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Abstract In this article we study coverings with prescribed ramification from the point
of view of the Sato Grassmannian and of the algebro-geometric theory of solitons. We
show that the moduli space of such coverings, which is a Hurwitz scheme, is a subscheme
of the Grassmannian. We give its equations and show that there is a Virasoro group that
uniformizes it. We also characterize when a curve is a covering in terms of bilinear iden-
tities.

1. Introduction

A degree n covering of the projective line, Y → P
1, is called simple if there are at

least n − 1 points of Y over each point of P
1. Hurwitz [6] proved that the set of

such genus g compact Riemann surfaces, Y , which are degree n simple coverings
of P

1, is indeed a connected manifold. These manifolds are nowadays called
Hurwitz spaces. It is remarkable that every genus g Riemann surface may be
representable by a degree n simple covering of P

1 (provided that n ≥ g + 1).
Since then, many generalizations and applications have been given.

The algebro-geometric theory of Hurwitz spaces (e.g., its Z-scheme structure)
was developed by Fulton [4], who applied this fact to conclude the irreducibility
of the moduli space of curves. Let us mention very briefly some current topics
where the relevance of Hurwitz spaces have been unveiled.

In the case of simple coverings, the branch points of the covering (i.e., those
points of P

1 whose fiber has n − 1 points) can serve as local coordinates of the
Hurwitz space. The study of isomonodromic deformations is essentially the study
of families of coverings with respect to the variation of the branch points (see,
e.g., [9]).

On the other hand, if the branch points are fixed, then there exist finitely
many coverings (of given genus and degree; note that these numbers are related by
the Riemann-Hurwitz formula). Thus, the explicit computation of these numbers
is a hard and interesting problem in enumerative geometry which is deeply related
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to the intersection theory of the moduli space. Indeed, Gromov-Witten theory
is very well suited for carrying out such a study (e.g. [3], [15]).

These numbers show up in a bunch of different topics; let us mention a strik-
ing result by Kontsevich (conjectured by Witten [18]), namely, that a suitable
generating function builded from the Hurwitz numbers is a tau-function for the
KdV hierarchy (see [8]).

In this article a different approach to Hurwitz spaces is offered. Recall that
the algebraic theory of soliton equations (e.g., Sato infinite Grassmann mani-
fold [17], Krichever map [10], etc.) has obtained several results in the interplay
between the theory of algebraic curves (theta functions, jacobians, moduli spaces,
etc.) and the theory of solitons (Kadomtsev-Petviashvili (KP) hierarchy, bosoniza-
tion, representation theory, etc.). Motivated by this fruitful relation, we apply
these techniques to the case of Hurwitz spaces.

We consider coverings of curves Y → X with prescribed ramification data,
and, since we use the Sato Grassmannian, these data are decorated with formal
trivializations. To be more precise, let us fix a natural number n and a set of r par-
titions of it E = {ē1, . . . , ēr }, where ēi = {e

(i)
1 , . . . , e

(i)
ki

}. Let us denote by V the
C-algebra C((z1)) × · · · × C((zr)) and by W the V -algebra

W = C((z1/e
(1)
1

1 )) × · · · × C((z
1/e

(1)
k1

1 )) × · · · × C((z1/e
(r)
1

r )) × · · · × C((z
1/e

(r)
kr

r )).

Then, the Hurwitz functor parameterizes data (Y,X,π, x̄, ȳ, tx̄, tȳ), where π : Y →
X is a cover of curves, x̄ = x1 + · · · + xr ⊂ X and ȳ =

∑
i,j y

(i)
j ⊂ Y are divisors

such that π−1(xi) =
∑

j e
(i)
j y

(i)
j , and tx̄ and tȳ are formal trivializations along x̄

and ȳ, respectively. (In particular, they induce isomorphisms tx̄ : (ÔX,x̄)(0)
∼→ V

and tȳ : (ÔY,ȳ)(0)
∼→ W .)

The corresponding functor is called the Hurwitz functor and is studied in §3.
The Krichever map embeds it into the Sato Grassmannian, and its image is
characterized. Then, we prove that there exists a subscheme, H ∞

E [ḡ, g], of the
Grassmannian of W representing the Hurwitz functor, where g and ḡ are the
genera of X and Y , respectively. Since a covering of curves has a finite number
of ramification points, this result allows us to characterize those curves Y that are
a covering of another curve X with fully prescribed ramification profile, which is
the main result of this section (see Theorem 3.4). Although this characterization
is stated in terms of identities for the Baker-Akhiezer functions, it can easily be
translated to a hierarchy for τ -functions.

Study of the tangent spaces of these moduli spaces is carried out in §4. Apart
from the importance of these results on their own (see, e.g., Theorem 4.1), they
also are used in the rest of the article.

In §5, we introduce the group GW
V as a certain subgroup of the group of

automorphisms of W which induce an automorphism on V . We show that this
formal group scheme acts canonically on Gr(W ) leaving H ∞

E [ḡ, g] stable. Further,
we prove that this group uniformizes H ∞

E [ḡ, g]; more precisely, we prove that
the previous action is locally transitive (see Theorem 5.4). Proof of these facts
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requires the explicit computation of the tangent space to the Hurwitz space
carried out in §4.

In §6, to the previous data we add a pair (L,φȳ) consisting of a line bundle on
Y together with a formal trivialization of L along ȳ. This functor is representable
by a subscheme of the Grassmannian of W which is denoted by Pic∞

E [ḡ, g] (see
Definition 6.1). Let ΓW denote the connected component of 1 in the scheme rep-
resenting the functor of invertible elements of W (see §2). Since GW

V acts canon-
ically on ΓW , we consider the semidirect product GW

V � ΓW . Then, we show
that the group GW

V � ΓW acts on Pic∞
E [ḡ, g] and that this action is locally tran-

sitive (see Theorem 6.2). This roughly means that any deformation of a point of
Pic∞

E [ḡ, g] can be obtained through the action of this group.

2. Preliminaries

We assume the base field to be the field of complex numbers. However, all our
results hold for an algebraically closed field of characteristic zero.

This section recalls the definitions and generalizes some results of [14, §§2,
3] (see also [1]).

Formal groups
Let V be the trivial C-algebra C((z1)) × r· · · × C((zr)). Let us fix an integer n > 0
and a set of r-tuple of partitions of n:

E = {ē1, . . . , ēr };

that is, ēi = {e
(i)
1 , . . . , e

(i)
ki

} and n = e
(i)
1 + · · · + e

(i)
ki

. Finally, let us denote r̄ =
k1 + · · · + kr.

Associated with these data we consider the V -algebras

W i := C((z1/e
(i)
1

i )) × · · · × C((z
1/e

(i)
ki

i ))

and

W := W 1 × · · · × W r

= C((z1/e
(1)
1

1 )) × · · · × C((z
1/e

(1)
k1

1 )) × · · · × C((z1/e
(r)
1

r )) × · · · × C((z
1/e

(r)
kr

r )).

Let V+, W i
+, and W+ denote the subalgebras corresponding to the power

series; that is,

V+ := C[[z1]] × r· · · × C[[zr]],

W i
+ := C[[z1/e

(i)
1

i ]] × · · · × C[[z
1/e

(i)
ki

i ]],

W+ := W 1
+ × · · · × W r

+.

One now introduces formal group schemes whose rational points are the
groups of invertible elements of V and W . Let ΓV and ΓW denote the connected
components of the identity of these groups (see [1]).



54 J. M. Muñoz Porras and F. J. Plaza Martín

Let R be a C-algebra. Recall that the set of R-valued points of ΓV is the set
of r-tuples (γ1, . . . , γr) ∈ V ⊗̂C R with γi =

∑
j ai

jz
j
i , where ai

j ∈ Rad(R) for j < 0
and ai

0 are invertible. Here ⊗̂ denotes the completion of the tensor product with
respect to the V+-topology. Similarly, the set of R-valued points of ΓW is the set
of r-tuples (γ̄1, . . . , γ̄r) ∈ W ⊗̂C R with

γ̄i =
(∑

j

a
(i,1)
j z

j/e
(i)
1

i , . . . ,
∑

j

a
(i,ki)
j z

j/e
(i)
ki

i

)
∈ W i ⊗̂C R,

where a
(i,h)
j ∈ Rad(R) for j < 0 and a

(i,h)
0 are invertible.

Infinite Grassmannians
It is well known that there is a C-scheme Gr(W ), which is called the infinite
Grassmannian of the pair (W,W+), whose set of rational points is{

subspaces U ⊂ W such that U → W/W+

has finite dimensional kernel and cokernel

}
.

The connected components of the Grassmannian are indexed by the Euler-
Poincaré characteristic of the complex. The connected component of index m is
denoted by Grm(W ).

The group ΓW acts by homotheties on W , and this action gives rise to a
natural action on Gr(W ),

ΓW × Gr(W ) −→ Gr(W ).

This infinite Grassmannian is equipped with the determinant bundle, DetW ,
which is the determinant of the complex of OGr(W )-modules

L ⊕ (W+ ⊗̂C OGr(W )) −→ W ⊗̂C OGr(W ),

where L is the universal submodule of W ⊗̂C OGr(W ) over Gr(W ) and the mor-
phism is the natural projection. Furthermore, this bundle is preserved under the
action of ΓW .

τ -functions and Baker-Akhiezer functions
The determinant of the morphism L → W/W+ ⊗̂C OGr(W ) gives rise to a canon-
ical global section of the dual Det∗

W of the determinant bundle DetW :

Ω+ ∈ H0
(
Gr0(W ),Det∗

W

)
.

In order to extend this section to Gr(W ) (in a nontrivial way), we fix elements
{vm ∈ W | m ∈ Z} such that:

(i) the multiplication by vm shifts the index by m;
(ii) vm · vr̄−r·n−m = 1; and
(iii) v0 = 1.

Given U ∈ Grm(W ), it follows that v−1
m U ∈ Gr0(W ), and thus it makes sense to

define Ω+(U) := Ω+(v−1
m U).
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Now, the τ -function and Baker-Akhiezer (BA) functions are introduced, fol-
lowing [14]. Recall that

W = C((z1/e
(1)
1

1 )) × · · · × C((z
1/e

(1)
k1

1 )) × · · · × C((z1/e
(r)
1

r )) × · · · × C((z
1/e

(r)
kr

r ))

and that ΓW parameterizes a certain subgroup of invertible elements of W .
Let t be the set of variables (t(1,1), . . . , t(1,k1), . . . , t(r,1), . . . , t(r,kr)), where t(a,b) =
(t(a,b)

1 , t
(a,b)
2 , . . .). Consider the element of ΓW given by

g =
(
1 +

∑
j<0

t
(1,1)
j z

j/e
(1)
1

1 , . . . ,1 +
∑
j<0

t
(r,kr)
j z

j/e
(r)
kr

r

)
∈ ΓW .

Thus, the τ -function of U , τU (t), is defined by

τU (t) :=
Ω+(gU)

gδU
,

where δU is a nonzero element in the fiber of Det∗
W over U .

Let z� denote (z1/e
(1)
1

1 , . . . , z
1/e

(1)
k1

1 , . . . , z
1/e

(r)
1

r , . . . , z
1/e

(r)
kr

r ) ∈ W .
Let (a, b) be a pair of natural numbers such that a ∈ {1, . . . , r} and b ∈

{1, . . . , ka}. Let (c, d) be another pair satisfying the same constraints.
The (a, b)th BA function of a point U ∈ Gr(W ) is defined as the W -valued

function whose (c, d)th entry is given by

(2.1) ψ
(c,d)
a,b,U (z�, t) := exp

(
−

∑
i≥1

t
(c,d)
i

z
i/e

(c)
d

c

)τUc,d
a,b

(t + [z1/e
(c)
d

c ])

τU (t)
,

where

• [zv] := (zv, z2
v/2, z3

v/3, . . .),

• t + [z1/e
(c)
d

c ] := (t(1,1), . . . , t(1,k1), . . . , t(c,d) + [z1/e
(c)
d

c ], . . . , t(r,1), . . . , t(r,kr)),

• and U c,d
a,b := (1, . . . , z

1/e
(a)
b

a , . . . , (z1/e
(c)
d

c )−1, . . . ,1) · U .

The main property of these BA functions is that they can be understood as
generating functions for U as a subspace of W , as we recall below. This eventually
implies an analogue of the bilinear identity.

THEOREM 2.1 ([14, THEOREM 3.7])

Let U ∈ Grm(W ). Then the BA functions have the following expansion:

ψa,b,U (z�, t) = v−1
m · (1, . . . , z

1/e
(a)
b

a , . . . ,1)

·
∑
i>0

(
ψ

(1,1)
a,b,U (z1/e

(1)
1

1 ), . . . , ψ(r,kr)
a,b,U (z

1/e
(r)
kr

r )
)
pa,b,i,U (t),

where {(
ψ

(1,1)
a,b,U (z1/e

(1)
1

1 ), . . . , ψ(r,kr)
a,b,U (z

1/e
(r)
kr

r )
)∣∣a ∈ {1, . . . , r}, b ∈ {1, . . . , ka}

}
is a basis of U and pa,b,i,U (t) are functions in t.
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Bilinear identity
Note that W is endowed with the following natural pairing:

T2 : W × W −→ C,

(w1,w2) �−→
r∑

i=1

Reszi=0 Tri(w(i)
1 w

(i)
2 )dzi,

where Tri : W i → C((zi)) is the trace map of W i as a C((zi))-algebra, and wj =
(w(1)

j , . . . ,w
(r)
j ) w.r.t. the decomposition W = W 1 × · · · × W r.

From the separability of W i as C((zi))-algebra, it follows that T2 is a non-
degenerate bilinear pairing. Furthermore, it induces an involution of the Grass-
mannian

Gr(W ) −→ Gr(W ),

U �−→ U ⊥,

where U ⊥ is the orthogonal of U w.r.t. T2. This involution sends the connected
component of index m to that of index r̄ − r · n − m.

Finally, the (a, b)th adjoint BA functions of U are defined by

ψ∗
a,b,U (z�, t) := ψa,b,U ⊥ (z�, −t).

THEOREM 2.2 (BILINEAR IDENTITY)

Let U,U ′ ∈ Grm(W ) be two rational points lying on the same connected compo-
nent. Then, U = U ′ if and only if the following condition holds:

T2

( 1
z�

ψU (z�, t),
1
z�

ψ∗
U ′ (z�, t′)

)
= 0.

The Krichever morphism
Let M ∞(r̄) be the moduli functor parameterizing the classes of sets of data
(Y, ȳ, tȳ) of geometrically reduced proper curves with r̄ pairwise distinct marked
smooth points ȳ := y1 + · · · + yr̄ and formal parameters tȳ := {t1, . . . , tr̄ } at these
points such that each irreducible component of Y contains at least one of the
marked points.

The Krichever morphism for M ∞(r̄) is the morphism of functors

Kr : M ∞(r̄) −→ Gr(W )

which sends (Y, ȳ, tȳ) to the following submodule of W ⊗̂C OS :

(2.2) tȳ

(
lim−→
m

(pY )∗ OY (mȳ)
)

⊂ W ⊗̂C OS .

Applying [14, Theorem 4.3], we have the following.

THEOREM 2.3

The Krichever morphism (3.1) identifies M ∞(r̄)(S) with the set of submodules
U ∈ Gr(W )(S) such that U · U ⊆ U and OS ⊆ U . In particular, this functor is
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representable by a closed subscheme of the infinite Grassmannian, which also is
denoted by M ∞(r̄).

REMARK 1

Note that the Krichever morphism maps (Y, ȳ, tȳ) to the connected component
of the infinite Grassmannian of index equal to the Euler-Poincaré characteristic
of OY . This follows from the exactness of the exact sequence

0 H0(Y, OY ) H0(Y − ȳ, OY )

�

(Ôȳ)(0)/Ôȳ

�

H1(Y, OY ) 0.

Kr(Y, ȳ, tȳ) W/W+

3. Coverings with prescribed ramification

Hurwitz schemes
Let π : Y → X be a finite morphism between proper curves over C. Let us assume
Y and X to be reduced. Let us fix a set of pairwise distinct smooth points in X ,
x = {x1, . . . , xr }, and let y := π−1(x1) + · · · + π−1(xr).

Let us define A := H0(X − x, OX), B := H0(Y − y, OY ), ΣX (resp., ΣY ) to
be the total quotient ring of A (resp., B). Let TrΣY

ΣX
denote the trace of ΣY as

a finite ΣX -algebra.
The triple (Y,X,x) is said to have the property (∗) if TrΣY

ΣX
(B) ⊆ A.

It is worth pointing out that every covering π : Y → X has the property (∗)
whenever X is smooth or π is flat.

Let us fix a set of numerical data as in §2:

E = {ē1, . . . , ēr }

with ēi = {e
(i)
1 , . . . , e

(i)
ki

} with n = e
(i)
1 + · · · + e

(i)
ki

> 0. Let V and W be the
C((z))-algebras defined by the data E as in §2. For a C-scheme S, we write
V̂S := V ⊗̂C OS and ŴS := W ⊗̂C OS .

DEFINITION 3.1

The Hurwitz functor H ∞
E of pointed coverings of curves of degree n with fibers

of type E and formal parameters along the fibers is the contravariant functor on
the category of C-schemes

H ∞
E :

{
category of
C-schemes

}
−→

{
category of

sets

}
,

S �→ H ∞
E (S) :=

{
(Y,X,π, x̄, ȳ, tx̄, tȳ)

}
,

where
(1) pY : Y → S and pX : X → S are proper and flat morphisms whose fibers

are geometrically reduced curves;
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(2) π : Y → X is a finite morphism of S-schemes of degree n such that its
fibers over closed points s ∈ S have the property (∗);

(3) x̄ = {x1, . . . , xr } is a set of disjoint smooth sections of pX such that the
Cartier divisors xi(s) for i = 1, . . . , r are smooth points of Xs := p−1

X (s) for all
closed points s ∈ S;

(4) ȳ = {ȳ1, . . . , ȳr }, and, for each i, ȳi = {y
(i)
1 , . . . , y

(i)
ki

} is a set of disjoint

smooth sections of pY such that the Cartier divisor π−1(xi(S)) is e
(i)
1 y

(i)
1 (S) +

· · · + e
(i)
ki

y
(i)
ki

(S);
(5) for all closed points s ∈ S and each irreducible component of the fiber

Xs, there is at least one point xi(s) lying on that component;
(6) for all closed points s ∈ S and each irreducible component of the fiber

Ys, there is at least one point y
(i)
j (s) lying on that component;

(7) tx̄ is a formal parameter along x̄(S), tx̄ : ÔX,x̄(S)
∼→ V̂S , such that it

induces

txi := (tx̄)xi : ÔX,xi(S)
∼→ OS [[zi]]

for all i;
(8) tȳ = {tȳ1 , . . . , tȳr } are formal parameters along ȳ1(S), . . . , ȳr(S) such that

π∗(txi)y
(i)
j (S)

= t
e
(i)
j

y
(i)
j

;

(9) (Y,X,π, x̄, ȳ, tx̄, tȳ) and (Y ′,X ′, π′, x̄′, ȳ′, tx̄′ , tȳ′ ) are said to be equivalent
when there is a commutative diagram of S-schemes

Y

π

∼
Y ′

π′

X
∼

X ′

compatible with all the data.

Observe that the map π : Y → X of a point (Y,X,π, x̄, ȳ, tx̄, tȳ) in H ∞
E is surjec-

tive.
The forgetful map that sends (Y,X,π, x̄, ȳ, tx̄, tȳ) to (Y, ȳ, tȳ) defines a map

H ∞
E −→ M ∞(r̄),

whose composition with the Krichever morphism defines the Krichever morphism
for the Hurwitz functor. Explicitly, it is the morphism of functors

(3.1) Kr : H ∞
E −→ Gr(W )

which sends (Y,X,π, x̄, ȳ, tx̄, tȳ) ∈ H ∞
E (S) to the submodule of W ⊗̂C OS given

by (2.2).
Let Tr : W → V denote the trace map of W as a V -algebra. It is then clear

that Tr =
⊕r

i=1 Tri, where Tri : W i → C((zi)) is the trace map of the C((zi))-
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algebra W i. Furthermore, one has a commutative diagram

H0(Y − y, OY )
ty

Tr
ΣY
ΣX

ŴK := W ⊗̂C K = (W 1 × · · · × W r) ⊗̂C K

Tr

H0(X − x, OX)
tx

V̂K := V ⊗̂C K = K((z1)) × · · · × K((zr))

for each geometric point (Y,X,π, x̄, ȳ, tx̄, tȳ) in H ∞
E (K) (K being an extension

of C).

PROPOSITION 3.1

Let Y = (Y,X,π,x, y, tx, ty) be an S-valued point of H ∞
E . It then holds that

Kr(X,x, tx) = Kr(Y ) ∩ V̂S = Tr
(
Kr(Y )

)
∈ Gr(V )(S)

and also that, in particular, the Krichever map (3.1) is injective.

THEOREM 3.1

Let U ∈ M ∞(r̄) ⊂ Gr(W ) be an S-valued point. Then, the following conditions
are equivalent:

(1) U ∈ H ∞
E (S),

(2) Tr(U) ⊆ U .
In particular, the functor H ∞

E is representable by a closed subscheme H ∞
E of

Gr(W ).

DEFINITION 3.2

The Hurwitz functor H ∞
E of pointed coverings of smooth curves of degree n with

fibers of type E and formal parameters along the fibers is the subfunctor of H ∞
E

consisting of data (Y,X,π, x̄, ȳ, tx̄, tȳ), where the fibers of Y → S are nonsingular
curves.

THEOREM 3.2

The functor H ∞
E is representable by a subscheme of Gr(W ), which is denoted by

H ∞
E .

Proof
Note that if a family Y → X has the property (∗) and the fibers of Y are nonsin-
gular curves, then the fibers of X are also nonsingular curves. Now let Y → H ∞

E

be the universal family given by the representability of the functor H ∞
E . Then the

desired subscheme, H ∞
E , consists precisely of the points s ∈ H ∞

E such that Ys is
smooth. Since the set {s ∈ S | Ys is smooth} is open in S, the result follows. �
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Moduli and characterization of coverings
The study of the functor H ∞

E has been carried out exhaustively in [14] for the case
r = 1. However, since an arbitrary covering may have more than one ramification
point, this case does not allow us to characterize general coverings.

Since the number of ramification points of a covering is finite, the previous
study of H ∞

E does make it possible to find characterizations for all coverings.
Let π : Y → X be a finite covering of degree n of smooth integral curves. Let

ḡ and g be the genus of Y and X , respectively. Then, the Hurwitz formula reads

1 − ḡ = n(1 − g) − 1
2

∑
y∈Y

(ey − 1),

where ey is the ramification index of the point y ∈ Y .
Let {x1, . . . , xr } ⊂ X be the branch locus, and let us denote

ȳ = π−1(x1) + · · · + π−1(xr),

π−1(xi) = e
(i)
1 y

(i)
1 + · · · + e

(i)
ki

y
(i)
ki

.

Considering E = {ē1, . . . , ēr }, ēi = {e
(i)
1 , . . . , e

(i)
ki

}, and r̄ =
∑r

i=1 ki, one has

∑
y∈Y

(ey − 1) =
r∑

i=1

ki∑
j=1

(e(i)
j − 1) = rn − r̄.

Thus, the Hurwitz formula can be rewritten as

1 − ḡ = n(1 − g) − 1
2
(rn − r̄).

DEFINITION 3.3

For integers i, j, we define the following subschemes of H ∞
E :

H ∞
E [j] :=

{
U ∈ H ∞

E ∩ Gr1−j(W ) such that U is an integral domain
}
,

H ∞
E [j, i] :=

{
U ∈ H ∞

E [j] such that Tr(U) ∈ Gr1−i(V )
}
.

Note that since Tr(U) ⊆ U for any U ∈ H ∞
E , the condition that U is an integral

domain implies that Tr(U) is integral also.
From the representability of H ∞

E and the Hurwitz formula for coverings, one
has the following.

THEOREM 3.3

Let (E,n, r̄) be a set of numerical data as in §2, and let g, ḡ be two nonnegative
integer numbers satisfying

ḡ − 1 = n(g − 1) +
1
2
(rn − r̄).

Accordingly, the subscheme H ∞
E [ḡ, g] ⊂ Gr1−ḡ(W ) is the moduli scheme para-

meterizing geometrical data (Y,X,π, x̄, ȳ, tx̄, tȳ) ∈ H ∞
E , where Y has genus ḡ, X

has genus g, the covering π : Y → X is nonramified outside ȳ, and the ramifica-
tion index at the point y

(i)
j ∈ Y is e

(i)
j .
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REMARK 2

Let us observe that there exists a natural forgetful morphism

Φ : H ∞
E [ḡ, g] −→ M ∞

g (r),

(Y,X,π, x̄, ȳ, tx̄, tȳ) �−→ (X, x̄, tx̄).

Given (X, x̄, tx̄) ∈ M ∞
g (r) with X smooth and integral, the fiber of this point

is denoted by H ∞
E (X, x̄, tx̄). Recall that there is a finite number of coverings

π : Y → X with Y and X smooth, X integral, π is dominant on each component
of Y , nonramified outside x̄, and with ramification indices ēi at xi (see [3], [15]).
Then, we may conclude that H ∞

E (X, x̄, tx̄) is a finite set.

Let E be a set of partitions as above, let Y be a proper smooth curve, and
let ȳ be {y

(1)
1 , . . . , y

(1)
k1

, . . . , y
(r)
1 , . . . , y

(r)
kr

}. Then, we say that (Y, ȳ) is a covering
with ramification profile E if and only if there is another curve X and a map
π : Y → X such that the ramification divisor of π is equal to

∑r
i=1

∑ki

j=1 e
(i)
j y

(i)
j .

THEOREM 3.4

Fix m a nonpositive integer m, and let {u1,1, . . . , ur,kr } be integers defined by

vm = z
u1,1/e

(1)
1

1 · · · zur,kr /e
(r)
kr

r , where vm ∈ W was chosen to define τ -functions.
Let ξe be a primitive eth root of unity, and let δ denote the Kronecker symbol.

Let (Y, ȳ, tȳ) ∈ M ∞(r̄) ⊂ Grm(W ) be a closed point such that Y is smooth.
Then, (Y, ȳ, tȳ) is a covering of another curve with ramification profile E if

and only if the following “bilinear identities” are satisfied; that is, the form

( r∑
l=1

kl∑
j=1

e
(l)
j∑

i=1

ψ
(l,j)
a,b,B(ξi

e
(l)
j

z
1/e

(l)
j

l , t)

(ξi

e
(l)
j

z
1/e

(l)
j

l )δalδbj −ul,j

)( r∑
l=1

kl∑
j=1

e
(l)
j∑

i=1

ψ
(l,j)
c,d,B(ξi

e
(l)
j

z
1/e

(l)
j

l , t)

(ξi

e
(l)
j

z
1/e

(l)
j

l )ul,j −1+δclδdj

)dz

z

has residue zero at z = 0 for all a, b, c, d.

Proof
The claim is equivalent to characterizing H ∞

E as a subscheme of M ∞(r̄). The
idea is standard and consists of translating the second condition of the previous
statement in terms of Baker-Akhiezer functions by means of Theorem 2.1. �

REMARK 3

Using formula (2.1), the above set of equations can be rewritten as a hierarchy
of differential equations for τ functions. Furthermore, since we are considering
points in M ∞(r̄), it would be possible to express those equations as differential
equations for theta functions (see [12]).

REMARK 4

For the case r = 1 and ē1 = {1, r. . . ,1}, the previous hierarchy coincides with the
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r-component KP hierarchy. This links our work with the theory of pseudodiffer-
ential operators and representation theory (see [7]).

4. Tangent space to the Hurwitz scheme

This section is devoted to an explicit computation of the tangent space of the
Hurwitz schemes constructed in §3. To achieve this goal, we begin by recalling
the computation of the tangent spaces to the infinite Grassmannian and to the
moduli space of pointed curves.

PROPOSITION 4.1

Let U be a rational point of Gr(W ). There is a canonical isomorphism

TU Gr(W ) ∼−→ Hom(U,W/U).

Proof
Let A ∼ W+ and U ∈ Gr(W ) be such that U ⊕ A  W . Let FA be the open
subscheme of Gr(W ) parameterizing those subspaces U ′ ∈ Gr(W ) such that
U ′ ⊕ A  W . Then, it is well known that FA is isomorphic to the affine space
Hom(U,A) and that the embedding

Hom(U,A) ∼→ FA ↪→ Gr(W )

maps f : U → A to its graph Γf := {u + f(u) | u ∈ U }.
Since U ∈ FA (it corresponds to the zero map) and FA is open, we obtain an

isomorphism of vector spaces

Hom(U,A) ∼→ T0 Hom(U,A) ∼→ TU Gr(W ) ∼→ Gr(W )(k[ε]/ε2) ×Gr(W )(k) {U }

which maps f ∈ Hom(U,A) to the (k[ε]/ε2)-valued point of Gr(W ) given by
{u + εf(u) | u ∈ U }.

Composing the inverse of this map with the isomorphism

Hom(U,A) ∼−→ Hom(U,W/U),

f �−→ U
Id+f→ U ⊕ A

∼→ W → W/U,

we obtain the desired isomorphism. (Observe that it does not depend on the
choice of A.) �

PROPOSITION 4.2

Let U be a rational point of M ∞(r̄). The isomorphism of Proposition 4.1 induces
a canonical identification

TU M ∞(r̄)  Der(U,W/U)

(where Der means derivations trivial over C).
Furthermore, if U is associated to the geometrical data (C, p̄, z̄) under the

Krichever map, then W/U  H0(C − p̄, ωC)∗.
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Proof
For U ∈ M ∞(r̄), one has

TU M ∞(r̄) =
{
Ū ∈ TU Gr(W ) such that Ū · Ū ⊆ Ū and k[ε] ⊂ Ū

}
.

From Proposition 4.1, there is a map f ∈ Hom(U,A) such that Ū = {u + εf(u) |
u ∈ U }.

The condition Ū · Ū ⊆ Ū means that for u,u′ ∈ U , there exists u′ ′ ∈ U satis-
fying (u + εf(u)) · (u′ + εf(u′)) = u′ ′ + εf(u′ ′); that is,

(4.1) f(u · u′) = uf(u′) + f(u)u′.

The second condition, k[ε] ⊂ Ū , implies that there exists u0 ∈ U such that u0 +
εf(u0) = 1, or, in other words

(4.2) f(1) = 0.

It is now easy to check that the image of f ∈ Hom(U,A) in Hom(U,W/U) gives
rise to a derivation Df ∈ Der(U,W/U). (Note that W/U is a U -module.) The
first part follows from a straightforward check.

Consider the following exact sequence of OC -modules:

0 → OC(−mp̄) → OC(np̄) → OC(np̄)/OC(−mp̄) → 0.

Taking the inverse limit in m and the direct limit in n in the induced long exact
sequence of cohomology groups, one obtains

0 H0(C − p̄, OC)

�

W  (Ôp̄)(0)

�

lim←−
m

H1
(
C, OC(−mp̄)

)
0

U W

and the second claim follows. �

Note that a similar result holds for points of M ∞(r) ⊂ Gr(V ).
Let us denote

(4.3)

Der(U,W/U)Tr :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
D ∈ Der(U,W/U) such that

U
D

Tr

W/U

Tr1

TrU
D

V/TrU

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

where Tr1 is the map induced by the trace. (Since TrU ⊆ U , it makes sense to
consider the restriction of D to TrU .)
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THEOREM 4.1

Let U be a rational point of H ∞
E . The embedding H ∞

E ↪→ M ∞(r̄) yields an iden-
tification

TU H ∞
E  Der(U,W/U)Tr.

Moreover, if U corresponds to the geometrical data (Y,X,π, x̄, ȳ, tx̄, tȳ) in
H ∞

E , then Tr1 is the map

Tr1 : H0(Y − y,ωY )∗ −→ H0(X − x,ωX)∗

canonically induced by the trace π∗ OY → OX .

Proof
Let us keep the notation of the proofs of Propositions 4.1 and 4.2. Then, let
Ū ∈ Gr(W ) be a k[ε]/ε2-valued point lying in TU M ∞(r̄). Let f ∈ Hom(U,A)
correspond to Ū .

Thus, the condition Tr(Ū) ⊆ Ū (see Theorem 3.1) is equivalent to saying that
for each u ∈ U there exists u′ ∈ U satisfying Tr(u + εf(u)) = u′ + εf(u′). Since
Tr(u) ∈ U , this condition is

(4.4) Tr1
(
f(u)

)
= f

(
Tr(u)

)
, ∀u ∈ U,

and the first part of the claim follows easily.
Let us prove the second part. Note that the trace is a sheaf homomorphism

Tr : π∗ OY −→ OX .

This map induces

H1
(
X, (π∗ OY )(−nx̄)

)
−→ H1

(
X, OX(−nx̄)

)
.

Bearing in mind the adjunction formula, the fact that π is affine, Serre duality,
and taking limits, one obtains the desired map

Tr1 : H0(Y − ȳ, ωY )∗ −→ H0(X − x̄, ωX)∗.

Using arguments similar to those in the proof of Proposition 4.2, it is not difficult
to check that this map is compatible with the isomorphisms H0(Y − ȳ, ωY )∗ 
W/U and H0(X − x̄, ωX)∗  V/Tr(U). �

THEOREM 4.2

Let (E,n, r, ḡ, g) be as in Theorem 3.3. Let U ∈ H ∞
E [ḡ, g] be a rational point.

Then, there is a canonical injection

TU H ∞
E [ḡ, g] ↪→ TTrU M ∞(r).

Proof
By Proposition 4.2 and Theorem 4.1, the claim is equivalent to the injectivity of
the restriction map

Der(U,W/U)Tr −→ Der(TrU,V/TrU).
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Let D ∈ Der(U,W/U)Tr be in the kernel of the above map; that is, D|Tr(U) =
0. Let u be any element in U , and let us see that Du = 0. Since A := Tr(U) → U is
an integral morphism, there is a monic minimal polynomial p(x) =

∑
i aix

i ∈ A[x]
such that p(u) = 0. Therefore, the following identity holds true:

0 = Dp(u) =
∑

i

(Dai)ui + p′(u)Du = p′(u)Du

(p′(x) denoting the derivative w.r.t. x).
Since p(x) is separable and π is unramified over X − x̄ = SpecA, then

1/p′(u) ∈ A[u] ⊆ U . Therefore, one has Du = 0. �

5. The multicomponent Virasoro group

The algebraic Virasoro group, defined as G := AutCC((z)), was introduced and
studied in [13]. In this section it is generalized for certain C((z))-algebras. Note
that V carries the linear topology given by {znV+}n∈Z.

It is convenient to recall the following result. Let R be a C-algebra, and let
f(z) ∈ R((z)). Then f(z) is invertible if and only if there exists n ∈ Z such that
ai ∈ Rad(R) for i < n and an is invertible.

DEFINITION 5.1

The functor of automorphisms of V is the functor defined from the category of
C-schemes to the category of groups defined as

S � AutC(V )(S) := AutH0(S,OS) V ⊗̂C H0(S, OS),

where AutR means continuous automorphisms of R-algebras.

LEMMA 5.1

Let S be a C-scheme, and let φ ∈ AutC(V )(S). For any point s ∈ S, let pφ(s) be
the permutation defined by φ(s) on the set Spec(Vs). (Note that Vs := V ⊗̂C k(s)
consists of r points.)

Then, the map

S −→ Sr,

s �−→ pφ(s)

(Sr being the symmetric group of r letters) is locally constant.

Proof
Let us assume that S = Spec(R) is an irreducible C-scheme. Let φ ∈ AutC(V )(S).
Since Vs := V ⊗̂C k(s) 

∏r
k(s)((z)) is a product of fields, it follows that φ(s) ∈

AutC(V )(k(s)) acts by permutation on Spec(VR), that is, on the set of ideals
I1 := ((z1,0, . . . ,0)), . . . , Ir := ((0, . . . ,0, zr)). In other words, there exists pφ(s) ∈
Sr such that

φ(s)(Ii) = Ipφ(s)(i).
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Let us write φ(0, . . . , zi, . . . ,0) = (φ(i)
1 , . . . , φ

(i)
r ) ∈ R((z1)) × · · · × R((zr)). Let

s0 denote the point associated with the minimal prime ideal of R. The very
definition of the permutation pφ(s0) states that

φ
(i)
j (s0) ∈ k(s0)((zj)) is

{
invertible if j = pφ(s0)(i),

zero if j �= pφ(s0)(i),

and, therefore, s0 ∈ (φ(i)
j )0 for j �= pφ(s0)(i). Since s0 is minimal, S is irreducible,

and (φ(i)
j )0 is closed, it follows that the closure of s0, S, is contained in (φ(i)

j )0
for j �= pφ(s0)(i).

Thus, it turns out that φ
(i)
j (s) �= 0 for j = pφ(s0)(i) and for all s ∈ S; equiv-

alently, φ
(i)
j ∈ R((zj)) is invertible for j = pφ(s0)(i), and therefore, pφ(s0) = pφ(s)

for all s ∈ S. The statement follows. �

As a consequence of Lemma 5.1, we have a well-defined map of group functors

AutC(V )
p−→ Sr

given by p(φ) := pφ. Here, the scheme structure of the finite group Sr is consid-

ered to be that of the C-scheme Spec(
r!∏

C).

THEOREM 5.1

Let V be the C-algebra C((z1)) × · · · × C((zr)), and let V+ be the subalgebra
C[[z1]] × · · · × C[[zr]].

The canonical exact sequence of group functors

0 → G × r· · · × G
i−→ AutC(V )

p−→ Sr → 0

splits.
In particular, AutC(V ) is representable by a formal C-group scheme which

is denoted by GV .

Proof
The map i is the canonical inclusion

AutCC((z1)) × · · · × AutCC((zr)) ↪→ AutC(V ).

Let us note that one can associate with every permutation σ ∈ Sr the auto-
morphism of V defined by zi �→ zσ−1(i). �

Let G0
V be the connected component of the identity of GV . Accordingly, G0

V acts
on Gr(V ), and this action yields an action on the subscheme M ∞(r) ⊂ Gr(V ).

Let us now consider the groups GV and GW corresponding to the C-algebras
V and W , respectively.
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The V -algebra structure of W allows us to define a subgroup GW
V ⊆ G0

W as

(5.1) GW
V :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
W

∼

ḡ

W

V
∼

g

V

where ḡ ∈ G0
W and g ∈ G0

V .

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
The element of GW

V given by such a diagram is denoted by ḡ.

PROPOSITION 5.1

There exists an exact sequence of formal C-group schemes

0 → μE → GW
V

π→ G0
V → 0,

where π(ḡ) = g and

μE := (μ
e
(1)
1

× · · · × μ
e
(1)
k1

) × · · · × (μ
e
(r)
1

× · · · × μ
e
(r)
kr

)

(μ
e
(j)
i

⊂ C
∗ being the group of e

(j)
i th roots of unity).

Proof
From the previous result it can be assumed that r = 1 and k1 = 1; that is,
V = C((z)) and W = C((z1/e)). Then, one has GV  G and GW  G.

Note that an element ḡ ∈ G0
W belongs to GW

V if and only if ḡ(z1/e)e ∈ V .
And the result follows. �

COROLLARY 5.1

The canonical restriction map GW
V → G0

V yields an isomorphism of Lie algebras

LieGW
V

∼−→ LieG0
V .

LEMMA 5.2

Let R be a C-algebra, and let f(z1/e) ∈ R((z1/e)).
If f(z1/e)e ∈ R((z)) and f(z1/e) is invertible, then there exist i such that

zi/ef(z1/e) ∈ R((z)).

Proof
We may assume that f(z1/e) =

∑
i aiz

i/e, where ai ∈ Rad(R) for i < 0 and a0 is
invertible. Let I ⊆ Rad(R) be the ideal generated by {ai | i < 0} (recall that this
set is finite), and let n ≥ 0 be the smallest integer such that In+1 vanishes. Let
us proceed by induction on n.

Case n = 1: ai · aj = 0 for all negative integers i, j. Let i0 be the smallest
index for which ai0 �= 0. The hypothesis implies that

f(z1/e)e = e · ae−1
0 · ai0 · zi0/e + (higher-order terms) ∈ R((z))
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and, therefore, e|i0. To conclude, it suffices to consider (a0 +ai0z
i0/e)−1 · f(z1/e)

and iterate this argument.

General case. Let f̄n(z1/e) be the class of f(z1/e) in R/In((z1/e)). From the
induction hypothesis, it follows that zi/ef̄n(z1/e) ∈ R/In((z)). Let fn(z) ∈ R((z))
be a preimage of f̄n. Consider now the element (f(z1/e))/(fn(z)) ∈ R((z1/e)).
From the n = 1 case, it follows that f(z1/e)(fn(z))−1 ∈ R((z)), and the claim
follows. �

LEMMA 5.3

Let R be a C-algebra, let Tr : ŴR → V̂R be V̂R be the trace map, and let ḡ be an
element of G0

W .
Then, ḡ ∈ GW

V if and only if Tr ◦ ḡ = ḡ ◦ Tr.

Proof
Note that it suffices to prove the claim for the following case:

V = R((z)) ↪→ W = R((z1/e)).

Let us show that

(5.2) Tr(ḡw) = π(ḡ)Tr(w) = g
(
Tr(w)

)
, ∀w ∈ ŴR.

An element ḡ ∈ G0
W (R) is of the form

ḡ(z1/e) = z1/e ·
(∑

i

aiz
i/e

)
∈ R((z1/e)),

where ai is nilpotent for i < 0 and a0 is invertible. The condition ḡ ∈ GW
V implies

that

ḡ(z1/e)e = ḡ(z) ∈ R((z)),

and, by Lemma 5.2, it follows that
∑

i aiz
i/e ∈ R((z)); that is, ai = 0 if e does

not divide i. In particular, g = π(ḡ) is the automorphism given by

g(z) = z
(∑

j

ajez
j
)

∈ R((z)).

By linearity, it is sufficient to check the claim for zl/e, where l ∈ Z,

Tr
(
ḡ(zl/e)

)
= Tr

(
zl/e ·

(∑
j

ajez
j
)l

)
=

(∑
j

ajez
j
)l

· Tr(zl/e) = g
(
Tr(zl/e)

)
since Tr(zl/e) = 0 for e not dividing l and Tr(zl/e) = e · zl/e for e dividing l.

Conversely, for ḡ ∈ G0
W commuting with the trace, we have

ḡ(Tr z) = ḡ(e · z) = e · ḡ(z1/e)e,

Tr
(
ḡ(z)

)
∈ R((z)).

Therefore, one has ḡ(z1/e)e ∈ R((z)). Lemma 5.2 implies that ḡ(z1/e) is of the
form z1/e(

∑
i aiz

i), which belongs to GW
V . �
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THEOREM 5.2

It holds that
(1) LieGV 

⊕r
i=1 Der(C((zi)),C((zi))) 

⊕r
i=1 C((zi)) ∂

∂zi
;

(2) LieGW 
⊕r

i=1

⊕ki

j=1 Der(C((z
1/e

(i)
j

i )),C((z
1/e

(i)
j

i )));
(3) LieGW

V  (LieGW )Tr (those derivations commuting with the trace; as
in (4.3)).

Proof
Recall that [13, Theorem 3.5] claims that LieG  C((z)) ∂

∂z . Then, the statements
follow from Theorem 5.1, Corollary 5.1, and Lemma 5.3. �

THEOREM 5.3

The group GW
V acts on H ∞

E .

Proof
Recall that H ∞

E consists of those points U of M ∞(r̄) such that Tr(U) ⊆ U and
that GW

V acts on M ∞(r̄). Therefore, it suffices to show that the condition
Tr(U) ⊆ U implies that Tr(ḡU) ⊆ ḡU for all ḡ ∈ GW

V .
Let U be a point of H ∞

E . From Lemma 5.3 and from the inclusion Tr(U) ⊆ U ,
one has

Tr(ḡU) = ḡ
(
Tr(U)

)
⊆ ḡU,

and the statement follows. �

THEOREM 5.4

Let (E,n, r, ḡ, g) be as in Theorem 3.3. The group GW
V acts on H ∞

E [ḡ, g], and this
action is locally transitive.

Proof
It is straightforward to see that the action on H ∞

E gives an action on H ∞
E [ḡ, g].

From [13, Lemma 4.10, Theorem 4.11, Lemma A.2], the proof is reduced to
checking the surjectivity of the map of tangent spaces

(5.3) TIdGW
V −→ TU H ∞

E [ḡ, g].

Let (Y,X,π, x̄, ȳ, tx̄, tȳ) be the data attached to U ∈ H ∞
E [ḡ, g]. Then, Theo-

rems 4.1, 4.2, and 5.2 and Corollary 5.1 give the following commutative diagram:

0 H0(Y − ȳ,TY ) LieG0
W Der(U,W/U) 0

LieGW
V

ψ

�

Der(U,W/U)Tr

0 H0(X − x̄,TX) LieG0
V Der(TrU,V/TrU) 0
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(T denoting the tangent sheaf). From the diagram, we deduce that ψ is surjective.
Since ψ coincides with the map (5.3), we conclude. �

THEOREM 5.5

Let (E,n, r, ḡ, g) be as in Theorem 3.3. Let U ∈ H ∞
E [ḡ, g] be a rational point.

Then, there is an isomorphism

TU H ∞
E [ḡ, g] ∼−→ TTrU M ∞(r).

Proof
The injectivity follows from Theorem 4.2. The surjectivity is a consequence of
the diagram in the proof of Theorem 5.4. �

REMARK 5

This theorem is the analog of the fact that the map from the classical Hurwitz
space to the moduli of curves is étale at those points corresponding to covers
where both curves are smooth. Our approach also allows us to study the non-
smooth case; however, because of our goals we have focused only on the smooth
case.

6. Picard schemes

DEFINITION 6.1

Let Pic∞
E [ḡ, g] be the contravariant functor from the category of C-schemes to

the category of sets defined by

S �
{
(Y,X,π, x̄, ȳ, tx̄, tȳ,L,φȳ)

}
,

where
(1) (Y,X,π, x̄, ȳ, tx̄, tȳ) ∈ H ∞

E [ḡ, g](S);
(2) L is an invertible sheaf on Y and φȳ is a formal trivialization of L along

ȳ, that is, an isomorphism φȳ : L̂ȳ  ÔY,ȳ ;
(3) two sets of data are said to be equivalent when there is an isomorphism

of S-schemes Y
∼→ Y ′ compatible with all the data.

THEOREM 6.1

The functor Pic∞
E [ḡ, g] is representable by a subscheme Pic∞

E [ḡ, g] of Gr(W ).

Proof
Consider the morphism from Pic∞

E [ḡ, g] to Gr(W ) × Gr(W ), which sends the S-
valued point (Y,X,π, x̄, ȳ, tx̄, tȳ,L,φȳ) to the following pair of submodules as a
point of Gr(W ) × Gr(W ):(

tȳ

(
lim−→
m

(
p∗ OY (m · π−1(x̄))

))
, (tȳ ◦ φȳ)

(
lim−→
m

(
p∗L(m · π−1(x̄))

)))
,

where p : Y → S is the projection.
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This map is injective, and the image is contained in the subscheme Z ⊂
Gr(W ) × Gr(W ) of those pairs (A,L) satisfying

C ⊂ A, A · A ⊆ A, A · L ⊆ L.

Let (A, L) be the pair defined by the pullback to Z of the universal submodules.
Applying the converse construction of the Krichever correspondence to the

algebra A, we obtain a curve Y → Z. Let us now consider the subscheme Z ′ ⊂ Z

defined by the points z ∈ Z such that Yz is smooth.
We now claim that if (A, L) belongs to Z ′, then A can be obtained from L.

Indeed, it is shown that A is the stabilizer of L.
Consider (A, L) ∈ Z ′, and let AL denote the stabilizer of L, that is, the

OS-algebra

AL := {w ∈ ŴS such that w · L ⊆ L }.

Since Az corresponds to a smooth curve for all z ∈ Z ′ and A ⊆ AL are points
of Gr(W ), then AL is a finite A-module such that Az = (AL)z for all z ∈ Z ′.
Therefore, we have A = AL.

One now checks that the image of Z ′ by the projection onto the second
factor, Gr(W ) × Gr(W ) → Gr(W ), does represent Pic∞

E [ḡ, g]. �

REMARK 6

For χ ∈ Z, the subfunctor of Pic∞
E [ḡ, g] consisting of those points such that L

has Euler-Poincaré characteristic equal to χ is representable by the subscheme
Pic∞

E [ḡ, g] ∩ Grχ(W ).

Since ΓW represents the group of invertible elements of W and GW
V is a group

of automorphisms of W as an algebra, one has a canonical action of GW
V on ΓW .

Therefore, it makes sense to consider the semidirect product GW
V � ΓW as

(g2, γ2)(g1, γ1) :=
(
g2g1, g

−1
1 (γ2)γ1

)
,

and the action of GW
V � ΓW on the Grassmannian induced by the action on W ,

(g, γ)w := g(γ · w).

THEOREM 6.2

There are canonical actions of the groups GW
V , ΓW , and ΓW �GW

V on Pic∞
E [ḡ, g].

Moreover, the action of GW
V � ΓW is locally transitive.

Proof
Let

Ψ : Pic∞
E [ḡ, g] −→ H ∞

E [ḡ, g]

be the forgetful morphism. Let us consider a rational point p ∈ Pic∞
E [ḡ, g] corre-

sponding to the geometric data (Y,X,π, x̄, ȳ, tx̄, tȳ,L,φȳ). Let A := tȳ(H0(Y −
ȳ, OY )) ∈ H ∞

E [ḡ, g], and let U := tȳ
(
φȳ(H0(Y − ȳ,L))

)
∈ Pic∞

E [ḡ, g].
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Considering the map induced by Ψ at the level of tangent spaces and recalling
Theorem 5.4, one easily obtains the diagram

0 LieΓW Lie(ΓW � GW
V ) LieGW

V

ψ

0

0 HomA−mod(U,W/U) Tp Pic∞
E [ḡ, g] Der(A,W/A)Tr 0

The snake lemma implies that the middle vertical arrow is surjective. We con-
clude by ideas similar to those in the proof of Theorem 5.4. �

REMARK 7

In future work and following ideas of [2] and [9], we plan to study how the defor-
mations of a point Pic∞

E [ḡ, g] under the action of GW
V � ΓW can be interpreted

as isomonodromic deformations.
A related problem, namely, the case of Higgs bundles (or, equivalently, cer-

tain line bundles on a given covering) has already been treated in [5]. Finally,
the arithmetic Grassmannian introduced in [16] may be a helpful technique when
studying families of coverings.
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