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HARMONIC MORPHISMS APPLIED TO CLASSICAL
POTENTIAL THEORY

BENT FUGLEDE

Abstract. It is shown that if ϕ denotes a harmonic morphism of type Bl

between suitable Brelot harmonic spaces X and Y , then a function f , defined

on an open set V ⊂ Y , is superharmonic if and only if f ◦ ϕ is superharmonic on

ϕ−1(V ) ⊂ X. The “only if” part is due to Constantinescu and Cornea, with ϕ

denoting any harmonic morphism between two Brelot spaces. A similar result is

obtained for finely superharmonic functions defined on finely open sets. These

results apply, for example, to the case where ϕ is the projection from R
N to

R
n (N > n ≥ 1) or where ϕ is the radial projection from R

N \ {0} to the unit
sphere in R

N (N ≥ 2).

§0. Introduction

Aside from holomorphic maps between Riemann surfaces, harmonic mor-
phisms can be traced back to Jacobi [Jac] in 1848 for maps between R

3

and C. The first systematic study of harmonic morphisms (then termed
harmonic maps) was made by Constantinescu and Cornea [CC2, Section 3]
in the very general potential theoretic setting of continuous maps between
harmonic spaces in the sense of Brelot, such that the pullback of any har-
monic function in Y is harmonic in X (see [Br, Part IV], [CC3] for details
concerning Brelot harmonic spaces). A particular case is that of harmonic
morphisms between Riemannian manifolds; they were characterized as har-
monic maps (in the sense of differential geometry) which, moreover, had
a certain property of conformality (see [F4], [Ish]). For a comprehensive
account of the theory of harmonic morphisms between Riemannian mani-
folds, we refer to the excellent monograph by Baird and Wood [BW].

In Section 1 of this paper, we establish further properties of harmonic
morphisms between Brelot spaces (especially maps of type Bl in the sense
of [CC2]), generalizing analytic functions represented by a Blaschke product
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(see also [Hs]). Thus we establish reverse implications to some key defini-
tions and results of [CC2, Section 3] and [F3]. The first study similar in
scope to this one was made by Hansen [Ha], who allowed the more general
harmonic spaces introduced by Bauer [Ba] and Constantinescu and Cornea
[CC3], but imposed a stronger hypothesis than that of type Bl (see also
[BH, Section V.8]).

In Section 2, we study the particular harmonic morphisms given by pro-
jection from R

N to R
n (N > n ≥ 1) and by radial projection from R

N \ {0}
to the unit sphere S

N −1 in R
N (N ≥ 2). We thereby recover known results

by Deny and Lelong [DL], Hansen [Ha], and Gardiner [G1], [G2], and we
add a result on finely superharmonic functions.

Finally, in Section 3, we extend the results of Section 1 to so-called finely
harmonic morphisms, whose domain of definition is a finely open subset X

of an ambient Brelot space, as described in [F3].

§1. Harmonic morphisms

Following Constantinescu and Cornea [CC2], we will consider harmonic
morphisms ϕ : X → Y between Brelot spaces X and Y (see [Br, Part IV],
[CC3, Section 3.1], [La1]; for harmonic morphisms between more general
harmonic spaces, see [Me], [La2]; for harmonic morphisms in nonlinear
potential theory, see [HKM]).

Definition 1 ([CC2, Section 3]). A continuous map ϕ : X → Y between
Brelot spaces X and Y is called a harmonic morphism if, for any open
subset V of Y and any harmonic function f on V , f ◦ ϕ is harmonic on
ϕ−1(V ) (when nonempty).

It would amount to the same replacing harmonic (twice) by hyperhar-
monic or by hypoharmonic (see [CC2, Theorem 3.1]).

If X is connected, if ϕ : X → Y is a nonconstant harmonic morphism,
and if f is a superharmonic (resp., subharmonic) function on an open set
V ⊂ Y , then f ◦ ϕ is superharmonic (resp., subharmonic) on ϕ−1(V ) (when
nonempty) (see [CC2, Corollary 3.2]).

Henceforth, we tacitly assume that every Brelot space considered has a
countable base of open sets and that the constant functions are harmonic.
(The latter restriction could easily be removed.)

Definition 2 ([CC2, Section 3]). A harmonic morphism ϕ : X → Y

between Brelot spaces X and Y is said to be of type Bl if, for any open
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subset V of Y and any locally bounded potential p on V , p ◦ ϕ is a potential
on ϕ−1(V ) (when nonempty).

A harmonic morphism ϕ : X → Y is of type Bl if and only if the natu-
ral extension of ϕ to the Wiener compactifications of X and Y maps the
harmonic boundary of the former compactification onto the Wiener ideal
boundary of the latter (see [Me, Theorem 5.3.3]).

The harmonic morphisms of type Bl generalize the holomorphic maps
of type Bl between Riemann surfaces introduced by Heins [Hs] (see also
[CC1]). When X and Y are the open unit disk D in C, the holomorphic
maps of type Bl (in the sense of Heins) are the functions representable as a
Blaschke product.

In particular, if a harmonic morphism ϕ : X → Y between Brelot spaces
is a proper map,∗ then ϕ is of type Bl. Indeed, for any relatively compact
open set V ⊂ Y , ϕ−1(V ) is relatively compact and hence of class N (see
[CC2, Section 3.3], and so [CC2, Theorem 3.10(c)] applies.

In view of [CC2, Theorem 3.4], every bijective harmonic morphism ϕ :
X → Y is proper (and hence of type Bl) because ϕ−1 : Y → X is a harmonic
morphism, and thus, in particular, continuous.

Every harmonic morphism of type Bl from a connected Brelot space is
nonconstant (see [CC2, p. 26]). (Alternatively, take for V in Definition 2 a
P-set on Y ,† and take for p a locally bounded potential greater than zero
on V . If ϕ were constant, then p ◦ ϕ would be a constant greater than zero
on ϕ−1(V ), hence harmonic there, and thus not a potential.)

If ϕ : X → Y is of type Bl and if Y is connected, then every closed set
contained in Y \ ϕ(X) is polar (see [CC2, Corollary 3.7]).

Not every surjective open locally injective harmonic morphism ϕ : X → Y

is of type Bl, as shown by the following example in which ϕ is an analytic
function of a complex variable.

Example 1. With D denoting the open unit disk in C, let X = {x ∈
D \ {0} : | argx| < 2π/3}, let Y = X2 = D \ {0}, and let ϕ(x) = x2 (x ∈ X).
Then ϕ : X → Y is a surjective open locally injective harmonic morphism,

∗A continuous map ϕ : X → Y is said to be proper if ϕ−1(K) is compact in X for every
compact set K ⊂ Y ; here compact may be replaced equivalently by relatively compact
(twice).

†A P-set in a Brelot space Y is an open set on which there exists a potential greater
than zero; Y is always covered by P-sets (see, e.g., [CC3, Theorem 2.3.3]). If the entire
space Y is a P-set, then Y is termed a P-Brelot space, or a strong Brelot space.
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but not of type Bl. To see this, let g denote the Green function on D with
pole at −1/2. Since zero is polar in C and since g is finite and continuous
near zero, g|Y is also a potential on Y = D \ {0}, and hence p := min{1, g|Y }
is a bounded potential on Y . But p ◦ ϕ is not a potential on X because it
has a continuous extension greater than zero to either of the two boundary
segments {x ∈ D \ {0} : argx = ±2π/3}, each of which has nonzero harmonic
measure with respect to X .

Theorem 1. Let ϕ : X → Y denote a surjective nonconstant harmonic
morphism between connected Brelot spaces X and Y . For the “if” parts of
assertions (a), (b), (c), and (e) below, suppose that the points of Y are polar.
For the “only if” part of (b) and the “if” part of (c), suppose in addition
that Y satisfies the axiom of polarity, and, for the “if” parts of (d) and (e),
suppose that ϕ is an open map of type Bl.∗ Finally, suppose for assertion
(e) that both X and Y satisfy the axiom of domination.

(a) A set V ⊂ Y is finely open if and only if the preimage ϕ−1(V ) is finely
open in X. In other words, ϕ : X → Y is fine-to-fine open (being sur-
jective) and fine-to-fine continuous.

(b) A set E ⊂ Y is thin at a point y ∈ Y if and only if ϕ−1(E) is thin at
some (and hence any) point of the fiber ϕ−1(y) ⊂ X.

(c) A set E ⊂ Y is polar if and only if ϕ−1(E) is polar in X.
(d) A function f defined on an open set V ⊂ Y is superharmonic if and

only if f ◦ ϕ is superharmonic on ϕ−1(V ).
(e) A function f defined on a finely open set V ⊂ Y is finely superharmonic

if and only if f ◦ ϕ is finely superharmonic on ϕ−1(V ).

Recall that a harmonic space Y is said to satisfy the axiom of polarity if a
set E ⊂ Y is polar provided that E is thin at every point of Y (the converse
always holds) or, equivalently, that E is thin at every point of E itself (see
[CC3, Theorem 9.1.1]). A harmonic space X is said to satisfy the axiom
of domination (axiom D)—respectively, the strong axiom of domination
(axiom D)—if, for any locally bounded (resp., finite) potential p on an
open set U ⊂ X and for any hyperharmonic function u ≥ 0 on U such that
p ≤ u on the harmonic support† of p, we have p ≤ u on all of U . Equivalently,
a locally bounded (resp., finite) potential on U is continuous provided that

∗Actually, openness of ϕ is not required for (e) in view of Theorem 4(e).
†The harmonic support (often called the superharmonic support) of a function p defined

on an open set U is the complement of the largest open subset of U on which p is harmonic.
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its restriction to its harmonic support is continuous (see [CC3, Theorem
9.2.1], [Jan, Section 2]).∗ Axiom D implies the axiom of polarity (see [CC3,
Corollary 9.2.3]).

In Hansen [Ha], our hypothesis for the “if” part of (d) in Theorem 1, that
ϕ be of type Bl, is replaced by a stronger more concrete pair of hypotheses,
although extended so as to also apply locally (see [Ha, Korollar 1.7]). The
“if” part of (e) in Theorem 1 seems to be new.

Concerning (d) and (e), note furthermore that every nonconstant har-
monic morphism ϕ : X → Y between connected Brelot spaces X and Y is
an open map provided that the points of Y are strongly polar (see [F5,
Theorem 4], [F6]).

Definition 3. A point y of a Brelot space Y is called strongly polar if
every superharmonic function s on some open neighborhood V of y which
is harmonic on V \ {y}, but not at y, takes the value +∞ at y.

By the Riesz decomposition theorem, it suffices to consider potentials
s on V . Every strongly polar point y ∈ Y is polar. To see this, choose an
open set V ⊂ Y on which there exists a potential p > 0. We may assume
that p(y) < +∞ (otherwise, y is already polar). Then s := V R̂

{y}
p (sweeping

relative to V ) is a potential on V , and s is harmonic on V \ {y}, hence
on all of V because y is strongly polar and yet s(y) ≤ p(y) < +∞. Thus,
s ≡ 0 on V . Since kp ↗ +∞ pointwise on V as k ↗ ∞ (k ∈ N), we have
V R̂

{y}
kp ↗ V R̂

{y}
+∞ pointwise on V by [CC3, Corollary 4.2.1 and Section 5.1].

Note that W R̂
{y}∩W
p ≡ 0 on the open sets W = V and W = Y \ {y} (sweeping

relative to W ). Since V ∪ W = Y , it follows that {y} is indeed polar (see
[CC3, p. 142]).

If Y even satisfies the strong axiom of domination D, then strongly polar
points of Y are the same as polar points (see [F5], [F6]). Suppose that
y ∈ Y is polar, and let V and s be as in Definition 3. If s(y) < +∞, then,
by axiom D, s would be finite and continuous on V and hence harmonic on
all of V by the removable singularity theorem, {y} being polar (see, e.g.,
[CC3, Corollary 6.2.5]). Consequently, s(y) = +∞, and y is indeed strongly
polar. Alternatively, use the former definition of axiom D, taking for u a
constant.

∗The hypothesis in [Jan] that the harmonic spaces in question have the property of
nuclearity is fulfilled, in particular, by the present Brelot space (see [CC3, Corollary
11.1.2]).
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The following well-known example already shows that assertion (a) of
Theorem 1 may break down if Y contains nonpolar points.

Example 2. Consider a tripod, that is, the union X of three copies
X1,X2,X3 of the interval [0,1[ , glued together at the point 0 (henceforth
denoted by o) of X , but otherwise pairwise disjoint. A continuous real-
valued function f , defined on a connected open subset V of X , is said to
be harmonic if f is affine-linear on V when o /∈ V and if the one-sided
derivatives of f | V ∩ Xj at o (j ∈ {1,2,3}) have the sum 0 when o ∈ V .
It is easily verified that X and hence Y := X1 ∪ X2 are connected Brelot
spaces satisfying axiom D (and even axiom D). The fine topology on X

clearly equals the standard topology. Define ϕ : X → Y by ϕ(x) = x for
x ∈ Y and by ϕ(x) = o for x ∈ X3. Then ϕ is a surjective nonconstant har-
monic morphism, but the points of Y are all nonpolar; and ϕ is neither open
nor fine-to-fine open because X3 \ {o} is open and hence finely open on X ,
whereas ϕ(X3 \ {o}) = {o} fails to be even finely open. It is easily verified
that (d) and (e) hold true, but ϕ is not of type Bl.

Thus, the requirement for the (equivalent) “if” parts of assertions (d)
and (e) of Theorem 1, that ϕ be of type Bl, is not a necessary condition
(see also Remark 1 below). This also appears from Example 1 above, where
ϕ is surjective open and locally injective, so [CC2, Theorem 3.4] shows
that the locally defined inverse ϕ−1 is a harmonic morphism, and hence
(f ◦ ϕ) ◦ ϕ−1 = f is superharmonic (on Y ) along with f ◦ ϕ (on X) by the
“only if” part of (d), valid according to [CC2, Corollary 3.2].

Every Riemannian manifold is a Brelot space satisfying axiom D, the
harmonic functions being understood as the local solutions of class C2 to
the Laplace-Beltrami equation (see [He, chapitre VII, théorème 36.2]; for
the validity of axiom D, see also [CC3, Theorem 3.2.1 and Exercise 9.2.9]).
(In [CC3], a harmonic space, in particular a Brelot space, is allowed to
have a compact underlying space such as the Riemannian manifold S

N −1 in
Theorem 3.)

Remark 1. It does not seem likely that the requirements for the “if”
parts of assertions (d) and (e) of Theorem 1 (i.e., that ϕ be open and of
type Bl) can simply be omitted in the stated general setting. It may be
noted, however, that in the particular case where X and Y are Riemannian
manifolds, every nonconstant harmonic morphism ϕ : X → Y is open (see
[F6], [BW, p. 112]), and (d) and (e) do hold in the particular case of C2-
smooth functions f (and hence f ◦ ϕ because ϕ is C2 here) without any
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extra assumption such as ϕ being of type Bl. Alternatively, this follows
from [F4, Lemma 4] because the continuous dilation λ is greater than zero
on a dense set according to [F4, Lemma 3], the regular (i.e., noncritical)
points of a harmonic morphism being precisely the points where λ > 0 (see
[F4, Definition 5 and Theorem 7] or [BW, Sections 4.2, 4.3]).

Proof of Theorem 1. (a) The “only if” part of (a) asserts that ϕ is con-
tinuous as a map from X into Y with their respective fine topologies. For
any open subset V of Y , any hyperharmonic function v on V , and any real
constant α, the set

(V, v,α) :=
{
y ∈ V : v(y) < α

}
is finely open in V because v is finely continuous. The preimage

ϕ−1
(
(V, v,α)

)
=

{
x ∈ ϕ−1(V ) : (v ◦ ϕ)(x) < α

}
is finely open in X because v ◦ ϕ is hyperharmonic according to [CC2,
Theorem 3.1], and hence finely continuous. The claim follows because the
sets (V, v,α) form a subbase for the fine topology on Y , as V , v, and α vary.

According to [CC2, Theorem 3.5], ϕ is an open map from X into Y with
their fine topologies because ϕ is a nonconstant harmonic morphism, X is
connected, and the points of Y are polar when dealing with the “if” part of
(a), which now follows since ϕ is surjective, and hence V = ϕ(ϕ−1(V )).

(b) For the “only if” part, suppose that E is thin at some point y ∈ Y . If
y /∈ E, then there exists a finely open set V ⊂ Y such that y ∈ V ⊂ Y \ E.
According to the “only if” part of (a), ϕ−1(V ) is finely open in X . Clearly,
ϕ−1(V ) does not meet ϕ−1(E), but does contain every point x ∈ ϕ−1(y) ⊂
X \ ϕ−1(E), so ϕ−1(E) is indeed thin at x. If instead y ∈ E, then the thinness
of E at y amounts to {y} and E \ {y} being thin at y, and hence y is polar
by the axiom of polarity. Therefore, the preimage ϕ−1(y) is likewise polar
(see [CC2, Theorem 3.2]), and hence thin at any point x ∈ ϕ−1(y). As shown
above, the set ϕ−1(E \ {y}) = ϕ−1(E) \ ϕ−1(y) is likewise thin at x, and so
is therefore altogether ϕ−1(E), thus establishing the “only if” part of (b).

For the “if” part of (b), let y ∈ Y , and suppose that ϕ−1(E) is thin at some
point x ∈ ϕ−1(y). If y /∈ E, then x /∈ ϕ−1(E), and there exists a finely open
set U ⊂ X such that x ∈ U ⊂ X \ ϕ−1(E). Because ϕ is fine-to-fine open,
by the “if” part of (a) (valid here because the points of Y are supposed to
be polar), ϕ(U) is finely open in Y and y = ϕ(x) ∈ ϕ(U) ∈ Y \ E, so E is
indeed thin at y in Y . If instead y ∈ E, then ϕ−1(E \ {y}) is thin at y along
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with ϕ−1(E), and it follows by the above that E \ {y} is thin at the polar
point y. In particular, {y} is thin at y (see, e.g., [CC3, Corollary 6.3.2]),
and so is altogether E = (E \ {y}) ∪ {y}.

(c) If E is polar in Y , then ϕ−1(E) is polar in X , again by [CC2, Theorem
3.2]. Conversely, if ϕ−1(E) is polar in X , hence thin at any point of X , then
E itself is thin at any point of Y by the “if” part of (b). By the axiom of
polarity for Y , assumed at this point, we infer that E is polar.

(d) The “only if” part holds according to [CC2, Corollary 3.2]. We show
that the “if” part holds provided that ϕ is surjective open and of type Bl.
Suppose that V is open in Y and that f ◦ ϕ is superharmonic on ϕ−1(V )
(which is open, by continuity of ϕ). In particular, f ◦ ϕ is lower semicon-
tinuous and greater than −∞ on ϕ−1(V ) and is finite on a dense subset D

of ϕ−1(V ). Since ϕ is surjective and open, it follows that f is lower semi-
continuous and greater than −∞ on V . And f is finite on ϕ(D), which is
dense in ϕ(ϕ−1(V )) = V because ϕ is surjective and continuous. For the
proof that f is hyperharmonic and hence actually superharmonic on V , we
may assume that V is a P-set. Thus there exists a potential q > 0 on V ,
and hence also a bounded potential p > 0 on V (e.g., p = min{q,1}).

Consider a regular set W of compact closure W ⊂ V and a subfunction
v for f on W . Then f and −v are bounded from below on W , and we may
therefore assume (after multiplying p by a suitable constant greater than
zero) that f − v ≥ −p on W . It follows that

(1) f ◦ ϕ − v ◦ ϕ ≥ −p ◦ ϕ on ϕ−1(W ),

and that p ◦ ϕ is a (bounded) potential on ϕ−1(V ) because ϕ is supposed
to be of type Bl (see Definition 2). Furthermore, v ◦ ϕ is subharmonic on
ϕ−1(W ) (again by [CC2, Corollary 3.2], ϕ being nonconstant) and we obtain
(since ϕ is continuous and v is a subfunction for f on W )

limsup
ϕ−1(W )�x→z

(v ◦ ϕ)(x) ≤ limsup
W �y→ϕ(z)

v(y) ≤ f
(
ϕ(z)

)
= (f ◦ ϕ)(z)

for every z ∈ ∂ϕ−1(W ) = ϕ−1(W ) \ ϕ−1(W ), for then ϕ(z) ∈ W \ W = ∂W .
Since f ◦ ϕ is lower semicontinuous on ϕ−1(V ) ⊃ ϕ−1(W ) ⊃ ϕ−1(W ), it
follows that

lim inf
ϕ−1(W )�x→z

(f ◦ ϕ − v ◦ ϕ)(x) ≥ (f ◦ ϕ)(z) − (v ◦ ϕ)(z) ≥ 0



HARMONIC MORPHISMS APPLIED TO CLASSICAL POTENTIAL THEORY 115

for z ∈ ∂ϕ−1(W ). This, together with (1), implies by [Ba, Korollar 2.4.3]
that f ◦ ϕ − v ◦ ϕ ≥ 0 on ϕ−1(W ), and hence f ≥ v on W because ϕ is
surjective. By varying the subfunction v for f on W , we infer that f ≥ HW

f

on W , and so, by varying W , that the lower semicontinuous function f on
V is hyperharmonic on V , and indeed superharmonic there, f being finite
on a dense subset of V , as shown in the preceding paragraph. Thus the “if”
part of (d) indeed holds provided that the harmonic morphism ϕ : X → Y

is surjective open and of type Bl.
(e) To prove the “only if” part, let V denote a finely open subset of Y .

If a function f is finely superharmonic on V , then f ◦ ϕ is finely superhar-
monic on ϕ−1(V ), which is a finely open subset of X by the “only if” part
of (a). This follows from [F3, Corollary 6] which is applicable because our
nonconstant harmonic morphism ϕ : X → Y is also a finely harmonic mor-
phism (mapping) by [F3, Definition 2 and Section 3(e)] (see also Section 4
below), and because the connected space X is also a finely connected finely
open subset of X since X satisfies axiom D (see [F1], [F2, p. 88]).

Having thus shown that the “only if” parts of (d) and (e) always hold, we
now show that the “if ” parts of (d) and (e) are equivalent statements (when
the points of Y are polar, the harmonic morphism ϕ is open, and X and
Y satisfy axiom D, but without assuming that ϕ be of type Bl). First, the
“if” part of (e), whenever valid, implies that of (d). Indeed, the given open
set V ⊂ Y is also finely open. A superharmonic function of the form f ◦ ϕ

on the open set ϕ−1(V ) is also finely superharmonic on that set (which is
also finely open) by [F2, Theorem 8.7 and Section 10.4], the components of
ϕ−1(V ) being the same as the fine components (see [F1], [F2, p. 88]). From
the “if” part of (e) it follows that f is finely superharmonic on the open set
V , and therefore superharmonic there by [F2, Theorem 9.8], f being locally
bounded from below on V along with the superharmonic function f ◦ ϕ on
ϕ−1(V ) because ϕ is a surjective open map.

Conversely, the “if” part of (d), whenever valid, implies the “if” part of
(e) (this implication does not require that ϕ be open). We may assume that
Y is a P-space. Consider a finely open set V ⊂ Y and a function f on V

such that f ◦ ϕ is finely superharmonic on ϕ−1(V ), which is finely open in
X by the “if” part of (a) (valid here since the points of Y are supposed
to be polar). For the proof that f itself then is finely superharmonic on
V , suppose to begin with that f and hence f ◦ ϕ are bounded from above.
Recall that a relatively compact finely open subset W of V is said to be
regular if Y \ W is a base, that is, Y \ W is non-thin at each of its points,
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or, equivalently, ε
Y \W
y = εy for every y ∈ Y \ W (see, e.g., [CC3, Theorem

7.1.1] or [F2, Section 3.3]). Here ε
Y \W
y denotes the swept-out of the Dirac

measure εy on Y \ W . This harmonic measure ε
Y \W
y for W is carried by

Y \ W (see, e.g., [CC3, Theorem 7.2.1]) (noting that a regular finely open
set W is an Fσ set as in [CC3, Corollary 7.2.1], and hence measurable).

Being finely superharmonic on ϕ−1(V ), f ◦ ϕ is finely continuous, bounded
from above, and > −∞ on ϕ−1(V ) by [F2, Theorem 9.10]. Hence f is finely
continuous in view of (a), bounded from above, and greater than −∞ on
V . (Note that (a) holds here because the points of Y are supposed to be
polar.) Consider now a regular finely open set W with closure W ⊂ V such
that f is bounded also from below on W . According to [F2, Theorem 3.10],
there exists a bounded finely continuous (auxiliary) function g on Y such
that g = f on the fine closure W

f = W ∪ b(W ) = b(W ) of W (see, e.g., [F2,
Section 3.6]).∗ Define a function u : Y → R by

u(y) =
∫

g dεY \W
y , y ∈ Y.

With the (nonstandard) notation of [F2, Definition 4.10], this means that
u = gY \V . According to [F2, Lemma 9.3 and Section 8.4], u is bounded and
finely continuous on Y and finely harmonic on W . Furthermore,

(2) u(y) =

{∫
f dε

Y \W
y , y ∈ W,

f(y), y ∈ ∂fW,

the former because f = g on the fine boundary ∂fW which carries the har-
monic measure ε

Y \W
y when y ∈ W (see [F2, Sections 4.7, 4.8]), and the latter

because ε
Y \W
y = εy for y ∈ Y \ W , in particular, for y ∈ ∂fW , where thus

u(y) = g(y) = f(y).
By the “only if” part of (e) (settled above), applied to the finely harmonic

functions u and −u on W , it follows that u ◦ ϕ is both finely superharmonic
and finely subharmonic on ϕ−1(W ), and hence finely harmonic there by
[F2, Corollary 1, p. 84]. Moreover, u ◦ ϕ is bounded on ϕ−1(W ), along with
u on Y . Write s = f − u, s− = min{s,0} on W , and denote by s−

0 (≤ 0)
the bounded and (in view of (2)) finely continuous extension of s− to Y by
zero on Y \ W . Now apply [F2, Lemma 10.1] with u,U, v, and V replaced

∗Rather than introducing this function g and applying [F2, Lemma 9.3], one might
alternatively use [F2, Theorem 14.1] on the fine Dirichlet problem.
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by 0,X, s ◦ ϕ, and ϕ−1(W ), respectively. It follows that s−
0 ◦ ϕ is finely

superharmonic on X , and hence superharmonic there by [F2, Theorem 9.8].
From the “if” part of (d) we infer that s−

0 is superharmonic on Y , and
hence finely superharmonic there by [F2, Theorem 8.7], in particular, on
W , where s−

0 = s−. Because s−
0 = 0 on ∂fW ⊂ Y \ W , we have s−

0 = s− ≥ 0
on W by the fine boundary minimum principle (see [F2, Theorem 9.1 and
Section 8.4]). It follows that s− = 0, that is, s ≥ 0, and, consequently, that
f ≥ u on W . In view of (2) this shows, by varying W , that indeed f is finely
superharmonic on V by [F2, Definition 8.1 and Section 8.4].

Finally, we drop the temporary hypothesis that f be bounded from
above. For n ∈ N, write fn = min{f,n}. Then fn ◦ ϕ = min{f ◦ ϕ,n} is
bounded from above and finely superharmonic on ϕ−1(V ), the constant
n being harmonic on X , and hence finely harmonic on ϕ−1(V ) by [F2,
Theorem 8.7]. We have therefore shown above that fn itself is finely super-
harmonic on V , and so f is finely hyperharmonic on V , being the point-
wise limit of the increasing sequence (fn) of finely hyperharmonic functions
(see [F2, Corollary 2, p. 84]). Writing D = {y ∈ V : f(y) < +∞}, we have
ϕ−1(D) = {x ∈ ϕ−1(V ) : (f ◦ ϕ)(x) < +∞}. In view of [F2, Section 10.4],
the latter set ϕ−1(D) is finely dense in ϕ−1(V ) because f ◦ ϕ is finely super-
harmonic there; and hence D = ϕ(ϕ−1(D)) is finely dense in V , ϕ : X → Y

being surjective and moreover fine-to-fine open by the “if” part of (a) (valid
here because the points of Y are supposed to be polar). Consequently, f is
indeed finely superharmonic on V . This completes the proof of Theorem 1,
including the stated equivalence of the “if” parts of (d) and (e).

§2. Two examples in classical potential theory

Theorem 2. The projection ϕ : R
N → R

n (N > n ≥ 1), given by ϕ(x1, . . . ,

xN ) = (x1, . . . , xn), is a surjective open harmonic morphism of type Bl, and
assertions (a)–(e) of Theorem 1 apply to X = R

N , Y = R
n, and to this

projection map ϕ.

Note that f ◦ ϕ is the extension of f from R
n to R

N depending only on
x1, . . . , xn. The case n = N − 1 of assertions (a)–(d) of Theorem 2 is known
(see [DL] for (c) and (d), [Ha] for (a)–(d), and [G2] for (a)–(c)). Actually,
these quoted results together imply our assertions (a)–(d) in Theorem 2 by
repeated application to N,N − 1, . . . , n+1 in place of N (or by copying the
proof, as noted in [DL, p. 94]).
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Proof of Theorem 2. The spaces X = R
N and Y = R

n are connected
Brelot spaces satisfying the axiom of domination D (even the strong one,
D) and, in particular, the axiom of polarity. The projection ϕ : RN → Rn

clearly is a surjective and open (hence nonconstant) harmonic morphism.
In the case N = 2, n = 1, where the points of Y = R

1 are nonpolar, (a)–
(c) nevertheless hold, as shown in [G1, Section 2]. Alternatively, note that
the fine topology on Y = R

1 equals the standard topology, and hence ϕ is
fine-to-fine continuous (being of course continuous). To see that ϕ is fine-to-
fine open, recall that the fine topology is locally connected, (see [F1], [F2,
Corollary 9.11]). If U is a fine domain in X = R2 and if x ∈ U , then ϕ(U)
is finely connected (along with U ), that is, connected, and so ϕ(U) is an
interval containing ϕ(x). If ϕ(x) were an endpoint of ϕ(U), then U would
be contained in a half-plane in R

2 and bounded by a line through x, which
is impossible since U is finely open.

With assertion (a) thus established for N = 2, n = 1, the “if” parts of
(b) and (c) follow as shown in the proof of Theorem 1, noting that a fiber
ϕ−1(y) in R

2 is a straight line and hence not thin at points of itself, let
alone polar.

For any N > n ≥ 1, denote by ϕN,n the projection R
N → R

n. As just
shown, (a)–(c) hold for ϕ2,1. When N ≥ 3, they hold for ϕN,2 by Theorem 1,
and consequently they also hold for ϕN,1 = ϕ2,1 ◦ ϕN,2.

The “only if” parts of (d) and (e) hold for N > n ≥ 1 according to The-
orem 1. We proceed to verify directly the “if” part of (d). From that will
follow the “if” part of (e) as shown in the proof of Theorem 1, noting that
the polarity of points of Y missing here is only being used through the valid
assertion (a). Afterward, we apply (d) to show that ϕ is of type Bl.

Consider a function f on an open set V ⊂ Y such that f ◦ ϕ is super-
harmonic on the open set ϕ−1(V ). In particular, f ◦ ϕ is lower semicontin-
uous and greater than −∞ on ϕ−1(V ), and so therefore is f itself on V

because ϕ is surjective and open. For the direct proof that f itself must
be superharmonic on V there is the complication that ϕ : R

N → R
n is not

proper. We therefore begin by replacing RN −n by the compact (N − n)-torus
T

N −n = (R/Z)N −n and hence X ∼= R
n × R

N −n by X∗ := R
n × T

N −n, and
by replacing the projection ϕ : X → R

n by the projection ϕ∗ : X∗ → R
n.

The canonical map τ : R
N −n → T

N −n is a local isometry, and so therefore
is id ×τ : R

n × R
N −n → R

n × T
N −n, where id denotes the identity map of

R
n. In particular, id ×τ : X → X∗ is a locally injective harmonic morphism

between connected Riemannian manifolds (in particular, connected Brelot
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spaces). Because f ◦ ϕ is supposed to be superharmonic on the open subset
ϕ−1(V ) ∼= V × R

N −n of X ∼= R
n × R

N −n and because

f ◦ ϕ = (f ◦ ϕ∗) ◦ (id ×τ),

it follows from [CC2, Theorem 3.4], applied locally, that f ◦ ϕ∗ is superhar-
monic on the open subset ϕ−1

∗ (V ) ∼= V × T
N −n of X∗ = R

n × T
N −n. But ϕ∗

is a proper map and hence of type Bl because TN −n is compact, and it there-
fore follows from the “if” part of Theorem 1(d), applied with ϕ replaced by
ϕ∗, that f is indeed superharmonic on V .

An alternative to this proof of the “if” part of Theorem 2(d) can be
readily obtained by adapting the proof of the “if” part of Theorem 3(d)
given below.

With the application of the “if” part of (d) of Theorem 2 thus established,
we proceed to prove that ϕ is of type Bl. For a given locally bounded
potential p on an open set V ⊂ Y = Rn we show that p ◦ ϕ is a potential
on the open set ϕ−1(V ) ⊂ R

N . By the “only if” part of (d) (see above),
we know that p ◦ ϕ is superharmonic on ϕ−1(V ). Let h be the greatest
harmonic minorant of p ◦ ϕ on ϕ−1(V ). Identifying R

N with R
n × R

N −n,
write x = (y, z) with

y = ϕ(x) = (x1, . . . , xn) ∈ R
n, z = (xn+1, . . . , xN ) ∈ R

N −n.

For t ∈ R
N −n, consider the harmonic function ht on ϕ−1(V ) given by

ht(x) = ht(y, z) = h(y, z + t) ≤ p(y) = (p ◦ ϕ)(x).

Clearly, ht ≤ h, and hence ht = h for every t ∈ R
N −n (replace z by z − t).

Thus h(x) = h(y, z) is independent of z ∈ R
N −n, so we may write h(x) =

g(y) for x = (y, z) ∈ ϕ−1(V ), whereby the function g is defined on V , and
h = g ◦ ϕ. By the “if” part of (d), g is harmonic on V . Because g ≤ p, it
follows that g ≤ 0. Thus h ≤ 0 (in fact, h = 0 since h ≥ 0), proving that p ◦ ϕ

is a potential on ϕ−1(V ). Thus ϕ is indeed of type Bl.

Theorem 3. The radial projection ϕ : R
N \ {0} → S

N −1 (the unit sphere
in R

N , N > 1), given by ϕ(x) = x/|x|, is a surjective open harmonic mor-
phism of type Bl, and assertions (a)–(e) of Theorem 1 apply to X = R

N \
{0}, Y = S

N −1, and to the radial projection ϕ.

Assertions (b), (c), and at least the “if” part of (d) of Theorem 3 are
known (see [DL], [G1]). Further properties of the radial projection are found
in [BW, p. 102].
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Proof of Theorem 3. The spaces X = R
N \ {0} and Y = S

N −1 are con-
nected Brelot spaces satisfying axiom D (and even D), and hence the axiom
of polarity. The radial projection ϕ : R

N \ {0} → S
N −1 is a surjective open

map. Furthermore, ϕ is a harmonic morphism, as seen from the expression
for the Laplacian Δ on RN \ {0} in polar coordinates r = |x| ∈ ]0,+∞[ and
θ = x/|x| ∈ S

N −1:

(3) Δu = r1−N ∂

∂r

(
rN −1 ∂u

∂r

)
+

1
r2

ΔSN −1
u

for u ∈ C2(RN \ {0}), with ΔSN −1
denoting the Laplace operator on S

N −1.
In particular,

Δ(h ◦ ϕ) = r−2[(ΔSN −1
h) ◦ ϕ]

on R
N \ {0} for h ∈ C2(SN −1) because h ◦ ϕ is a function solely of θ ∈ S

N −1.
Assertions (a)–(c) are established in the same way as in the proof of

Theorem 2, beginning with (a), first for N = 2 (where the points of Y =
S

1 are nonpolar and where the fine topology on Y equals the Euclidean
topology).

The “only if” parts of (d) and (e) of Theorem 3 hold by the proof of
Theorem 1. Unlike the proof of the “if” part of (d) in Theorem 2, it does
not seem possible to reduce the “if” part of (d) in Theorem 3 to the case of
proper maps, so we proceed differently.

The given superharmonic function f ◦ ϕ on the open set ϕ−1(V ) ⊂ R
N \

{0} (with V open in S
N −1) is denoted by s; then s is also superharmonic in

the distributional sense (see, e.g., [AG, Section 4.3]). In terms of the polar
coordinates r = |x| > 0 and θ = x/|x| ∈ S

N −1, we may write s = s(r, θ) =
s(θ), θ ∈ V . We consider test functions �≡ 0 of the form (r, θ) �→ u(r)v(θ)
with nonnegative functions u ∈ C∞

0 (]0,+∞[) and v ∈ C∞
0 (V ). In terms of

the Riemannian volume measure dθ on S
N −1, the Lebesgue measure on R

N

equals rN −1 dr dθ, and we obtain in view of (3)

0 ≥
∫ ∫

sΔ(u ⊗ v)rN −1 dr dθ

=
∫ ∞

0

d

dr

(
rN −1 du

dr

)
dr

∫
V

s(θ)v(θ)dθ

+
∫ ∞

0
rN −3u(r)dr

∫
V

s(θ)ΔSN −1
v(θ)dθ.
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The former integral over 0 < r < +∞ equals zero because u and hence
rN −1 du/dr have compact support. Inserting this and dividing by∫ ∞
0 rN −3u(r)dr > 0 leads to∫

V
s(θ)ΔSN −1

v(θ)dθ ≤ 0

for every nonnegative v ∈ C∞
0 (V ), and so ΔSN −1

s ≤ 0 in the distributional
sense, ΔSN −1

being formally self-adjoint. It is well known that this inequality
amounts to s = s(θ) being equal dθ-almost everywhere to a superharmonic
function s∗ on V . According to the “if” part of (a), which is valid here, the
function s = s(θ) is finely continuous on V because s = s(r, θ) = (f ◦ ϕ)(x)
is superharmonic and hence finely continuous for x ∈ R

N \ {0}. The set {θ ∈
V : s(θ) �= s∗(θ)} is therefore a finely open null set on V , and hence void.∗

It follows that f(y) = s(θ) = s∗(θ) is indeed superharmonic on V ⊂ S
N −1.

Having thus established the “if” part of (d), we deduce the “if” part of
(e) as in the proof of Theorem 1 (or Theorem 2), noting again that the
missing polarity of points of Y is only used through the valid assertion (a).
Finally, we apply (d) to prove that ϕ : R

N \ {0} → S
N −1 is of type Bl. Given

a locally bounded potential p on an open set V ⊂ Y = S
N −1, we prove that

p ◦ ϕ is a potential on ϕ−1(V ) in a way similar to that described toward the
end of the proof of Theorem 2. Let h be the greatest harmonic minorant of
p ◦ ϕ on ϕ−1(V ). Replace the previous t ∈ R

N −n and ht by 0 < t < +∞ and

ht(x) = h(tx) ≤ (p ◦ ϕ)(x)

for x ∈ ϕ−1(V ), and deduce that ht = h only depends on ϕ(x) = x/|x| = θ ∈
V ⊂ S

N −1, and so on.

§3. Finely harmonic morphisms

We close with a version of Theorem 1 in which the Brelot space X is
replaced by a fine domain (i.e., a finely connected finely open set) X in an
ambient Brelot space Ω satisfying axiom D. The target Y is likewise sup-
posed to be a Brelot space satisfying axiom D. Both Ω and Y are supposed

∗It is indeed well known that every finely open Lebesgue null set U ⊂ R
N is void. For

the proof, we may assume that there exists a superharmonic function u on an open set
Ω ⊂ R

N such that U = {x ∈ Ω : u(x) < 0}. Then min{u,0} is superharmonic on Ω and
equals zero almost everywhere on Ω, hence actually everywhere on Ω (see, e.g., [AG,
Corollary 3.2.7]). Thus u ≥ 0 on Ω, and so U is indeed void.
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to have countable bases of open sets, and the constant functions on Ω and
on Y are supposed to be harmonic.

Definition 4. A fine-to-fine continuous map ϕ : X → Y is called a finely
harmonic morphism if, for any finely harmonic function f on a finely open
set V ⊂ Y , f ◦ ϕ is finely harmonic on ϕ−1(V ) (when nonempty).

We show that one may equivalently replace finely harmonic function by
finely hyperharmonic function in the case of f and f ◦ ϕ in Definition 4.
Clearly, this finely hyperharmonic version of Definition 4, when applied to
±f , implies Definition 4 as it stands (the finely harmonic version). Next,
Definition 4 trivially implies the mixed topology version thereof proposed in
[F3, Definition 2], where the fine topology on Y is replaced by the initially
given topology and where f is supposed to be harmonic on an (initially)
open set V ⊂ Y (see [F2, Theorem 8.7]). And finally, this mixed topology
version of Definition 4 implies the finely hyperharmonic version according
to the “only if” part of [F3, Theorem 5]. These three versions of Definition 4
are thus equivalent.

In the particular case where X is a connected open subset of Ω, and hence
itself a connected Brelot space (as in Section 1 above), then every harmonic
morphism ϕ : X → Y (see Definition 1) is also a finely harmonic morphism
(see Definition 4). This is shown by using the mixed topology version of
Definition 4 and applying [F2, Theorem 8.7] again. If the points of Y are
polar, then harmonic and finely harmonic morphisms (from the connected
open set X ⊂ Ω to Y ) are the same, as shown by Laine [La1, Theorem 2.1.5].

The concept of type Bl has an analogue for finely harmonic morphisms.
Recall that a fine potential on a finely open subset of a Brelot space satis-
fying axiom D is defined as a finely superharmonic function greater than or
equal to zero for which every finely subharmonic minorant is less than or
equal to zero (see [F2, Definition 10.5]). For a finely superharmonic function
greater than or equal to zero on a finely open subset of R

N with N ≥ 3 to
be a fine potential, it is not sufficient to require that every finely harmonic
minorant be less than or equal to zero (see [GH]).

Definition 5. A finely harmonic morphism ϕ : X → Y (X finely open
in Ω) is said to be of fine type Bl if, for any finite fine potential p on a finely
open set V ⊂ Y , p ◦ ϕ is a (finite) fine potential on ϕ−1(V ) (which is finely
open, and assumed nonempty).
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In the case where X is an open subset of Ω, a harmonic morphism ϕ : X →
Y of fine type Bl (see Definition 5) is also of type Bl (see Definition 2) in
view of [F2, Corollary 10.12]; the converse seems to remain open (even if
the points of Y are polar).

We are now prepared to essentially extend Theorem 1 (except, of course,
for part (d) involving only the initial topology) to the present case of a finely
harmonic morphism.

Theorem 4. Let ϕ : X → Y denote a surjective nonconstant finely har-
monic morphism from a fine domain X in a Brelot space Ω to a Brelot space
Y , and suppose that Ω and Y both satisfy axiom D. For the “if” parts of
assertions (a), (b), (c), and (e) of Theorem 1, suppose that the points of Y

are polar. For the “if” part of (e), suppose that ϕ is of fine type Bl. Then
Y is connected, and assertions (a)–(c) and (e) of Theorem 1 hold in the
present setting.

Proof. Recall that the axiom of polarity holds here, being a consequence
of axiom D (see [CC3, Corollary 9.2.3]).

(a) According to [F3, Theorems 5 and 7], ϕ is indeed fine-to-fine continu-
ous and fine-to-fine open. This implies the “only if” part of (a) and also the
“if” part, ϕ being surjective. It follows moreover that ϕ(X) = Y is finely
connected (along with X) and, in particular, connected.

(b) Here, (b) is derived from (a) in the same way as in the proof of
Theorem 1(b).

(c) If E is polar in Y , then ϕ−1(E) ⊂ X ⊂ Ω is polar in Ω by [F3, The-
orem 6]. The converse is established in the same way as in the proof of
Theorem 1(c).

(e) The “only if” part holds according to [F3, Corollary 6]. For the proof
of the “if” part of (e), we proceed much as in the proof of the “if” part of
Theorem 1(d), now in the fine setting. We may assume that Y is a P-space.
Suppose that V is finely open in Y and that f ◦ ϕ is finely superharmonic
on ϕ−1(V ) (finely open, by fine-to-fine continuity of ϕ). In particular, f ◦ ϕ

is finely lower semicontinuous and > −∞ on ϕ−1(V ), and finite on a finely
dense subset D of ϕ−1(V ). Since ϕ is surjective and fine-to-fine open, it
follows that f is finely lower semicontinuous and > −∞ on V . And f is finite
on ϕ(D), which is finely dense in ϕ(ϕ−1(V )) = V because ϕ is surjective and
fine-to-fine continuous. For the proof that f is finely hyperharmonic (and
hence actually finely superharmonic) on V , we may choose a fine potential
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q > 0 on V , hence also a bounded fine potential p > 0 on V , (e.g., p =
min{q,1}).

For a given point y ∈ V , consider a finely open set W � y of compact clo-
sure W ⊂ V such that p > (1/2)p(y) on W , and consider a fine subfunction
v for f on W such that v is bounded from above on W (see [F2, Section
14.3]). After multiplying p by a suitable constant > 0, we may assume that
f − v ≥ −p on W . It follows that (1) holds and that p ◦ ϕ is a (bounded)
fine potential on ϕ−1(W ) because ϕ is supposed to be of fine type Bl (see
Definition 5). Furthermore, v ◦ ϕ is finely subharmonic on ϕ−1(W ) by the
“only if” part of (e), and we obtain (since ϕ is fine-to-fine continuous and
v is a fine subfunction for f on W )

fine limsup
ϕ−1(W )�x→z

(v ◦ ϕ)(x) ≤ fine limsup
W �y→ϕ(z)

v(y) ≤ f
(
ϕ(z)

)
= (f ◦ ϕ)(z)

for every z ∈ ∂fϕ
−1(W ) = ϕ−1(W )

f \ ϕ−1(W ). (We denote by ∂fA the fine
boundary and by A

f the fine closure of a subset A of X .) Since f ◦ ϕ is finely
lower semicontinuous on ϕ−1(V ) ⊃ ϕ−1(W f) ⊃ ϕ−1(W )

f
, it follows that

fine lim inf
ϕ−1(W )�x→z

(f ◦ ϕ − v ◦ ϕ)(x) ≥ (f ◦ ϕ)(z) − (v ◦ ϕ)(z) ≥ 0

for z ∈ ∂fϕ
−1(W ). Together with (1), this implies, by [F2, Theorem 10.8]

(replacing here [Ba, Korollar 2.4.3]), that f ◦ ϕ − v ◦ ϕ ≥ 0 on ϕ−1(W ), and
hence f ≥ v on W because ϕ is surjective. By varying the fine subfunction v

for f on W , we infer that f ≥ HW
f on W (see [F2, Section 14.3] concerning

Hf ), and hence

f(y) ≥ HW
f (y) =

∫
∗
f dεΩ\W

y

by [F2, Theorem 14.6]. The finely upper semicontinuous function −f differs
only on a polar set from its base, which is a Borel measurable function (see
[Do]), so the above lower integral can be replaced by the actual integral. By
varying y and W , it follows that the finely lower semicontinuous function f

on V is finely hyperharmonic on V , and indeed finely superharmonic there
by [F2, Section 10.4], f being finite on a finely dense subset of V , as shown
in the preceding paragraph. Thus the “if” part of (e) indeed holds provided
that the finely harmonic morphism ϕ : X → Y is surjective, nonconstant,
and of fine type Bl.
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