Uj+1))-orbits in N̂j are
parameterized by the set of signed quasi-bipartitions Q̂j . There is an obvious
map hj : Λ(ri),I → N̂j which forgets all but the relevant vector and nilpotent
pair, and we define a map

Θ : Λ(ri),I →
t−1∏
j=0

Q̂j

by associating to each point (ui,Ai,Bi) ∈ Λ(ri),I the sequence of signed
quasi-bipartitions labeling the (GL(Uj) × GL(Uj+1))-orbit of hj(ui,Ai,Bi)
for each j. Let Ξ be the image of this map. We endow Λ(ri),I with a strat-
ification indexed by Ξ by taking the strata to be the fibers of the map
above:

Λξ
(ri),I

= Θ−1(ξ) for any ξ = (ξj) ∈ Ξ.

It is clear that each Λξ
(ri),I

is a locally closed subvariety of Λ(ri),I whose
boundary is a union of smaller such strata. The strata are clearly preserved
by the action of

∏t
i=0 GL(Ui).

Each ξ = (ξj) ∈ Ξ determines a sequence of bipartitions (ρ(j)
ξ ;σ(j)

ξ ) for
1 ≤ j ≤ t, by the following condition:

(uj ,Aj−1Bj−1) ∈ O
ρ
(j)
ξ ;σ

(j)
ξ

⊂ Uj × NUj for all (ui,Ai,Bi) ∈ Λξ
(ri),I

.

We also set (ρ(0)
ξ ;σ(0)

ξ ) = (∅;∅). Thus, for each 0 ≤ j ≤ t − 1, (ρ(j)
ξ ;σ(j)

ξ )

and (ρ(j+1)
ξ ;σ(j+1)

ξ ) are the bipartitions subordinate to the signed quasi-
bipartition ξj , with + corresponding to Uj if j ∈ I and to Uj+1 if j ∈ I . The
condition for ξ to lie in Ξ is exactly that the subordinate bipartitions of
adjacent ξj match up in this way.

Example 6.1. Continue with Example 4.7. A stratum of Λ(1,1,2),{0,2}
is indexed by a sequence of signed quasi-bipartitions ξ = (ξ0, ξ1, ξ2), where
ξ0 ∈ S Q1,0, ξ1 ∈ S Q1,2, and ξ2 ∈ S Q4,2. The compatibility conditions these
must satisfy are that the + subordinate bipartition of ξ0 equals that of ξ1

(this is (ρ(1)
ξ ;σ(1)

ξ )) and that the − subordinate bipartition of ξ1 equals that
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of ξ2 (this is (ρ(2)
ξ ;σ(2)

ξ )). For instance, the zero stratum corresponds to

ξ0 = + ξ1 =
+

−
−

ξ2 =

+
+
+
+

−
−

and the unique stratum of maximal dimension (see Conjecture 6.5(2), which
is proved in this case) corresponds to

ξ0 = + ξ1 = − + − ξ2 = + − + − +
+

A third stratum is described in Example 6.8.

Proposition 6.2. Each Λξ
(ri),I

is a smooth variety. Moreover, we have

(6.1) dimΛξ
(ri),I

≤ d(ri) + n(λ) − n(ρ(t)
ξ + σ

(t)
ξ ) −

∑
i∈I

i−1∈I

|ρ(i)
ξ | +

∑
i∈I∪ {t}
i−1∈I

|ρ(i)
ξ |.

Proof. For 0 ≤ j ≤ t − 1, let Cj = hj(Λ
ξ
(ri),I

). This variety is, by definition,

a single (GL(Uj) × GL(Uj+1))-orbit in N̂j . For 0 ≤ j ≤ t, let Oj be the
GL(Uj)-orbit in Uj × NUj labeled by the bipartition (ρ(j)

ξ ;σ(j)
ξ ). Finally, let

Pj = π̄Uj (Oj); this is the GL(Uj)-orbit in NUj labeled by ρ
(j)
ξ + σ

(j)
ξ .

It is easy to see from the definition that Λξ
(ri),I

is isomorphic to the fiber
product

C0 ×O1 C1 ×O2 · · · ×Ot−1 Ct−1.

Since the varieties Ci and the morphisms Ci → Oi and Ci → Oi−1 are all
smooth, it follows that Λξ

(ri),I
is smooth and that its dimension is given by

dimΛξ
(ri),I

=
t−1∑
i=0

dim Ci −
t−1∑
i=1

dim Oi.

Since dim O0 = 0, there is no harm in changing this formula to

(6.2) dimΛξ
(ri),I

=
t−1∑
i=0

(dim Ci − dim Oi).

From Lemma 2.10, we have that

dim Ci − dim Oi ≤ 1
2
(dim Pi+1 − dim Pi) + (dimUi)(dimUi+1)
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+

{
0 if i ∈ I,

|ρ(i+1)
ξ | − |ρ(i)

ξ | if i ∈ I.

Summing up over i ∈ {0,1, . . . , t − 1}, we find that

dimΛξ
(ri),I

≤ 1
2

dim Pt +
t−1∑
i=0

(dimUi)(dimUi+1) +
∑

i∈I∪ {t}
i−1∈I

|ρ(i)
ξ | −

∑
i∈I

i−1∈I

|ρ(i)
ξ |.

The result then follows from the dimension formula (2.5), in the form

1
2

dim Pt =
1
2
(dimUt)2 − 1

2
dimUt − n(ρ(t)

ξ + σ
(t)
ξ ),

and the following calculation:

1
2
(dimUt)2 − 1

2
dimUt +

t−1∑
i=0

(dimUi)(dimUi+1)

=
1
2
(r0 + · · · + rt−1)2 − 1

2
(r0 + · · · + rt−1)

+
t−1∑
i=0

(r0 + · · · + ri−1)(r0 + · · · + ri)

=
1
2

t−1∑
i=0

(r2
i − ri) +

∑
0≤i<j≤t−1

rirj +
t−1∑
i=0

(r0 + · · · + ri−1)2 +
∑

0≤i<j≤t−1

rirj

=
t−1∑
i=0

(
ri

2

)
+ d(ri)

= d(ri) + n(λ).

Note that we could have derived an exact formula for dimΛξ
(ri),I

by the
same argument if we had used the formula [J, Corollary 5.9] for dim Ci

rather than Lemma 2.10. However, this would have introduced even more
combinatorial complexity, and we do not need it for Theorem 6.9 below.

Recall from Proposition 4.12 that Φ(Λ(ri),I) = Oμ;ν , where Φ : (ui,Ai,

Bi) �→ (ut,At−1Bt−1). In particular, we have

(6.3) O
ρ
(t)
ξ ;σ

(t)
ξ

= Φ(Λξ
(ri),I

) ⊂ Oμ;ν and hence O
ρ
(t)
ξ +σ

(t)
ξ

⊂ Oλ.
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By the dimension formula (2.5), this implies that n(ρ(t)
ξ + σ

(t)
ξ ) ≥ n(λ). We

have thus proved the following additional inequality.

Corollary 6.3. In the setting of Proposition 6.2, we have

dimΛξ
(ri),I

≤ d(ri) −
∑
i∈I

i−1∈I

|ρ(i)
ξ | +

∑
i∈I∪ {t}
i−1∈I

|ρ(i)
ξ |.

The Kraft-Procesi stratification of Λ(ri) is the I = ∅ special case of the
stratification defined above. In this case, the last two terms in Proposi-
tion 6.2 and Corollary 6.3 vanish, and those results become dimension
bounds obtained in [KP1, Section 5]. In fact, Kraft and Procesi proved
the following more precise result.

Theorem 6.4 ([KP1, Section 5]). Suppose that I = ∅.

(1) For any ξ, dimΛξ
(ri)

≤ d(ri).
(2) Equality holds in (1) for a unique ξ: the corresponding stratum consists

of those (Ai,Bi) such that, for all i, Ai is injective and Bi is surjective.
(3) If (Ai,Bi) belongs to a stratum Λξ

(ri)
of dimension d(ri) − 1, then for

each i, either Ai is injective or Bi is surjective.

Motivated by this result, we formulate the following conjecture, which
would clearly imply Conjecture 5.2 and hence Conjecture 4.8.

Conjecture 6.5. We have the following.

(1) For any ξ ∈ Ξ, dimΛξ
(ri),I

≤ d(ri),I .
(2) Equality holds in (1) for a unique ξ: the corresponding stratum consists

of those (ui,Ai,Bi) such that Ai is injective and Bi is surjective for all
i, and ui+1 /∈ im(Ai) for all i ∈ I.

(3) If dimΛξ
(ri),I

= d(ri),I − 1, then Λξ
(ri),I

⊂ Λ◦.

This formulation of the problem lends itself to purely combinatorial calcu-
lations. The set of sequences of signed quasi-bipartitions Ξ has a purely com-
binatorial description; the dimension upper bound in Proposition 6.2 and
the exact formula which we have omitted are combinatorial; and the con-
ditions in Conjecture 6.5(2),(3) admit the following combinatorial descrip-
tions.

Lemma 6.6. Let ξ = (ξj) ∈ Ξ, and let (ui,Ai,Bi) ∈ Λξ
(ri),I

.
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(1) Consequently, (ui,Ai,Bi) satisfies the condition of Conjecture 6.5(2) if
and only if, in the signed quasi-bipartitions ξj for all j ∈ I,

every row begins and ends with a − box,

and in the signed quasi-bipartitions ξj for all j ∈ I,{
every row begins and ends with a + box, and there is a box

immediately left of the wall which is at the end of a row.

(2) (ui,Ai,Bi) ∈ Λ◦ if and only if, in the signed quasi-bipartitions ξj for all
j ∈ I, {

either every row begins with a − box,

or every row ends with a − box,

and in the signed quasi-bipartitions ξj for all j ∈ I,⎧⎪⎨⎪⎩
either every row begins with a + box and there is a box

immediately left of the wall which is at the end of a row,

or every row ends with a + box.

Proof. This is a straightforward translation of the definitions, using the
basis interpretation of the signed quasi-bipartition diagram given in
Lemma 2.7.

The authors have implemented a computer program to test Conjecture 6.5
(and therefore all the other conjectures in the paper) and have found that
it holds for all cases with n ≤ 6, with part (1) verified up to n = 9. This
completes the proof of Theorem 1.2(1).

Remark 6.7. Attempts to prove Conjecture 6.5 have revealed that not
all properties which hold in [KP1] have obvious enhanced analogues. For
example, in the Kraft-Procesi situation one has

(6.4) codimΛ(ri)
Λξ

(ri)
≥ 1

2
codimOλ

Φ(Λξ
(ri)

).

This is one way of stating the I = ∅ case of Proposition 6.2; the analogue for
other classical groups is [KP2, Lemma 5.4]. However, the obvious enhanced
analogue of this inequality, namely,

(6.5) codimΛ(ri),I
Λξ

(ri),I
≥ 1

2
codimOμ;ν

Φ(Λξ
(ri),I

),

is false in general.
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Example 6.8. Continue with Example 6.1. There is a stratum Λξ
(1,1,2),{0,2}

consisting of all tuples (ui,Ai,Bi) such that u1 �= 0, A1 = 0, B1 �= 0, A2 is
injective, and B2 is surjective. The corresponding signed quasi-bipartitions
are as follows:

ξ0 = + ξ1 = + −
− ξ2 = + − +

+ − +

This stratum has codimension 1 in Λ(1,1,2),{0,2} and belongs to Λ◦ in accor-
dance with Conjecture 6.5(3). However, Φ(Λξ

(1,1,2),{0,2}) = O(1,1);(1,1) has
codimension 3 in O(2,1);(1), in violation of (6.5).

We now prove our conjectures in the special case which is “opposite” to
the one handled in Proposition 4.10.

Theorem 6.9. If I = {s, s + 1, . . . , t − 1} for some 1 ≤ s ≤ t − 1, then
Conjecture 6.5 holds.

Proof. First of all, note that the assumption that I = {s, s + 1, . . . , t − 1}
for some 1 ≤ s ≤ t − 1 is equivalent to saying that every column of μ is
strictly longer than every column of ν (and both μ and ν are nonempty).

We prove the three parts of Conjecture 6.5 in turn. Since I = {0,1, . . . , s −
1}, we have u0 = u1 = · · · = us = 0 for all (ui,Ai,Bi) ∈ Λ(ri),I . Therefore, for

any ξ ∈ Ξ, we have ρ
(0)
ξ = ρ

(1)
ξ = · · · = ρ

(s)
ξ = ∅. The inequality in Proposi-

tion 6.2 reduces to

(6.6) dimΛξ
(ri),I

≤ d(ri) + n(λ) − n(ρ(t)
ξ + σ

(t)
ξ ) + |ρ(t)

ξ |.

Recall from (6.3) that O
ρ
(t)
ξ ;σ

(t)
ξ

⊂ Oμ;ν . It then follows from Lemma 2.8 that

(6.7) d(ri) + n(λ) − n(ρ(t)
ξ + σ

(t)
ξ ) + |ρ(t)

ξ | ≤ d(ri) + |μ| = d(ri),I .

Combining (6.6) and (6.7), we deduce Conjecture 6.5(1).
To prove Conjecture 6.5(2), suppose that ξ ∈ Ξ is such that dimΛξ

(ri),I
=

d(ri),I . Then equality must hold in (6.7), our application of Lemma 2.8,

which implies (see Remark 2.9) that (ρ(t)
ξ ;σ(t)

ξ ) is obtained from (μ;ν) by a
sequence of type-(4) moves. However, the assumption on the column lengths
of μ and ν makes a type-(4) move from (μ;ν) impossible, and we conclude
that (ρ(t)

ξ ;σ(t)
ξ ) = (μ;ν). In particular, the number of rows of ξt−1 containing

a + box is �(μ + ν) = �(μ) = rt−1. But rt−1 = dimUt − dimUt−1 is also the
difference between the number of + boxes and the number of − boxes.
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Hence, ξt−1 must be the signed quasi-bipartition obtained by labeling every
box of the diagram of (μ;ν) as + and then inserting a − box between any two
adjacent + boxes in the same row. (There is no ambiguity about the position
of − boxes adjacent to the wall, since by definition every box immediately
left of the wall must be +.) From this, one deduces that (ρ(t−1)

ξ ;σ(t−1)
ξ ) =

(μ′;ν), where μ′ is obtained from μ by deleting the longest column. See the
top half of Figure 2 for an example of a triple (μ;ν), ξt−1, (μ′;ν) of this form
(where ξt−1 is the top signed quasi-bipartition).

Repeating this argument, we obtain for all j ≥ s that σ
(j)
ξ = ν and that

ρ
(j)
ξ is obtained from μ by deleting the t − j longest columns. Moreover, for

all j ≥ s, ξj is uniquely determined: it must be the signed quasi-bipartition
obtained by labeling every box of the diagram of (ρ(j+1)

ξ ;σ(j+1)
ξ ) as + and

+ − + − + − + − +
+ − + − +
+ − + − +

+

+ −

(μ;ν)

•

type (1)

(μ′;ν)

•

type (1)

•

(ρ
(t)
ξ

;σ
(t)
ξ

)

•

(ρ
(t−1)
ξ

;σ
(t−1)
ξ

)

+ − + − + − + − +
+ − + − +

+ − +
+ − +

+ −

Figure 2: Simultaneous degeneration of subordinate bipartitions
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then inserting − boxes as before. In particular, every row begins and ends
with +, and the column of + boxes immediately left of the wall is longer
than the column of − boxes immediately right of the wall, as required by
Lemma 6.6(1). The corresponding statements for j < s follow in exactly the
same way, where now, because ρ

(j)
ξ = ∅ for j ≤ s, we have reverted to the

unenhanced case as in Kraft and Procesi’s proof of Theorem 6.4(2): one
finds that σ

(j)
ξ is obtained from ν by deleting the s − j longest columns,

and ξj is obtained by labeling every box of σ
(j+1)
ξ as − and then inserting

+ boxes. (There are, of course, no boxes to the left of the wall.) In par-
ticular, every row begins and ends with −, as required by Lemma 6.6(1).
As in [KP1, Section 5.4], it is easy to see that this is the only sequence of
compatible signed quasi-bipartitions which satisfies the properties required
by Lemma 6.6(1), so this stratum does have the description claimed in Con-
jecture 6.5(2). In view of that description, it follows immediately from The-
orem 6.4(2) that this stratum indeed has dimension d(ri),I . This completes
the proof of Conjecture 6.5(2); in fact, we now know the extra information
that the only stratum for which equality holds in (6.7) is the stratum we
have just described.

To prove Conjecture 6.5(3), let ξ ∈ Ξ be such that dimΛξ
(ri),I

= d(ri),I − 1.
Then equality cannot hold in (6.7), so it must be that equality holds in (6.6)
and fails by exactly 1 in (6.7). We aim to prove by induction on t that this
implies the conditions required by Lemma 6.6(2).

Let ξ′ = (ξ0, . . . , ξt−2), let (r′
i) = (r0, . . . , rt−2), and let I ′ = {s, s + 1, . . . ,

t − 2}. (Note that I ′ is empty if s = t − 1.) The pair ((r′
i), I

′) corresponds
to the bipartition (μ′;ν), where μ′, as above, is obtained by deleting the
longest column of μ. From the proof of Proposition 6.2 it is clear that
equality in (6.6) forces the corresponding equality:

(6.8) dimΛξ′

(r′
i),I

′ = d(r′
i)

+ n(μ′ + ν) − n(ρ(t−1)
ξ + σ

(t−1)
ξ ) + |ρ(t−1)

ξ |.

So if we can show that equality fails by 1 in the analogue of (6.7), that is,
that

(6.9) d(r′
i)

+ n(μ′ + ν) − n(ρ(t−1)
ξ + σ

(t−1)
ξ ) + |ρ(t−1)

ξ | = d(r′
i)

+ |μ′ | − 1,

then we will know by the induction hypothesis (or, in the case s = t − 1, by
Theorem 6.4(3)) that the conditions in Lemma 6.6(2) hold for all j ≤ t − 2.
Alternatively, if we can show that equality holds in the analogue of (6.7),
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that is, that

(6.10) d(r′
i)

+ n(μ′ + ν) − n(ρ(t−1)
ξ + σ

(t−1)
ξ ) + |ρ(t−1)

ξ | = d(r′
i)

+ |μ′ |,

then we will know by the above proof of Conjecture 6.5(2) (or, in the case
s = t − 1, by Theorem 6.4(2)) that the conditions in Lemma 6.6(1) hold for
all j ≤ t − 2; clearly, these are even stronger than those in Lemma 6.6(2).
Assuming either of these eventualities, if we can also show that the condi-
tion in Lemma 6.6(2) holds for j = t − 1, then we will have completed the
induction step.

Now by Remark 2.9 and the assumption on column lengths of μ and ν,
saying that equality fails by exactly 1 in (6.7) is equivalent to saying that
(ρ(t)

ξ ;σ(t)
ξ ) is obtained from (μ;ν) by one of the following moves:

• a type-(1) move in which the box moves down a single row,
• a type-(2) move in which the box moves down a single row, or
• a type-(3) move in which a single box in row �(ν) + 1 moves from the

bottom of a column of μ (necessarily of minimal length) to the bottom
of a column of ν (necessarily of maximal length),

possibly followed, in the type-(3) case, by at most two type-(4) moves which
have now become possible (because the type-(3) move has disrupted the
property that all columns of μ are strictly longer than all columns of ν). We
now have various cases to consider. Recall that �(μ) = rt−1, so �(ρ(t)

ξ + σ
(t)
ξ )

is either rt−1 or rt−1 + 1.
Case 1: �(ρ(t)

ξ ) = �(ρ(t)
ξ +σ

(t)
ξ ) = rt−1. This implies that the number of rows

of ξt−1 containing a + box equals rt−1, which as above forces ξt−1 to be the
signed quasi-bipartition obtained by labeling every box of the diagram of
(ρ(t)

ξ ;σ(t)
ξ ) as + and then inserting − boxes between adjacent + boxes. Since

every row ends with a +, the condition in Lemma 6.6(2) holds for j = t − 1.
Moreover, we see that σ

(t−1)
ξ = σ

(t)
ξ and that ρ

(t−1)
ξ is obtained from ρ

(t)
ξ by

deleting the longest column. Hence, (ρ(t−1)
ξ ;σ(t−1)

ξ ) is obtained from (μ′;ν)

by the “same” move (or sequence of moves) which produced (ρ(t)
ξ ;σ(t)

ξ ) from
(μ;ν) (for which the possibilities were described above). This implies (6.9),
finishing this case. See Figure 2 for an example (where ξt−1 is the bottom
signed quasi-bipartition).

Case 2: �(ρ(t)
ξ ) < �(ρ(t)

ξ +σ
(t)
ξ ) = rt−1. This case occurs if and only if μ has

a single column (so s = t − 1), �(ν) = rt−1 − 1, and to form (ρ(t)
ξ ;σ(t)

ξ ) we make
a type-(3) move. It is still true that the number of rows of ξt−1 containing
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a + box equals rt−1, so as in Case 1, ξt−1 is the signed quasi-bipartition
obtained by labeling every box of the diagram of (ρ(t)

ξ ;σ(t)
ξ ) as + and then

inserting − boxes between adjacent + boxes. Once again, every row ends
with a +. Since ρ

(t−1)
ξ is empty and σ

(t−1)
ξ = ν, (6.10) holds, finishing this

case.
Case 3: �(ρ(t)

ξ + σ
(t)
ξ ) = rt−1 + 1 and |ρ(t)

ξ | = |μ|. This case occurs when μ

has more than one column of length rt−1 (i.e., μrt−1 ≥ 2), and to form
(ρ(t)

ξ ;σ(t)
ξ ) we move the corner box in row rt−1 down to row rt−1 + 1. (This

is either a type-(1) move or, if it happens that �(ν) = rt−1 − 1, a type-(3)
move followed by a type-(4) move.) That is, σ

(t)
ξ = ν and ρ

(t)
ξ = μ̃, where μ̃

is the partition (μ1, μ2, . . . , μrt−1−1, μrt−1 − 1,1). In this case the number of
rows of ξt−1 containing a + box equals rt−1 +1, so there is apparently more
freedom in the choice of ξt−1: after labeling every box of (μ̃;ν) as + and then
inserting − boxes between adjacent + boxes, we still have an additional −
box to place.

The possibilities are constrained, however, by the analogue of (6.3), which
ensures that (ρ(t−1)

ξ ;σ(t−1)
ξ ) ≤ (μ′;ν). The forced − boxes in ξt−1 have the

shape of the bipartition (μ̃′;ν), where μ̃′ is obtained from μ′ by deleting
the corner box in row rt−1. Hence, (ρ(t−1)

ξ ;σ(t−1)
ξ ) either equals (μ′;ν) or is

obtained from (μ′;ν) by moving this same corner box to row rt−1 on the ν

side (a type-(3) move) or to row rt−1 + 1 on the μ′ side (a type-(1) move,
or a type-(3) move followed by a type-(4) move). If (ρ(t−1)

ξ ;σ(t−1)
ξ ) = (μ′;ν),

then (6.10) holds. If a move is required, then (6.9) holds. What remains, for
this case, is to verify the condition in Lemma 6.6(2) for j = t − 1.

Suppose that �(ρ(t−1)
ξ + σ

(t−1)
ξ ) = rt−1, which is equivalent to saying that

the additional − box in ξt−1 is in row rt−1. Then row rt−1 +1 of ξt−1 consists
of a single + box immediately left of the wall; moreover, it is true either
that every row of ξt−1 begins with a + or that every row of ξt−1 ends with
a +, since the additional − box cannot falsify both statements. So in this
event, we are finished.

The other possibility is that (ρ(t−1)
ξ ;σ(t−1)

ξ ) is obtained from (μ′;ν) by
moving the corner box in row rt−1 on the μ′ side to row rt−1 + 1 on the μ′

side. Here we observe that since equality holds in (6.6), there cannot be any
rearrangement of parts in forming the subordinate bipartition (ρ(t−1)

ξ ;σ(t−1)
ξ )

from ξt−1 (see the comment following (2.8)). So it is not possible that the
additional − box in ξt−1 is in a row by itself (immediately right of the wall),



NORMALITY OF ORBIT CLOSURES 41

following row rt−1 + 1, which consists of a single + box (immediately left
of the wall). Hence, the additional − box must be in row rt−1 + 1, either
before or after the single + box. Again, it follows that either every row of
ξt−1 begins with a + or every row of ξt−1 ends with a +. If the additional −
box comes before the + box in row rt−1 + 1, then that row ends with a
box immediately left of the wall. If the additional − box comes after the +
box, and therefore right of the wall, then the fact that it is brought to the
left of the wall in forming (ρ(t−1)

ξ ;σ(t−1)
ξ ) implies that there is a row of ξt−1

which contains no − boxes right of the wall, and therefore ends with a box
immediately left of the wall. So the condition in Lemma 6.6(2) holds.

Case 4: �(ρ(t)
ξ + σ

(t)
ξ ) = rt−1 + 1 and |ρ(t)

ξ | �= |μ|. This case occurs when

all columns of μ have length rt−1, �(ν) = rt−1 − 1, and to form (ρ(t)
ξ ;σ(t)

ξ )
from (μ;ν) we move the corner box in row rt−1 − 1 on the ν side down
to row rt−1 + 1 on the μ side. (This is a type-(3) move followed by two
type-(4) moves, or a type-(3) move followed by a single type-(4) move of
two boxes.) As in the previous case, after labeling every box of (ρ(t)

ξ ;σ(t)
ξ )

as + and then inserting − boxes between adjacent + boxes, we have to place
one additional − box to form ξt−1. Again, the possibilities are constrained
by the fact that (ρ(t−1)

ξ ;σ(t−1)
ξ ) ≤ (μ′;ν). The forced − boxes in ξt−1 have

the shape of the bipartition (μ′; ν̃), where ν̃ is obtained from ν by deleting
the corner box in row rt−1 − 1. Hence, (ρ(t−1)

ξ ;σ(t−1)
ξ ) either equals (μ′;ν)

or is obtained from (μ′;ν) by moving this same corner box to row rt−1

on the ν side or to row rt−1 + 1 on the μ′ side. If (ρ(t−1)
ξ ;σ(t−1)

ξ ) = (μ′;ν),
then (6.10) holds. If a move is required, then (6.9) holds. The verification
that the condition in Lemma 6.6(2) holds for j = t − 1 is almost identical
to the previous case.

Theorem 6.9 completes the proof of Theorem 1.2(3).

§7. Regularity in codimension 1

In this last section, we prove that every enhanced nilpotent orbit closure
is regular in codimension 1. Of course, this would be an immediate con-
sequence of Conjecture 1.1. However, the results in this section hold over
any algebraically closed field F, unlike the proposed method of proof of
Conjecture 1.1, which requires F to be C.

We first prove the smoothness of certain unions of orbits in the enhanced
nilpotent cone V × N . As before, n denotes the dimension of V . If λ is a
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partition of n, we write Uλ for V × Oλ, which is a locally closed subvariety
of V × N . Let Qλ be the subset of Qn consisting of bipartitions (μ;ν) such
that μ + ν = λ.

Proposition 7.1. Let λ be any partition of n.
(1) The variety Uλ is the union of the orbits Oμ;ν for (μ;ν) ∈ Qλ.
(2) For (ρ;σ), (μ;ν) ∈ Qλ, Oρ;σ ⊂ Oμ;ν if and only if ρi ≤ μi for all i.
(3) For (μ;ν) ∈ Qλ,

Oμ;ν ∩ Uλ =
{
(v,x) ∈ Uλ

∣∣ xμiv ∈ im(xλi), for all i
}
.

(4) In Uλ, the closure of each orbit is smooth; that is, for every (μ;ν) ∈ Qλ,
Oμ;ν ∩ Uλ is smooth.

Proof. Part (1) is equivalent to (2.2). Part (2) follows from Lemma 2.5.
Using the normal basis given in Lemma 2.4, one sees that if (v,x) ∈ Oμ;ν ⊂
Uλ, then for all i,

min
{
s

∣∣ xsv ∈ im(xλi)
}

= μi.

Combining this with part (2), we deduce part (3). From this part (4) fol-
lows, because the projection (v,x) �→ x exhibits Oμ;ν ∩ Uλ as a vector bundle
over Oλ, where the fiber over x is the vector subspace

⋂
i(x

μi)−1(im(xλi))
of V . (Incidentally, this subspace can alternatively be described as∑

i x
νi(ker(xλi)).)

If 0 ≤ m ≤ n and π is a partition of n − m, define

Um,π =
{
(v,x) ∈ V × N

∣∣ dimF[x]v = m,x|V/F[x]v ∈ Oπ

}
,

which is a locally closed subvariety of V × N . Here F[x]v is the span of the
elements xiv for all i, which is obviously an x-stable subspace of V ; since x

is nilpotent, to say that dimF[x]v = m is to say that m is minimal such that
xmv = 0.

Let Qm,π be the subset of Qn consisting of bipartitions (μ;ν) such that
μ1 = m and μ[1] + ν = π, where μ[1] denotes the partition (μ2, μ3, . . .). The
map (μ;ν) �→ μ + ν gives a bijection

Qm,π ←→ {λ ∈ Pn | λ1 ≥ π1 ≥ λ2 ≥ π2 ≥ · · · }.

Proposition 7.2. Let m and π be as above.
(1) The variety Um,π is the union of the orbits Oμ;ν for (μ;ν) ∈ Qm,π.
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(2) For (ρ;σ), (μ;ν) ∈ Qm,π, Oρ;σ ⊂ Oμ;ν if and only if σi ≤ νi for all i,
which in turn happens if and only if Oρ+σ ⊂ Oμ+ν .

(3) For (μ;ν) ∈ Qm,π,

Oμ;ν ∩ Um,π =
{
(v,x) ∈ Um,π

∣∣ xm+νi
(
(xπi)−1(F[x]v)

)
= 0, for all i

}
.

(4) In Um,π, the closure of each orbit is smooth; that is, for every (μ;ν) ∈
Qm,π, Oμ;ν ∩ Um,π is smooth.

Proof. Part (1) is proved in [AH, Lemma 2.5], and part (2) follows from
Lemma 2.5. Using the basis defined in [AH, Lemma 2.5], one sees that if
(v,x) ∈ Oμ;ν ⊂ Um,π, then for all i,

min
{
s

∣∣ xs
(
(xπi)−1(F[x]v)

)
= 0

}
= m + νi.

(To verify that the minimum is at least m + νi, note that the basis ele-
ment wi,μi+νi belongs to (xπi)−1(F[x]v), and that xm+νi −1(wi,μi+νi) �= 0.)
Combining this with part (2), we deduce part (3).

It remains to prove part (4). Let Zm,π be the variety of triples (W,y, z)
where W is an m-dimensional subspace of V , y is a nilpotent endomorphism
of W which belongs to O(m), and z is a nilpotent endomorphism of V/W

which belongs to Oπ. It is clear that Zm,π is a homogeneous variety for
GL(V ). We have a GL(V )-equivariant fiber bundle

ψ : Um,π → Zm,π : (v,x) �→ (F[x]v,x|F[x]v, x|V/F[x]v),

in which the fiber ψ−1(W,y, z) equals (W \ ker(ym−1)) × AW,y,z, where

AW,y,z =
{
x ∈ gl(V )W |x|W = y,x|V/W = z

}
,

an affine-linear subspace of gl(V )W (the parabolic subalgebra of gl(V ) sta-
bilizing W ). By parts (1) and (2), ψ restricts to a GL(V )-equivariant fiber
bundle

ψμ;ν : Oμ;ν ∩ Um,π → Zm,π

in which the fiber ψ−1
μ;ν(W,y, z) equals (W \ ker(ym−1)) × Aμ;ν , where

Aμ;ν = Oμ+ν ∩ AW,y,z.

So it suffices to show that Aμ;ν is smooth. By part (3),

Aμ;ν =
{
x ∈ AW,y,z

∣∣ xm+νi
(
W + ker(zπi)

)
= 0, for all i

}
,
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where W + ker(zπi) denotes the preimage of ker(zπi) under the projection
V → V/W . Fixing a base point x0 ∈ AW,y,z, one has AW,y,z = x0 +nW , where
nW is the nilpotent radical of gl(V )W . For any k, the matrix coefficients of
xk − xk

0 are linear functions of x − x0 ∈ nW , so the condition xm+νi(W +
ker(zπi)) = 0 translates into a linear condition on x − x0. Hence, Aμ;ν is an
affine-linear subspace of gl(V )W and is smooth, as required.

Theorem 7.3. For every (μ;ν) ∈ Qn, Oμ;ν is regular in codimension 1.

Proof. Let λ = μ + ν, let m = μ1, and let π = μ[1] + ν. Suppose that
Oρ;σ has codimension 1 in Oμ;ν . From the description of covering relations
given in Section 2.5 and the dimension formula (2.6), it follows that either
(ρ;σ) ∈ Qλ (in the case of a type-(3) move of a single box) or (ρ;σ) ∈ Qm,π

(in the case of a type-(4) move of a single box). So Oρ;σ is contained in
either Oμ;ν ∩ Uλ or Oμ;ν ∩ Um,π, both of which are open in Oμ;ν and smooth
by Propositions 7.1 and 7.2. So Oμ;ν is smooth at all points of Oρ;σ, proving
the result.
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