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Abstract In this article, we study the local dynamical structure of a rational mapping
F of P2 at a fixed indeterminate point p. Using a sequence of blowups, we construct a
family {W̃j}j∈J of germs of holomorphic curve at the point p, where J is a subset of a
Cantor set {1,2}N. This is a new construction for a Cantor bouquet.

1. Introduction

The dynamics of a rational mapping F on the 2-dimensional complex projective
space P2 at an indeterminate point p have been studied by Y. Yamagishi [7], [8]
and T. C. Dinh, R. Dujardin, and N. Sibony [2]. Roughly speaking, they showed
that if F contracts some open neighborhood Up of p in some direction, then there
exists a family of uncountably many currents or stable manifolds of p which is
called a Cantor bouquet of p. Their results show that a chaotic phenomenon
occurs in a neighborhood of the indeterminate point at which the mapping is not
continuous.

In this article, we try another approach to the construction of a Cantor
bouquet. By using a sequence of blowups, we construct a family {W̃j}j∈J of
germs of holomorphic curve at the point p, where J is a subset of a Cantor
set {1,2}N. We remark here that the family {W̃j}j∈J contains not only stable
manifolds of p but also center or unstable manifolds of p. Hence our {W̃j}j∈J is
a generalization of a Cantor bouquet.

This article is organized as follows. In Section 2, we state some preliminary
facts and our main theorems. Section 3 is devoted to the construction of the fam-
ily {W̃j}j∈J of germs of holomorphic curve at the point p. In the final Section 4,
as an application, we consider a specific rational mapping F and completely
determine the number of germs of {W̃j}j∈J . In particular, J is a proper subset
of the Cantor set {1,2}N, and every W̃j is an unstable manifold of p. This is a
new dynamical structure at an indeterminate point p where F is not continuous.
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2. Preliminaries and main theorems

In this section, we fix the notation that is used throughout this article and state
our main theorems. First, we fix once and for all a homogeneous coordinate
system [x : y : z] in P2; we often use the natural identification given by

C2 =
{
[x : y : z] ∈ P2 | z �= 0

}
and (x, y) = [x : y : 1].

Let fi(x, y, z) (i = 0,1,2) be homogeneous polynomials of degree d. Then, by
setting

F ([x : y : z]) = [f0 : f1 : f2] and F̂ (x, y, z) = (f0, f1, f2),

we have a rational mapping F on P2 and a polynomial mapping F̂ on C3 with
π̂ ◦ F̂ = F ◦ π̂ on C3 outside some proper analytic sets, where π̂ : C3 \ {(0,0,0)} →
P2 is the canonical projection. A point p ∈ P2 is said to be an indeterminate
point of F if F̂ (p̂) = (0,0,0) for some point p̂ ∈ π̂−1(p). In this article, we assume
that a rational mapping F has an indeterminate point p = [0 : 0 : 1]. In general, if
p is an indeterminate point, then F is not continuous at p and

⋂
Np

F (Np \ {p})
is not a singleton, where the intersection is taken over all open neighborhoods Np

of p. Moreover, p is said to be a fixed indeterminate point if p ∈
⋂

Np
F (Np \ {p}).

We remark here that a fixed indeterminate point p is nonwandering; nevertheless,
F is not continuous at p. Therefore, it is important to study the local dynamical
structure at such a point.

Next, we introduce some notation and terminology from algebraic geometry.
We refer the reader to [3, §2.4]. Consider the product space C2 × P1, and define
the subvariety X ⊂ C2 × P1 as the following:

X :=
{
(x, y) × [u : v] ∈ C2 × P1 | xv − (y − α)u = 0

}
for the point (0, α) ∈ C2.

DEFINITION 2.1

The mapping π : X → C2 defined by restricting the first projection C2 ×P1 → C2

to X is called the blowup of C2 centered at (0, α).

It follows from the definition that π−1(0, α) = {(0, α)} × P1 and that

π : X \ π−1(0, α) → C2 \
{
(0, α)

}
is biholomorphic.

Put E := π−1(0, α); E is called the exceptional curve. X has the local chart
{(U i, ϕi)}i=1,2 defined by

U1 :=
{
(x, y) × [u : v] ∈ X | u �= 0

}
=

{
(x, y) × [u : v] ∈ X | y = α + x

v

u

}
,

U2 :=
{
(x, y) × [u : v] ∈ X | v �= 0

}
=

{
(x, y) × [u : v] ∈ X | x = (y − α)

u

v

}
,

{
ϕ1 : U1 � (x, y) × [u : v] �→ (x, v/u) ∈ C2,

ϕ2 : U2 � (x, y) × [u : v] �→ (u/v, y) ∈ C2.
(C.1)
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Observe that the restriction of π to U i can be written as

(C.2)

{
π|U1 : U1 � (x, η) �→ (x,xη + α) ∈ C2,

π|U2 : U2 � (ξ, y) �→ (ξ(y − α), y) ∈ C2

by using local charts ϕi. The verification of the following proposition is straight-
forward; therefore, the proof is left to reader.

PROPOSITION 2.1

We have the following:
(1) X \ U1 = {(ξ, y) ∈ U2 | ξ = 0}.
(2) E ∩ U1 = {(x, η) ∈ U1 | x = 0} and E ∩ U2 = {(ξ, y) ∈ U2 | y = α}.
(3) E ∩ (U2 \ U1) = {(ξ, y) = (0, α) ∈ U2}.

By pasting C2 = {[x : y : z] ∈ P2 | z �= 0} on the other charts of P2, one can obtain
the blowup of P2 centered at [0 : α : 1]. To simplify our notation, we denote this
also by π : X → P2.

Throughout this article, we concentrate our attention on the dynamics of F

in the chart C2 = {[x : y : z] ∈ P2 | z �= 0}. Observe that p = (0,0) is our indeter-
minate point. We also denote the restriction of F to C2 = {[x : y : z] ∈ P2 | z �= 0}
by F .

The investigation of the local dynamical structure at an indeterminate point
originated with Y. Yamagishi [7], [8]; we introduce his idea of Cantor bouquet
here. Let us define a rational mapping

F̃ : X → C2 by F̃ := F ◦ π,

where π is the blowup centered at p = (0,0). Yamagishi assumed that F̃ satisfies
the following:

(A.0)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1) F̃ is a holomorphic mapping on a neighborhood of E ;

(2) F̃ −1(p) ∩ E consists of two points pj1 (j1 = 1,2); and

(3) there exists an open neighborhood Nj1 of pj1 (j1 = 1,2)

such that F̃ is biholomorphic on Nj1 .

Notice that p is a fixed indeterminate point of F under condition (2) of (A.0).
Moreover, he showed that if F contracts some open neighborhood Up of p in
some direction, then there exists a family {Wj}j∈{1,2}N of uncountably many
local stable manifolds of p (for details, see [7]). {Wj}j∈{1,2}N is called a Cantor
bouquet of p.

Instead of a Cantor bouquet, in this article, we consider the following family
of germs of holomorphic curve.

DEFINITION 2.2

Wλ is a holomorphic curve which passes through p if there exist a holomorphic
function φλ on Δρλ

and a holomorphic mapping Φλ : Δρλ
→ C2, t �→ (t, φλ(t))

such that Φλ(0) = p and Φλ(Δρλ
) = Wλ, where Δρλ

:=
{
t ∈ C | |t| < ρλ

}
.
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Two holomorphic curves Wλ and Wλ′ which pass through p are called equivalent
if there is an open neighborhood U of p such that Wλ ∩ U = Wλ′ ∩ U , and it is
denoted by Wλ ∼ Wλ′ . This is an equivalence relation, and an equivalence class
is called a germ of a holomorphic curve at the point p. Any holomorphic curve
Wλ which passes through p belongs to some equivalence class; this class is called
the germ of the holomorphic curve Wλ and is denoted by W̃λ.

DEFINITION 2.3

A family {W̃λ}λ∈Λ of germs of holomorphic curve at the point p is invariant
if for every λ ∈ Λ there exist a unique λ′ ∈ Λ and a positive constant ρλ′ with
0 < ρλ′ ≤ ρλ such that F ◦ Φλ(Δρλ′ ) is a holomorphic curve that passes through p

and F ◦ Φλ(Δρλ′ ) ∈ W̃λ′ .

REMARK 1

The mapping F ◦ Φλ is well defined at t = 0, although p = Φλ(0) is an indetermi-
nate point of F . Indeed, there exists a unique holomorphic mapping g : Δρλ′ →
C2 such that g(t) = F ◦ Φλ(t) for any t ∈ Δρλ′ \ {0} (for more detail, see [1]).

REMARK 2

The family {W̃λ}λ∈Λ contains not only stable manifolds of p but also center or
unstable manifolds of p. Hence, our {W̃λ}λ∈Λ is a generalization of a Cantor
bouquet in the sense of Yamagishi.

In this article, we assume that a rational mapping F satisfies the condition (A.0).
By Proposition 2.1, if pj1 ∈ E ∩ U1, then one can set pj1 := (0, αj1) ∈ U1; and if
pj1 ∈ E ∩ (U2 \ U1), then pj1 = (0,0) ∈ U2. Hence, one can put pj1 = (0, αj1) ∈ U i

in any case. Together with the identification U i ∼= C2 (i = 1,2), for pj1 ∈ U i we
can define the subvariety

Xj1 :=
{
(x, y) × [u : v] ∈ U i × P1 | xv − (y − αj1)u = 0

}
,

the blowup πj1 : Xj1 → U i centered at pj1 , and the exceptional curve Ej1 :=
π−1

j1
(pj1) analogous to the definitions for X , π, and E. Moreover, by pasting

the chart U i which contains pj1 on the other charts of X , one can obtain the
blowup πj1 : Xj1 → X . By repeating this process inductively, we can obtain the
following theorem (see Figure 1).

THEOREM 2.2

Assume that a rational mapping F with the indeterminate point p satisfies the
condition (A.0). Then, for every n ∈ N, jn = 1,2, the following claims hold.

(1.1) Define the composition Fj1 := π−1 ◦ F̃ : Nj1 → X. Then, the point pj1

is an indeterminate point of Fj1 .
(1.2) Let us define the mapping

F̃j1 := Fj1 ◦ πj1 : π−1
j1

(Nj1) → X,
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F̃j1

E
Fj1

F̃

p

Ej1 ⊂ Xj1

E ⊂ X

pj1

π

πj1

pj1j2

pj2

Nj1

p F

π

F̃j1···jn

Ej2···jn

Fj1···jn

F̃j1···jn−1

pj2···jn

Ej2···jn−1

Ej1···jn ⊂ Xj1···jn

Ej1···jn−1

pj1···jn

πj2···jn

πj1···jn

pj1···jn+1

pj2···jn+1

Nj1···jn

πj2

Fj1j2 pj2j3

Ej2

Figure 1

where πj1 : Xj1 → X is the blowup of X centered at pj1 . Then, the exceptional curve
Ej1 ⊂ π−1

j1
(Nj1).

(1.3) It is seen that F̃j1 |Ej1
: Ej1 → E is bijective. Hence, we can put pj1j2 :=

F̃ −1
j1

(pj2) ∈ Ej1 .
(1.4) There exists an open neighborhood Nj1j2 of pj1j2 such that F̃j1 |Nj1j2

is
biholomorphic.

(2.1) Define the composition Fj1j2 := π−1
j2

◦ F̃j1 : Nj1j2 → Xj2 . Then, the
point pj1j2 is an indeterminate point of Fj1j2 .

(2.2) Let us define the mapping

F̃j1j2 := Fj1j2 ◦ πj1j2 : π−1
j1j2

(Nj1j2) → Xj2 ,

where πj1j2 : Xj1j2 → Xj1 is the blowup of Xj1 centered at pj1j2 . Then, the
exceptional curve Ej1j2 ⊂ π−1

j1j2
(Nj1j2).

(2.3) It is seen that F̃j1j2 |Ej1j2
: Ej1j2 → Ej2 is bijective. Hence, we can put

pj1j2j3 := F̃ −1
j1j2

(pj2j3) ∈ Ej1j2 .
(2.4) There exists an open neighborhood Nj1j2j3 of pj1j2j3 such that

F̃j1j2 |Nj1j2j3
is biholomorphic.

We can repeat this process inductively and define the following:

the point pj1···jn := F̃ −1
j1···jn−1

(pj2···jn) ∈ Ej1···jn−1 ,

Fj1···jn := π−1
j2···jn

◦ F̃j1···jn−1 : Nj1···jn → Xj2···jn ,

the blowup πj1···jn : Xj1···jn → Xj1···jn−1 centered at pj1···jn ,
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and the mapping F̃j1···jn := Fj1···jn ◦ πj1···jn : π−1
j1···jn

(Nj1···jn) → Xj2···jn ,

where Ej1···jn−1 is the exceptional curve of Xj1···jn−1 and Nj1···jn is an open neigh-
borhood of pj1···jn such that F̃j1···jn−1 |Nj1· · ·jn

is biholomorphic. Then, the follow-
ing claims hold.

(1) The point pj1···jn is an indeterminate point of Fj1···jn .
(2) The exceptional curve Ej1···jn ⊂ π−1

j1···jn
(Nj1···jn).

(3) It is seen that F̃j1···jn |Ej1· · ·jn
: Ej1···jn → Ej2···jn is bijective. Hence, we

can define the point

pj1···jn+1 := F̃ −1
j1···jn

(pj2···jn+1) ∈ Ej1···jn .

(4) There exists some open neighborhood Nj1···jn+1 of pj1···jn+1 such that
F̃j1···jn |Nj1· · ·jn+1

is biholomorphic.

We denote the local charts for the Xj1···jn by U i
j1···jn

(i = 1,2) defined similarly
to U i (i = 1,2) for X .

To state our Theorem 2.3, we need the following conditions:

pj1 ∈ U1 ∩ E and pj1···jn+1 ∈ U1
j1···jn

∩ Ej1···jn

(A.1)
for any n ∈ N, jn = 1,2.

By using this chart, we can define pj1···jn = (0, αj1···jn) ∈ U1
j1···jn−1

. For every
n ∈ N and jn = 1,2, let us define the space of symbol sequences

{1,2}N :=
{
j = (j1, j2, . . .) | jn = 1 or 2

}
.

For every j ∈ {1,2}N, define formal power series

y = φj(x) := αj1x + αj1j2x
2 + · · ·

and

J :=
{
j ∈ {1,2}N | ρj > 0

}
,

where ρj is the radius of the domain of definition of φj. For all j ∈ J , put a
holomorphic mapping

Φj : Δρj
→ C2 by t �→

(
t, φj(t)

)
and Wj := Φj(Δρj

).

Let us define σ : {1,2}N → {1,2}N to be the left shift mapping σ(j1, j2, . . .) =
(j2, j3, . . .). Then, we have the following theorem.

THEOREM 2.3

Assume that rational mapping F with indeterminate point p satisfies conditions
(A.0) and (A.1). Then, the following hold.

(1) The family {W̃j}j∈J of germs of holomorphic curve at the point p is
invariant and the maximal of such a family. Here, to say {W̃j}j∈J is maximal
means that every family {Ṽλ}λ∈Λ of germs of holomorphic curve at the point p
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which is invariant satisfies the following:

for any λ ∈ Λ, there exists a unique sequence j ∈ J such that Ṽλ = W̃j

as a germ.
(2) There exists an injective mapping Ψ : {W̃j}j∈J � W̃j �→ j ∈ {1,2}N such

that Ψ ◦ F = σ ◦ Ψ.

3. Proof of Theorems 2.2 and 2.3

Proof of Theorem 2.2
For polynomials p(x, y), q(x, y), let us denote by

O
(
p(x, y), q(x, y)

)
:=

∑
i+j≥2

i,j≥0

βijp(x, y)iq(x, y)j

some formal power series of p(x, y) and q(x, y), where βij ∈ C. Without loss of
generality, we may assume that pj1 ∈ U1 ∩ E and identify it with pj1 := (0, αj1)
by using the chart of U1. From (A.0), F̃ has the following Taylor expansion on
some open neighborhood Nj1 of pj1 :

F̃ (x, η) =
(
a10x + a01(η − αj1) + O(x, η − αj1),

b10x + b01(η − αj1) + O(x, η − αj1)
)
.

Set the right-hand side of the above to (f(x, η), g(x, η)). Since F̃ is biholo-
morphic at pj1 , JF̃ (0, αj1) = a10b01 − a01b10 �= 0, where JF̃ (0, αj1) is the Jaco-
bian determinant of F̃ : X → C2 at (0, αj1). For (x, η) ∈ Nj1 ∩ U1, Fj1 has the
form

(i) Fj1(x, η) := π−1 ◦ F̃ (x, η) =
(
f(x, η), g(x, η)

)
× [f(x, η) : g(x, η)].

In order to prove the assertion (1.1), we assume, to the contrary, that pj1 =
(0, αj1) is not an indeterminate point of Fj1 . Then, the convergent power series
f(x, η) and g(x, η) have a common factor h(x, η) such that{

(x, η) ∈ Nj1 | h(x, η) = 0
}

⊂ F̃ −1(p).

This contradicts the fact that F̃ −1(p) = {p1, p2}.
It is easy to see (1.2) from the definition of the blowup.
By (C.2) and (i), F̃j1 has the following form on π−1

j1
(Nj1) ∩ U1

j1
:

F̃j1(x, η) := Fj1 ◦ πj1(x, η) = Fj1(x,xη + αj1)

=
(
f(x,xη + αj1), g(x,xη + αj1)

)
× [a10 + a01η + Õ(x,xη) : b10 + b01η + Õ(x,xη)],

where Õ(x,xη) = O(x,xη)/x, and we note here that Õ(x,xη) is a convergent
power series. Then, it follows from

a10b01 − a01b10 �= 0 and F̃j1(0, η) = (0,0) × [a10 + a01η : b10 + b01η]
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that F̃j1 is injective on U1
j1

∩ Ej1 = {(x, η) ∈ U1
j1

| x = 0}. Similarly, by (C.2)
and (i), we see that F̃j1 has the following form on π−1

j1
(Nj1) ∩ U2

j1
:

F̃j1(ξ, y) = Fj1

(
ξ(y − αj1), y

)
=

(
f(ξ(y − αj1), y), g(ξ(y − αj1), y)

)
×

[
a10ξ + a01 + Õ

(
ξ(y − αj1), y − αj1

)
:

b10ξ + b01 + Õ
(
ξ(y − αj1), y − αj1

)]
,

where Õ(ξ(y − αj1), y − αj1) = O(ξ(y − αj1), y − αj1)/(y − αj1) and it is a con-
vergent power series. It implies that

F̃j1(0, αj1) = (0,0) × [a01 : b01].

On the other hand, by Proposition 2.1(3), one can see that Ej1 ∩ (U2
j1

\ U1
j1

) =
(0, αj1) and F̃j1 |Ej1

: Ej1 → E is bijective; this implies (1.3).
Since Fj1 is biholomorphic on Nj1 \ {pj1 } and πj1 is biholomorphic on

π−1
j1

(Nj1) \ Ej1 , F̃j1 is biholomorphic on π−1
j1

(Nj1) \ Ej1 . Together with (1.3), F̃j1

is biholomorphic on π−1
j1

(Nj1), and this shows (1.4). By repeating this process
inductively, the proof of Theorem 2.2 is completed. �

Proof of Theorem 2.3
First, we want to show that {W̃j}j∈J is a maximal family. For this purpose,
fix any family {Ṽλ}λ∈Λ of germs of holomorphic curve at the point p which is
invariant. Take a representative element Vλ ∈ Ṽλ. By Definition 2.2, for every
Vλ there exists a holomorphic mapping

Φλ : Δρλ
� t �→

(
t, φλ(t)

)
∈ C2

such that Vλ = Φλ(Δρλ
). Denote the Taylor expansion of φλ(t) at t = 0 by

φλ(t) := c1t + c2t
2 + · · · . For Vλ, the following lemma holds.

LEMMA 3.1

(1) For every Vλ, there exist an open neighborhood Nλ of p and a point pj1 ∈
{p1, p2} = F̃ −1(p) such that {pj1 } = π−1(Vλ ∩ Nλ \ {p}) ∩ E, where the closure is
taken with respect to the relative topology of π−1(Nλ). Put

Vλj1 := π−1(Vλ ∩ Nλ \ {p}).

(2) There exists a holomorphic function φλj1 on Δρλ
satisfying the following

condition. Define a holomorphic mapping Φλj1 : Δρλ
→ U1 by t �→ (t, φλj1(t)).

Then, Vλj1 ∼ Φλj1(Δρλ
) and c1 = αj1 .

Proof
It follows from the definition of the blowup π that for x ∈ Δρλ

,

π−1(Vλ ∩ Nλ) ∩ U1 =
{
(x, η) ∈ U1 | xη = c1x + c2x

2 + · · · + cnxn + · · ·
}

=
{
(x, η) ∈ U1 | x = 0

}
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∪
{
(x, η) ∈ U1 | η = c1 + c2x + · · · + cnxn−1 + · · ·

}
,

π−1(Vλ ∩ Nλ \ {p}) ∩ U1 =
{
(x, η) ∈ U1 | η = c1 + c2x + · · ·

}
\ {(0, c1)}.

Hence, we obtain the result that for x ∈ Δρλ
,

π−1(Vλ ∩ Nλ \ {p}) ∩ U1 =
{
(x, η) ∈ U1 | η = c1 + c2x + · · · + cnxn−1 + · · ·

}
.

Put φλj1(t) := c1 + c2t + · · · + cntn−1 + · · · . It is clear that the radius of the
domain of definition of φλj1 is ρλ, too. Set p̃ := (0, c1).

To complete the proof of Lemma 3.1, we need to show that p̃ ∈ {p1, p2} =
F̃ −1(p). Since Ṽλ is a germ of a holomorphic curve at the point p which is
in an invariant family of germs, there exists some sequence of points pn ∈ Vλ

such that pn �= p, pn → p, and F (pn) → p as n → ∞. Put p̃n := π−1(pn). Then,
p̃n ∈ π−1(Vλ ∩ Nλ \ {p}) and p̃n → p̃ = (0, c1) ∈ E as n → ∞. From the continuity
of F̃ , it follows that F̃ (p̃) = p. By (2) of (A.0), F̃ −1(p) ∩ E = {p1, p2} and
p̃ ∈ {p1, p2}. �

From Definition 2.3, for every λ ∈ Λ there exist λ′ ∈ Λ and a positive constant ρλ′

with 0 < ρλ′ ≤ ρλ such that F ◦ Φλ(Δρλ′ ) ∈ Ṽλ′ . Take a representative element
Vλ′ ∈ Ṽλ′ . By Lemma 3.1(1), for Vλ′ there exist pi1 ∈ {p1, p2} and Vλ′i1 such that
pi1 ∈ Vλ′i1 ∩ E. Then, we obtain the following Lemma 3.2 (see Figure 2).

LEMMA 3.2

We have Fj1 ◦ Φλj1(0) = pi1 and Fj1 ◦ Φλj1(Δρλ′ ) ∈ Ṽλ′i1 , where Ṽλ′i1 is the germ
of the holomorphic curve Vλ′i1 at pi1 .

Proof
Since Fj1 is biholomorphic on Nj1 \ {pj1 }, there exists an open neighborhood Ni1

of pi1 such that

Fj1(Vλj1 \ {pj1 }) ∩ Ni1 ⊂ π−1(Vλ′ \ {p}),

Fj1 ◦ Φλj1(Δρλ′ \ {0}) ∩ Ni1 ⊂ π−1(Vλ′ \ {p}) = Vλ′i1 .

p

π π

pi1

E

pj1

E

Vλj1

Vλ′i1

F̃

p

Fj1

Vλ

Vλ′
F

Figure 2
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pj1···jn−1

Ej1· · ·jn−2
πj1···jn−1

πi1...in−1

pi1...in

Ei1...in−1

pj1···jn

Ej1· · ·jn−1 ⊂Xj1· · ·jn−1

Vλj1···jn

Vλ′i1...in

F̃j1···jn−1

pi1...in−1

Ei1...in−2

Fj1···jn

Vλj1···jn−1

Vλ′i1...in−1

Figure 3

Moreover, by Remark 1, Fj1 ◦ Φλj1 is well defined on Δρλ
and

Fj1 ◦ Φλj1(Δρλ′ ) ∩ Ni1 ⊂ Vλ′i1 and Fj1 ◦ Φλj1
(Δρλ′ ) ∼ Vλ′i1 . �

Inductively, for any n ∈ N and jn = 1,2, we can define curves

Vλj1···jn := (π ◦ · · · ◦ πj1···jn−1)−1(Vλ ∩ Nλ \ {p}) in Xj1···jn−1

and have the following Lemmas 3.3 and 3.4 (see Figure 3). Since the lemmas are
proved by arguments similar to those for the proofs of Lemmas 3.1 and 3.2, we
omit the proofs.

LEMMA 3.3

(1) For every Vλj1···jn−1 , there exist an open neighborhood Nλj1···jn−1 of
pj1···jn−1 and a point pj1···jn ∈ F̃ −1

j1···jn−1
(pi1...in−1) such that

{pj1···jn } = π−1
j1···jn−1

(Vλj1···jn−1 ∩ Nλj1···jn−1 \ {pj1···jn−1 }) ∩ Ej1···jn−1 .

(2) There exists a holomorphic function φλj1···jn on Δρλ
which has the fol-

lowing Taylor expansion at t = 0:

φλj1...jn(t) = cn + cn+1t + cn+2t
2 + · · · .

Define a holomorphic mapping Φλj1...jn : Δρλ
→ U1

j1···jn−1
by t �→ (t, φλj1···jn(t)).

Then, Vλj1···jn ∼ Φλj1...jn(Δρλ
) and cn = αj1...jn .

From Definition 2.3, for every λ ∈ Λ there exists λ′ ∈ Λ such that F ◦ Φλ(Δρλ′ ) ∈
Ṽλ′ as a germ. Take a representative element Vλ′ ∈ Ṽλ′ . By Lemma 3.3(1), there
exist pi1...in ∈ Vλ′i1...in ∩ Ei1...in−1 and Vλ′i1...in . Then, we obtain the following.

LEMMA 3.4

We have

Fj1···jn ◦ Φλj1···jn(0) = pi1...in
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and

Fj1···jn ◦ Φλj1···jn(Δρλ′ ) ∈ Ṽλ′i1...in ,

where Ṽλ′i1...in is the germ of the holomorphic curve Vλ′i1...in .

From Lemma 3.3(2), cn = αj1···jn for all n. Therefore, for every Vλ there exists
a unique j ∈ J such that Vλ ∈ W̃j. Hence, we conclude that {W̃j}j∈J is maxi-
mal.

To complete the proof of Theorem 2.3, we need to prove that {W̃j}j∈J is
invariant. Select and fix a representative element Wj ∈ W̃j. For the proof, it is
enough to show that for every j ∈ J , there exist j′ ∈ J and a positive constant ρj′

with 0 < ρj′ ≤ ρj such that F ◦ Φj(Δρj′ ) ∈ W̃j′ (see Figure 4).
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Inductively, let us set, for any n ∈ N,

W 1
j := π−1(Wj) \ E, W 2

j := (π ◦ πj1)−1(Wj) \ Ej1 , . . .

Wn
j := (π ◦ πj1 ◦ · · · ◦ πj1···jn−1)−1(Wj) \ Ej1···jn−1 .

By the same argument as in the proofs of Lemmas 3.1 and 3.2, one may obtain
the following.

LEMMA 3.5

For every n ≥ 1,

(1) Wn
j ∩ Ej1...jn−1 = {pj1···jn };

(2) Define a holomorphic function φn
j on Δρj

by t �→ αj1···jn +αj1···jn+1t+ · · ·
and a holomorphic mapping

Φn
j : Δρj

→ U1
j1···jn−1

by t �→
(
t, φn

j (t)
)
.

Then Wn
j ∼ Φn

j (Δρj
).

By Theorem 2.2,

F̃j1···jn−1(pj1···jn) = pj2···jn ∈ F̃j1···jn−1(W
n
j ).

Using the finite symbol sequence (j2 · · · jn), we define the set

Vj2···jn := F̃j1···jn−1(W
n
j ).

LEMMA 3.6

For all n, there exist a positive number ρj2···jn and a holomorphic function ψj2...jn

on Δρj2· · ·jn
satisfying the following condition. Define a holomorphic mapping

Ψj2···jn : Δρj2· · ·jn
→ U1

j2···jn−1
by t �→ (t,ψj2···jn(t)). Then,

Vj2···jn ∼ Ψj2···jn(Δρj2· · ·jn
).

Proof
Here we use the same notation as in the proof of Theorem 2.2. Denote the Taylor
expansion of F̃j1···jn−2 at pj1···jn−1 = (0, αj1···jn−1) by

F̃j1···jn−2(x, η) :=
(
a10x + a01(η − αj1···jn−1) + · · · ,

αj2···jn−1 + b10x + b01(η − αj1···jn−1) + · · ·
)
.

Set the term of the above to (f̂(x, η), ĝ(x, η)). Then,

Fj1···jn−1 := π−1
j2···jn−1

◦ F̃j1···jn−2 = (f̂ , ĝ) × [f̂ : ĝ − αj2···jn−1 ]

and

F̃j1···jn−1 := Fj1···jn−1 ◦ πj1···jn−1(x, η) = Fj1···jn−1(x,xη + αj1···jn−1)

=
(
f̂(x,xη + αj1···jn−1), ĝ(x,xη + αj1···jn−1)

)
× [a10 + a01η + · · · : b10 + b01η + · · · ]
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for (x, η) ∈ U1
j1···jn−1

. From the condition (A.1), pj1···jn ∈ U1
j1···jn−1

and pj2···jn ∈
U1

j2···jn−1
. On the other hand,

F̃j1···jn−1(pj1···jn) = F̃j1···jn−1(0, αj1···jn)

= (0,0) × [a10 + a01αj1···jn : b10 + b01αj1···jn ]

= pj2···jn ∈ U1
j2···jn−1

.

Hence, a10 + a01αj1···jn �= 0.
By using the local chart, F̃j1···jn−1 : U1

j1···jn−1
→ U1

j2···jn−1
is written as

F̃j1···jn−1(x, η) =
(
a10x + a01xη + O(x,xη),

b10 + b01η + · · ·
a10 + a01η + · · ·

)
.

Set the right-hand side of the above to (f(x, η), g(x, η)) := (u, v). By differenti-
ating the holomorphic function u = f(x,φn

j (x)), with respect to the variable x

and using the fact that φn
j (0) = αj1···jn ,

du

dx
(0) =

∂f

∂x
(0, αj1···jn) +

∂f

∂y
(0, αj1···jn)

dφn
j

dx
(0) = a10 + a01αj1···jn �= 0.

Hence, the inverse function x = f̃(u) of u = f(x,φn
j (x)) exists in some neighbor-

hood of u = 0. Therefore, there exists some positive constant ρj2···jn and some
neighborhood Nj2···jn of pj2···jn such that

Vj2···jn ∩ Nj2···jn

=
{
(u, v) ∈ U1

j2···jn−1
| v = g

(
f̃(u), φn

j (f̃(u))
)
, u ∈ Δρj2· · ·jn

}
.

By setting

ψj2···jn(x) := g
(
f̃(x), φn

j (f̃(x))
)
,

the proof is completed. �

Put the Taylor expansions

ψj2···jn(x) := αj2···jn + β1x + β2x
2 + · · ·

and

ψn
j2···jn

(x) := αj2x + αj2j3x
2 + · · · + αj2···jnxn−1 + β1x

n + β2x
n+1 + · · ·

and the formal power series

ψσ(j) := αj2x + αj2j3x
2 + · · · , where σ(j) := (j2, j3, . . .)

and the set

Vn := π ◦ πj2 ◦ · · · ◦ πj2···jn−1(Vj2···jn ∩ Nj2···jn).

LEMMA 3.7

(1) For any n ≥ 2, ψn
j2···jn

is holomorphic on Δρj2· · ·jn
. Define a holomorphic

mapping Ψn
j2···jn

: Δρj2· · ·jn
→ C2 by t �→ (t,ψn

j2···jn
(t)). Then,

Vn ∼ Ψn
j2···jn

(Δρj2...jn
).
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(2) There exists an open neighborhood Nn of p such that

F (Wj \ {p}) ∩ Nn ⊂ Vn \ {p}.

(3) For any n,m ≥ 2, Vn ∼ Vm. In particular, there exists a positive constant
ρ̃σ(j) such that 0 < ρ̃σ(j) ≤ ρj2···jn for any n ≥ 2 and

ψσ(j)(x) = ψn
j2···jn

(x) for |x| < ρ̃σ(j).

(4) Define a holomorphic mapping

Ψσ(j) : Δρ̃σ(j) → C2 by t �→
(
t,ψσ(j)(t)

)
and a set

Wσ(j) := Ψσ(j)(Δρ̃σ(j)).

Then, there exists an open neighborhood Nσ(j) of p such that

F (Wj \ {p}) ∩ Nσ(j) ⊂ Wσ(j) \ {p} = Wσ(j) and Wσ(j) ∼ Ψσ(j)(Δρ̃σ(j)).

Proof
For every (x, η) ∈ Vj2···jn , define

πj2···jn−1(x, η) = (x,xη + αj2···jn−1).

Set the right-hand side of the above to (X,Y ). Then,

η = ψj2···jn(x), x = X,η =
Y − αj2···jn−1

X
.

By eliminating x and η, we have the following equation:

Y = αj2···jn−1 + αj2···jnX + β0X
2 + · · · .

Repeating this process inductively, one can obtain the claim (1).
Since the blowup πj1···jn−1 : Xj1···jn−1 \ Ej1···jn−1 → Xj1···jn−2 \ {pj1···jn−1 } is

biholomorphic, there exists some open neighborhood Nn of p such that

F (Wj \ {p}) ∩ Nn ⊂ π ◦ πj2 · · · ◦ πj2···jn−1(
F̃j1···jn−1 ◦ (π ◦ πj1 ◦ · · · ◦ πj1···jn−1)

−1(Wj \ {p}) ∩ Nj2···jn

)
= Vn \ {p}.

Then, one can see that claim (2) holds.
Together with the identity theorem, (3) and (4) follow immediately from (2).

�

Using Lemma 3.7(4), we can complete the proof of (2) of Theorem 2.3. �

4. Example

In this section, as an application, consider the following rational map of C2:

F (x, y) =
(
ax,

y(y − x)
x2

)
with |a| > 4.

We retain the notation from Section 3. It is easy to see that F satisfies conditions
(A.0) and (A.1). Hence, Theorems 2.2 and 2.3 hold for F , and we have the family
{W̃j}j∈J of germs of holomorphic curve at p which is invariant. It is remarked
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here that if |a| < 1, then there exists a Cantor bouquet of p in the sense of
Yamagishi and J = {1,2}N.

Here, to say that there is a local unstable manifold Wu
loc(p) of p means that

there exists an open neighborhood Np of p such that

Wu
loc(p) =

{
(x, y) ∈ Np | for all n ≥ 0, F −n(x, y) ∈ Np and

F −n(x, y) → p as n → ∞
}

∪ {p}.

Define the set

J0 :=
{
j ∈ {1,2}N | n0 ∈ N with jn0 = 2 are finitely many

}
.

For our mapping, the following theorem holds.

THEOREM 4.1

For all symbol sequences j = (j1, j2, . . .) ∈ {1,2}N, one of the following claims
holds.

(1) If j ∈ J0, then there exists an integer n0 such that jn = 1 for any n ≥ n0

and W̃j �= ∅. Take a representative element Wj ∈ W̃j. Then, Wj ⊂ F −n0(W11···) =
F −n0({y = 0}), and each Wj is a local unstable manifold of p.

(2) If j /∈ J0, then W̃j = ∅.

Hence, J = J0.

Proof of Theorem 4.1
The remainder of this article is devoted to the proof of Theorem 4.1. For any
j ∈ J , there exists a positive constant ρσ(j) with 0 < ρσ(j) ≤ ρj such that F ◦
Φj(Δρσ(j)) ∈ W̃σ(j). Set F (x, y) := (X,Y ), and recall the notation from Section 3:

Wj =
{
(x, y) ∈ C2 | y = φj(x) = αj1x + αj1j2x

2 + · · · , x ∈ Δρj

}
and

Wσ(j) =
{
(x, y) ∈ C2 | y = φσ(j)(x) = αj2x + αj2j3x

2 + · · · , x ∈ Δρσ(j)

}
.

Then, we have

X = ax, Y =
y(y − x)

x2
, y = αj1x + αj1j2x

2 + · · · ,

Y = αj2X + αj2j3X
2 + · · · .

By eliminating y, X and Y , we have the equation

x2(αj2ax + αj2j3a
2x2 + · · · )

= (αj1x + αj1j2x
2 + · · · )

{
(αj1 − 1)x + αj1j2x

2 + · · ·
}
.

Therefore,

αj2ax3 + αj2j3a
2x4 + · · · = (αj1x + αj1j2x

2 + · · · )2 − (αj1x
2 + αj1j2x

3 + · · · ),∑
n=2

αj2···jnan−1xn+1 =
∑
n=2

∑
k+l=n
k,l≥1

αj1···jk
αj1···jl

xn −
∑
n=1

αj1···jnxn+1,
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∑
n=1

αj2···jn+1a
nxn+2

= (α2
j1 − αj1)x

2 +
∑
n=1

∑
k+l=n+2

k,l≥1

αj1···jk
αj1···jl

xn+2 −
∑
n=1

αj1···jn+1x
n+2.

Hence, we have the following:

α2
j1 − αj1 = 0,

αj2···jn+1a
n =

∑
k+l=n+2

k,l≥1

αj1···jk
αj1···jl

− αj1···jn+1

= αj1···jn+1(2αj1 − 1) +
∑

k+l=n+2
k,l≥2

αj1···jk
αj1···jl

for n ≥ 1.

As a result, we have the following recurrence system:

α1 = 0, α2 = 1,

αj1···jn+1 =
1

2αj1 − 1

{
αj2···jn+1a

n −
∑

k+l=n+2
k,l≥2

αj1···jk
αj1···jl

}
for n ≥ 1.

By a direct calculation, one can check that α11...1 = 0,

W11··· =
{
(x, y) ∈ C2 | y = 0

}
,

and that W11··· is a local unstable manifold of p.
First, we show that the inverse image of W11··· with respect to F is the graph

of some holomorphic function of x. To do this, we prove the following lemma.
Denote the Taylor expansion of F̃ at pj1 = (0, αj1) by

F̃ (x, y) =
(
a10x + a01(y − αj1) + · · ·, b10x + b01(y − αj1) + · · ·

)
.

Set the right-hand side of the above to (f(x, y), g(x, y)).

LEMMA 4.2

For every W̃σ(j) ∈ {W̃j}j∈J , take a representative element Wσ(j) ∈ W̃σ(j). If b01 −
αj2a01 �= 0, then F −1(Wσ(j)) is given by the graph of a holomorphic function of x.

Proof
From the definition,

F̃ −1(Wσ(j)) =
{
(x, y) ∈ Nj1 | g(x, y) − φσ(j)

(
f(x, y)

)
= 0

}
.

Define Ψ(x, y) := g(x, y) − φσ(j)(f(x, y)), and differentiate with respect to y.
Then,

∂Ψ
∂y

(x, y) =
∂g

∂y
(x, y) −

dφσ(j)

dx

(
f(x, y)

)∂f

∂y
(x, y),

∂Ψ
∂y

(0, αj1) = b01 − αj2a01.
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It follows from the condition b01 − αj2a01 �= 0 that F̃ −1(Wσ(j)) is given by the
graph of a holomorphic function of x on a neighborhood of x = 0. This result,
together with the facts π ◦F̃ −1(Wσ(j)) = F −1(Wσ(j)) and (C.2), proves the lemma.

�

We remark here that F̃ has the following Taylor expansion:

F̃ (x, y) = (ax, −y + y2) on N1

and

F̃ (x, y) =
(
ax, (y − 1) + (y − 1)2

)
on N2,

where N1 and N2 are open neighborhoods of p1 and p2, respectively. Hence,
a01 = 0, b01 �= 0, and our F satisfies the condition of Lemma 4.2. By applying
Lemma 4.2 for W11··· repeatedly, we can prove the claim of Theorem 4.1(1).

To complete the proof of Theorem 4.1, we need the following lemma.

LEMMA 4.3

(1) For every j = (j1, j2, . . .) ∈ {1,2}N, there exist sequences {Mn}n≥2 and
{M ′

n}n≥2 of positive constants such that

M2 = 1, M ′
2 =

3
2
, Mn+1 = MnM ′

n, 1 ≤ M ′
n ≤ 3

2
,

|αj1...jn | ≤ Mn|a|(n(n−1))/2 for n ≥ 2.

(2) For any finite sequence (j1, . . . , jn0) ∈ {1,2}n0 with jn0 = 2, there exist
sequences {mn}2≤n≤n0 and {m′

n}2≤n≤n0 of positive constants such that

m2 = 1, m′
2 =

3
4
, mn+1 = mnm′

n,
1
2

≤ m′
n ≤ 1,

mn|a|(n(n−1))/2 ≤ |αj1...jn | for 2 ≤ n ≤ n0.

Proof
To prove this lemma, we proceed by induction on n. By a direct calculation, we
have α11 = 0, α12 = −a,α21 = 0, α22 = a, and if n = 2, then (1) holds. Assume
that claim (1) is proved for n ≥ 2. We then have the following inequalities:

|αj1···jn+1 | ≤ |αj2···jn+1a
n| +

∑
k+l=n+2

k,l≥2

|αj1...jk
αj1···jl

|

≤ |anαj2···jn+1 | + |αj1j2αj1···jn | + |αj1j2j3αj1···jn−1 | + · · ·

+ |αj1···jnαj1j2 |

≤ |a|nMn|a|(n(n−1))/2 + M2Mn|a| |a|(n(n−1))/2

+ M3Mn−1|a|3|a|((n−1)(n−2))/2 + · · ·

+ MnM2|a|(n(n−1))/2|a|.(ii)
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Put n0 := [(n + 2)/2]. Since Mk is not decreasing,

if 2 ≤ k ≤ n0, then Mk ≤ Mn0 and if n0 ≤ k ≤ n, then Mk ≤ Mn, and

(ii) ≤ Mn

{
|a|n+(n(n−1))/2 + Mn0 |a|1+(n(n−1))/2

+ Mn0 |a|3+((n−1)(n−2))/2 + · · · + Mn0 |a|1+(n(n−1))/2
}
.(iii)

Set β(k) := k(k − 1)/2, and for 2 ≤ k ≤ n0 and n − k + 2 ≥ n0,

γ(k) := −β(k) − β(n − k + 2) +
n2 + n

2
= (k − 1)(n + 1 − k).

Then,

(iii) ≤ Mn

{
|a|(n2+n)/2 + Mn0 |a|β(2)+β(n) + Mn0 |a|β(3)+β(n−1) + · · ·

+ Mn0 |a|β(n)+β(2)
}

= Mn|a|(n2+n)/2
{

1 +
Mn0

|a|γ(2)
+

Mn0

|a|γ(3)
+ · · · +

Mn0

|a|γ(2)

}
.(iv)

Moreover, γ(k) − γ(2) = (n − k)(k − 2) ≥ 0 for n ≥ k ≥ 2. It implies from |a| ≥ 4
that

1
|a|γ(2)

≥ 1
|a|γ(k)

and

(iv) ≤ Mn|a|(n2+n)/2
{

1 +
Mn0

|a|γ(2)
(n − 1)

}
.

To complete the proof of (1), it is enough to show that for n ≥ 2,

Mn0

|a|n−1
(n − 1) ≤ 1

2
.

Since

Mn0 ≤ Mn0−1M
′
n0−1 ≤ Mn0−1

3
2

≤ · · · ≤ M3

(3
2

)n0−3

≤
(3

2

)(n−2)/2

,

Mn0

|a|n−1
(n − 1) ≤ (3/2)(n−2)/2(n − 1)

4n−1
≤ (5/4)n−2(n − 1)

4n−1
=

1
4

( 5
16

)n−2

(n − 1).

Hence, we need to show, for n ≥ 2,

βn :=
1
4

( 5
16

)n−2

(n − 1) ≤ 1
2
.

By a direct calculation, one knows that β2 = 1/4 and β3 = 5/32. For n ≥ 3,

βn+1

βn
=

5
16

( n

n − 1

)
=

5
16

(
1 +

1
n − 1

)
≤ 5

16
× 3

2
=

15
32

.

Therefore, βn is monotone decreasing. This completes the proof of (1).
Next, we prove (2). Put m2 := 1. From the facts α1 = 0, α2 = 1, α12 = −a,

α22 = a, we obtain the claim for n = 2. For n = 3, it follows from a direct
calculation that α112 = a3, α122 = −a3 + a2, α212 = −a3, α222 = a3 − a2, and

|α122| = |α222| = |a3 − a2| = |a|3
(
1 − 1

|a|
)

≥ 3
4

|a|3.
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Put m′
2 = 3/4; the claim follows. Assume that claim (2) is proved for n ≥ 3. By

using (1) of Lemma 4.3, we have the following inequalities:

|αj1···jn+1 | ≥ |αj2···jn+1a
n| −

∑
k+l=n+2

k,l≥2

|αj1···jk
αj1···jl

|

≥ mn|a|(n(n−1))/2|a|n − |αj1j2αj1···jn | − |αj1j2j3αj1···jn−1 | − · · ·

− |αj1···jnαj1j2 |

≥ mn|a|(n(n−1))/2+n − M2Mn|a|1+(n(n−1))/2

− M3Mn−1|a|3+((n−1)(n−2))/2 − · · · − MnM2|a|(n(n−1))/2+1

= mn|a|(n(n+1))/2
{

1 − M2Mn

mn|a|γ(2)
− M3Mn−1

mn|a|γ(3)
− · · · − MnM2

mn|a|γ(2)

}
.(v)

From the facts

|a| ≥ 4, Mn ≤
(3

2

)n−2

, mn ≥
(1

2

)n−2

and

γ(k) ≥ γ(2) for n ≥ k ≥ 2,

it follows that

(v) ≥ mn|a|(n(n+1))/2
{

1 − (3/2)n−2

(1/2)n−24n−1
− (3/2)n−2

(1/2)n−24n−1
− · · ·

− (3/2)n−2

(1/2)n−24n−1

}

= mn|a|(n(n+1))/2
{

1 − 3n−2

4n−1
(n − 1)

}
.

Put δn := 3n−2(n − 1)/4n−1. To prove claim (2), we need to show δn ≤ 1/2. By
a direct calculation, δ3 = 3/8 and δ4 = 27/64. For n ≥ 3, we have

δn+1

δn
=

3
4

n

n − 1
≤ 3

4

(
1 +

1
3

)
= 1.

Therefore, δn is monotone decreasing. This completes the proof of (2). �

By using Lemma 4.3, for every infinite sequence j = (j1, j2, . . .) ∈ {1,2}N with
infinitely many jn0 = 2, we obtain the result that the radius of the domain
of definition R of φj is equal to zero. Indeed, for αj1···jn0

with jn0 = 2, from
Lemma 4.3(2), (

1
2

)n0−2

|a|(n0(n0−1))/2 ≤ |αj1···jn0
|.

Hence,
1
R

= limsup
k→∞,n≥k

|αj1...jn |1/n ≥ lim
k→∞,n0≥k

{(1
2

)n0−2

|a|(n0(n0−1))/2
}1/n0

= lim
k→∞,n0≥k

(1
2

)1−(2/n0)

|a|(n0−1)/2 = ∞.
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The proof of Theorem 4.1 is now complete. �

REMARK 3

Suppose that |a| < 1 in our map F ; then there exist a Cantor bouquet of p in the
sense of Yamagishi and J = {1,2}N. In particular, φj gives the Taylor expansion
of the function which defines the stable manifold Wj of indeterminate point p.
On the other hand, if |a| > 4, then the set J0 is countable. Therefore, it may not
be appropriate to call {Wj}j∈J a generalized Cantor bouquet. In [6], we construct
another family, {Wj}j∈{1,2}N , of curves which consist of a center manifold of an
indeterminate point p. In the article, we show that φj does not necessarily have a
positive radius of the domain of definition, but φj gives the asymptotic expansion
of the function which defines Wj.
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